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Summary

Transfer RNAs (tRNAs) are the macromolecules that

transfer activated amino acids from aminoacyl-tRNA

synthetases to the ribosome, where they are used for

the mRNA guided synthesis of proteins. Transfer

RNAs are ancient molecules, perhaps even predating

the existence of the translation machinery. Albeit old,

these molecules are tremendously conserved, a char-

acteristic that is well illustrated by the fact that some

bacterial tRNAs are efficient and specific substrates

of eukaryotic aminoacyl-tRNA synthetases and ribo-

somes. Considering their ancient origin and high

structural conservation, it is not surprising that

tRNAs have been hijacked during evolution for func-

tions outside of translation. These roles beyond

translation include synthetic, regulatory and informa-

tion functions within the cell. Here we provide an

overview of the non-canonical roles of tRNAs and

their mimics in bacteria, and discuss some of the

common themes that arise when comparing these

different functions.

Introduction

All currently known genetic information is coded in

nucleic acids (RNA or DNA). In order to be functional,

much of this genetic information must first be decoded

into proteins that are composed of amino acids that do

not have any specific affinity to the message coded in

nucleic acids (Crick, 1958; Crick, 1970; Francklyn and

Minajigi, 2010). In order to translate this genetic infor-

mation cells need adaptors, molecules that can translate

nucleic acid into amino acid sequences (Crick, 1958;

Hoagland et al., 1958). This adaptor function is per-

formed by aminoacyl-transfer RNAs (aa-tRNA), which

have a nucleic acid portion composed of a highly struc-

tured transfer RNA (tRNA) of about 80 nucleotides. The

second part of an aa-tRNA molecule is composed of a

single amino acid bound through an ester bond to the 20

or 30 OH of the 30-end of the tRNA. The secondary

structure of the tRNA is composed of an acceptor arm

that carries the amino acid, the anticodon arm where

there is an anticodon triplet which recognizes codons on

mRNA during translation, and the deoxyuridine, TWC

and variable arms (D, T, and V arms, respectively)

(Fig. 1) (Ladner et al., 1975; Gieg�e and Frugier, 2000;

Marck and Grosjean, 2002). Transfer RNAs are function-

ally grouped into families of isoacceptors, which may dif-

fer in sequence, but all of which carry a unique amino

acid for protein synthesis. This amino acid is added by

aminoacyl-tRNA synthetases (aaRS), a group of

enzymes that specifically recognize and activate a par-

ticular amino acid and transfer it to the correct tRNA.

This reaction is central to the process of translation as it

ensures that the correct amino acid is transferred to the

nascent peptide (Cavarelli and Moras, 1993; Schimmel

et al., 1993; Ibba et al., 2005). In order to select the cor-

rect tRNAs, aaRS recognize specific nucleotides called

‘identity elements’. These nucleotides are scattered

throughout the tRNA structure, but are usually concen-

trated in the anticodon loop and the acceptor stem

(Beuning and Musier-Forsyth, 1999). Ribosomes also

contact tRNAs throughout their surface and require

them to be flexible molecules. Nevertheless, with the

exception of discrimination between initiator and elonga-

tor tRNAs, interactions with anticodon nucleotides have

a predominant role in selection of the correct tRNA.

Additionally, other regions of the tRNA have a role in
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compensating for the different affinity of the diverse anti-

codons and amino acids that are used in translation

either directly interacting with the ribosome or allowing

for optimal flexibility (Dale and Uhlenbeck, 2005; Khade

and Joseph, 2010; Shepotinovskaya and Uhlenbeck,

2013).

