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 Accurate characterization of two phase bubbly flows is crucial in many industrial processes such as fluidized re-
actors, ore froth flotation, etc. The bubble size determines the rate at which components present in the gas phase
are transferred to the surroundings and vice versa while bubble rate defines the appropriate bubbly flow regime
occurring in the heterogeneous system. This research work employs deep neural networks (DNNs) to predict
bubble size and bubble rate using data obtained from validated computational fluid dynamics (CFD) computa-
tions. Pure water and slurry (in conditions similar to those employed in mineral froth flotation) case studies
are evaluated. It is found that the DNN can predict the CFD results accurately when using four hidden layers, de-
scribing discontinuities in the bubbly flow regime. The relative errors computed between the CFD data and the
prediction obtained by the DNN is as low as 8.8% and 1.8% for bubble size and bubble rate, respectively. These re-
sults confirm that the DNN can be applied to sophisticated fluid dynamics systems and allow developing better
control process strategies since once the DNN is trained critical variables can be computed very efficiently. The
slurry case study, although restricted to the application of mineral froth flotation, can also be generalized to
other industrial operations keeping the exact same procedure.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Determining bubble size distribution and other characteristics of
bubbly flows is a challenge and a necessity for a number of industrial
operations such as mineral processing, oil industry, wine industry,
wastewater treatment, fluidization reactors, bioreactors, etc. [1]. Partic-
ularly, in the field of mineral processing the search for new, improved
and more accurate models to represent the efficiency of the froth flota-
tion operation, one of the largest tonnage operations in the industry
field, is still an ongoing process. Therein, it is widely accepted that the
bubbly flow characteristics are key for a correct determination of the ef-
ficiency of the separation process and so far no analytical descriptions
have been capable to gather all the information to understand the
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process. Although many models have been suggested as a possible rep-
resentation of the froth flotation process and its sub-processes [2], they
have proved to follow the trends the real systems exhibit. However, the
uncertainty embedded in computing the efficiency of the operation is
still an unresolved matter. Such uncertainty varies from 5 to 30% [3,4].
Computational fluid dynamics (CFD) tools are able to capture all com-
plexities present in real froth flotation systems [5]. However, tracking
the behavior of bubbly flows is an open problem.

The application of ordinary neural networks (NNs) has penetrated
many applications fields dramatically and the mapping and prediction
of fluid dynamic equations has been a highly fruitful field for scientific
research [6]. One variation of NNs is the use of Deep Neural Networks
(DNNs) which is one of the most recent developments in machine
learning and represents a tremendous progress compared to the ordi-
nary NN framework. DNNs are essentially neural networks with several
(i.e. more than one) hidden layers that are pre-trained to reduce the
limitations of the classic gradient based backpropagation training. In-
creasing the number of hidden layers improves the capability of the net-
work to solve highly difficult, nonlinear and dynamic functions when
compared to shallow networks. Nevertheless, to use a gradient-based
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Fig. 1. The DNN architecture employed to learn the hidden function that delivers the
bubble size and rate by making use of the following information: gas inlet velocity; fluid
viscosity; fluid density; surface tension; and, contact angle.

Nomenclature

a Main or major bubble axis, [m]
b Secondary or minor bubble axis (perpendicular to “a”),

[m]
db Bubble diameter, [m3]
d0 Inlet diameter for gas in the system, [m]
k Bias of the encoder of the DNN
ke Bias of the decoder of the DNN
Q Air flowrate, [m3/s]
RMS Root-mean-squared deviation
Vb Bubble volume, [m3]
X Input vector of the DNN
X ̂ Estimation of X in the DNN pre-training
W Weights of the encoder of the DNN in the pre-training
We Weights of the decoder of the DNN in the pre-training
μslurry Dynamic viscosity of the slurry phase
μfluid Dynamic viscosity of water
ρl Water density, [kg/m3]
ρslurry Slurry density, [kg/m3]
ρs Solid density, [kg/m3]
σ Surface tension, [Nm]
φl Water percent in the slurry phase
φs Solids percent in the slurry phase
ϕ Volume fraction of solids in the slurry phase
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optimization strategy may be not effective when the gradient propa-
gates across multiple nonlinearities. To avoid this limitation, in [7] it
was presented a procedure which consists of pre-training one layer at
a time, demonstrating that it is possible to learn in deep NN-architec-
tures. In the recent years, the applications of this method with Restrict-
ed Boltzmann Machine have grown exponentially to address pattern
recognition problems in computer vision [8], automatic speech recogni-
tion and natural language processing [9]. Surprisingly, despite the fact
that DNNs have also been used for time seriesmodeling and forecasting
achieving promising results [10], the prediction problem has not been
addressed exhaustively with DNNs.
Fig. 2. Sketch of the CFD 3D cylindrical system used to obtain bubble volume and bubble
rate.
2. Modeling CFD response with DNN

