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ABSTRACT

We study the star formation process at galactic scales and the role of rotation through numerical simulations of
spiral and starburst galaxies using the adaptive mesh refinement code Enzo. We focus on the study of three
integrated star formation laws found in the literature: the Kennicutt–Schmidt (KS) and Silk–Elmegreen (SE) laws,
and the dimensionally homogeneous equation proposed by EscalaS µ SG LSFR gas

1.5 . We show that using the last
we take into account the effects of the integration along the line of sight and find a unique regime of star formation
for both types of galaxies, suppressing the observed bi-modality of the KS law. We find that the efficiencies
displayed by our simulations are anti-correlated with the angular velocity of the disk Ω for the three laws studied in
this work. Finally, we show that the dimensionless efficiency of star formation is well represented by an
exponentially decreasing function of- Wt1.9 ff

ini, where tff
ini is the initial free-fall time. This leads to a unique galactic

star formation relation which reduces the scatter of the bi-modal KS, SE, and Escala relations by 43%, 43%, and
35%, respectively.
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1. INTRODUCTION

Knowing how efficiently galaxies form their stars is
fundamental to understanding the evolution of our universe.
Unfortunately, star formation involves a wide range of spatial
and temporal scales combined with a large number of physical
processes which are usually dynamically coupled and in the
nonlinear regime, thus a comprehensive understanding of how
stars form has remained elusive to astronomers. The typical
picture for star formation consists of dense molecular clouds
collapsing due to their own gravity, while resisted by thermal
pressure, turbulence, rotational shear, and magnetic fields,
among others (Martin & Kennicutt 2001; Seigar 2005; McKee
& Ostriker 2007; Padoan et al. 2014). Studies have shown that
stars are most likely created from molecular clouds on scales of
a few parsecs, and that feedback produced by their subsequent
explosion as supernovae can impact their surroundings up to
scales of a few kiloparsecs (Ceverino & Klypin 2009). The
influence that stellar feedback has on galactic scales naturally
leads to the assumption that star formation might be somewhat
related to galactic properties.

One of the first attempts to find such link was performed by
Schmidt (1959), who suggested a power-law relation between
the volume densities of star formation rate (SFR) and gas
content, based on observations of the solar neighborhood.
Further observations of disk and starburst galaxies performed
by Kennicutt (1998) strengthened this hypothesis and found a
relation of the form S µ SN

SFR gas with N≈1.4, the so-called
Kennicutt–Schmidt (KS) relation. From this simple relation it
follows that the depletion times (tSF) might be described by

º S S µ S-tSF gas SFR gas
0.4 which is often associated with the

free-fall time of the gas ( )rµ -t Gff gas
0.5(Madore 1977; Leroy

et al. 2008).
However, the functional form of this relation appears not to

be unique: normal spiral galaxies seem to create stars from their
gas reservoirs over longer timescales than high-redshift
starburst disks at the same surface density, suggesting the
existence of two different regimes in the KS relation (Daddi

et al. 2010; Genzel et al. 2010). Furthermore, other works have
shown variations of this law depending on the tracers used,
casting doubts on how fundamental these relations are. For
instance, in H2-dominated centers of spiral galaxies star
formation has been found to be linearly related to the density
of molecular hydrogen instead of atomic hydrogen (Bigiel
et al. 2008). On the other hand, observations of H I-dominated
regions show that star formation is related to atomic hydrogen
through the KS dependence with depletion times 1–2 orders of
magnitude lower than in the inner molecular dominated disk
(Roychowdhury et al. 2015). These results are compatible since
the SFR grows linearly with the mass of molecular clouds
(Lada et al. 2010), which are formed from diffuse gas and
therefore the laws based on the total hydrogen content represent
the formation of such clouds.
Although the KS relation is probably the most extensively

studied star formation law, it is not the only effort that has been
performed in this area. Several authors have proposed other
formulations where the tSF is related to a galactic timescale,
such as the effective free-fall time at the mid-plane of the disk
(Krumholz et al. 2012), or the orbital time p= Wt 2orb known
as the Silk–Elmegreen (SE) relation (Elmegreen 1997; Silk
1997), where Ω is the angular velocity. Unfortunately, in real
galaxies both timescales are of the same order of magnitude (at
galactic scales) and are coupled through the mass content of the
galaxy, which might lead to spurious relationships. In
particular, a few studies show conflicting results about the role
of galactic rotation: some works have claimed formation of
stars through cloud collisions as the origin of the SE law
(Tasker & Tan 2009; Suwannajak et al. 2014) while other
groups have shown that collisions produce little difference
(Dobbs et al. 2015) in the SFR and found anti-correlations
between SFR or stellar content and rotation (Berta et al. 2008;
Weidner et al. 2010; Davis et al. 2014; Obreschkow
et al. 2015).
Recently, Escala (2015) proposed a star formation law of the

form S µ SG

LSFR gas
3 2 (hereafter E15), where L is a character-

istic length that is related to the integration axis in observations.
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Among different choices for L, the author points out the radius
R of the region, the vertical scale length h, the Jeans length
l p r= c GsJeans

2 , and the largest scale not stabilized by
rotation l p k= SG4rot

2 2 (Escala & Larson 2008) (where κ is
the epicyclic frequency and in general  W k W2 ) as the
main possibilities. Each one of these values allowed the author
to recover previously proposed scaling relations such as SSFR

with Sgas
3 2, Sgas/torb, Sgas/tff , and S vgas

2
turb.

In this paper we study the role of galactic rotation on star
formation by performing three-dimensional hydrodynamic
simulations of spiral and starburst galaxies which allow us to
span a wide range of Sgas. The initial configuration of each
galaxy is set by several length scales and characteristic masses
of gas, stars and/or dark matter (DM), which translates into
different density distributions, vertical accelerations, and
rotational velocity curves. For a rotating disk, increasing the
initial gas content increases the angular velocity and the
vertical acceleration at the mid-plane, producing a spurious
correlation between them. In addition, as the gas cools it
quickly settles on the mid-plane, increasing the local gas
density. This vertical compression causes the vertical accelera-
tion to be highly correlated with the gas distribution after the
first vertical collapse. On the other hand, the angular velocity is
less sensitive to the vertical distribution of gas and remains
nearly constant. Therefore, it is easier to study the role of Ω
since it is less affected by the process of collapse and star
formation. To remove the correlation between rotation and
vertical acceleration we fix the initial gas content and make use
of external potentials to obtain different angular velocities. The
mass of these potentials is distributed on larger vertical scale-
lengths, like spherically symmetric potentials, and thus does
not change the vertical distribution of gas significantly which is
going to be given mostly by gas self-gravity. This procedure
allows us to nearly isolate the effects of rotation.

The paper is organized as follows. In Section 2 we introduce
the simulation setup, describe the code and give details about
the initialization for both spiral and starburst galaxies. In
Section 3 we display the resulting structures of the simulations.
We then analyze the simulations and present the results for the
star formation laws in Section 4. Section 5 presents a
discussion of the results, and we conclude in Section 6.

2. THE MODELS

We use the hydrodynamic adaptive mesh refinement (AMR)
code Enzo3 (Bryan et al. 2014). Its Eulerian nature based on the
structured AMR algorithm of Berger & Colella (1989) allows
different levels of refinement in different regions of space,
which focuses the computation effort in regions where it is
most useful. This is achieved by subdividing the “parent” or
root grids into smaller or “child” grids, and repeating the same
process when a child grid becomes itself a parent grid. Using
this approach, the initial uniform grid covering the simulation
box ends up turning into a nested structure of grids, where the
smaller the grid size, the higher the resolution.

