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In this article, the formulation and verification of a nonlinear quadrilateral layered membrane element
with drilling degrees of freedom for the nonlinear analysis of reinforced concrete (RC) walls under static
and cycling loads are presented. The formulation is based on a quadrilateral element with twelve degrees
of freedom (DOF), two displacements and one drilling DOF per node, which is defined by a blended field
interpolation for the displacements over the element, and a layered system for the element section con-
sisting of fully bonded, smeared steel reinforcement and smeared orthotropic concrete material with a
rotating angle formulation, and a stiffness tangent approach. The drilling DOF refers to the incorporation
of the in-plane rotation as a DOF at each element node. The blended field interpolation has the advantage
of producing a smoother strain distribution inside each element, which facilitates element convergence,
and the layered section formulation allows for the properties of the concrete and steel over the thickness
of the wall to be modified to properly represent the different wall components, such as the concrete
cover, steel rebar and confined concrete. Additionally, the formulation introduces a rotational DOF at each
node, which allows the membranes to connect directly to beam and column elements. Moreover, this
formulation incorporates the coupling of axial, flexural and shear behavior observed on the different
configurations of RC wall structures. To verify this formulation, the results of a set of available experimen-
tal data reported in the literature for RC wall elements, with different configurations (slender walls, squat
walls, wall with irregular disposition of openings) and levels of confinement, under monotonic and
reversed loads are compared with the results obtained from the corresponding analytical model. The
formulation is notably consistent with the experimental data and can predict the maximum capacity,
the global (force vs deformation) and local responses (strain along the wall) and incorporate the coupling
of axial, flexural and shear behavior observed in the different configurations of RC wall structures.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Although the design of RC walls is a relatively simple procedure
when using current codes, the behavior of RC walls is actually
highly complex because they behave differently depending on
their configuration (wall size, height/length ratio, steel reinforce-
ment, etc.) and loading conditions. This scenario implies that the
behavior of RC walls depends on the interrelation and coupling
of a combination of flexural, shear, and axial deformation over
their cross-sections at different levels, along with other complex
mechanisms such as rigid body rotation for the bond slippage of
the longitudinal reinforcement at the base of the wall, effects of
confinement, dowel action in reinforcement, cracking, aggregate
interlock, creep, and tension stiffening, which have been
demonstrated by various researchers [1–4].

For example, the walls used in mid- to high-rise buildings exhi-
bit mainly flexural behavior, with the deformation concentrated at
the larger moment, typically near the ground level. Failure in this
type of wall is characterized by horizontal cracks at the edges of
the wall. In low-rise buildings, however, the walls behave
primarily in shear, and diagonal cracks are produced. These main
behaviors typically occur in isolated walls. Once these walls are
combined with other elements or walls in the building, the behav-
ior can change, producing combinations of flexural, compression
and shear failure. Such behavior has been described in the reports
of the Reconnaissance team of the Los Angeles Tall Building
Structural Design Council [5–8] and of the ERRI Reconnaissance
team [9] after the recent Chilean earthquake. Because of this
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complex behavior in RC walls, a large amount of research and
experimentation in recent decades has been dedicated to providing
enough data to represent the walls and develop analytical models
that can accurately predict their behavior and important material
characteristics, such as concrete stiffening, cracking, bond slippage
and vertical strain distribution along the walls.

Typically, analytical models can be separated into two main
groups, macroscopic models and microscopic models. Macroscopic
models are based on predicting the overall behavior of a wall
element using simplified assumptions and idealizations [10]. This
process is typically carried out by creating a system of springs, in
which each spring has an independent hysteric curve that repre-
sents a portion of the wall’s behavior. Examples of such systems
include the multi-component-in-parallel model or multi-vertical-
line-element model and the truss-type model. The multi-vertical-
line-element model, or fiber-based model, is characterized by the
combination of several axial, shear, and rotational springs, some
connected in parallel and others in series, to represent the global
response of reinforced concrete. The behavior of each spring is typ-
ically modeled using complex, experimentally based hysteretic
rules. Some examples of this type of element have been proposed
by Kabeyesawa et al. [11] in 1982, Vulcano and Bertero [10] in
1987, Orakcal et al. [3] in 2006, Massone et al. [12] in 2009, Jiang
and Kurama [13] in 2010, Panagiotou et al. [14] in 2012, and
Kolozvari et al. [15] in 2015.

These macroscopic models are simple and intuitive and have
been incorporated into structural nonlinear programs. However,
they tend to be problem-based [10], which means they apply only
in certain cases.

Microscopic models, on the other hand, are typically based on
the finite element method (FEM) and theory of continuum
mechanics. In this methodology, a RC wall is divided into a series
of elements, over which the respective constitutive law, represent-
ing the behavior of the reinforced concrete material, is imposed in
a stress–strain space or other possible mixed representation, and
the equilibrium equation is satisfied in an average sense with inte-
gration over each finite element. The existing microscopic models
for reinforced concrete walls can be grouped into three main
categories: membrane elements, shell elements and 3D solid brick
elements, with the membrane element model being the most com-
monly used.

The membrane or panel elements display only in-plane behav-
ior (plane stress), typically with two DOFs per node (two displace-
ments). One of the first membrane element formulations used in
FEM formulation for the nonlinear analysis of RC walls was that
proposed by Cervenka and Gerstle (1970, 1971, 1972) [16]. Cer-
venka [17] used a quad element with four nodes and two DOFs
per node (one horizontal and one vertical displacement), along
with a von Mises yield condition, to model concrete. Various
researchers have used this type of element or a variation with a lar-
ger number of element nodes (i.e., higher elements) but with only
two DOFs per node. The main differences between the membrane
element formulations proposed over the years have been the con-
stitutive material laws used in the analysis to represent reinforced
concrete.

The constitutive laws used to model material behavior are
usually nonlinear material models, fracture mechanics models,
orthotropic models, plasticity models, hypo-elastic material mod-
els, microplane models or nonlocal continuum mechanics models
[18,19]. Among the constitutive laws used to represent reinforced
concrete in the plane stress condition, the orthotropic models are
one of the most widely used types among many researchers [19].
These orthotropic concrete material models are based on the
assumption made by Darwin and Pecknold [20] in 1974 and Dar-
win and Pecknold [21] in 1977. In this assumption, the behavior
of a material in biaxial stress can be represented by an equivalent
uniaxial strain–stress relation along the principal axis of ortho-
tropy. Orthotropic concrete models have been proposed by Darwin
and Pecknold [21], Cervenka [22], Vecchio and Collins [23], Izumo
et al. [24], Shin et al. [25], Bolander and Wight [26], Hsu [27],
Belarbi and Hsu [28], Pang and Hsu [29], Pang and Hsu [30], Ayoub
and Filippou [18], Vecchio [31], Vecchio [32], Palermo and Vecchio
[33], Foster and Marti [34], Mansour and Hsu [35], Mansour and
Hsu [36], and Zhong [19].

In addition, membrane elements typically use two types of
representation to incorporate steel inside RC walls. One type
assumes the steel to be a smeared material, which means steel bars
are represented as being distributed homogeneously over the ele-
ment area along the direction of the bars. The second approach uses
a truss-type element to represent an actual steel bar. The main
drawbacks of this second representation are that the element mesh
needs to coincide with the position of the bar in the wall, and elab-
orate connecting elements between the bar and the membrane ele-
ment are required to account for bond slippage, if it is considered.

The membrane or panel models generally yield good results
compared with experimental data and provide a better and more
refined definition of wall structures’ local responses. These models
tend not to be problem-specific, which allows a variety of prob-
lems to be represented with the same procedure. However, the
membrane element displacements are typically defined by bilinear
interpolation and cannot be easily used in combination with beams
because only two displacement degrees of freedom are used at the
nodes, and they are more computationally demanding than the
macroscopic elements.