Phylogenetic studies and the observation that tRNA

structure and the genetic code are essentially main-

tained in all known organisms, suggest that tRNAs (or

their direct and structurally similar predecessor) origi-

nated at the time of the last universal common ancestor

or earlier (Schimmel et al., 1993; Di Giulio, 1995; Di

Giulio, 2006; Sun and Caetano-Anoll�es, 2008; Moura

et al., 2010). Precursors of tRNA might even predate

the existence of proteins and could have had a catalytic

or metabolic role outside of translation in the “RNA

world” (Rodin et al., 2011; de Vladar, 2012; Morgens,

2013). Regardless of their exact origin, the high degree

of similarity between extant tRNAs probably derives

from their role in a very complex machinery where

changes in one component could necessitate modifica-

tion of other parts of the genetic code and/or translation

apparatus to maintain function. An example of this can

be observed in the mitochondria of several metazoans

where many tRNAs have lost either their T or D arms. In

the cases that have been studied in more detail, it was

observed that EF-Tu, rRNA, ribosomal proteins and

aaRS coevolved to allow the recognition of these non-

canonical tRNAs (Watanabe et al., 2014). Changes in

the ‘sense’ of codons (where they are reassigned to

encode a different amino acid) also require major modifi-

cations as the appearance of this new sense for a

codon would otherwise force the introduction of amino

acids in an erroneous context. For instance, compara-

tive genomic studies have suggested that Leu CUG

codon reassignment to Ser in several Candida and

Debaryomyces fungi led to a drastic reduction in the

usage of these codons (Moura et al., 2010). Replicating

this codon reassignment in the model organism Saccha-

romyces cerevisiae resulted in decreased fitness in sev-

eral growth media and decreased thermal stability for at

least one protein. Nevertheless, these experiments also

showed a great growth advantage in some culture con-

ditions (e.g. a 500% growth advantage in the presence

of copper sulphate). This change in niche preference

and a probable low level of misincorporation in the

original conditions may have allowed the fixation of

these changes to the genetic code (Mateus et al.,

2013). Other codon reassignments may have required

the prior elimination of the original codon from the

genetic code, for instance due to abnormally high or

low CG usage in the genome (Moura et al., 2010).

Although such tRNA-dependent modifications to the

translation apparatus are rare, they probably had an

important role in the original establishment and/or

expansion of the genetic code by facilitating the coding

of new amino acids (Moura et al., 2010; Rodin et al.,

2011; de Vladar, 2012). Beyond its integral role in

defining and translating the genetic code, tRNA has

also evolved a surprisingly wide range of alternative

functions (Fig. 2). The aim of this review is to analyze

the pathways that have evolved to utilize tRNAs, some-

times by hijacking them to function beyond the transla-

tion machinery. Emphasis will be placed on bacterial

systems, and examples from other organisms will be

mentioned when relevant.

Fig. 1. Structure of tRNA. Schematic representation of (A) secondary and (B) tertiary structure of tRNA. Tertiary structure is based on the
backbone of yeast tRNAAsp as in pdb model 1VTQ (Moras et al., 1980). The main parts of tRNA are highlighted in different colours, using
darker colours for stems and lighter colours for loops. Used colours are red: acceptor stem, blue: deoxyuridine arm, gray: anticodon arm,
cyan: variable arm, green: TWC arm and orange: segments linking tRNA arms.
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aa-tRNA based synthesis beyond translation

Modification of macromolecules. Many different aa-

tRNAs are used outside of translation to provide acti-

vated amino acids for a wide variety of purposes. These

include the synthesis of several metabolites as well as

the modification of macromolecules (RajBhandary and

S€oll, 2008; Banerjee et al., 2010; Francklyn and Minajigi,

2010; Dare and Ibba, 2012; Katz and Orellana, 2012a;

Belin et al., 2012; Raina and Ibba, 2014). Some of the

earliest described examples of such roles outside of

translation are related to modification of cellular enve-

lopes (RajBhandary and S€oll, 2008; Francklyn and Mina-

jigi, 2010). For example, the addition of amino acids to

phosphatidylglycerol through ester bonds to the glycerol

moiety and synthesis of certain peptide cross bridges

for peptidoglycan both require aa-tRNA substrates

(RajBhandary and S€oll, 2008). Modification of lipids is

used to change the membrane charge distribution,

thereby protecting the cell against some antibiotics or

bactericidal peptides produced by competing species

(Dare and Ibba, 2012; Raina and Ibba, 2014; Goldfine,

2014). Lipid aminoacylation also participates in resist-

ance to osmotic or pH stresses (Dare and Ibba, 2012;

Goldfine, 2014) and might even have a role in bacterial

replication by modulating the ability of DnaA to

exchange ADP with ATP (Ichihashi et al., 2003). In addi-

tion to lipid modification, aa-tRNAs can also be used as

substrates for the addition of amino acids to peptides in

bacteria. This includes the synthesis of the pentapeptide

bridge from peptidoglycan peptide by MurM or Fem pro-

teins, modification of the amino terminus in proteins

starting with basic amino acids by leucyl/phenylalanyl

transferases (L/F-transferases; in eukaryotes Arg-tRNA-

protein transferase modifies proteins with Arg) and the

synthesis or modification of some small peptides using

enzymes like AlbC, PacB or VlmA (Berger-B€achi and

Tschierske, 1998; Garg et al., 2008; Zhang et al., 2011;

Dougan et al., 2012; Dare and Ibba, 2012; Belin et al.,

2012; Shepherd and Ibba, 2013b; Raina and Ibba,

2014). These amino acid additions to peptides have
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Fig. 2. Biological roles of tRNA. Classification of the diverse roles that tRNAs play in cell biology. Functions of tRNAs were classified in four
main groups, translation (blue), synthetic functions beyond translation (yellow), tRNA dependent regulation (red) and genomic interactions
(green). Positioning of each group in the figure is not related to the parts of tRNA involved in specific functions.
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diverse functions. The peptidoglycan bridge changes the

structural properties of the cell wall, enhancing antibiotic

resistance and binding of some extracellular proteins

(Berger-B€achi and Tschierske, 1998; Guan et al., 2004;