A three-dimensional version of the ZEUS hydrodynamical
code (Stone & Norman 1992) is used to evolve the
hydrodynamic equations of the gas. To ensure that the
interstellar medium (ISM) will develop a multi-phase structure,
a cooling function is used to calculate the energy lost by

radiation down to 300 K. We use the cooling curves of Sarazin
& White (1987) for T>104 K, and Rosen & Bregman (1995)
for 300 K<T<104 K.
For this work we have performed two different sets of

simulations: spiral and starburst galaxies, which allow us to
probe different time, length, and density scales, at the same
time that they achieve different resolutions. The simulations are
evolved in comoving coordinates in a ΛCDM universe, where
we have adopted the values Ωm=0.3, ΩΛ=0.7, and
H0=67 km s−1 Mpc−1, whose effects are only noticeable in
the spiral galaxies. We use two criteria to refine a given gas cell
and both of them have to be fulfilled: refinement by baryon
mass and Jeans length. Baryon mass refinement is applied if the
mass of the cell is δ times greater than ¯ ( )r Dx 2 l

root
3 0.5 , where r̄

is the average density, Δxroot is the cell size of the root grid and
l is the level of refinement. The second criterion is used to
ensure that the Jeans length is at least resolved by four cells to
prevent artificial fragmentation (Truelove et al. 1997). We
choose δ=4 for spiral galaxies and δ=100 for starburst. For
spiral galaxy simulations we choose a time interval between
snapshots of Δt;40Myr, and Δt;0.4Myr for starburst
galaxies. The initial circular velocity for each simulation is
calculated as

( )=
F

+v R
d

dR

GM

R
1c

2 ext gas

where Φext is the external potential and Mgas is the gaseous
mass enclosed in a sphere of radius R. The second term in
Equation (1) is an approximation for the rotational support
needed for gas self-gravity. However, the radial acceleration is
mostly given by the external potentials, making this approx-
imation reliable.

2.1. Spiral Galaxies

The spiral galaxies are simulated in a box of 666 h−1 kpc
with periodic boundary conditions from z = 0.2 to z=0. The
size of the parent grid is 1283 and we proceed down to an
additional seven sub-grids of refinement, reaching a resolution
of ∼40 pc, which is reasonable to resolve the interaction
between star formation, stellar feedback, and the ISM
(Ceverino & Klypin 2009). These simulations are modeled as
a four-component system which includes gas, star particles, and
time-independent stellar and DM potentials. In the case of gas
we model it using grids, while the stellar and DM distributions
are represented by external potentials which are fixed in time.
Star particles form from the gas cells and are not added at the
beginning of the simulations. The initial conditions for these
galaxies were taken from Becerra & Escala (2014).

2.1.1. Gas

The gas is a rotationally supported disk, initially described
by an exponential profile in the radial direction R combined
with a sech2 profile in the vertical direction z, where R and z are
cylindrical coordinates

( ) ( ) ( )r r= -
⎛
⎝⎜

⎞
⎠⎟R z R R

z

z
, exp sech

2
, 2gas 0 0

2

0
3 http://enzo-project.org
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where R0 is the disk scale-length, z0 is the disk scale-height and
ρ0 is the central density. Integrating Equation (2) we obtain

( )r
p

=
M

z R8
. 30

gas

0 0
2

Therefore the distribution of gas is fully determined by R0,
z0, and the total gas mass Mgas. For the spiral galaxy set of
simulations we use R0=3.5 kpc, z0=0.4 kpc, and
Mgas=1010Me.

2.1.2. Stars

To model the stellar component of the external potential we
use a Miyamoto–Nagai profile (Miyamoto & Nagai 1975),
which models the stellar disk and bulge of the galaxy. The
potential is given by:

( )
( )

( )F = -
+ + +

R z
GM

R a z b
, . 4star

star

2 2 2 2

We adopt the fixed values a = 3.5 kpc and b = 0.2 kpc. For
the total stellar mass Mstar we take two different values,
1010Me and 1011Me, which would give different contributions
to the total rotation.

2.1.3. Dark Matter

We consider DM as an external gravitational field given by a
Navarro–Frenk–White profile (Navarro et al. 1997) which
changes slightly through the evolution of the galaxies due to its
dependence with the Hubble parameter H. This approach
allows us to focus only on the gas dynamics. The NFW density
profile is given by

( )
( )( )

( )r
r d

=
+

r
r r r r1

5c

s s
DM

crit
2

where rs=r200/c is the characteristic radius, r p= H G3 8crit
2

is the critical density, c is the concentration parameter, and δc is
given by:

[ ( ) ( )]
( )d =

+ - +
c

c c c

200

3 ln 1 1
6c

3

The characteristic radius r200 corresponds to the volume at
which the mean density is 200 times the critical density

( )r
p

=M r200
4

3
7200 crit 200

3

We adopt a value c=12 for the concentration parameter
while M200 will take the values 1010Me and 1011Me for the
simulations with Mstar=1010Me and 1011Me, respectively.
The simulation parameters for galaxies are summarized in
Table 1.

2.2. Starburst Galaxies

For starburst galaxies we only simulate the central nuclear
disks which are initialized within a box of physical size 4 kpc
with isolated boundary conditions. The size of the parent grid is
323, and we proceed down to additional six levels of
refinement, reaching a resolution of ∼2 pc. Our initial model
consists of a massive gaseous disk embedded in a stellar
spheroid, which is modeled by a time-independent external
potential.

2.2.1. Gas

We initialize the gas as a rotationally supported disk with an
R−1 power law for the cylindrical radius and a sech2 function
for the vertical component:

( )
( )

( )r r= ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟R z

R

R

z

z R
, sech

2
, 8gas 0

0 2

0

where R0 is the radial scale-length, z0(R) is the height scale-
length as a function of radius, and ρ0 is the central volumetric
density. We choose z0 to be a function of radius so the initial
configuration is close to vertical equilibrium:

( )
( )

( )
p r

= =z R
c

G R

c

GM
RR

8 , 0

2

3
, 90

s
2

s
2

gas
0
3

where Mgas is the total gas mass and cs is the sound speed
which is initially constant. The values adopted for this set are
R0=300 pc for the disk scale-length and Mgas=4×108Me

for the total gas mass. Finally, the initial gaseous disk is

Table 1
Simulation Parameters

Spiral Galaxies

Run Mgas Mstar MDM torb Ω Δx
Name (Me) (Me) (Me) (Myr) (Myr−1) (pc)

GD1 1×1010 1×1010 1×1010 639.9 0.982×10−2 37.957
GD2 1×1010 1×1011 1×1011 275.5 2.281×10−2 37.957

Starburst Galaxies

Run Mgas Mstar σ torb Ω Δx
Name (Me) (Me) (km s−1) (Myr) (Myr−1) (pc)

SD1 4×108 1.24×109 100 11.5 0.546 1.949
SD2 4×108 2.10×109 130 9.3 0.675 1.949
SD3 4×108 4.49×109 190 6.6 0.952 1.949
SD4 4×108 6.02×109 220 5.8 1.083 1.949

Note. Initial masses, angular velocity, orbital time, and maximum resolution for each simulation. For spiral galaxies the table shows Mgas, Mstar, MDM and the orbital
time at 10 kpc from the center. For starburst galaxies the table shows Mgas, Mstar, and its corresponding dispersion velocity for the isothermal sphere and the orbital
time at 300 pc from the center.
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truncated at R0, and we add random density and temperature
fluctuations of less than 10%.

2.2.2. Stars

The stellar spheroid is modeled by means of the merge of
two analytical density functions such that the resulting function
shares some properties with an isothermal sphere. For r<r0
we use a fourth-order polynomial, and the singular sphere
solution for r>r0, being ( )s p r=r G9 40

2
0 the King radius

(Binney & Tremaine 2008), σ the velocity dispersion and ρ0
the stellar density at the center of the disk. In the case of the
polynomial, we impose four constraints to determine the
coefficients: the function and its first derivative (i, ii) have the
same value of an isothermal sphere at the center, and (iii, iv) are
continuous at r=r0. Solving for the polynomial coefficients,
we obtain:

( ) ( ) ( )
( )

( )

( )


r r=

- - + <
⎧
⎨⎪

⎩⎪

⎡
⎣⎢

⎤
⎦⎥r

r r

r r

1 if

if .