This paper develops and presents a formulation of a new
quadrilateral layered membrane element with drilling DOFs, which
allows for a smoother strain variation over each element and helps
the analysis achieve convergence. In addition, this element incor-
porates one rotational degree of freedom per node, which allows
the formulation to be used as a basis for the creation of a shell ele-
ment to model more complex RC wall structures or to connect the
element to beam-type or column-type elements.

The membrane element formulated in this article consists of a
quadrilateral element with a total of twelve DOFs, three per node
(two displacements and one in-plane rotation) and uses a blended
field interpolation for the displacements over the element. The
membrane section consists of a layered system of fully bonded,
smeared steel reinforcement and smeared orthotropic concrete
material with a rotating angle and stiffness tangent formulation,
which allows the internal nonlinear behavior of the reinforced con-
crete wall to be modeled. Additionally, the layered section formu-
lation allows the concrete and steel properties to be changed over
the wall thickness and the different wall components, such as the
concrete cover, steel rebar and confined concrete, to be properly
represented.

The evaluation of the accuracy, applicability, and usefulness of
the nonlinear layered quadrilateral membrane in modeling rein-
forced concrete walls is also presented. A set of experimental
results for RC wall elements under monotonic and reversed loads,
which are available in the literature, is compared against the
results obtained from an analytical model that uses the proposed
formulation. These experimental data have previously been used
as benchmarks for other models.
2. Quadrilateral layered membrane element with rotational
DOF formulation

Membranes are in a state of plane stress, in which only in-plane
behavior is considered (rz ¼ szx ¼ szy ¼ 0). The finite element for-
mulation for this type of element, using a displacement-based
approach, is well known and can be found in almost any text on
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finite elements, such as Bathe [37], Cook et al. [38], and Chen[16].
The formulation is typically developed from the concept of virtual
work and is used to determine the plane elements stiffness matrix
and resisting force, which are presented next assuming a layered
section.

The tangent stiffness of the membrane using a displacement-
based approach is defined as

Kt ¼
Z
A
B½ �T Dtangent
� �

B½ �dA ð1Þ

where

B x; yð Þ½ � ¼
@
@x 0
0 @

@y
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2
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and the material tangent matrix Dtangent
� �

that includes the concrete
and steel layers over the thickness can be expressed in a discrete
manner using the expression applied by Zhang et al. [39] and Zhang
et al. [40] in 2007 (Fig. 1) as follows:
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where the matrices Dci
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and Dsj

h i
are the plane stress material stiff-

ness tangents of the ith concrete layer and jth steel layer, respec-
tively; Nc and Ns are the numbers of layers of concrete and steel,
respectively, and zi is the location of the top and bottom part of each
layer; tsj is the thickness of the section at the jth steel layer.

Similarly, the internal resisting force (R) for the membrane can
be defined as follows by integrating over the thickness and assum-
ing zero initial stress:
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where the vector stress r̂f g can also be calculated in a discrete
manner as
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Fig. 1. A typical rectangular layered membrane section.
where rc
i

� �
represents the in-plane stresses at the ith concrete

layer, rs
j

n o
represents the in-plane stresses at the jth steel layer,

and ziþ1 and zi are the locations of the top and bottom parts of
the ith concrete layer, respectively.

Although the finite element formulation is straightforward, the
search for an optimal representation of the displacement field
interpolation for the membrane element that includes rotational
degrees of freedom remains an area of ongoing research. The next
section presents the blended displacement interpolation used in
this formulation.

2.1. Blended displacement interpolation

This formulation uses an extension of the field interpolation
proposed by Xia et al. [41] in 2009, which allows the interpolations
to be used in a general finite element framework with natural coor-
dinates. The blended displacement interpolation proposed in this
work is defined as

uf g ¼ u

v

� �
¼ W n;gð Þ½ � Uf g ð6Þ

with Uf g representing the displacement at the nodes (see Fig. 2):

Uf g ¼ u1 v1 h1 u2 v2 h2 u3 v3 h3 u4 v4 h4f gT
ð7Þ

and W n;gð Þ½ � is the field interpolation function, defined as follows:

W n;gð Þ½ � ¼ MN n;gð Þ½ � Tr½ � ð8Þ
where Tr½ � is a transformation matrix with the following relation-
ship between the local rotations and the rotations at the nodes:

Tr½ � ¼

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
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Fig. 2. Element global degrees of freedom used for the blended interpolation.
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and MN n;gð Þ½ � is a matrix containing the shape functions that
define the blended interpolation, defined as
MN n;gð Þ½ �¼ M1 nð ÞN1 gð Þ 0
0 M1 gð ÞN1 nð Þ

	 �M1 nð ÞN2 gð Þ 0 M2 nð ÞN1 gð Þ
0 M1 gð ÞN2 nð Þ 0

0 �M2 nð ÞN2 gð Þ 0
M1 gð ÞN3 nð Þ 0 M1 gð ÞN3 nð Þ

M2 nð ÞN3 gð Þ 0 �M2 nð ÞN4 gð Þ
0 M2 gð ÞN3 nð Þ 0

0 M1 nð ÞN3 gð Þ 0
M2 gð ÞN4 nð Þ 0 M2 gð ÞN1 nð Þ

�M1 nð ÞN4 gð Þ 0
0 M2 gð ÞN2 nð Þ



ð10Þ
where Mi fð Þ are the linear shape functions:

M1 fð Þ ¼ 1
2

1� fð Þ M2 fð Þ ¼ 1
2

1þ fð Þ ð11Þ

and Ni fð Þ are the Hermitian interpolation functions (cubic
interpolations):
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2
� 3
4
fþ f3

4
ð12Þ

N2 fð Þ ¼ 1
4
� f
4
� f2

4
þ f3

4
ð13Þ

N3 fð Þ ¼ 1
2
þ 3
4
f� f3

4
ð14Þ

N4 fð Þ ¼ �1
4
� f
4
þ f2

4
þ f3

4
ð15Þ

Now, it is possible to define the kinematic matrix B½ � in Eq. (2) as
follows:

B½ � ¼ A½ � J½ ��1 0½ �
0½ � J½ ��1
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where A½ � is the matrix defined in Eq. (17)

A½ � ¼
1 0 0 0
0 0 0 1
0 1 1 0

2
64

3
75 ð17Þ

and J½ ��1 is the inverse of the Jacobian matrix ( J½ �), which relates the
natural coordinate system and local coordinate system of each ele-
ment. The Jacobian matrix and the inverse of the Jacobian matrix
are defined as follows:
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where X and Y represent the geometry of the element using natural
coordinates:

X n;gð Þ ¼
X4
i¼1

wi n;gð Þxi ð20Þ

Y n;gð Þ ¼
X4
i¼1

wi n;gð Þyi ð21Þ

xi and yi are the coordinates of the corner nodes and wi n;gð Þ are the
bilinear shape functions, which are defined as follows:

wi n;gð Þ ¼ 1
4

1þ ninð Þ 1þ gigð Þ i ¼ 1;2;3;4 ð22Þ
where ni ¼ �1 1 1 �1½ � and gi ¼ �1 �1 1 1½ � for
i ¼ 1;2;3;4 are the coordinates of the nodes in the natural coordi-
nate system.
The next section presents the material constitutive model used
in each layer to represent the concrete in two directions and the
steel rebar inside the RC.
3. Material constitutive models

This section presents the material constitutive laws used to
define the concrete and the steel rebar inside the RC walls. It was
concluded that a separate constitutive model representing the
concrete as smeared concrete layers and the steel rebar as smeared
steel layers was necessary to implement a layered section
approach [42].