Reliable computational fluid dynamics (CFD) data are often used to
simulate pressure and velocity fields in complex systems such as bubbly
flows in different applications such as mineral froth flotation among
others [11]. The CFD data and the uncertainties behind the use of turbu-
lent frameworks collect features of realistic systems which may be val-
idated with empirical and semi-empirical models [12,13]. In [14]
experimental and CFD results of two-phase fluid flow in a tube were
predicted using ordinary NN. Those results showed that theNN can pre-
dictwith a reasonable accuracy the complex flow. In this study, the bub-
ble size and bubble rate are obtained using a set of CFD data. The
prediction considered employs the leave-one-out strategy where the
whole dataset but one is used to train the DNN tool predicting the one
not seen in the training step. This procedure is repeated by shifting
the unseen data to the next one until completing the whole set of CFD
data.

Fig. 1 shows the DNN architecture employed in this paper. In order
to map both bubble size and bubble rate, two decoupled and indepen-
dent DNNs are used. The first network is trained to learn the “hidden”
function that estimates bubble size using the following inputs variables:
initial velocity; fluid viscosity; fluid density; surface tension; and, con-
tact angle. The second DNN is trained to learn the “hidden” function
that outputs the bubble rate from the same set of inputs. It is worth
highlighting that four out of the five input variables correspond to
fluid characteristics that are possible to be measured. The fifth input
variable represents the inlet velocity computed with respect to the
cross surface area of the nozzle throughout which the air injected into
the simulated tank. The hidden layers activation functions are nonlinear
(e.g. sigmoid), but the activation function of the output layer is linear. As
a result of this procedure, the DNN architecture that is able to represent
accurately the CFD results is reported.
3. Methodology

3.1. Details of CFD simulations

CFD simulations of bubbly flowswere obtained from a 3D cylindrical
system sketched in Fig. 2. It consists of a container 50 cm height and
20 cm diameter filled with fluid up to 40 cm. The gas flowrate enters
at the bottom through an inlet located at the center of the base with a
2 mm diameter. A mesh of 600,122 cells was considered to resolve the
mass balance and momentum equations according to the equations
presented in a previous research work [15]. The fluid media considered
in the research were pure water and slurry phase, where the latter is
similar to that observed in mineral froth flotation operations, demon-
strating the significant differences occurring when passing from a
fluid free of solids and reagents (frother-free aqueous solution) to an-
other with 30% solid with frother reducing its surface tension. The
main properties of both fluids are presented as follows.



Fig. 3. Example of the bubblyflows in purewater and slurry phase for 0.175 [m/s] inlet gas
velocity, a) water, b) slurry.

Table 2
Average bubble volume and bubble rate obtained from CDF simulation.

Average bubble
volume
(mm3)

Average bubble rate
(bubbles/s)

Inlet gas velocity
(m/s)

Water Slurry Water Slurry

0.025 12.494 5.210 2.645 6.305
0.050 13.474 6.310 4.881 11.016
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3.1.1. Computation of slurry density from solid and liquid densities and their
percentage in the mixture.

Eq. (1) is generally used to compute the slurry density.

ρslurry ¼
100

φs

ρs
þ φl

ρl

ð1Þ

whereφs andφl represent the solids and liquidmass percents, and ρs and
ρl are the densities of the solid and liquid pure phases. For example, inflo-
tation tanks with roughing and scavenging duties the solids percent are
about 40%. Assuming that the average ore density is 2700 kg/m3, the slur-
ry density is 1337 kg/m3. The density used for pure water is 1000 kg/m3.

3.1.2. Computation of slurry viscosity from solid and liquid densities, and
their percentage in the mixture.

The viscosity equation for high volumetric concentrations of parti-
cles has been determined utilizing the equation [16]:

μslurry ¼ μ fluid 1þ 2:5ϕþ 10:05ϕ2 þ 0:00273e16:6ϕ
� �

ð2Þ

where μslurry and μfluid represent the dynamic viscosity of the slurry
phase and the dynamic viscosity of thepure liquid used, andϕ is the vol-
umetric fraction of solids present in the slurry phase.

3.1.3. Estimation of the surface tension and contact angle.
The surface tensions used for both liquids are summarized in Table 1.