Scheffers and Pinho, 2005; Dare and Ibba, 2012;

Shepherd and Ibba, 2013b). By contrast, modification of

the amino terminus of cytoplasmic proteins modulates

the half-life of specific proteins by targeting them for rec-

ognition by ClpS and subsequent degradation by ClpAP

protease in bacteria or by UBR proteins and subsequent

degradation by the 26S proteasome in eukaryotes

(Dougan et al., 2012; Raina and Ibba, 2014). Finally,

small peptides synthesized using the activated amino

acid on aa-tRNA as a precursor correspond to second-

ary metabolites with diverse physiological functions

ranging from antibiotics and inter-cellular signalling mol-

ecules to metal chelators (Garg et al., 2008; Zhang

et al., 2011; Belin et al., 2012).

In all cases that have so far been studied, the speci-

ficity for aa-tRNA in the modification of macromolecules

depends primarily on recognition of the amino acid with

a minor but relevant role for the tRNA, particularly the

acceptor stem. For instance, FemX from Weissella viri-

descens uses Ala-tRNAAla as substrate, excluding from

its active site any amino acid that is bigger than Ala.

The only aa-tRNA carrying a smaller amino acid, Gly-

tRNAGly, is excluded by recognition of tRNA ‘anti-

determinants’, that is, the exclusion of any tRNA that

presents a specific sequence (in this case base pair C2-

G71) that is absent from the natural substrate of the

enzyme (Fonvielle et al., 2009). Base pairs that are out-

side of the acceptor stem of tRNA, or even 3 to 4 base

pairs away from the amino acid, have a negligible effect

on the aa-tRNA specificity of FemX (Villet et al., 2007;

Fonvielle et al., 2009; 2013). Studies on aminoacyl-

phosphatidylglycerol synthases (MprF or aa-PGS) that

catalyze lipid modification (Gould et al., 1968; Roy and

Ibba, 2008; Hebecker et al., 2011; Dare and Ibba,

2012), L/F-transferases that modify the amino terminus

of proteins tagging them for degradation (Suto et al.,

2006; Watanabe et al., 2007; Wagner et al., 2011; Fung

et al., 2014), and AlbC that catalyzes the synthesis of a

cyclic dipeptide (Bonnefond et al., 2011; Sauguet et al.,

2011; Moutiez et al., 2014) all showed similar depend-

ence on acceptor stem sequences. From this perspec-

tive, AlbC is particularly interesting as the enzyme uses

two aa-tRNAs that bind sequentially to different regions

of the enzyme. The enzyme is more specific for the rec-

ognition of the first aa-tRNA (where it uses only one

amino acid) than for the second aa-tRNA (where it uses

one amino acid preferentially, but accepts others). In the

case of AlbC, recognition of the second aa-tRNA

depends strongly on the identity of the first base pair of

the tRNA acceptor stem (G1-C72 in AlbC substrates),

while the identity of these nucleotides is not relevant for

the recognition of the first aa-tRNA substrate (Moutiez

et al., 2014).

Synthesis of small metabolites. In addition to their roles

in the synthesis or modification of macromolecules,

tRNAs participate in the production of several much

smaller metabolites. Beside the synthesis of di-peptides

mentioned above, tRNAs have central roles in the syn-

thesis of tetrapyrroles (such as heme or chlorophyll) and

several amino acids. Many organisms lack the complete

set of aaRSs required to aminoacylate every tRNA iso-

acceptor with the corresponding amino acid. In these

organisms some tRNAs are aminoacylated in an indirect

pathway where the cognate tRNA is first ‘mis-acylated’

with a precursor of the correct amino acid that is subse-

quently modified while on the tRNA. These indirect path-

ways have been observed for the synthesis of glutamine

on tRNAGln (in all known archaea, as well as in most

bacteria and eukaryal organelles), asparagine on

tRNAAsn (in several bacteria and archaea), formylme-

thionine on tRNAfMet (in bacteria and eukaryotic organ-

elles), cysteine on tRNACys (in some archaea) and

selenocysteine on tRNASec (in some bacteria, archaea

and eukarya) (Ibba et al., 2000; O’Donoghue et al.,

2005; Sheppard et al., 2008; Yuan et al., 2008; Katz

and Orellana, 2012a). In several organisms the main

function of these pathways is to provide aa-tRNA for the

synthesis of proteins. Furthermore, some organisms

lack alternative pathways to synthesize these amino

acids and for them, tRNA dependent synthesis is the

sole means to produce these metabolites (Sauerwald

et al., 2005; O’Donoghue et al., 2005; Katz and Orel-

lana, 2012a; Mladenova et al., 2014). The indirect ami-

noacylations of ‘amide’ (Gln and Asn) tRNAs were

among the first of these pathways to be described. In

these examples, tRNAGln or tRNAAsn are first aminoacy-

lated with the ‘acid’ amino acid (Glu or Asp) by a non-

discriminating aaRS (ND-GluRS or ND-AspRS). In

some organisms, these non-discriminating enzymes

aminoacylate the tRNAs for both acid (tRNAGlu or

tRNAAsp) and amide (tRNAGln or tRNAAsn) amino acids,

but in other organisms there are specialized enzymes

for each kind of tRNA. In a second step, a tRNA

dependent amidotransferase (AdT) catalyzes the forma-

tion of the amide (Gln or Asn) on the tRNA (Katz and

Orellana, 2012a). The other indirect pathways follow

similar steps, first adding a precursor (phosphoserine

(Sep) on tRNACys, Met on tRNAfMet or Ser on tRNASec)