3.1. Formulation of the concrete constitutive model

Of the constitutive material laws available for the modeling of
concrete in two directions, the smeared cracked concrete models,
which are based on the assumption that different cracks over an
area can be modeled using the concrete average stress–strain rela-
tion in that zone, are the preferred models. Among the smeared
cracked models, an orthotropic model, with equivalent uniaxial
average stress–strain relations along the axes of orthotropy, was
selected because orthotropic models are noted for their simplicity
and are sufficiently robust to represent concrete material behavior,
showing excellent agreement with the experimental data as men-
tioned by Ayoub and Filippou [18] in 1998. The axes of orthotropy
were assumed to coincide with the principal axes of total strain,
and the model was developed using a tangent stiffness-based
approach for use in a general nonlinear finite element program.

In addition, this concrete model incorporated characteristics
from the models created by a research group from the University
of Houston, such as the CSMM presented by Zhong [19] in 2005,
and the models created by a research group from the University
of Toronto, including the expanded MCFT developed by Palermo
[43] in 2002 and Palermo and Vecchio [33] in 2003 and the con-
crete model created by Vecchio [44] in 1992. Other additional
characteristics were incorporated to consider the effect of biaxial
compression or tension–compression (softening) along the axes
of orthotropy, as well as to account for damage in the material
during cycling loads and enhancement due to confinement. The
different features in the model were employed for the procure-
ment of a numerically stable, reliable and efficient constitutive
material.

The behavior of the concrete along the directions of principal
stress is defined by average uniaxial stress–strain relations. In this
study, these relations were represented by uniaxial concrete mate-
rial models. The variables of each average uniaxial relations are
tracked along the rotating directions inside of each possible quad-
rant of rotation, which are defined as �p=4 to p=4 and p=4 to 3p=4.
Using this simplification, each average uniaxial relation represents
the behavior of the material contained within one quadrant.
Among the different uniaxial concrete materials available in the lit-
erature, it was determined that the model proposed by Massone
et al. [12] in 2009 for static loading, and extended here to include
hysteretic rules, is the one that best represented the average uniax-
ial stress–strain relations for the principal stress directions in the
smeared rotating angle concrete model in this study.
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The basic assumptions used to formulate the concrete material
were as follows:

� The principal strain and stress directions coincide.
� The stress–strain relation can be represented by the average
stress–strain.

� The constitutive model for concrete in each of the principal
stress directions can be represented by a uniaxial concrete
model.

� The Poisson ratio is neglected after cracking.

The last assumption was used to improve the convergence of
the model because if the Poisson ratio is maintained, the material
tangent matrix is not symmetric and can cause some instability in
the model after cracking of the material, and it was observed that
the contribution after cracking in the results was not significant.
Using these assumptions, the transformation of the strain and
stress between coordinate systems and the derivation of the prin-
cipal strain direction, the biaxial strain (e11 and e22) in the principal
directions of strain can be determined as follows:

e11 ¼ 1
2
exx þ eyy
� �þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exx � eyy
� �2 þ cxy

� �2r
ð23aÞ

e22 ¼ 1
2
exx þ eyy
� �� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exx � eyy
� �2 þ cxy

� �2r
ð23bÞ

where ( ex�y
� � ¼ exx eyy cxy

� �T ) are the strain components in the
local coordinate system (x� y) of the concrete layer. These compo-
nents can be represented in matrix form as

e11
e22
c12

8><
>:

9>=
>; ¼ TstrainðhpdÞ

� � exx
eyy
cxy

8><
>:

9>=
>; ð24Þ

where TstrainðhÞ½ � is the strain transformation matrix, defined as
follows:

TstrainðhÞ½ � ¼
cos2ðhÞ sin2ðhÞ sinðhÞ cosðhÞ
sin2ðhÞ cos2ðhÞ � sinðhÞ cosðhÞ

�2 sinðhÞ cosðhÞ 2 sinðhÞ cosðhÞ cos2ðhÞ � sin2ðhÞ

2
664

3
775

ð25Þ
and hpd is the angle of the principal strain direction of strain (see
Fig. 3), defined by

hpd ¼ 1
2
arctan

cxy
exx � eyy
� � !

ð26Þ

Recall that for principal strain, c12 ¼ 0.
Now, the biaxial strains must be transformed into uniaxial

strains so that this result can be used in the uniaxial stress–strain
relation for each axis of orthotropy. The Poisson ratio (m12; m21) is
used here. This transformation has been studied and discussed
extensively by the research groups from the University of Houston
and the University of Toronto. This formulation uses the transfor-
Fig. 3. Principal strain direction.
mation presented in Zhong [19] in 2005 but with the Poisson ratio
proposed by Vecchio [44] in 1992. This relation between the biax-
ial strain and uniaxial strain results in the following set of
equations:

�e1 ¼ 1
1� m12m21

e1 þ m12
1� m12m21

e2 ð27aÞ

�e2 ¼ m21
1� m12m21

e1 þ 1
1� m12m21

e2 ð27bÞ

The equations can also be written in matrix form:
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>; ð28Þ
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1

1�m12m21
m12

1�m12m21 0
m21
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1

1�m12m21 0

0 0 1

2
64

3
75 ð29Þ

and

mij ¼
0:2 if ej >

ec0
2

0:2 1þ 1:5 2ej
ec0

� 1
� �2� �

� 0:5 if ec0
2 P ej

8><
>: ð30Þ

To obtain a stable solution, the values of the Poisson ratio
(m12; m21) after cracking are neglected (considered equal to zero).

Using the uniaxial strain �e11 and �e22, and recalling that
�c12 ¼ c12 ¼ 0, the concrete stress in the direction of orthotropy or
the principal stress direction can be defined as a function of this
uniaxial strain as r11 �e11; �e22ð Þ and r22 �e11; �e22ð Þ. Because of the
assumption that the principal stress and strain directions coincide,
it is possible to determine the stress in the local coordinates x� y
using the transformation defined by the angle hpd as follows:

rc
xx

rc
yy

scxy

8><
>:

9>=
>; ¼ Tstressð�hpdÞ

� � rc
11

rc
22

0

8><
>:

9>=
>; ¼ TstrainðhpdÞ

� �T rc
11

rc
22

0

8><
>:

9>=
>; ð31Þ

where the stress transformation matrix is defined as follows:

TstressðhÞ½ � ¼
cos2ðhÞ sin2ðhÞ 2sinðhÞcosðhÞ
sin2ðhÞ cos2ðhÞ �2sinðhÞcosðhÞ

�sinðhÞcosðhÞ sinðhÞcosðhÞ cos2ðhÞ� sin2ðhÞ

2
664

3
775 ð32Þ

Now, using the definitions for strain and stress presented above,
the tangent material constitutive matrix for the concrete layer in
the local coordinate system (x� y) can be defined as

Dc
x�y

h i
¼ @rx�y

@ex�y
¼

@

rxx

ryy

sxy

8><
>:

9>=
>;

@

exx
eyy
cxy

8><
>:

9>=
>;

¼ TstrainðhpdÞ
� �T Dc

1�2

� �
V½ � TstrainðhpdÞ
� �

ð33Þ
where Dc

1�2

� �
is the material tangent matrix for the concrete layer in

the principal strain (or stress) direction and can be defined as pro-
posed by Crisfield and Wills [45] in 1989:

Dc
1�2

� � ¼
@r11
@e11

@r11
@e22

0
@r22
@e11

@r22
@e22

0

0 0 r11�r22
2 e11�e22ð Þ

2
664

3
775 ð34Þ
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For simplicity and stability, @r11
@e22

and @r22
@e11

are neglected, which

reduces Eq. (34) to

Dc
1�2

� � ¼
@r11
@e11

0 0

0 @r22
@e22

0

0 0 r11�r22
2 e11�e22ð Þ

2
664

3
775 ð35Þ

The uniaxial concrete material used in this formulation is now
reviewed.