The surface tension of the slurry is lower than that of water with a value
commonly reported in froth flotation experiments [17]. The contact
angle of the aqueous phase with the vessel wall was considered con-
stant and equal to 60° for both fluids.

3.2. Bubbly flow results

Fig. 3 presents the simulation results for an initial surface velocity of
0.175 [m/s] for pure water and slurry. As expected, bubbles are not per-
fect spheres. Nevertheless, when comparing both fluids at the same air
flow rate the bubbles appear closer in the case of slurry phase, which
can be explained by the strong difference in viscosity between the
water and slurry.

3.3. Bubble volume estimation using image analysis

Volume of each bubble was estimated with two images captured
from two different angles 90° apart. First, the boundary of the tank
was extracted and the remaining image was removed. Next, the bubble
edges were detected. The volume of fluid (VOF) is determined by the
boundary of the bubble that is defined between 0 and 1. In this paper,
the threshold to detect the bubble boundary was made equal to 0.5
[18]. After segmenting the bubbles from both images, volume was esti-
mated. Based on the shape of the bubbles, an oblate spheroidmodelwas
fit by calculating the major and minor axes, a and b respectively, utiliz-
ing both images. The volume was then estimated according to (see
Table 2):

Vb ¼ 4
3
πab2 ð3Þ
Table 1
Surface tension values for water and slurry.

Fluid Surface tension (Nm)

Water 0.0728
Slurry 0.0400
3.4. Validation of CFD results with experimental equations

Jamialahmadi and collaborators [19] summarized a number of equa-
tions for bubble size under different conditions. Table 3 indicates the em-
pirical equations which explain the trends in bubble size obtained using
CFD simulations and thefittingwellness. The equation reported byGaddis
and Vogepohl [20] describes correctly the linear trend observed in the
case of pure water while the model presented by Van Krevelen and
Hoftijzer [21] explain well the non-linear behavior observed in the case
of the slurry phase. According to Jamialahmadi and collaborators [19]
these equations have a relative error with respect to experimental data
below 20%. Additionally, Table 3 indicates a good correlation between
the CFD data and the equations validating these results. The average
error in the case of slurry for bubble volume estimation was below 15%.

3.5. Deep neural network training

In order to train a “deep architecture” the greedy layer-wise ap-
proach was adopted to pre-train the DNN. Greedy layer-wise initializes
the weights of the deep network by training each layer at a time. The
first stage named encoder, takes an input vector X, X∈Rn f0;1g and
maps the input into a hidden representation Y, Y∈Rq f0;1g:

Y ¼ f WX þ kð Þ ð4Þ
0.075 14.699 8.910 6.685 14.937
0.100 15.233 10.412 8.123 18.265
0.125 16.169 11.024 8.629 19.920
0.150 16.837 12.126 8.993 20.098
0.175 18.240 20.701 12.706 16.672
0.200 19.977 22.583 12.784 22.537
0.225 22.583 26.190 12.658 20.309
0.250 23.523 28.373 12.695 19.739



Table 3
Equations for bubble size used to validate the CFD results.

Fluid Equation Pearson
coefficient (R2)

Reference

Pure
water db ¼

h�
6d0σ
ρliquidg

�4=3 þ ð81vQπg Þ þ
�

135Q2

4π2g

�4=5
i1=4 0.994 [20]

Slurry
phase db ¼

�
1:722 Q

5=6

g
3=5

6
π

�1=3 0.962 [21]

Fig. 4. Four hidden layer DNN performance for bubble size estimation.

Fig. 5. Four hidden layer DNN performance for bubble rate estimation.
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where f is a nonlinear activation function (a sigmoid function in this par-
ticular case). Then, this representation is coded backwith a decoder. The
decoder function attempts to generate an estimation of the original fea-

ture input vector, X ̂, as expressed below:

X ̂ ¼ f We Y þ ke� �
ð5Þ

The weights of the decoder, We; are typically the transpose
of the weights of the encoder, We ¼ WT . The autoencoder (i.e.
encoder + decoder) is trained by making use of the delta rule or
back propagation method and by minimizing the cost function, i.e.

the error between the inputs and its approximation, lðX;X ̂Þ is repre-
sented by Eq. (6).

minl X;X ̂
� �

¼ X−X ̂
��� ���2 ð6Þ

After pre-training the first layer, the procedure is repeated to all the
hidden layers. Once the pre-training is complete, the training process of
all the hidden layers takes place with the backpropagation algorithm.