that is converted into the final product in one or two

additional reactions (catalyzed by Sep-tRNA:Cys-tRNA

synthase (SepCysS) for Cys-tRNACys, methionyl-tRNA

formyltransferase (FMT) for fMet-tRNAfMet and seleno-

cysteine synthase (SelA) in bacteria or phosphoseryl-
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tRNA kinase (PSTK) plus Sep-tRNA:Sec-tRNA synthase

(SepSecS) in archaea and eukarya for Sec-tRNASec). In

all these pathways, the production of a “mis-acylated”

tRNA as an intermediary could potentially allow the mis-

incorporation of amino acids during translation. This is

prevented mainly by two processes: (i) the ability of

translation elongation factors and, possibly the ribo-

somal A site, to partially discriminate tRNAs, binding

preferentially the correctly acylated ones (LaRiviere

et al., 2001; Dale and Uhlenbeck, 2005; Yuan et al.,

2008; Katz and Orellana, 2012a) and (ii) the formation

of complexes between the non-discriminatory aaRS and

the modifying enzyme from the second step of the path-

way that sequester the mis-acylated tRNAs (Bailly et al.,

2007; Zhang et al., 2008; Rampias et al., 2010; Katz

and Orellana, 2012a). Additionally, in some cases chan-

neling is not required as kinetic competition between the

amino acid modifying enzyme and elongation factor pre-

vents accumulation of mis-acylated intermediates (Bhas-

karan and Perona, 2011).

While the enzymes used for aa-tRNA-dependent mod-

ification of macromolecules recognize their substrates

mainly through direct recognition of the amino acid and

the nearby nucleotides of the acceptor stem on the

tRNA, enzymes involved in the modification of amino

acids on tRNAs may recognize a bigger surface of the

tRNA including the D and/or T arms. For example, bac-

terial AdT (GatCAB) (Katz and Orellana, 2012a),

eukaryotic and archaeal PSTK (Sherrer et al., 2008;

Yuan et al., 2008) and FMT from bacteria and mitochon-

dria of mammals (Lee et al., 1991; Varshney et al.,

1991; Guillon et al., 1992; Li et al., 1996; Newton et al.,

1999; Takeuchi et al., 2001) have all been shown to rec-

ognize their substrates through interactions with the

acceptor and D arms. In contrast, FMT from yeast mito-

chondria (Vial et al., 2003) and SepCys (Fukunaga and

Yokoyama, 2007; Helgad�ottir et al., 2012) have been

suggested to recognize tRNA through its acceptor stem

and SepSecS through its acceptor and T stems

(Palioura et al., 2009).

Unlike the amino acid synthesis reactions described

above, the first step of tRNA-dependent tetrapyrrole syn-

thesis in archaea, chloroplast and most bacteria involves

removal of the amino acid attached to Glu-tRNAGlu. In

this reaction Glu is detached from tRNAGlu and trans-

ferred to the enzyme glutamyl-tRNA reductase (GluTR)

where it is reduced to form glutamate 1-semialdehyde

(GSA). Subsequently, GSA is channeled to the second

enzyme of the pathway GSA aminotransferase where it

is isomerized to d-aminolevulinic acid, which is the uni-

versal precursor for tetrapyrrole synthesis. GluTR can

use Gln-tRNAGlu as a substrate indicating that the

enzyme is not very stringent in amino acid recognition.

Additionally, experiments performed with several

mutants indicated that GluTR accepts several variations

in the tRNA sequence. In contrast to all the other

enzymes discussed previously, GluTR does not tightly

recognize the amino acid or any specific sequence fea-

tures. Instead, the enzyme seems to recognize the

global folding of tRNAGlu mainly due to the nucleotide in

position 47, which is absent in tRNAGln (O’Brian and

Th€ony-Meyer, 2002; Randau et al., 2004; Heinemann

et al., 2008; Katz and Orellana, 2012a).