3.1.1. Uniaxial concrete models using the Thorenfeldt curve
This uniaxial concrete model was proposed by Massone et al.

[12] in 2009 for static loading, and it is extended here to include
hysteretic rules. This section presents the main characteristics,
rules and equations that define the model proposed by Massone
et al. [12] and extended to include hysteretic rules. The model
envelope is composed of two different equations: one is used for
the compression envelope (see Fig. 4), and the other is for the ten-
sion envelope (see Fig. 5).

The compression envelope is defined by the curve proposed by
Thorenfeldt et al. [46] in 1987, which is similar to the equation
defined by Popovics [47] in 1973. The Thorenfeldt base curve
was later calibrated by Collins and Porasz [48] in 1989 (see
Fig. 4) and was used for shells and membranes by Polak and Vec-
chio [49] in 1993 and Vecchio and Collins [50] in 1993; it was then
used in MVLM by Orakcal et al. [3] and Massone et al. [12] in 2009.
The curve can be defined as

rcðecÞ ¼ f 0c
n ec

ec0

� �
n� 1þ ec

ec0

� �nk ð36Þ

where f 0c is the peak resistant stress of the concrete in compression,
ec0 is the strain at the peak resistant stress of the concrete in com-
Fig. 4. Constitutive model for concrete in compression using the Thorenfeldt curve.
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Fig. 5. Constitutive model for concrete in tension using the Belarbi and Hsu [52]
equation.
pression, and n and k are the parameters calibrated by Collins and
Porasz [48] in 1989, as follows:

n ¼ 0:8þ f 0c MPað Þ
17

¼ 0:8þ 0:41f 0cðksiÞ ð37aÞ

k ¼
1 if 0 6 ec 6 ec0

0:67þ f 0c MPað Þ
62 ¼ 0:67þ f 0c ðksiÞ

9 if ec > ec0

(
ð37bÞ

Carreira and Kuang-Han [51] proposed parameter calibration
for concrete with a lower compressive resistant stress as follows:

n ¼ 1:55þ f 0c MPað Þ
32:4

� �3

¼ 1:55þ f 0cðksiÞ
4:7

� �3

ðksiÞ ð38aÞ

k ¼ 1 ð38bÞ
The tension envelope used by Massone et al. [12] is that pro-

posed by Belarbi and Hsu [52] in 1994, which is based on the equa-
tion used by Tamai et al. [53] in 1988. Belarbi and Hsu [52]
proposed this model after testing 17 reinforced concrete panels
under pure tension. The tension envelope is divided into two sec-
tions (see Fig. 5), pre-peak or pre-cracking and post-peak or post-
cracking. A linear interpolation is selected before cracking, and a
descending branch is selected for post-cracking to include the ten-
sion stiffening observed in the average stress–strain relation of the
concrete in tension (Eq. (39)).

rcðecÞ ¼
f cr
ecr

� �
ec if ec 6 ecr

f cr
ecr
ec

� �b
if ec > ecr

8><
>: ð39Þ

where b is a parameter that defines the descending branch of the
envelope in tension, f cr is the peak of the concrete resistant stress
in tension, and ecr is the strain at the peak of the concrete resistant
stress in tension. Belarbi and Hsu [52] proposed the value b ¼ 0:4
and the following values for the other parameters:

f cr ¼ 0:31
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0c MPað Þ

q
MPa½ � or f cr ¼ 0:118

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0c ksið Þ

q
ksi½ � ð40aÞ

ecr ¼ 0:00008 ð40bÞ
For the cyclic loading behavior of concrete, a hysteric rule that

use a series of straight lines, similar to the rule proposed by Mohd
Yassin [54] in 1994, is used. However, in this work, an
origin-oriented approach was not used; instead, the expression in
Eq. (41) for compression was selected to determine the concrete
plastic strain (ecp) at each full unloading, which is the unrecovered
strain deformation in the material. The representation for unload-
ing and reloading in compression is created by graphing a linear
equation with a slope equal to the initial stiffness of the concrete
(Ec0 ) until this line intercepts the linear equation for the unloading
path with a slope in the compression zone equal to 0:071Ec0 , which
is the same value proposed by Palermo and Vecchio [33] in 2003
and the origin in the concrete plastic strain, or the intercept of
the reloading path in compression, which is a line that connects
the plastic strain and the last point in the envelope equation in
compression (see Fig. 6).

ecp ¼ ecm 1� e
� ecm

ec0

� �
ac

 !
ð41Þ

where ecm is the maximum previous compressive strain recorded in
the material and ac is a parameter that determines the amount of
plastic strain in the concrete. A value of ac ¼ 0:32 was used for
the analysis in this study.

Linear paths with a slope equal to the previous unloading stiff-
ness of the concrete in tension were selected for the unloading and
reloading rules in tension (see Fig. 6), and the slopes for this part
were defined using a plastic strain determinate as follows:



Fig. 6. Hysteretic rules for the concrete model. Fig. 7. Compression softening effect.
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etp ¼ etm 1� e
� etm

ecr

� �
at

 !
ð42Þ

where ecm is the maximum previous tension strain recorded in the
material and at is a parameter that determines the amount of plas-
tic strain in the concrete. A value of at ¼ 0:08 was used in this study.
A shift in the tension envelope’s origin (see Fig. 6) was considered to
produce a more accurate model, reduce pinching, and to be able to
model the gap closure with a linear path.

3.1.2. Modification coefficients for the concrete model
This section presents the functions of the coefficients used to

account for compression softening, the enhancement due to biaxial
compression, and the damage due to cyclic or reversal loading in a
concrete material in a biaxial stress state. Such behavior has been
extensively observed and discussed in the literature (e.g.,
[23,28,18,55,56,33,19,12]). Various equations have been developed
to account for this behavior. These coefficients typically modify the
peak resistant stress of the concrete in compression (f 0c) and some-
times the strain at the peak resistant stress of the concrete in com-
pression (ec0 ). However, only a modification to f 0c was applied in
the analysis conducted in this study, as suggested by Massone
et al. [12], because Vecchio and Collins [50] observed that more
sophisticated models result in only marginally better solutions
[12]. Moreover, only f 0c was modified to maintain a stable and effi-
cient numerical solution.

The compression softening effect (bsf
0
c) is the reduction in the

concrete compression resistance along one direction due to tension
strain in the perpendicular direction (see Fig. 7). This effect was
modeled using the coefficient proposed by Belarbi and Hsu [28]
in 1995 and was defined as

bs ¼
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ kretension
p ð43Þ

where etension is the tension strain in concrete and k and kr are two
parameters that define the reduction factor. The factor kr was
defined as 250 for sequential loading and 400 for proportional load-
ing [28], and k was defined as 0.9 by Belarbi and Hsu [28]. However,
it was observed that a value of 1 for k resulted in more stable solu-
tions without much loss of accuracy.