4. Results and discussion

A DNNwas trained with 19 sets of inputs–outputs; then, the predic-
tion accuracy of the trained DNN was evaluated with the 20th set of
input–output that was not seen in training. This scheme was repeated
for each input–output set. There is no universal method to determine
the optimal number of parameters for a network. It depends on the
structure of the problem at hand and on the available training dataset.
DifferentDNNarchitectureswere tested in order tofind the architecture
with the lowest RMS error [22] for both bubble size and bubble rate.

The performances of DNNs with one, two, three and four hidden
layers are compared. In addition, each one of the architectures tested
was optimized with respect to the number of neurons on each hidden
layer that was varied from four neurons to 20 neurons with a step
equal to two. The pre-training and training epochs were set at 1000.
The activation function in the hidden layers corresponds to a sigmoid,
and the activation function in the output layer is linear. For the DNN
with one hidden layer the optimum number of hidden neurons was
equal to ten, with a RMS error of 0.0735 in bubble rate and 0.0549 in
bubble size. The lowest RMS error of the DNN with two hidden layers
was equal to 0.0715 for bubble rate (ten neurons in the first hidden
layer and 12 neurons in the second hidden layer) and 0.0500 for bubble
size (four neurons in thefirst hidden layer and 12 neurons in the second
hidden layer). The lowest RMS error of the DNN with three hidden
layers was equal to 0.0619 for bubble rate (ten neurons in the first
and second hidden layers, and eight neurons in the third hidden
layer) and 0.0324 for bubble size (12, eight and 12 neurons in the
first, second and third hidden layers, respectively). The DNN architec-
ture with the lowest RMS corresponded to the four hidden layer archi-
tecture. In this case, the RMS was equal to 0.0162 and 0.0534 for
bubble size (12, six, eight and six neurons in the first, second, third
and fourth hidden layers, respectively) and bubble rate, with the same
number of hidden neurons, respectively. The relative error between
the CFD data and the DNNs prediction is 8.8% and 1.8% for bubble size
and bubble rate, respectively. Figs. 4 and 5 show the original CFD results
and the predicted ones by the four hidden layer DNNs for bubble size
and bubble rate, respectively.

The computer used to train and test the DNNs had an Intel i5
1.5 GHzmicroprocessor with 4 GB RAM. The training of the four hidden
layer DNNs, including all the configurations of hidden neurons, re-
quired 25 h of computation. However, the testing time was just 0.18 s
ensuring a fast evaluation of the bubbling operation which confirms
its high potential usefulness for designing improved control strategies
of industrial processes having bubbly flows in their implementation
in fields such as, but not restricted to, mineral processing with an ade-
quate uncertainty.

5. Conclusions

The DNN framework predicted accurately the bubble size and bub-
ble rate obtained from CFD simulations. The relative errors between
CFD data and DNN predictions for bubble size and bubble rate are as
low as 8.8% and 1.8%, respectively, indicating that the technique is suit-
able to estimate these features of bubbly flows system. Moreover, the
four hidden layer DNN allows describing the whole range of bubble
sizes and bubble rates tested including discontinuities in the bubbly
flow regime. These results corroborate that the DNN can be applied to
sophisticated fluid dynamic problems such as slurries in conditions
close to those employed in themining industry in froth flotation opera-
tions. This procedure can also be generalized to other industrial
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operations enabling the development of better process control strate-
gies because once the DNN is trained critical variables can be computed
very efficiently.

Acknowledgments

The research reported here was funded by CONICYT-Chile, project
PIA ACT 1120.

References

[1] R.H. Perry, D.W. Green, Perry's Chemical Engineers' Handbook, seventh ed. McGraw
Hill, Salt Lake city, Utah, 1997 14.69–14.79.

[2] R.P. King,Modeling and Simulation ofMineral ProcessingSystems, seconded. Society
for Mining, Metallurgy, and Exploration, Inc., Englewood Co, 2012 341–413.

[3] F.F. Pitard, Pierre Gy's Sampling Theory and Sampling Practice. Heterogeneity,
Sampling Correctness and Statistical Process Control, second ed. CRC Press, Boca
Raton, London, New York, Washington D.C., 1993 315–328.

[4] G. Sandoval-Zambrano, G. Montes-Atenas, Errors in the estimation of size-by-
liberation flotation rate constants, Miner. Eng. 27-28 (2012) 1–10.

[5] T.J. Chung, Computational Fluid Dynamics, first ed. Cambridge University Press,
Cambridge, New York, Melbourne, Madrid, Cape Town, 2002 902–924.

[6] M. Rahimi, M. Hajialyani, R. Beigzadeh, et al., Application of artificial neural network
and genetic algorithm approaches for prediction of flow characteristic in serpentine
microchannels, Chem. Eng. Res. Des. 98 (2015) 147–156.