10

r

r

r

r

r

r

r

r

star 0

8

9

2 8

9

3 4

0

2

9

2
0

0 0 0

0

We perform a set of four different runs with a fixed
r0=100 pc. We vary the mass of the stellar spheroid in such a
way that the velocity dispersion is 100, 130, 190 and
220 km s−1. We let each simulation evolve adiabatically for

t1.5 orb, after which radiate cooling is turned on. We do this to
allow the initial perturbations to propagate through the disk and
to remove any artefact produced by the initial conditions.
Table 1 summarizes the parameters used in these runs and
indicates the value of the stellar mass within 300 pc (Må). Here,
torb corresponds to the period for a circular orbit at r=300 pc.

2.3. Star Formation and Feedback

We follow a slightly modified version of the Cen & Ostriker
(1992) algorithm to create a new star particle. For a cell to enter
the algorithm of star formation its density has to be greater than
a density threshold

( )>n n 11cell thres

where n is the particle number density. Due to the different
ranges of densities and resolutions reached by each set of
simulations, we use two different values: for spirals
nthres=7.5×103 cm−3 and nthres=7.5×105 cm−3 for star-
bursts. These values were chosen in order to match the
observed KS relations for spiral and starburst galaxies (Daddi
et al. 2010). If the density criterion is fulfilled, two additional
criteria have to be satisfied to create a new star particle: (i) the
velocity flow is converging and (ii) the time it takes the gas to
cool is less than the time it takes to collapse:

· ( ) <v 0 12a

( )p
r

< ºt t
G

3

32
. 12bcool dyn

tot

Finally a new star is created and its mass is calculated as a
function of the star formation efficiency (ε), the gas density
(rgas), and the cell volume:  er= Dm xgas

3, where ε=0.01.
The main difference with the original Cen & Ostriker algorithm
is that we do not check if the cell is Jeans unstable because any

cell that satisfies the density criterion is Jeans unstable if the
cell temperature is below 1×105 K. Unlike the Cen &
Ostriker algorithm, here we do not consider the efficiency per
dynamical time, which means that there is no delay in star
formation. After the star particles are formed 40% of the gas
content is returned slowly to the cell within 12tdyn.
We also include stellar feedback due to supernovae

explosions, injecting energy to the surrounding gas. Although
star particles are instantly formed in our simulation, these
particles actually represent a group of several stars, hence the
feedback energy is computed as if this group, within a single
star particle, were created over a longer period of time.
Quantitatively, the mass of stars formed in a cell at a time t with
time step Δt is

( )

( ) [( ) ( ) ] ( )





ò t t

t t

D =

D = + - +
t

t
t

t t

-

- -

m t m e d

m t m e e0.6 1 1 13

stars

stars 0 1

0

1

0 1

where ( )t = -t t t0 ct dyn, ( )t = + D -t t t t1 ct dyn and tct is the
creation time of the star particle. Finally a fraction of the rest
mass energy Df m cSN stars

2, corresponding to the massive stellar
population within the “star particle,” is injected to the grid cell
that contains the particle as thermal energy. The fraction is
chosen such that 1051 erg are injected for every 55Me.

3. GLOBAL EVOLUTION

3.1. Disk Structure

We start by looking at the structure evolution of each galaxy
which is going to be affected mainly by rotation, turbulence,
and self-gravity. Figure 1 shows the time evolution of spiral
and starburst galaxies, respectively. Snapshots represent
density-weighted projections of gas density at 0, 1, 2 and
4 Gyr for spirals and at 0, 10, 20 and 40Myr for starbursts.
These projections show filamentary structures and high-density
blobs indicating small-scale instabilities growing in each disk.
The latter is more evident in the starburst galaxies which show
a highly turbulent medium compared to the spiral simulations
where the density distribution is smoother. In addition, these
density maps reveal an anti-correlation between the growth of
instabilities and the magnitude of the external potential
manifested in the angular velocity Ω. For the same absolute
time the low-rotation disks, SD1 and GD1, appear to be more
dynamically evolved, showing a more turbulent structure and a
fast departure from the initial axisymmetry. For example, the
evolution in SD1 is so violent that the stellar feedback drags
gas away from the disk, which is demonstrated by the low-
density tails of the high-density blobs that are being pushed
outwards. Therefore, from the notorious differences between
simulations, produced by different rotational profiles, we
expect to see an imprint of this behavior on the SFRs. If we
compare the evolutionary states at the same number of orbits
(same torb at a given radius) the contrast gets even bigger; this is
contradictory with the SE law which states that the SFR at an
equal number of orbits should be similar.

3.2. Rotation

In Figure 2 we show radial profiles of the angular velocity at
different times in order to visualize its variation through time.
Since we want study the global behavior of the SFR as a
function of angular velocity, we need to define a global value

4
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for Ω. This global value has to represent the whole star-forming
region. Thus it is crucial that the radial profile of Ω remains
close to its initial distribution. Figure 2 also shows the gas
fraction, fgas considering only gas cells and star particles
( ( )= +f M M Mgas gas gas stars ). In brackets is shown the fraction
of gas with respect to the total mass enclosed in a radius of

10 kpc and 300 pc for spiral and staburst galaxies, respectively.
The fraction fgas is calculated in cylindrical regions with radius
R=40 kpc and height H=8 kpc for spiral galaxies, and
R=500 pc and H=100 pc for starburst galaxies where R is
the radius and H the height of the cylindrical region. We see
initially that for most of the disk, Ω has a similar functional

Figure 1. Density-weighted projections of gas density for each simulation. Top: runs GD1 (top) and GD2 (bottom) at times 0, 1, 2, and 4 Gyr from left to right. GD1
shows a faster departure from axial symmetry due to its weaker potential and a faster consumption of gas compared with GD2. Bottom: runs SD1, SD2, SD3, and SD4
from top to bottom at times 0, 10, 20, and 40 Myr from left to right, where t=0 Myr represents the time at which cooling and star formation is turned on. The
simulation with the lowest angular velocity SD1, shows a fast departure from axial symmetry and a fast consumption of gas relative to the other starburst galaxies.

5
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form for each set of simulations with the main difference being
the amplitude, as we intended. After the disks start to fragment
and the process of star formation begins, Ω starts to deviate
from its initial value. This variation is shown to be related with
gas consumption due to star formation. When the gas fraction
reaches values below 0.4 the disks show large variations in Ω.
This complicates the definition of a characteristic value of Ω
which is needed for further comparison. However, at this point
most of the gas has already formed stars and the remaining gas
is hotter and has a lower density, taking longer timescales to
fragment. Additionally, fgas is calculated over a wide region
that includes gas that will never form stars, hence the value of
fgas in the star-forming disk is actually underestimated. In
summary, for most of the evolution of these galaxies, taking a
single characteristic value of Ω for a disk at a given time is a
good approximation to test the effects of rotation. Additional
radial profiles of Sgas, stellar surface density S , SSFR and
circular velocity Vcirc are shown in Appendix A.

4. STAR FORMATION

Now we focus on the evolution of star formation and its
empirical global laws. We show in Figure 3 the projected
distribution of stars in the x− y plane for each simulation at the
same times shown in Figure 1. In all cases we see that a high
fraction of stars are located in large clusters which will disturb
their initial axisymmetry. The size and mass of these star
clusters are shown to be anti-correlated with the angular
velocity, which is expected since the maximum unstable mass
is given by p k= SM G4unstable

max 4 2 3 4 (Escala & Larson 2008). It
also evident by looking at the second snapshot of every
simulation that stars are formed faster in disks with smaller
rotational velocities.

The time evolution of star formation is shown in Figure 4.
Both spiral and starburst galaxies show the same behavior: stars
are formed faster for simulations with lower rotation. In
addition, simulations SD1 and GD1, which correspond to the
galaxies with the lowest angular velocities within their groups,
reach higher SFRs than their counterparts. At late times the
SFR is higher for highly rotating galaxies due to their slow gas
depletion i.e., they still are able to form stars. We notice that the
initial evolution of star formation is nonlinear and leads to an
exponential increment of the SFR until a maximum is reached
at time t0. After this maximum, the SFR starts to decline
exponentially as a function of time. In addition, the time to
reach this exponential evolution depends strongly on the
amount of rotation of the galaxy. This shows that the
connection between the amount of rotation and the speed at
which instabilities grows in disks (Toomre 1964) is also
connected with the process of star formation. As we shall see in
the next section there is a clear connection between the star
formation efficiency and the rotation of galaxies.