Compression strength enhancement (bef
0
c) is an increase in the

concrete peak resistant stress f 0c and can be produced by the biaxial
compression stress state, as indicated by Kupfer et al. [57] in 1969
and Vecchio [44] in 1992, or by the confinement produced by stir-
rups, cross ties and hoops in concrete, as explored by Mander et al.
[58] in 1988. The enhanced compression strength due to biaxial
compression is considered using the equation (Eq. (44)) proposed
by Vecchio [44] in 1992:

beij
¼ 1þ 0:92

rcj

f 0c

 !
� 0:76

rcj

f 0c

 !2

ð44Þ
where i is the direction being enhanced, j is the direction normal to
i;rcj is the stress in the direction normal to i, and f 0c is the peak
resistant stress of the concrete in compression.

Damage due to cyclic or reversal loading (bdf
0
c) is defined as the

deterioration of concrete compression strength under cyclic load-
ing and unloading. This effect was studied by Palermo and Vecchio
[33] in 2003, who proposed an equation for deterioration in com-
pression and tension that is a function of the difference between
the maximum and minimum strain occurring during reverse load-
ing. Only the damage in compression was used in this study. The
equation proposed by Palermo and Vecchio [33] can be written as

bd ¼
1

1þ a1
erec
ec0

� �a2 ð45Þ

where ec0 is the strain at the peak resistant stress of the concrete in
compression, the parameter a1 is equal to 0.5 for pre-cracking and
0.6 for post-cracking in compression, a2 is equal to 0.1 for pre-
cracking and 0.175 for post-cracking in compression, and erec is
defined as

erec ¼ emax � emin ð46Þ
where emax is the maximum strain recorded during cyclic loading
and emin is the minimum strain.

An additional factor was used to account for the enhancement
due to confinement (bconf ). This factor was applied over the com-

pression peak strength of the concrete (f 0c) as bconf f
0
c at the begin-

ning of the analysis and maintained constant during the
remainder of the analysis. The factor can be created using the
sophisticated equation proposed by Mander et al. [58] in 1988 or
a more simple coefficient such as that used by Orakcal et al. [3]
in 2006 and defined as

bconf ¼ 1þ qsf y
f 0c

ð47Þ

where qs is the ratio between the volume of transverse steel and the
volume of core concrete measured from the outside of the stirrups,
f y is the yield strength of the transverse steel, and f 0c is the peak
resistant stress of the concrete in compression.

3.2. Formulation of the constitutive model for steel

In this formulation, the steel bars were considered to be a layer
of homogeneous material inside the concrete element, and the
variation stress due to cracking over an area was modeled using
the average stress–strain of the steel in that zone. In addition, it
was assumed that the smeared steel worked only in the direction
of the bars because these bars were typically in a uniaxial state
of stress. This assumption allowed for the use of a uniaxial consti-
tutive model to represent the reinforcing steel bars. Two uniaxial
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Fig. 8. Steel layer orientation.

Fig. 9. Stress–strain relation of embedded steel bars in concrete and bare steel bars.
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steel material models were used in this formulation, the well-
known Menegotto–Pinto steel model proposed by Menegotto and
Pinto [59] in 1973 and the model proposed by Massone and Mor-
oder [60] in 2009.

The smeared steel material used in this study assumes the
following:

� Steel is considered smeared and acts only along the direction of
its orientation.

� The stress–strain relation can be represented by the average
stress–strain relation of steel bars embedded in the concrete.

� Concrete and smeared steel are considered fully bonded.
� The Poisson ratio is neglected after cracking.

Using these assumptions, and an approach similar to that pro-
posed by Zhong [19] in 2005, the uniaxial strain in the steel orien-
tation can be written as

esf g ¼ Tstrainðhs � hpdÞ
� �

V½ � TstrainðhpdÞ
� � exx

eyy
exy

8><
>:

9>=
>; ð48Þ

where TstrainðhÞ½ � is the strain transformation defined by Eq. (25), hs is
the angle that defines the orientation of the steel layer with respect
to the local coordinate system (x� y) (see Fig. 8), hpd is the orienta-
tion of the principal strain direction defined by Eq. (26), and V½ �is
the Poisson ratio matrix of the strain vector defined by Eq. (30).
Because the steel is considered a uniaxial material, the only compo-
nent needed is the strain in the steel direction, which is represented
by the component es1 . This strain is used to determine the stress

(f sðes1 Þ) and the stiffness tangent Esðes1 Þ ¼ @f s
@es

� �
in the direction of

the smeared steel action from the average uniaxial stress–strain
relations, which are presented in the next section. Using these val-
ues, the stiffness tangent of the layer in the plane stress state for the
coordinate system (x� y) can be determined as follows:

Ds
x�y

h i
¼ TstrainðhsÞ½ �T Ds½ � Tstrainðhs � hpdÞ

� �
V½ � TstrainðhpdÞ
� � ð49Þ

or for simplicity, without considering the Poisson ratio, as follows:

Ds
x�y

h i
¼ TstrainðhsÞ½ �T Ds½ � TstrainðhsÞ½ � ð50Þ

where

Ds½ � ¼
qEs

t 0 0
0 0 0
0 0 0

2
64

3
75 ð51Þ

and q is the ratio of reinforced steel in the layer and Es
t is the tan-

gential stiffness of the smeared steel.
Furthermore, the resistant stress of the smeared steel layer in

the coordinate system (x� y) can be determined as

rs
xx

rs
yy

ssxy

8><
>:

9>=
>; ¼ Tstressð�hsÞ½ �

qf s
0
0

8><
>:

9>=
>; ¼ TstrainðhsÞ½ �T

qf s
0
0

8><
>:

9>=
>; ð52Þ

with the stress transformation matrix defined by Eq. (25).
As previously mentioned, the action of the smeared steel in its

orientation was modeled using average uniaxial stress–strain rela-
tions. Different steel materials have been implemented to deter-
mine the uniaxial stress–strain relation of steel bars inside
concrete. It is commonly assumed in models that the behavior of
steel bars with and without concrete is identical. However, Tamai
et al. [53], who obtained a set of experimental data for reinforced
concrete prisms, observed that the behavior of reinforcing steel
inside concrete presents some differences from that of bare steel.
This effect was corroborated by Belarbi and Hsu [28] in 1995.
Fig. 9 shows the behavior observed for reinforcing steel bars
embedded in the concrete. This behavior can be modeled as a
reduction in the yield strength and strain-hardening ratio com-
pared with that of bare steel bars. This variation in the behavior
of steel was attributed to the consideration of the steel stress as
a function of the average concrete strain, meaning that although
the steel could already have started to yield in the crack, the steel
stress will be smaller in between cracks [52].

Due to the effect observed and studied by Belarbi and Hsu [28]
in 1995, the average uniaxial stress–strain relations used are mod-
eled by uniaxial steel material models with a reduction in the posi-
tion of the yield strength (f y) and strain-hardening ratio (b). In the
following sections, the uniaxial steel models used in this work are
reviewed.

3.2.1. Uniaxial Menegotto–Pinto steel model
This model corresponds to the well-known Menegotto–Pinto

model of 1973 [59], which was modified by Filippou et al. [61] in
1983 to include isotropic hardening by shifting the yield stress
asymptote. This model is computationally efficient and can
accurately represent the Bauschinger effects and the behavior of
experimentally observed reinforcing steel bars [3]. See Fig. 10.
The value of the parameters for this model used in this study are
R0 ¼ 18; a1 ¼ 16:2, and a2 ¼ 0:15.

To use this uniaxial model for average stress–strain relation-
ships, the values of f averagey and baverage need to be modified to
account for the behavior of the stress–strain relationships for steel
bars embedded in concrete, as shown by Belarbi and Hsu [52] in
1994:

f averagey ¼ 0:91� 2Bð Þf y ð53aÞ

baverage ¼ 0:02þ 0:25Bð Þb ð53bÞ
3.2.2. Uniaxial Massone-Moroder steel model
The second model used in this work is that proposed by

Massone and Moroder [60] in 2009, which is capable of represent-
ing buckling of longitudinal reinforcing bars. This model is based



Strain 

St
re

ss

ES

1

Fig. 10. Constitutive Menegotto–Pinto model for steel.