In some organisms that use these alternative path-

ways, specialized tRNAs have been found. For instance,

in Staphylococcus epidermidis and apparently Staphylo-

coccus aureus there are specialized tRNAGly isoaccep-

tors that are used for peptidoglycan synthesis, but not

for mRNA translation (Bumsted et al., 1968; Giannouli

et al., 2009). Conversely, in some strains of Acidithioba-

cillus ferrooxidans a specialized tRNAGlu used in transla-

tion, but unable to participate in tetrapyrrole synthesis,

has been found (Levic�an et al., 2005). In both cases

such specialized tRNAs might ensure aa-tRNA availabil-

ity for both pathways or alternatively prevent sudden

changes in tRNA aminoacylation levels when usage by

one of the alternative pathways changes. Nevertheless,

neither of these hypotheses has been tested. When a

tRNA is released from the constraints imposed by its

participation in translation, its sequence can deviate

from the canonical. As an example, all tRNAGly from S.

aureus that apparently are specialized in peptidoglycan

synthesis have an altered sequence that prevents bind-

ing to EF-Tu, including one that has deviated in structure

(mainly at its D and T arms) to the degree that tRNA

prediction software categorizes the sequence as belong-

ing to a pseudogene (Giannouli et al., 2009). Another

potential example of this is tRNAOther in Bacillus cereus,

which presents several deviations from canonical tRNA

structure including a G2:A71 bulge and the fact that it

presents a Trp anticodon whereas it is aminoacylated

with Lys (Ataide et al., 2005). Although originally shown

to be a substrate for aminoacylation in vitro (Ataide

et al., 2005), this tRNA was later shown to be absent

from ribosome fractions in vivo. Instead of participating

in translation, it was shown to be part of a larger regula-

tory RNA, where it was proposed to represent an impor-

tant structural element (Rogers et al., 2012). The role of

the smaller tRNA like fragment has yet to be

determined.

Hijacking of tRNA for non-synthetic processes

The information in tRNAs can be used for several ‘non-

synthetic’ roles which do not require donating an acti-

vated amino acid. Some of these roles, such as the

usage of tRNAs as primers for viral genome replication
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(Mak and Kleiman, 1997) or the use of their genes as

insertion sites in the genome for invading viruses

(Hacker and Kaper, 2000; Williams, 2002) depend on

the mere existence of these molecules, while others

such as the use for regulatory functions take advantage

of tRNA’s ability to act as a messenger for the metabolic

status of the cell.

tRNA in regulatory processes. The ratio of aa-tRNA to

deacylated tRNA depends on the availability of amino

acids for aminoacylation and the speed of translation.

Thus, the aminoacylation status of tRNA is a good indi-

cator of the balance between the pathways that use

amino acids (including translation and central metabo-

lism) and amino acid synthesis or acquisition from

the environment (Henkin and Yanofsky, 2002; Elf and

Ehrenberg, 2005). In this context, it is not surprising that

tRNAs have been hijacked out of their biosynthetic roles

for use in regulatory processes. These regulatory sys-

tems usually require very small amounts of molecules

and sometimes use only RNA. Thus, it has been pro-

posed that such tRNA-based regulatory systems are

cheap to produce and easy to evolve, and that for these

reasons they might have already been in use in a proba-

ble ancestral RNA world (Henkin and Yanofsky, 2002).

Furthermore, it has recently been proposed that the

high specificity of aaRSs additionally allows tRNA-based

regulatory systems to be highly sensitive and substrate-

specific (Bullwinkle and Ibba, 2016).

Some of the best-described regulatory mechanisms

involving tRNA are the stringent response and transcrip-

tion attenuation. Both take advantage of different “side

effects” of changing the aa-tRNA/tRNA ratio. In the strin-

gent response, a sudden decrease in amino acid avail-

ability allows accumulation of deacylated tRNAs that

bind the ribosome where they stimulate the transfer of

PPi from ATP to either GDP or GTP by RelA/SpoT

enzymes. These reactions form ppGpp and pppGpp,

alarmones with pleiotropic effects on bacterial physiol-

ogy including changes in metabolism of amino acids

and nucleotides and regulation of synthesis of stable

RNAs (rRNAs and tRNAs) (Liu et al., 2015). Under tran-

scription attenuation, instead the state of tRNA aminoa-

cylation can be directly sensed by riboswitches that

control the formation of Rho independent transcription

terminators and thus, modulate expression of genes

coded by the transcript downstream of the terminator

site. The riboswitch may sense tRNA aminoacylation

levels by two different strategies. In one strategy, repre-

sented by the classic example of the trp operon in E.

coli, a small open reading frame at the 50 leader region

of the operon contains several Trp codons. Changes in

the abundance of the specific aa-tRNATrp will change

the speed of translation of this leader peptide modulat-

ing the time of residence of ribosomes in this area of

the mRNA and controlling the formation of the termina-

tor structure. In a second strategy, most frequently found

in Gram-positive bacteria, the mRNA may present a

riboswitch structure termed the T-box. Binding of the

non-aminoacylated tRNA to the T-box prevents the for-

mation of the transcription terminator, allowing transcrip-

tion of the genes located downstream (Henkin and

Yanofsky, 2002).