4.1. KS and SE Laws

From now on we only analyze the evolution of star
formation in the exponentially decaying state. In order to
identify this steady evolution of the star formation, we calculate
the SFR over time convolved by a Gaussian with dispersion
100Myr for spiral galaxies and 1Myr for starbursts. Then we
proceed to locate the time t0 at which the global maximum of
the SFR is reached. The time difference in the dispersion is due
to the differences for both sets of galaxies in time resolution
and their depletion times, which are nearly two orders of
magnitude different. Finally, we only study the simulations at
times t>t0.

Figure 2. Radial profiles of angular velocity. Left: profiles for spiral galaxies at 0, 1, 2, and 4 Gyr. Right: profiles for starburst galaxies at 0, 10, 20, and 40 Myr. fgas
corresponds to the fraction of gas in the disk without considering the contribution from the external potentials. The quantity in brackets corresponds to the fraction of
gas with respect to the total mass within a radius of 10 kpc and 300 pc for spiral and staburst galaxies, respectively. For most of the time evolution the profiles of Ω
remain nearly similar to their initial distribution. Significant deviations start to appear when most of the gas has been converted into stars.
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To compare our results with observations we have to
calculate the SFR and the gas content over a projected surface,
to find a law of the form

( )S µ S . 14N
SFR gas

The KS law (Kennicutt 1998) found empirically an index of
N∼1.4, which has been interpreted as a relation between the

reservoir of gas and the local free-fall time in the form:

( )
( )r

r r

r
rµ µ µ

-t G
. 15SFR

gas

ff

gas

gas
gas
1.5

1
2

To compute the projected quantities for the star formation
laws, we need to define the integration region. We choose a
cylinder whose radius encircles 90% (hereafter R90) of the mass

Figure 3. Stellar density projections for the same models and times as in Figure 1. Top: run GD1 have formed most of its stars at 1 Gyr while GD2 form its stars over
longer timescales. Bottom: stars are formed faster from top to bottom, which corresponds to increasing angular velocity. The size of the stellar clusters in the starburst
simulations seems to be related with rotation. Both panels suggest a relation between star formation and angular velocity.

7

The Astrophysical Journal, 833:13 (18pp), 2016 December 10 Utreras, Becerra, & Escala



in star particles created within the characteristic time of star
formation tSFR=Mgas/SFR, where Mgas and SFR are the total
quantities of gas and SFR for a simulation at a given time. Then
in the same way we calculate the height H90 that encloses 90%
of the stars ( = ´H z2 90). This choice for the region is for two
reasons: (i) we expect that R90 scales in a similar way as a
radius based on the stellar luminosity profile and (ii) this region
considers mostly the gas that will form stars. A larger radius
would increase the gas reservoir with diffuse gas and reduce the
efficiency spuriously, while a smaller radius would increase the
uncertainties and would be affected by radial flows of gas and
stars. Additionally, in order to minimize the errors introduced
by changes of the integration regions, we choose the center of
the simulations as the center of the cylinders. By keeping the
center of the region fixed we ensure that quantities as Ω and
Sgas do not change drastically from one snapshot to the next. At
later times, when the SFR has decreased by a factor of a few,
this variation might be caused by some regions changing from
passive to active within a few snapshots due to the fact that the
distribution of the newly formed stars will be far from
axisymmetry.

Within the cylinders, the SFR is computed by Δmå/Δt,
where Δmå is the mass in stars created within Δt which are set
to roughly 0.1tSF (100Myr for spirals and 1Myr for starburst
disks). For the computation of the angular velocity parameter Ω
in the SE law, we measured Ω at the radius R90. We consider
this value of Ω since it is related with the radius at which the
disk becomes stable against self-gravity, hence it is related with
gravitational collapse and star formation.

Another restriction worth considering when calculating the
SFR is the regime where SFR quickly drops due to resolution.
The distribution of the high-density cells is given by the
average gas density, self-gravity, numerical resolution, and star
formation through the numerical density threshold nthres for the

star formation recipe. There is a critical density where the rate
at which the n>nthres criteria is fulfilled is given by resolution.
This timescale is larger than the free-fall time of gas cells and
hence the SFR declines abruptly, giving rise to a steeper power
law. Then, there is a critical surface density Σcrit below which
the SFR is not physically correct.
In order to remove the data corresponding to Σgas<Σcrit

from our analysis, we perform an orthogonal distance
regression with a piecewise linear function defined by

( )


S =
S S < S

S S S

⎪

⎪

⎧
⎨
⎩

if

if
16

N

SFR
gas gas crit

gas
1.5

gas crit

on the KS logarithmic-plane (Σgas, ΣSFR). We test this function
against a unique power law and we perform an F-test with
α=0.05; if the null hypothesis is not rejected we consider all
the data from a simulation.
Figure 5 shows the KS plot for our simulations during their

exponentially decaying phase of star formation. For compar-
ison with observations we have drawn the fit to the
observations by Kennicutt (1998) in black and the Daddi
et al. (2010) fits for normal and starburst galaxies in gray and
red, respectively. A summary of the power-law index N, the
zero point that corresponds to SSFR at 1 M pc−2, and the
scatter for our fits in Figure 5, is shown in Table 2. Without
considering the scatter, for most simulations the individual
evolution of the SFR is well described by a KS law, with an
index N between 1.5 and 2.0. Simulation GD2 shows the
largest index of the sample which might be due to the small
range in Σgas. We see nearly parallel evolution curves for all
the simulations in the (Sgas,SSFR) plane, which is remarkable
taking into account the different and complex structures shown
in Figure 1. Furthermore, our simulations display a bimodal
behavior in the evolution of the surface SFR, in agreement with

Figure 4. Time evolution of SFR in linear (main panels) and logarithmic scales (subpanels). Left: SFR for spiral galaxies as a function of time. Cyan lines corresponds
to GD1 and magenta lines to GD2. GD1 reaches higher SFR rates than GD2 and at earlier times. Right: SFR for starburst galaxies against time where the green,
yellow, blue, and red lines correspond to SD1, SD2, SD3, and SD4, respectively. In both sets, galaxies with lower angular velocities reach higher SFR and at earlier
times.
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observations from Daddi et al. (2010). Spiral disks show SFRs
consistent with normal galaxies while starbursts show higher
SFRs, more compatible with the regime of the same name.

The most striking feature shown in Figure 5, and quantified
by the zero point in Table 2, is the anti-correlation between the
depletion times and the amount of rotational support of the
disk: disks with higher angular velocities show lower SFR.
From a stability point of view this is expected; for high values
of κ (∼Ω) the Toomre analysis (Toomre 1964) tells us that the
disk will be more stable. When axisymmetric systems are
perturbed these perturbations will locally rotate with the
epicyclic frequency and then the value of κ can be understood
as an estimation of the local rotational support. Consequently, it
is desirable to analyze how rotation affects star formation.

For that we compute the most studied equation that relates
SSFR, Sgas and Ω which is the SE law:

( )S µ S W. 17SFR gas

This relation was tested in observations by Kennicutt (1998)
taking Ω as the angular velocity at the optical radius.
Figure 6 shows SSFR against S Wgas for our simulations. The

Kennicutt (1998) fit is represented by the black solid line and
the Daddi et al. (2010) fit by the red dashed line.
Table 3 shows the parameters of the power-law function that

best fits the data including the index N, the value of SFR at
which S = - -M1 kpc yrgas

2 1 (zero point), and the scatter
with respect to the SE law of index 1. The global behavior of
our suite of simulations appears to follow the SE law.
However, Equation (17) suggests that for a constant value of
Sgas objects with high angular velocities would form stars more

Figure 5. SSFR vs. Sgas for each simulation using face-on projections. Green,
yellow, blue, and red circles correspond to starbursts while cyan and magenta
circles represent the spiral galaxies. The black solid line corresponds to
Kennicutt (1998) fit while the dashed gray and red lines correspond to the
Daddi et al. (2010) fits for normal and starburst galaxies, respectively, with the
shaded regions representing their corresponding scatter. Both sets of
simulations lie close to their respective regime. Starburst galaxies show a
clear trend between their depletion times and angular velocity. On average, for
a given value of Sgas galaxies with higher angular velocities show lower SSFR.