N

Column or
wall boundary
element

M

s

d

Bar with initial
imperfection before
load application

Plastic hinge bar
model after load
application

s

p>0

plastic
hinge

Fig. 11. Bar buckling model (after [60]).

F. Rojas et al. / Engineering Structures 124 (2016) 521–538 529
on a concentrated plasticity fiber model that considers four plastic
hinges located at the zones of maximum moment (Fig. 11), which
occurs during the introduction of an imperfection and deformation
due to the axial load applied in the reinforcing bar. Sectional anal-
ysis, based on uniaxial constitutive material laws for steel, is used,
and moment equilibrium is imposed in the section, resulting in a
nonlinear equation (geometric and material nonlinearity) that
requires an iterative procedure on the section curvature. Moreover,
the cyclic model is based on a simple phenomenological formula-
tion that incorporates the Bauschinger effect in the unloading
and reloading rules. This uniaxial steel model was only used in
the analysis of the test experiment performed by Yañez [62] in
1993, in which the steel model was calibrated to match the exper-
imental data (yield stress and ultimate stress).
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Fig. 12. Geometry and reinforcement details of the RC specimen W2.
4. Verification

The RC wall tests used in this study were selected after a
thorough revision of the available experimental results in the
literature. The experimental data can be divided into monotonic
loading and reversed or cyclic loading. For monotonic loading, this
study used the experimental result of the tests of a wall presented
by Cervenka [17] in 1971 and the experiment results of the tests of
two types of walls presented by Lefas et al. [63] in 1990. For rever-
sal or cyclic loading, this study used the experimental results of the
tests of two rectangular single walls reported by Thomsen and
Wallace [64] in 1995 and the experiment result of a reinforced con-
crete wall with irregulars disposition of openings reported by
Yañez [62] in 1993.

In all the models presented next, the tensile strength of the con-

crete (f cr) was considered equal to 0.31
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0c ½MPa�

q
(0.118

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0c ½ksi�

q
),

and the tension strain ecr at the maximum tensile strength was
equal to 0.00008 [mm/mm]; moreover, a compression strain
between �0.003 and �0.0055 [mm/mm] at the maximum com-
pressive strength of concrete for the different specimens in the
confined concrete, depending on the level of confinement, was
used. In addition, for steel, a base value of 1% for the hardening
ratio (b in Eq. (53b)) and a value of Es ¼ 200;000 [MPa] for the
Young’s modulus of the steel were used when no experimental
value was available to calibrate. Moreover, a 3-by-3 Gauss
integration in each element for the analysis of the panel and the
abovementioned element were used. The analytical models were
analyzed using the displacement control solution algorithm with
pseudo-constant incremental steps, which indicate that if the
analysis has not reached convergence for an increment of displace-
ment, the increment is reduced until the initial increment has
passed; this is a variation of the algorithm developed by Batoz
and Dhatt [65] in 1979.

4.1. Monotonic loading

The following section evaluates and verifies the nonlinear lay-
ered quadrilateral membrane elements with drilling degrees of
freedom using experimental test walls under monotonic loads
available in the literature.

4.1.1. Reinforced concrete wall – Cervenka and Gerstle
Cervenka [17] in 1970 presented the results for a series of tests

using reinforced concrete panels. These panels were built and
loaded in groups of two, which were bounded by thickened ribs
on each side of the panel, forming a deep beam (see Fig. 12). The
loading was performed at the middle of the deep-beam specimen
(center rib), which was simply supported at the end, as shown in
Fig. 12. The specimens measured 760 [mm] (30 [in]) in height,
760 [mm] (30 [in]) in width, and 51 [mm] (2 [in]) or 75 [mm]
(3 [in]) in thickness, with thickened ribs measuring 300 [mm]
(11.75 [in]) by 102 [mm] (4 [in]), and were reinforced with orthog-
onal reinforcement (horizontal and vertical) at the center of the
section of each panel (Fig. 12).

To validate the proposed analytical model, the reinforced con-
crete specimen W2 was selected (Fig. 12), which has been used
as a benchmark by other authors [20,66,18]. This test was selected
because the specimen has various ratios of horizontal steel over
the model height and a constant ratio of steel in the vertical direc-
tion (Fig. 12), which makes the model an interesting case study.

For the horizontal and vertical reinforcement bars, No 3 were
used with a cross-sectional area of 70 [mm2] (0.11 [in2]), a yielding
strength of f y ¼ 353 [MPa], (51.2 [ksi]) and a Young’s modulus of
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Fig. 15. Load-deformation of the response of the RC panel W2 using a quadrilateral
layered membrane element without drilling degrees of freedom.
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Es = 190,000 [MPa] (27,300 [ksi]), which was obtained from tensile
tests of the bare bars [17]. The concrete in specimenW2 has a com-
pression strength of f 0c ¼ 26:8 [MPa] (3.88 [ksi]) after 15 days and a
compression strain (ec0 ) between �0.002 and �0.003 [mm/mm]
[17].

The analytical model of the specimen was represented using
only half of the specimen (only one panel) because of the symme-
try of the specimen in geometry and loading. In addition, the test
was modeled using a mesh of 150 [mm] by 150 [mm] (Fig. 13).

In addition, the analytical model was analyzed with and with-
out considering the modification coefficients for the concrete
model (softening and enhancement) to investigate the effects of
these factors, which were compared with the load–displacement
response that was obtained from the experimental results; see
Figs. 14 and 15. The modification factors were not relevant in the
case of a monotonic loading and could be ignored without any loss
of accuracy.

Fig. 15 shows the response of the analytical model featuring
quadrilateral membrane elements without drilling degrees of free-
dom (well-known bilinear field interpolation formulation) and the
same factors, parameters and material model that were used in the
model with the drilling DOF. A comparison of Figs. 15 and 14
shows that the elements without the drilling DOF were underesti-
mated or overestimated, but these discrepancies were not signifi-
cant compared with the results obtained for the model with the
drilling DOF. However, in the elements with drilling DOF, fewer
convergence problems for the same step size were observed, and
in the models with convergence problems, the elements with dril-
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Fig. 14. Load-deformation of the response of the RC panel W2.
ling DOF were more than 15% faster than the model without dril-
ling DOF.
4.1.2. RC walls – Lefas, Kotsovos and Ambraseys
The study of Lefas et al. [63] in 1990 presented the results for a

series of 13 walls that were submitted to a constant vertical load; a
monotonic load was applied horizontally at the top of the wall
specimen until wall failure occurred. The test program was con-
ducted to study the effect of the axial load, height-to-width ratio,
concrete strength and ratio of steel in the response of the walls
with a rectangular cross-section [63]. The wall specimens were
divided into two types: Type-I walls and Type-II walls, depending
on their geometry (height-to-width ratio). Type-I walls correspond
to specimens with a height-to-width ratio of h=l ¼ 1 (750 [mm]
wide � 750 [mm] high) and a thickness of 70 [mm] for the rectan-
gular cross-section (see Fig. 16). Type-II walls correspond to spec-
imens with a height-to-width ratio of h=l ¼ 2 (650 [mm]
wide � 1300 [mm] high) and a thickness of 65 [mm] for the rectan-
gular cross-section; see Fig. 16. Three different sizes of steel bars
were used as reinforcement in the walls; see Table 1 for the prop-
erties of the steel provided by Lefas et al. [63] in 1990.