Similar to the effect of aa-tRNA abundance on the

speed of translation of the leader peptide for transcrip-

tion attenuation, changes in the availability of a specific

aa-tRNA can also modify the speed of translation of

genes that are rich in codons translated by this aa-

tRNA. These genes are usually less sensitive than

leader peptides and require large changes in amino acid

availability that can potentially have strong effects on the

abundance of aa-tRNA. Additionally, genes involved in

signal transduction pathways can be extremely sensitive

to small changes in protein levels (Elf and Ehrenberg,

2005; Sørensen et al., 2005; Subramaniam et al.,

2013b; Subramaniam et al., 2014). As an example of

this extreme sensitivity, Bacillus subtilis can sense

decreases in environmental serine abundance through

changes in the speed of translation of the sinR biofilm

repressor and use this signal to trigger the formation of

biofilms. Changes in codon usage of sinR produce only

minor changes in the protein’s cellular concentration.

Nevertheless, as SinR has a cooperative behaviour and

is part of a negative feedback mechanism, this small

change in protein concentration induces a strong

change in colony morphology (Subramaniam et al.,

2013a).

The modification of several tRNA nucleotides is also

known to be involved in regulatory pathways. Usually

these modified nucleotides are located in the anticodon

loop, although there are some exceptions. One of the

first to be identified is located at position 37 (next to the

30 end of the anticodon) of tRNAs reading codons with a

50 U (tRNATyr, tRNATrp, tRNAPhe, tRNALeu, tRNASer,

tRNACys) from E. coli. Cells cultured in a medium lack-

ing iron were found to have lost a methylthio modifica-

tion (presenting an i6A nucleotide instead of the normal

hypermodified ms2i6A nucleotide), an alteration that

induced the synthesis of enterobactin (a high affinity

siderophore) and its aromatic amino acid precursors

(Wettstein and Stent, 1968; Rosenberg and Gefter,

1969; Buck and Ames, 1984). Since then, several other

modifications have been found to be involved in modula-

tion of aerobic/respiratory metabolism (Buck and Ames,

1984; Persson et al., 1998; Bj€ork et al., 1999;

Nakayashiki et al., 2013), expression of virulence factors

(Bj€ork et al., 1999; Durand et al., 2000; Shippy and

Fadl, 2014), the response to changes in amino acid
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availability (Laxman et al., 2013) or other stressful con-

ditions (Golovina et al., 2009; Murata et al., 2011; Chan

et al., 2012; Caballero et al., 2012; Dedon and Begley,

2014; Gu et al., 2014) in both bacteria and eukaryotes

including mammals (Wei and Tomizawa, 2011; Gu et al.,

2014; Endres et al., 2015). Additionally, high-throughput

experiments have found changes of tRNA nucleotide

modifications or the enzymes involved in the modifica-

tion pathways related to stress conditions or diseases

(Wang and He, 2014) suggesting that modification of

tRNA might play a central role in regulation of gene

expression.

In addition to nucleotide modifications, a series of

bacterial toxins can cleave initiator or elongation tRNAs,

thus inhibiting translation (Ogawa et al., 1999; Kauf-

mann, 2000; Winther and Gerdes, 2011; Ruhe et al.,

2013; Cruz et al., 2015). This usually forms part of

stress defense mechanisms, as in the case of PrrC,

that inhibit protein synthesis under phage infection

(Kaufmann, 2000) or some toxins from the VapC family

that induce a dormancy state under other stressful

conditions (Winther and Gerdes, 2011; Cruz et al.,

2015). Nevertheless, other toxins have a very different

ecological role and are used to attack nearby bacteria.

This is the case of colicins D and E5 (Ogawa et al.,

1999; Tomita et al., 2000) as well as some toxins from

contact dependent growth inhibition systems such as

WapA in Bacillus subtilis or some CDI toxins from Bur-

kholderia pseudomallei (Koskiniemi et al., 2013; Ruhe

et al., 2013). The reduction of functional tRNAs could

have other consequences, as it has been shown that it

can trigger the formation of dinucleotide second mes-

sengers (Kramer et al., 1988; Katz and Orellana, 2012b)

or an increased usage of elongator tRNAs at initiation

(Winther and Gerdes, 2011; Samhita et al., 2013; Shetty

et al., 2015). Nevertheless, a physiological role for these

phenomena in the context of tRNA fragmentation has

not been studied yet. In eukaryotes, tRNA fragments

are also produced. In addition to the effects derived

from a decrease in tRNA concentration, in these organ-

isms the fragments per se have a physiological role,

binding polysomes or proteins involved in the siRNA

and miRNA pathways and consequently affecting gene

expression by mechanisms that are still not well under-

stood (Raina and Ibba, 2014; Keam and Hutvagner,

2015).