Table 2
Kennicutt–Schmidt Law Parameters

Run Index N Zero Point Scatter
Name S µ SN

SFR gas S SSFR gas
1.4 S µ SSFR gas

1.4

Face-on (dex) (dex)

SD1 1.996±0.076 −2.283±0.181 0.181
SD2 1.819±0.054 −2.434±0.200 0.201
SD3 1.947±0.096 −2.684±0.120 0.155
SD4 1.516±0.088 −2.835±0.156 0.147
GD1 1.807±0.094 −3.448±0.232 0.233
GD2 2.990±0.714 −3.964±0.616 0.196

Note. Columns show the index of the best fit in the KS plane, zero point (SSFR

in logarithmic scale for S = -M1 pcgas
2), and scatter with respect to a KS

law with an index of N=1.4. The projection is carried along the z-axis. Disks
with high angular velocity show lower zero points i.e., longer depletion times
at S = -M1 pcgas

2.

Figure 6. SSFR vs. S Wgas for each simulation using face-on projections.
Colors represent galaxies as in Figure 5. The black line corresponds to
Kennicutt (1998) fit while the red line corresponds to the Daddi et al. (2010) fit
for normal and starburst galaxies, with the shaded region representing its
corresponding scatter. There is a correlation between their depletion times and
angular velocity which contradicts the SE law. On average, for a given value of
S Wgas galaxies with higher angular velocities show lower SSFR.

Table 3
Silk–Elmegreen Law Parameters

Run Index N Zero Point Scatter
Name ( )S µ S W N

SFR gas S S WSFR gas S µ S WSFR gas
Face-on (dex) (dex)

SD1 1.431±0.065 −1.055±0.214 0.216
SD2 1.460±0.046 −1.320±0.252 0.253
SD3 1.284±0.074 −1.562±0.129 0.130
SD4 0.909±0.060 −1.846±0.139 0.133
GD1 1.240±0.080 −1.135±0.271 0.273
GD2 0.800±0.180 −1.529±0.172 0.174

Note. Columns show the index of the best fit in the SE plane, zero point (SSFR

in logarithmic scale for S W = - -M1 kpc yrgas
2 1), and scatter with respect to

a SE law with an index of N = 1.0. The projection is carried along the z-axis.
Disks with high angular velocity show lower zero points i.e., smaller
efficiencies.
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rapidly, something that is not seen in Figure 6. Although it is
evident that the star formation is a function of Ω and that each
individual simulation may be described by a SE law, the
behavior among different simulations goes against the direct
linear relation between SFR and angular velocity in disks, as
suggested by the law itself. Instead, there is a consistent anti-
correlation between the efficiency of the SE relation and the
rotational speed; toward higher angular velocity the gas
depletion time becomes larger. Even though the SE relation
includes the rotational speed as an effective parameter, our
simulations evince that the actual effect of rotation is not
encapsulated in it. Then the SE relation is still incomplete and
Equation (17) works just as an estimation of the SFR for
different types of galaxies but does not necessarily represent
their evolution. This demonstrates that the star formation law
must be a more complex function of Ω than the SE relation.

The major difference with Figure 5 is that there is a unique
regime for spiral and starburst galaxies, which is easily seen in
Table 3 where the zero points of the SE law for galaxies lie
within the values for starburst. This behavior is also shown in
observations (Daddi et al. 2010). The slope of each fit is
slightly steeper than the SE relation, with the exception of SD4
and GD2 which have a small sample of points and hence the
lower index might be produced by their scatter.

4.1.1. The Integration Problem

So far, the analyzed SF laws involve quantities projected on
a surface area, but the physics that works in the process of star
formation acts in a three-dimensional space. Hence, an arising
problem with the KS and SE laws is the inclination of the disks,
i, with respect to the line of sight, i.e., the integration axis. In
the case of the KS law, if the depletion time is related to the
free-fall time it assumes that there is a relation between
quantities in three dimensions (ρSFR and ρgas), which is
preserved after the projection on 2D space (Kennicutt 1998).
Just by integrating along an arbitrary axis we lose information
about the compactness of the object, which is directly related to
the strength of the gravitational potential that triggers the
collapse. Then we expect to find objects with similar densities
and SFR but with projected quantities that do not lie in the
same area in the KS plane.

For this reason we perform additional edge-on integrations
as an experiment to test the effects of the density distribution
along the line of sight for the two extreme cases of inclination.
Although in real observations edge-on galaxies are highly
obscured, making it difficult to measure the total SFR and gas
mass, we still think this is a question worth asking in order to
test how fundamental these laws are. To compare with the same
stars we choose the same cylinder volume as previously done
but now the integration is carried along the x axis. Figure 7
shows the KS and SE relations for face-on and edge-on
configurations.

Table 4 displays the best-fit parameters for the empirical
relations of Figure 7. The exponents of the KS law for edge-on
integrations are more consistent with a N=1.4 KS law than
the face-on integrations. This might be a consequence of the
different projected areas: in the edge-on configuration most of
the projected area is populated by new stars whereas in the
face-on case there are regions devoid of star formation. In
addition, the edge-on data points cover a larger range of Σgas.
Both effects minimize the errors in the determination of the
slope of the power-law. In the left panel of Figure 7 we see that

the edge-on integrations have been shifted toward higher values
of Sgas and SSFR but also have been shifted toward lower
efficiencies for both types of galaxies, while in the right panel
the data points have been displaced along the SE law. The
reason for this behavior is the same in both cases: the change is
introduced by the projected surface, which is the same for both
SSFR and Sgas. Then, by changing the integration axis, we are
only multiplying both areas by the same number shifting each
point along a vector of slope 1.0. This translates in a shift
below and along the empirical laws for the KS and SE law,
respectively. An important point to take from here is that
similar objects of the same age but with different inclinations
with respect to the line of sight lie on a line with a slope ∼1.0
for both relations.

4.2. A Dimensionally Homogeneous Law

Since we are studying the SFR and its relations with galactic
properties it is fundamental to know how to formulate such
relations in a physically meaningful way. As a starting point, it
is desirable to have some knowledge of the parameters
involved in this process and how they would be related in an
equation beforehand. The tentative functional forms of such
relations can be found by using dimensional analysis tools.
According to these, any physically meaningful equation must
be dimensionally homogeneous: only commensurable quanti-
ties (quantities with the same dimensions) may be compared,
equated, added, or subtracted. Therefore if we want to find a
law for SSFR and its fundamental parameters (G, Sgas, Ω, R,
etc.), dimensional homogeneity needs to be fulfilled. An
important theorem to find such equations is the Buckingham Π
theorem of dimensional analysis. This theorem was applied by
Escala (2015) to find a star formation equation expressed by:

( )S = S
G

L
18SFR gas

3 2

(E15 as mentioned above) where L represents a characteristic
length scale of the system. Escala (2015) tested two
characteristic scales for a disk system; the radial and vertical
length scales in cylindrical coordinates showing that the latter
results in a unique law that represents the SFR for different
types of galaxies. Furthermore, he showed that depending on
the physics that set the parameter L, such as the characteristic
size of the instabilities, it is possible to recover different star
formation laws found in the literature. For instance, replacing L
by the largest scale not stabilized by rotation,
l p k= SG4rot

2 2 (Escala & Larson 2008), results in the SE
law. Escala (2015) also states that the efficiency ò is given by
physics at smaller scales and that it must be a function of
dimensionless parameters. In agreement with this hypothesis, it
has been found and tested in simulations that ò is likely to be
related to the dynamics inside molecular clouds through
dimensionless quantities (Padoan et al. 2012; Semenov
et al. 2016).
As in the KS and SE laws, we compute the E15 relation

integrating over the z and x axes. For each integration axis we
choose L as the gas mass-weighted dispersion
= á ñ - á ñL s s2 2 , where s is the position along the line of
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sight and á ñf is defined by

( )

( )
( )

ò

ò

r

r
á ñ =

x

x
f

fdx

dx
. 19V

V

3

3

In this expression, the volume of integration V corresponds
to the cylinder defined by R90 and z90. The results are shown in
Figure 8, which displays the Escala (2015) equation for the
whole set of simulations. In addition, a description of the fit
parameters is shown in Table 5.