In this study, three specimens of Type-I walls and three speci-
mens of Type-II walls were used to compare the analytical results
with the experimental results, and only information pertaining to
these groups of specimens is mentioned here. In Table 2, the cube
strength of the concrete and the ratio of reinforcement steel in
each orientation for the specimens that were used in this study
and provided by Lefas et al. [63] in 1990 are presented. These val-
ues were used to generate a model that converts cube strength to
cylinder strength, which is typically defined as f 0c ¼ af 0c cube, where
a is a factor determined by the experimental data. This value lies
between 0.77 (for low-strength concrete) and 0.95 (for high-
strength concrete) [67].

The analytical model of Type-I and Type-II walls was performed
using a mesh between 120 [mm] and 150 [mm] (Fig. 17).

In addition, as in the previous analysis, the analytical model
that does not consider softening coefficients but uses the enhanced
coefficient because of confinement at the boundary elements of the
wall and the model that considers the softening and the enhanced
coefficient because of confinement at the boundary elements of the
wall were analyzed; see Figs. 18 and 20. Moreover, the experimen-
tal results were compared with the results yielded by the analytical
model using a quadrilateral layered membrane element without
drilling DOF; see Fig. 19.

These figures show that the model using the modification coef-
ficients for the concrete better fit the experimental results for the
top deformation of the wall, but as previously mentioned, the
improvement achieved in using the coefficients is not significant
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Table 1
Properties of the reinforcement steel bars (after [63]).

Type Yield
strength
(f y) [MPa]

Ultimate
strength
(f u) [MPa]

8 [mm] high-tensile bar (vertical reinf.) 470 565
6 [mm] high-tensile bar (horizontal reinf.) 520 610

4 [mm] mild steel bar (stirrups) 420 490

1

2
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F /2V F /2V
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Type I - Walls Type II - Walls

Fig. 17. Analytical model for Type-I and Type-II walls.
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for Type-II wall. Additionally, the model featuring the quadrilateral
layered membrane elements with drilling DOF better reflects the
experimental results than the model with quadrilateral layered
membrane elements without drilling DOF, but the difference is
not significant for the monotonic cases. However, in the elements
with drilling DOF, fewer convergence problems were observed
for the same step size, and in the models with convergence prob-
lems, the elements with drilling DOF were more than 20% faster
than the model without drilling DOF.

4.2. Reversal or cyclic loading

This section discusses how the proposed nonlinear layered
quadrilateral membrane element with drilling degrees of freedom
Table 2
Properties of the wall specimens (after [63]).

Type Specimen Steel ratio

qhor [%] qver [%] qflex [%]

I SW11 1.10 2.40 3.10
SW12 1.10 2.40 3.10
SW16 1.10 2.40 3.10

II SW22 0.80 2.50 3.30
SW23 0.80 2.50 3.30
SW24 01.80 2.50 3.30
was evaluated and analyzed using the experimental test results
under reversal loads. The selected test corresponds to the test pro-
gram reported by Thomsen and Wallace [64] in 1995 and the tests
Cube strength f 0c cube [MPa] Axial load

qs [%] Fv [KN] m ¼ Fv
blf 0c

1.20 52.3 0 0.0
1.20 53.6 230 0.1
1.20 51.7 460 0.2

0.90 50.6 182 0.1
0.90 47.8 343 0.2
0.90 48.3 0 0.0
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of reinforced concrete wall with irregulars disposition of openings
conducted by Yañez [62] in 1993.

4.2.1. Reinforced concrete rectangular wall – Thomsen and Wallace
In the study performed by Thomsen and Wallace [64] in 1995,

two rectangular-wall specimens (RW1 and RW2) measuring 1219
[mm] (48 [in]) long were used. These specimens were designed
to approximately represent a one-quarter scale experimental
model of a real wall that was designed using the Uniform Building
Code of 1994 (UBC) [68] with additional boundary detailing in the
reinforcement for the bottom part of the wall (the last 1219 mm or
48 [in] of the wall). The specimen walls were 3658 [mm] (144 [in])
tall with a thickness of 102 [mm] (4 [in]) over the entire cross-
section of the specimens and were axially loaded with a value of
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Fig. 22. Reinforcement details of specimen wall RW2, which was used by Thomsen
and Wallace [64] in 1995.

Table 3
Properties of the reinforcement steel bars (after [64]).

Type Yield Strength Areab
(f y) [MPa] [mm2]

No 3 – 9.53 [mm] bar 414 71
No 2 – 6.35 [mm] bar 448 32

3/16 in – 4.75 [mm] smooth wire v448 17.72
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v0:10Agf
0
c , after which they were cyclically loaded laterally, as

reported by Thomsen and Wallace [64].
The steel ratio at each location in the wall was calculated based

on the reinforcement details, which were provided in the report by
Thomsen andWallace [64]. Figs. 21 and 22 show the reinforcement
details of the rectangular-wall specimens.

Table 3 presents the properties of the steel bars, which were
provided in the report by Thomsen and Wallace [64].

The concrete of different wall specimens and at different levels
of the wall was mixed to obtain a target value with a concrete
strength of 27.6 [MPa] (4 [ksi]). However, different values of con-
crete strength were obtained for the different cylindrical tests that
were performed on the concrete, and the values ranged from 28.7
to 58.4 [MPa] (4.16 to 8.46 [ksi]), as reported by Thomsen andWal-
lace [64], with an average value of 32.8 [MPa] (4.76 [ksi]) for spec-
imen RW1 and an average value of 42.8 [MPa] (6.2 [ksi]) for RW2
[3].

The analytical model of the wall specimen was developed using
a mesh of 170 [mm] (Fig. 23). In addition, the modification coeffi-
cient for damage because of cycling in the material was included in
the model. The values of the peak strength of concrete, which were
provided by Thomsen and Wallace [64], were used to generate the
model.

Figs. 24 and 25 compare the responses of the analytical model
and the experimental results of the load that was applied to the
wall versus the deformation at the top of the wall for the two walls
RW1 and RW2, using a damage coefficient (a1) of 0.15. Addition-
ally, Fig. 24 shows that the analytical model can capture the max-
imum capacity of the RW1 at the maximum displacement of
approximately 80 [mm]. In RW1 (s=d ¼ 8 where s: spacing hoops
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and d: diameter of longitudinal bar), the steel model with buckling
was not included because it was observed that the use of this
material does not produce a significant change in the response of
the model.

In addition, the vertical strain along the wall, which was
obtained using the experimental data from the instrument at the
base of the walls (gauge length of 229 mm), was compared with
that of the analytical model at the same base level for different
drifts levels for RW2 (Fig. 26); the strain was obtained as the aver-
age of the strain observed in the model along the gauge length of
226 mm to match the quadrature points. Fig. 26 shows that the
analytical data are consistent with the experimental data, which
indicates that the formulation can predict both the global response
and the local response observed in the wall.
4.2.2. Reinforced concrete wall with irregulars disposition of openings
– Yañez

In 1993, Yañez [62] presented the results for a series of six
three-story walls (one without an opening, two with regular dispo-
sition of openings and three with irregular disposition of open-
ings). The specimens were scaled to one-third their original size
and submitted to a cyclic lateral load applied to the top of the wall
until failure of the specimens. The test program was conducted to
study the effect of openings in reinforced concrete walls and the
use of strut and tie methods for the analysis and design of this type
of wall [62].