tRNA mimics. The structural and functional adaptability

of tRNA have allowed not only their use for alternative

roles beyond protein synthesis, but also the appearance

of processes that take advantage of their existence

albeit not using them directly. For instance, several virus

and mobile genetic elements use genes coding for

tRNAs as an insertion site in genomes. These mobile

elements have to include segments that mimic part of

the tRNA gene sequence in order to enable recombina-

tion and to allow for reconstitution of the tRNA gene in

cases where it is essential (Hacker and Kaper, 2000;

Williams, 2002). Along the same lines, several mole-

cules mimic the structure of tRNAs in order to control

translation or use its machinery for other purposes. An

impressive example of this are the tRNA-like structures

(TLS) in the RNA genomes of several viruses (Dreher,

2009). A prototype of these mimics is the TLS located

at the 3�end of the turnip yellow mosaic virus (TYMV)

(Dreher, 2009; Colussi et al., 2014). When folded, the

TLS adopts the classic L-shaped tRNA structure,

although with a different topology based on idiosyncratic

intramolecular interactions. Although the elements anal-

ogous to the D-loop, T-loop and V-loop are positioned

similar to tRNA, they interact in a different manner. This

configuration allows the TLS to present two faces. One

face of the TLS is the ‘tRNA-like face’, which closely

mimics tRNA and achieves tRNA-like valylation efficien-

cies and eIF1A binding. The opposing side presents

tRNA-deviating features, an upstream pseudoknot

domain and the genomic RNA interacting to enable

additional functionality (Dreher and Goodwin, 1998;

Colussi et al., 2014). In contrast to tRNA, the unique

topology and intramolecular interactions of the viral RNA

also allows the TLS to unfold, possibly to allow the repli-

cation of the RNA genome (Colussi et al., 2014).

Beside mimicry of foreign molecules (mobile elements

and viruses) there are also several molecules within a

cell that mimic its own tRNAs. One remarkable example

is established by the participation of two molecules:

tmRNA (small transfer-messenger RNA also known as

SsrA and 10Sa RNA) and a tmRNA-specific binding pro-

tein called SmpB (small protein B). Together they mimic

the upper (tmRNA) and lower (SmpB) halves of a tRNA,

respectively. tmRNA owes its name to its action as both

a transfer and a messenger RNA. The tmRNA-SmpB

complex targets and rescues stalled ribosomes in a pro-

cess known as trans-translation (Himeno et al., 2014;

Keiler, 2015). This conserved translation surveillance

pathway prevents accumulation of non-functional pro-

teins from truncated mRNA (Karzai et al., 1999; Cha-

dani et al., 2010). The tmRNA-SmpB complex mimics

tRNA throughout the process. First, it is aminoacylated

with alanine by alanyl-tRNA synthetase. Ala-tmRNA

then enters the A-site of the stalled ribosome on a trun-

cated mRNA to receive the nascent polypeptide from

peptidyl-tRNA in the P-site. Then peptidyl-Ala-tmRNA

translocates to the P-site, which exchanges the template

switching the stalled ribosome from the translation of

the defective mRNA to the translation of the mRNA

domain of tmRNA. Translation of the tmRNA reading

frame tags the defective protein to be degraded by
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cellular proteases (Richards et al., 2008; Giudice et al.,

2014).

In principle, any macromolecule could mimic tRNAs

and in fact, even a tRNA has been found to mimic

another tRNA. In this interesting case of structural mim-

icry between the anticodon arm of tRNAAsp and the

acceptor stem of tRNAGlu, a paralog of glutamyl-tRNA

synthetases, glutamyl-Q-tRNAAsp synthetase (Glu-Q-RS,

previously YadB), activates glutamate and transfers it to

the queuosine at the wobble position of tRNAAsp (Blaise

et al., 2004; Campanacci et al., 2004; Dubois et al.,

2004; Salazar et al., 2004). This is considered an hyper-

modification as queuosine corresponds already to a

modified guanine and Glu-Q-RS was the first aaRS

paralog known to catalyze this kind of reaction. Several

aspects of Glu-Q-RS are unusual. First, in contrast to

GluRS the enzyme can activate glutamate in the

absence of tRNA (Campanacci et al., 2004; Salazar

et al., 2004) and transfer it to tRNAAsp instead of tRNA-
Glu (Dubois et al., 2004; Salazar et al., 2004). Second, it

does not glutamylate tRNAAsp at its 30 terminal adeno-

sine, but instead it transfers the amino acid to a modi-

fied queuosine nucleoside, which is the first anticodon

nucleoside in tRNAAsp (Blaise et al., 2004; Salazar

et al., 2004). Finally, the orientation in which a tRNA

interacts with Glu-Q-RS is different from that with GluRS

since the tRNA needs to come close to Glu-Q-RS’s

active site with its anticodon loop instead of its acceptor

helix (Blaise et al., 2004). The role of this hypermodifi-

cation is poorly understood. It is speculated that it might

reverse the effect of a single queuosine on GAU codon

binding by tRNAAsp Q34 during translation (Blaise et al.,

2005). The high KM for glutamate of Glu-Q-RS suggests

that this glutamylation might only occur when the gluta-

mate concentration rises in the cell (Salazar et al.,

2004). If this is true, the hypermodification may be a

sensor, allowing Glu to affect the speed of GAU decod-

ing during translation (Blaise et al., 2005) and, consist-

ent with this, Glu-Q-RS seems to have a role in

regulating the response to osmotic stress in Shigella

flexneri (Caballero et al., 2012).