Figure 7. KS (left) and SE (right) laws for each simulation based on face-on (along the z-axis, triangles) and edge-on (along the x-axis, circles) integrations. Colors
represent galaxies as in Figure 5. In the left panel, lines and shaded regions represent the same quantities as in Figure 5, while in the right panel we follow the same
convention as in Figure 6. For the KS law we see that different integrations produce different depletion timescales. For the case of the SE law, different integrations
produce displacements along the law.

Table 4
KS and SE Law Parameters (Edge-on)

Run Index N Zero Point Scatter

S µ SN
SFR gas S SSFR gas

1.4 S µ SSFR gas
1.4

KS-Law dex dex

SD1 1.448±0.032 −2.685±0.122 0.122
SD2 1.514±0.036 −2.855±0.183 0.183
SD3 1.373±0.044 −3.191±0.138 0.160
SD4 1.160±0.046 −3.263±0.179 0.165
GD1 1.541±0.055 −3.892±0.210 0.210
GD2 1.502±0.199 −4.473±0.605 0.205

( )S µ S W N
SFR gas S S WSFR gas S µ S WSFR gas

SE-law dex dex

SD1 1.251±0.032 −1.055±0.214 0.216
SD2 1.337±0.031 −1.320±0.252 0.253
SD3 1.143±0.037 −1.562±0.129 0.130
SD4 0.953±0.041 −1.846±0.139 0.133
GD1 1.349±0.054 −1.135±0.271 0.273
GD2 0.988±0.137 −1.529±0.172 0.174

Note. KS and SE laws parameters based on edge on integrations. Top: columns
show the index of the best fit in the KS plane, zero point, and scatter with
respect to the KS law with an index of 1.4. Bottom: columns show the index of
the best fit in the SE plane, zero point, and scatter with respect to the SE law
with an index of 1.0.

Figure 8. E15 relation for both projection along the z-axis (circles) and the x-
axis (triangles). Green, yellow, blue, and red correspond to starburst while cyan
and magenta represent the spiral galaxies. The black solid line shows the
observational best fit for the E15 relation. Different integrations (circles and
triangles) result in displacement along this relation.
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Figure 8 shows the Escala (2015) equation for the whole set
of simulations, and a description of the fit parameters is shown
in Table 5. The slopes displayed in Table 5 show that the
evolution of the SFR is well depicted by the E15 relation. At
the same time, the slopes are more consistent compared to the
KS plot, which agrees with a dimensionally homogeneous
equation. Although the functional form of the E15 relation is
similar to the KS relation there is a major difference: the E15
relation suppresses the bi-modal behavior shown by the KS law
and demonstrates that the global behavior of the SFR is well
represented by a single regime. This shows that the gas
distribution along the line of sight must be considered if we
want to compare objects with different three-dimensional
geometries. Most remarkably, this relation shows that for both
lines of sight the evolution of each galaxy follows a unique
path, and hence a unique observed efficiency, suggesting that
this homogeneous relation is taking into account the density
distribution along the line of sight in the correct form. One
interpretation is that with the inclusion of the extra parameter L
we are actually fitting a law of the form r rµ µ

r
G

tSFR gas
1.5gas

ff

which we can express in terms of the integrated densities along
different axes like x and z:

( )S
µ

S⎛
⎝⎜

⎞
⎠⎟L

G
L

20i

i

i

i

SFR, gas,
1.5

where i is the integration axis. Then if the length scale L is
chosen properly, the observed exponent and star formation
efficiency have the same values for any observer.

However, as seen in the previous section, Figure 8 also
shows that simulations with different angular velocities lie on
parallel distinctive curves, manifesting that this formulation
does not incorporate the net effect of galactic rotation in the star
formation process. Knowing that the E15 relation incorporates

the effects of the density distribution, we proceed to study the
efficiency of star formation and its dependence with Ω.

4.3. Inclination of Galaxies

As mentioned in Section 4.1.1 the change in the inclination
of galaxies produces a vector displacement, in the KS and SE
plots, which has a linear slope (N = 1). To illustrate this
Figure 9 shows the displacement for data points of SD2 in the
KS, SE, and E15 plots. From this figure we see clearly that both
the KS and SE laws are good models of the SFR for a single
galaxy. However, the efficiency of the KS law depends on the
line of sight of the observer while the efficiency of the SE law
appears to be independent of it. For the latter we emphasize that
this behavior is only due to the fact that a change in the
projected area is also linear. On the other hand, for the E15
relation this displacement occurs parallel to the law despite not
being a linear power law. The requirement of homogeneity
leads us directly to a law that is both a good model for the
individual evolution of the SFR and an equation independent of
the observer. The orders of magnitude for this shift, considering
inclinations from i=0° to i=90°, are proportional to R/H
where R is the radius of the object and H the scale height. For
starburst disks R/H varies from 10 to 100 while for spirals this
value is always ∼10.

4.4. Efficiency

As shown in Figure 4 there is a connection between the
angular velocity of galaxies and the time needed to reach an
equilibrium state of star formation (exponential decay). Since
the first stage of evolution corresponds to the fragmentation and
growth of over-densities there might be a connection between
the growth-rate of instabilities and Ω. Figures 7 and 8 also
show that the amount of rotation is intrinsically connected with
the star formation efficiency. This shows that galactic rotation
plays an important role in the evolution of galaxies.
In order to construct a more robust star formation law that

includes the observed effect of rotation in our simulations, we
compare the efficiency of the E15 relation to the averaged
angular velocity of the disks. In this case, we choose the
representative value of Ω in a disk as the one associated with
the total angular momentum, which is associated with the
stability of a gaseous disk (Toomre 1964). We compute this
angular velocity as Jz/Iz, where Jz and Iz are the z-components
of the angular momentum and the moment of inertia,
respectively. We choose this parameter instead of Ω at R90 or
at a fixed radius, Rfixed, since WR90 varies with time and a Ω
(Rfixed) has less physical meaning for a star formation region of
variable size. Additionally, both WR90 and Ω(Rfixed) do not
consider the distribution of gas. Accordingly, we consider our
choice of Ω to be more representative. We show the effects of
choosing different definitions of the characteristic Ω in
Appendix B.
Figure 10 shows the star formation efficiencies of the E15

relation for face-on and edge-on integrations against Ω.
Starburst and spiral galaxies lie on different ranges of Ω,
hence displaying different efficiency curves. The functional
form of the efficiency can be approximated by two separated
exponentially decreasing functions, one for spirals and
another for starburst galaxies. In mathematical terms, the star
formation relation is approximately given by S = expSFR

( )- W SB G L ,gas
3 2 where the value of the constant B depends,

Table 5
Escala (2015) Law Parameters (Edge-on)

Run Index N Zero Point Scatter

Name ( )S µ SG

L

N

SFR gas
3 2

S SG

LSFR gas
3 2 S µ SG

LSFR gas
3 2

Face-on (dex) (dex)

SD1 0.898±0.032 −0.909±0.143 0.143
SD2 0.976±0.029 −1.053±0.182 0.182
SD3 0.699±0.039 −1.499±0.193 0.178
SD4 0.692±0.038 −1.538±0.190 0.204
GD1 1.069±0.047 −1.056±0.202 0.202
GD2 1.227±0.244 −1.436±0.210 0.210