The walls correspond to specimens with a height-to-width ratio
of h=l ¼ 1:25 (2000 [mm] wide � 2300 [mm] high) and a thickness
of 120 [mm] for the rectangular cross-section, with specimen S1
featuring no openings; specimens S2, S3 and S5 featuring openings
measuring 600 [mm] by 600 [mm]; and specimens S4 and S6 fea-
turing openings measuring 400 [mm] by 400 [mm]. The vertical
and horizontal reinforcement ratio for the walls in all the speci-
mens were 0.5% and 0.4 % respectively. The horizontal bars were
spaced 180 mm and 100 mm apart (s=d ¼ 22:5 and s=d ¼ 12:5
where s: spacing of horizontal bars and hoops and d: diameter of
longitudinal bar), the measured yield strength was 475 [MPa] at
0.2% strain and the ultimate strength was 690 [MPa] [62]. The
reversed load was applied in two stages.

In this study, specimen S4 was used to compare the analytical
results with the experimental results, and only information per-
taining to this specimen is mentioned here. This specimen was
selected because of the irregular disposition of the openings and
the size of the openings (see Fig. 27), which make the model an
interesting case study. In the columns of the specimen S4, the
hoops were spaced 100 mm apart, increasing the horizontal rein-
forcement ratio in these areas. The yield strength and the ultimate
0 20 40 60 80 100
ment [mm]

Analytical Modelce, 1995)

model versus the experiment results for RW2.
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Fig. 26. Comparison of the vertical strain of the experimental data with the
analytical model at the base level for RW2.

Fig. 27. Specimen S4 used by Yañez [62] in 1993.

Fig. 28. Analytical model for the specimen S4.
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strength of steel bars of the hoops were 350 [MPa] and 470 [MPa],
respectively [62]. The concrete compressive cylinder strength at
the moment of testing was 31 [MPa] for specimen S4 [62]. These
values were used to generate the model. The specimen was mod-
eled using a mesh of�200 [mm] by�200 [mm] (see Fig. 28). In this
model, the steel model proposed by Massone and Moroder [60] in
2009 was used because the buckling behavior of the bar was nec-
essary to correctly predict the experimental results and hysteretic
loops (see Fig. 29). This characteristic was required because of the
spacing of the horizontal bars in the wall (s=d ¼ 22:5 and
s=d ¼ 12:5).

Fig. 29 compares the responses of the analytical model and the
experimental results of the load that was applied to the wall versus
the deformation at the top of the wall for the wall S4 using a
damage coefficient (a1) of 0.15.
In addition, the vertical strain along the wall, which was
obtained based on the experimental data from the instrument
(strain gauges) at the base of the walls, was compared with that
of the analytical model at the same base level for 0.2%, 0.4% and
0.8% drift (Fig. 30), and the results show excellent agreement.
5. Conclusions

This paper presents a new element formulation for the nonlinear
analysis of reinforced concrete (RC) walls under static and cycling
loading. A general finite element formulation using a layered mem-
brane element with drilling degrees of freedomwas first presented.
A layered section approach was used for each membrane or panel
section, with separate constitutivemodels for the smeared concrete
layer and smeared steel layer. These constitutive models were pre-
sented separately, which is different from other orthotropicmodels,
such as the softened membrane model (SMM) or cyclic softened
membrane model (CSMM) [69,28,29,70,71,35,36,19].

A variety of reported models using the material constitutive
laws that represent the behavior of concrete were reviewed for this
new formulation. Among the available models, the smeared crack
approach using an orthotropic model with equivalent uniaxial
average stress–strain relations along the axes of orthotropy was
selected to represent the concrete plane stress behavior. This type
of model shows outstanding accuracy, robustness and simplicity in
representing concrete in two dimensions. The average uniaxial
stress–strain relations were represented by the uniaxial concrete
material models proposed by Massone et al. [12] in 2009 and
extended here for cyclic loading. The concrete model also incorpo-
rated characteristics from the models created by a research group
from the University of Houston, such as the CSMM presented by
Zhong [19] in 2005, and models created by a research group from
the University of Toronto, such as the expanded MCFT developed
by Palermo [43] in 2002 and Palermo and Vecchio [33] in 2003
and the concrete model presented by Vecchio [44] in 1992. Other
additional characteristics were incorporated to consider the effect
of biaxial compression or tension–compression (softening) along
the axes of orthotropy and account for damage in the material dur-
ing cyclic loading and enhancement due to confinement.

The smeared steel constitutive material used to represent the
horizontal and vertical reinforcement steel layers in the membrane
element was also presented. In this approach, the steel bars were
assumed to be a layer of homogeneous material at certain positions
inside the reinforced concrete element, and the stress variation due
to cracking over an area could be modeled using the average



Fig. 29. Load–displacement curve of the analytical model (with and without bar buckling) versus the experiment results for S4.

Fig. 30. Comparison of the vertical strain at the base level of the experimental data
with the analytical model including bar buckling for S4.
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stress–strain of steel in that zone. It was also assumed that the
smeared steel worked only in the direction of the bar because
the bars were typically in a uniaxial state of stress, allowing for
the use of a uniaxial constitutive model. Two uniaxial steel mate-
rial models were used: the well-known Menegotto–Pinto steel
model proposed by Menegotto and Pinto [59] in 1973 and the
model proposed by Massone and Moroder [60] in 2009, which
includes buckling behavior.
The different features of the proposed model were selected with
the goal of using the developed layered section approach and to
obtain a numerically stable, reliable and efficient constitutive
material.

The last section of this article discusses how the accuracy,
applicability, and usefulness of the proposed nonlinear layered
quadrilateral membrane with drilling degrees of freedom were
evaluated. To verify the analytical model, a set of experiment
results for RC wall elements under monotonic and reversed loads,
which are available in the literature, was used. The selected tests
have also been used as benchmarks by other authors.

The experimental results can be divided into those pertaining to
monotonic loading and those pertaining to reversed loading. For
monotonic loading, two different experiments were used. The tests
for monotonic loading were selected to confirm that the model is
able to capture the capacity and stiffness of different configura-
tions of walls under this type of loading and to compare the
responses of a model with and without DOFs. The first experiment
considered one of the experimental results from the wall tests
conducted by Cervenka and Gerstle and presented in Cervenka
[17] in 1970, which correspond to a squat wall. The model was able
to correctly predict the global behavior of the wall. The second set
of tests considered the experimental results of two types of walls
with different aspect ratios, which were reported by Lefas et al.
[63] in 1990; the model was able to correctly predict the capacity
and the global response of the wall for the two aspect ratios stud-
ied. In addition, these analyses showed that the use of biaxial com-
pression or tension–compression (softening) along the axes of
orthotropy is only relevant under monotonic loading for elements
whose principal behavior is shear, and not for elements whose
principal behavior is flexural.

For reversal or cyclic loading, the test results obtained for two
rectangular single walls obtained by Thomsen and Wallace [64]
in 1995 and the experimental results obtained for a reinforced con-
crete wall with irregular disposition of openings obtained by Yañez
[62] in 1993 were compared. The comparison showed that the ana-
lytical model can correctly predict the load vs displacement curves
for the walls RW1 and RW2. Additionally, the analytical model can
match the observed maximum capacity of RW1 and the ductile
behavior of the better confined rectangular wall RW2, produced
for the different amounts of reinforcement placed on the two walls.
The model is also able to reproduce the local behavior of the wall at
different drift levels. In addition, the model, which includes buck-
ling behavior, obtained good agreement between the complete glo-
bal and local behavior for a complex wall with an irregular
distribution of openings (S4 specimen).
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In conclusion, the presented formulation, which uses a nonlin-
ear layered quadrilateral membrane element with drilling degrees
of freedom, can predict the maximum capacity, the global and the
local response observed in RC walls with different configurations
(wall size, ratio of steel, and concrete strength). In addition, the for-
mulation could be used as the basis for creating a shell element
with layered sections to model 3D RC walls.
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