[7] G.E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief nets,
Neural Comput. 18 (7) (2006) 1527–1554.

[8] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep
convolutional neural networks, Adv. Neural Inf. Proces. Syst. 25 (2012) 1097–1105.

[9] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P.
Nguyen, T. Sainath, B. Kingsbury, Deep neural networks for acoustic modeling in
speech recognition: the shared views of four research groups, IEEE Signal Process.
Mag. 29 (6) (2012) 82–97.

[10] M. Längkvist, L. Karlsson, A. Loutfi, A review of unsupervised feature learning and
deep learning for time-series modeling, Pattern Recogn. Lett. 42 (2014) 11–24.

[11] P.T.L. Koh, M.P. Schwarz, CFD modelling of bubble-particle attachment in flotation
cells, Miner. Eng. 19 (2006) 619–626.

[12] A. Valencia, M. Cordova, J. Ortega, Numerical simulation of gas bubbles formation
at a submerged orifice in a liquid, Int. Commun. Heat Mass Transf. 29 (6) (2002)
821–830.

[13] I. Chakraborty, G. Biswas, S. Polepalle, P.S. Ghoshdastidar, Bubble formation and
dynamics in a quiescent high density liquid, AICHE J. 61 (11) (2015) 3996–4012.

[14] A. Alizadehdakhel, M. Rahimi, J. Sanjari, A.A. Alsairafi, CFD and artificial neural
networkmodeling of two-phaseflowpressure drop, Int. Commun.HeatMass Transf.
36 (2009) 850–856.

[15] M.S. Khan, G. Montes, A. Valencia, S.M. Bhatti, N. Becerra Yoma, On discriminating
sizes of CFD generated bubbles with signal processing analysis, Int. J. Heat Mass
Transf. 89 (2015) 996–1006.

[16] D.G. Thomas, Transport characteristics of suspensions. VIII: a note on the viscosity of
Newtonian suspensions of uniform spherical particles, J. Colloid Sci. 20 (1965)
267–277.

[17] R.T. Rodrigues, J. Rubio, New basis for measuring the size distribution of bubbles,
Miner. Eng. 16 (2003) 757–765.

[18] J. Klostermann, K. Schaake, R. Schwarze, Numerical simulation of a single rising bub-
ble by VOF with surface compression, Int. J. Numer. Methods Fluids 71 (8) (2013)
960–982.

[19] M. Jamialahmadi, M.R. Zehtaban, H. Muller-Steinhagen, A. Sarrafi, J.M. Smith, Study
of bubble formation under constant flow conditions, Trans. IChemE 79 (A) (2001)
523–532.

[20] E.S. Gaddis, A. Vogelpohl, Bubble formation in quiescent liquids under constant flow
conditions, Chem. Eng. Sci. 41 (1986) 97–105.

[21] D.W. van Krevelen, P.J. Hoftijer, Studies of gas bubble formation-calculation of inter-
facial area in bubble contactors, Chem. Eng. Prog. 46 (1950) 29–35.

[22] G. Acuña, E. Pinto, Development of a Matlab Toolbox for the design of grey-box
neural models, Int. J. Comput. Commun. Control 1 (2) (2006) 7–14.

http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0005
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0005
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0010
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0010
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0015
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0015
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0015
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0020
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0020
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0025
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0025
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0030
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0030
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0030
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0035
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0035
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0040
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0040
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0045
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0045
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0045
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0045
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0050
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0050
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0055
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0055
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0060
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0060
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0060
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0065
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0065
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0070
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0070
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0070
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0075
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0075
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0075
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0080
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0080
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0080
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0085
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0085
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0090
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0090
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0090
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0095
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0095
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0095
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0100
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0100
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0105
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0105
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0110
http://refhub.elsevier.com/S0735-1933(16)30169-5/rf0110

	Predicting bubble size and bubble rate data in water and in froth flotation-�like slurry from computational fluid dynamics ...
	1. Introduction
	2. Modeling CFD response with DNN
	3. Methodology
	3.1. Details of CFD simulations
	3.1.1. Computation of slurry density from solid and liquid densities and their percentage in the mixture.
	3.1.2. Computation of slurry viscosity from solid and liquid densities, and their percentage in the mixture.
	3.1.3. Estimation of the surface tension and contact angle.

	3.2. Bubbly flow results
	3.3. Bubble volume estimation using image analysis
	3.4. Validation of CFD results with experimental equations
	3.5. Deep neural network training

	4. Results and discussion
	5. Conclusions
	Acknowledgments
	References