Edge-on (dex) (dex)

SD1 0.950±0.021 −0.852±0.129 0.129
SD2 0.999±0.024 −1.012±0.183 0.183
SD3 0.826±0.026 −1.397±0.178 0.159
SD4 0.812±0.028 −1.488±0.172 0.185
GD1 0.974±0.038 −1.067±0.233 0.233
GD2 0.836±0.101 −1.466±0.247 0.206

Note. Columns show the index of the best fit in the E15 plane, the zero point

(SSFR in logarithmic scale for SG

L gas
3 2=1 M kpc−2 yr−1 or log10 ), and

scatter with respect to the E15 relation. Different integrations show similar zero
points.
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in principle, on whether this is a spiral or starburst disk. The
requirement of dimensional homogeneity demands an effi-
ciency that depends only on dimensionless quantities, implying
the existence of another timescale t*∼B that should normalize
this function and represent the efficiency for any kind of object.
For a body that lacks rotational support, the free-fall timescale
controls the rate of gravitational collapse, thus tff is a natural
candidate for t*. Since the current density of the collapsing
structures is directly affected by the rotational support, the
simplest approach is to take the free-fall time of the simulation
as done in previous works (e.g., Padoan et al. 2012), as a proxy
for this characteristic timescale related to a system with no
rotation. To remove the effects of our initial conditions we
measure the free-fall time after the initial vertical free-fall. For
this we do the following: we start by defining the average free-
fall time as ¯ ( ¯ )r= -t Gff

1 2, where r̄ is the volume-weighted
average of the density field. While the disk starts to cool down,
it will experience vertical collapse with a characteristic time
t̄ff,0. For times ¯>t tff,0 the vertical density distribution is less
affected by the initial conditions. For this reason we measure t̄ff
at a time ¯=t tff,0, where the disk height reaches a steady value.
We refer to this timescale as tff

ini.
We plot the efficiency against Wtff

ini for all the simulations,
which is shown in Figure 11. The timescale tff

ini does a great job
rescaling the effects of rotation, which allows us to find a
unique function relating the star formation efficiency and the
dimensionless quantity Wtff

ini. The efficiency is well represented
by an exponential profile as found by Padoan et al. (2012) with

( ) bµ - t texp ff dyn where ( )rµ -t Gff
1 2. We also fit an

exponential curve to the data an find the functions:

( )( ) = -
+ -  We0.27 21at

0.04
0.05 1.91 0.22 ff

ini

( )( ) = -
+ -  We0.29 21bt

0.01
0.01 2.03 0.05 ff

ini

where Equation 21(a) is the best fit to the averages computed
for each simulation and Equation 21(b) is the best fit to all the
points in Figure 11.

Based on this expression, we show in Figure 12 that the
global behavior of the star formation in our simulations can be

represented by a unique relation

( )S = S- We
G

L
0.27 22t

SFR
1.91

gas
3 2ff

ini

which is independent of galaxy type, line of sight, and
incorporates the effect of the angular velocity. This star
formation relation reduces the scatter of the classical KS law by
58% and that of the bi-modal KS law by 42% (see Table 6).
The proposed star formation relation in Equation (22) arises to
the same functional form discussed in Section 2.1 of Escala
(2015) with an efficiency given by ( ) µ - t texp 1.6 ff dyn . An
efficiency of this kind was already proposed by Padoan et al.
(2012) and tested by Semenov et al. (2016), where the
dynamical time tdyn corresponded to the turbulent crossing time
tcr. In the simulations presented here, tcr is replaced by the
inverse of Ω, a change that is expected since we are modeling
global disk dynamics and Ω−1 arises as a natural timescale. In
contrast, in simulations of isolated boxes subject to supersonic
turbulent forcing (Padoan et al. 2012), which model individual
giant molecular clouds, tcr is the only possible choice for tdyn. In
other words, we have linked global disk dynamics to the local
dynamics of giant molecular clouds. Moreover, the constant
factors 1.61 and 1.91 are of the same order despite coming from
completely different numerical experiments. In Appendix B we
show that this result does not vary significantly when choosing
different definitions for the characteristic angular velocity.

4.5. Normalizing Timescale

Due to the uncertainties about the physical nature of the
timescale that normalizes the effects of rotation, the choice of
such timescale is somewhat arbitrary. For that reason we
explore other alternatives for this normalizing timescale, which
have been measured within the cylinder defined by R90 and z90.
These additional normalizing timescales studied are shown in
Figure 13. In the left panel we compare the mass-weighted
averages of Ω and free-fall time tff

mid at the mid-plane for

Figure 9. Displacement vectors due to effects of the line of sight. To illustrate this, we show data points from the simulation SD2. Green and blue circles correspond to
integrations along the x and z axis, respectively. Left: graph showing displacements in the KS plot. The blue dashed line has a slope of 1.4. Middle: graph showing
displacements in the SE plot. The blue dashed line has a slope of 1. Right: graph showing displacements in the E15 plot. The blue dashed line has a slope of 1.
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different radii in the same disk, where tff is defined by
( )r -G s g,

1 2 and the mid-plane is defined by the cell which has
the maximum density along the z-axis. To compute this
timescale we consider the contribution of both gas and stars for
the matter density rs g, , resulting in the function:

( )( ) = -
+ -  We0.18 . 23t

0.01
0.01 1.22 0.03 ff

mid

Although it seems to do a good job in normalizing the effects of
rotation, there are still some theoretical issues with this physical
parameter which question its nature. First, this timescale
represents the collapse of a spherical region of constant density
which does not correspond to this case. Second, although stars
affect the stability of a gaseous disk (Rafikov 2001), they do
not collapse with the gas, which is assumed to derive
as ( )rµ -t G s gff ,

1 2.
A second timescale can be proposed by considering our

numerical limitations. In order to form a star, a given gas cell
must be collapsing due to self-gravity. We approach this
problem by invoking the three-dimensional Jeans instability,
where any perturbation greater than the Jeans length
l = p

r
cJ s G

will be gravitationally unstable and will trigger

collapse. In the case of our simulations there is a critical length
that corresponds to the spatial resolutionΔx. Then by imposing
Δx=λJ we find a second timescale ( )r p= D-G x cs

1 2 . It
should be mentioned that for a fixed cs this timescale is an
effective time delay imposed by our numerical recipes which
depend on Δx. The effects of this timescale are shown in the
right panel of Figure 13 and the best fit is given by:

( )( ) = p
-
+ -  WDe0.23 . 24x c

0.01
0.01 2.43 0.05 s

Although it is a natural timescale of the simulations, its
numerical nature and the non-sphericity of our systems put this
time as a normalizing timescale into doubt, requiring additional
simulations of identical objects to depict its effects.

5. SUMMARY AND CONCLUSIONS

In this work we present simulations of spiral and starburst
galaxies to study star formation. We find that their evolution is
properly described by the relation proposed by Escala (2015)
which also suppresses the scatter due to inclination effects.
Additionally, we find that the galactic rotation of disks reduces
the efficiency of star formation and delays the equilibrium
evolution phase. Finally we find a unique star formation law
which incorporates the effects of galactic rotation.
The simulations were performed using the AMR Enzo code

(Bryan et al. 2014) employing the ZEUS hydro-solver (Stone &
Norman 1992) to compute the hydrodynamics. We study four
rotationally supported nuclear disks of starburst galaxies, with
parameters R;300 pc, Mgas=4×108Me and a resolution
of ∼2 pc, embedded in an isothermal sphere with a dispersion
velocity of σ = 100, 130, 190 and 220 km s−1, and two
rotationally supported spiral galaxies, with a radial length scale
of R;3.5 kpc, Mgas=1010 M and a resolution of ∼40 pc,
embedded in a potential generated by stars (Miyamoto–Nagai
profile) and DM (NFW profile), where
(Mstar,MDM) {( ) ( )}   Î M M M M10 , 10 , 10 , 1010 10 11 11 .
The whole set of simulations shows to be well represented

by two regimes as found empirically by Daddi et al. (2010):
starburst galaxies lie along the starburst-like objects, and spiral
galaxies lie in the normal star formation regime, each of which
follows a KS, S µ SN

SFR gas, law with a N=1.4 index in
concordance with observations of Kennicutt (1998). Although
individual simulations show a good agreement with a SE law,
S µ S WSFR gas , its functional form is not adequate since its
efficiency seems to be anti-correlated with angular velocity. By
introducing the effects of the inclination with respect to the line
of sight we find that each point is shifted by a vector with a
slope ∼1 in the KS and SE plots (Figure 9), which translates
into different and similar efficiencies in the KS and Silk plots,
respectively.

Figure 10. Efficiency vs. Ω: efficiency of the E15 relation against the characteristic value of Ω. Circles and triangles correspond to projections along the z-axis and x-
axis, respectively. Left: starburst galaxies are displayed in green, yellow, blue, and red, which correspond to SD1, SD2, SD3, and SD4, respectively. Right: spiral
galaxies are shown in cyan and magenta, which correspond to GD1 and GD2, respectively. In each panel, the tar formation efficiency seems to exponentially decrease
with Ω.
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We test the dimensionally homogeneous equation
S = SG LSFR gas

3 2, proposed by Escala (2015), where L is
the length scale along the line of sight. The temporal evolution
of each individual simulation shows agreement with this
equation and we found that the efficiency under this
prescription appears to be inclination-invariant, which means
that a single object will always lie on the same star formation
curve independently of the observer (Figure 9).

Studying each galaxy during the phase of star formation that
is not affected by their initial conditions and numerical
parameters, we find that the remaining scatter of the Escala
(2015) relation is parameterized by the angular velocity Ω. In
particular, we find that the star formation efficiency is
diminished by an increasing Ω. Furthermore, the star formation
efficiency is well represented by an exponential decreasing
function of Wtff

ini where Ω is the characteristic angular velocity
and tff

ini is the initial free-fall time. This leads to a unique
galactic star formation law, which incorporates the effects of
galactic rotation, of the form

( )S = S- We
G

L
0.27 25t

SFR
1.91

gas
3 2ff

ini

Notably, the exponential function of the efficiency has already
been found in previous simulations (Li et al. 2005; Padoan
et al. 2012). Finally, our recipe can be included in cosmological
simulations where the star formation treatment relies on global
properties due to their limited resolution.

Figure 11. Efficiency vs. Wtff
ini: Left: symbols are as in Figure 10. Right: stars corresponds to the mean values for each individual run and inclination. The dashed line

corresponds to the fit to the mean values, which is approximately given by 0.27exp( )- Wt1.91 ff
ini , while the solid line corresponds to the fit to all the points in the left

panel, given by 0.29 exp( )- Wt2.03 ff
ini .

Figure 12. This work: SSFR as a function of 0.27 exp ( )- W St1.91 G

Lff
ini

gas
3 2.

Symbols are as in Figure 8. The black dashed line represents the equality. The
whole suite of simulations lies along a unique regime of star formation for
edge-on and face-on integrations.

Table 6
Scatter of Star Formation Relations

SFR Relation Scatter
Name (dex)

Kennicutt–Schmidt 0.490
Bimodal KS 0.360
Silk Elmegreen 0.362
Escala (2015) 0.316
This work 0.206

Note. Scatter in the SFR for the different laws analyzed in this work and our
formulation.
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The simulations were performed using the HPC clusters
Leftraru (ECM-02), the Geryon2 cluster (PFB06, QUIMAL
130008, and Fondequip AIC-57) and the Docorozco cluster
from the Departamento de Astronomía at Universidad de Chile.
The analysis and plots were carried out with the publicly
available tool yt (Turk et al. 2011). We are very grateful to
Guillermo Blanc for the discussions and comments. We also
thank the anonymous referee for fruitful suggestions and
comments. J.U. acknowledges support from Programa Nacio-
nal de Becas de Postgrado, CONICYT (grant D-21140839).
A.E. acknowledges partial support from the Center for
Astrophysics and Associated Technologies CATA (PFB06),
Anillo de Ciencia y Tecnología (Project ACT1101), and
Proyecto Regular Fondecyt (grant 1130458).

APPENDIX A
RADIAL PROFILES

Figure 14 shows radial profiles of surface gas density Sgas,
surface stellar density S , SFR per unit area SSFR and circular
velocity Vcirc. These profiles are computed at times 1 and 2 Gyr
for spiral galaxies and 10 and 20Myr for starburst galaxies.
The bin width Δr is chosen to be four times the maximum
spatial resolution for each simulation which corresponds to the
smallest resolve Jeans length (Truelove et al. 1997). The
quantities Sgas and S are computed as the total mass of the
respective component within a radial bin divided by the ring
area 2πrΔr. We do the same to compute SSFR but only
consider the stars formed within 100Myr for spiral galaxies
and 1Myr for starburst galaxies. For Vcirc we take the median
value of the circular velocity at each radius since the median is
less sensitive to negative values of Vcirc associated with the
local rotational support of the collapsing structures.

APPENDIX B
CHARACTERISTIC ANGULAR VELOCITY

In this section we review different estimates of the
characteristic angular velocity and test how each of these
values changes our results.
The three most basic estimates for a characteristic value are

the mean, mass-weighted average, and median values of the
angular velocity which we denote as W, WM , and Ω50,
respectively. It is important to point out that such estimates
are meaningful for systems whose mass distribution and
angular velocity profiles are similar.
Additionally, we can define other estimates which are based

on the mass distribution or the process of star formation itself.
As done in the main text we can define an angular velocity
defined by the angular momentum and moment of inertia in the
z-direction, ΩJ. For a characteristic value based on star
formation we consider two possibilities. First, we can measure
Ω at the radius where ( )S Rgas is equal to the global

( )* pS = <M R R Rgas 90 90
2 used to derive the relations. We

denote this value as ΩΣ which is given by

( ) ( ) ( )*W = W S = SS S SR Rwith 26gas gas

Second, we can assume that at first order the SFR per unit area
is given by the relation ( ) ( )S = SR RSFR gas

1.5 . Then for an
axisymmetric disk the global value of SSFR is

( )
ò
ò

ò
ò

S =
S

=
SdS

dS

RdR

RdR
27SFR

SFR gas
1.5

There is a radius Rå at which

( ) ( )
ò
ò

S =
S⎛

⎝
⎜⎜

⎞
⎠
⎟⎟R

RdR

RdR
28gas

gas
1.5 2 3

Figure 13. Alternative normalizing timescales: Left: plot showing the efficiency of the E15 equation as a function ofWtff
mid where tff

mid is the mass-weighted average of
the free-fall time at the midplane. Triangles and circles correspond to integrations along the x and z axis, respectively. The solid line represent the best fit with a slope
of −1.22. Right: plot showing the efficiency of the E15 equation as a function of pWDx cs where Δx is the size of the smallest cell and cs is the mass-weighted
average of the sound speed. The solid line represent the best fit with a slope of −2.43.
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corresponding to the radius at which S = SSFR SFR. We
measure Ω at R=Rå and we denote this value as Ωå.

To compute ΩΣ and Ωå we use the radial profile of Sgas as
defined in Appendix A.

Finally we can estimate the angular velocity at a fixed radius
based on the radial profile of the circular velocity. We see in
Figure 14 that the slope of Vcirc changes at R;5 kpc for spiral
galaxies and at R;150 pc for starburst galaxies. Measuring Ω
at a fixed radius considerably decreases its uncertainty. We
denote this quantity as ΩV.

Table 7 shows the fit parameters for the different values of a
characteristic Ω mentioned here. The parameters are fitted
assuming a star formation relation of the form:

( ) ( )a bS = - W St
G

L
exp 29SFR ff gas

1.5

Our choice for the angular velocity ΩJ shows an amplitude α
consistent with most of the results for different values of Ω.
Additionally, ΩJ shows a slightly smaller scatter than its
counterparts. The value ΩV results in a smaller scatter but also
shows the largest deviation in α with respect to the other
values.
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