Similar to the example of SmpB in the mimicry of

tRNA, there are several other proteins that mimic tRNA.

Also similar to SmpB, all these proteins bind to the ribo-

some and have a function in translation. Presumably,

primordial ribosomes prior to the last common ancestor

catalyzed peptide-bond formation without the addition of

translation factors, however these specialized factors

greatly enhance the rate of translation. For instance,

elongation factor G (EF-G) is a GTPase that binds the

ribosome and upon GTP hydrolysis, accelerates translo-

cation fourfold to fivefold (Shoji et al., 2009). EF-G is

organized into five domains, of which domains I and II

resemble in EF-Tu structure, while III-V resemble that of

A-site tRNA. By virtue of structurally mimicking the

tRNA-EF-Tu complex, domains III-V occupy the A-site

tRNA to occlude tRNA from entering (Gao et al., 2009;

Zhou et al., 2013). EF-G is not the only protein to have

evolved A-site tRNA mimicry, in addition ribosome

release (RRF) and recycling factors, (RF1/2, RF3) mimic

tRNA and bind to similar regions. Despite these factors

all binding at or near the A-site, each have functions

that differ considerably. RF1/2 and RF3 bind ribosomes

that have reached a stop codon to form an anticodon-

codon interaction and hydrolyze the tRNA-peptidyl link-

age with a conserved GQQ motif that mimics the CCA

end of a tRNA (Zhou et al., 2012). RRF traverses

between the A- and P-site to disassemble the ribosome

into separate subunits, mediated by EF-G catalyzed

translocation (Weixlbaumer et al., 2007). Therefore

access to the A-site of the ribosome provides translation

factors the opportunity to control each aspect of protein

synthesis, however the cavity of the ribosome’s entrance

imposes a structural barrier that requires such proteins

to mimic tRNA.

Protein-tRNA mimics are not all confined to interact

with the entrance of the ribosome. Elongation factor P

(EF-P) is an acidic protein comprised of three ß-barrel

domains, arranged in a format that notably resembles

tRNA, though the domains corresponding to the antico-

don arm are somewhat smaller (Hanawa-Suetsugu

et al., 2004). According to biochemical studies and a co-

crystal structure with the ribosome, EF-P is positioned

between the P/E site, making various contacts with the

peptidyl-tRNA to entropically provide the ribosome the

necessary velocity when translating consecutive proline

residues, as proline forms the slowest peptide bond

(Blaha et al., 2009; Doerfel et al., 2013; 2015). The con-

siderable structural similarity between EF-P and tRNA

gives EF-P a distinct opportunity to interact with

enzymes that tRNA may also interact with. In particular,

EF-P is post-translationally modified in some organisms

by a mechanism reminiscent of tRNA-aminoacylation

(Navarre et al., 2010; Roy et al., 2011). The addition of

(R)-ß-lysine onto the conserved lysine residue at the

acceptor stem tip of EF-P augments EF-P’s function by

increasing the observed KM for paused ribosomes

(Doerfel et al., 2013). Interestingly, EF-P is glycosylated

in some beta- and gamma-proteobacteria with a rham-

nose molecule at an analogous arginine residue, calling

into question how this evolutionary partnership arose

while still accommodating important contacts with the

ribosome (Rajkovic et al., 2015; Lassak et al., 2015).

Recent crystal and cyroEM structures revealed the

energy-dependent translational throttle A (Etta) protein

enters the E-site of the ribosome to regulate translation

elongation in a manner dependent on the ratio of ATP/

ADP (Bo€el et al., 2014). EttA is composed of four
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domains that bind ADP or ATP and a long C-terminal a-

helix that interacts with the E and P-site of the ribo-

some. The C-terminal extension mimics tRNA to control

protein synthesis directly by interacting with the peptidyl-

transfer center when initiator tRNA is bound. For exam-

ple, when ADP levels are high, such as in stationary

phase for bacteria, EttA-ADP restricts synthesis of the

first peptide bond, while in the presence of ATP, EttA

marginally enhances the synthesis of the first peptide

bond. This provides the first example of a protein tRNA

mimic as having a regulatory function within the context

of translation. Furthermore, it will be interesting to see

whether EttA and EF-P accelerate peptide bond forma-

tion in a similar way.

Mimics from pathogens and parasites (such as TLS)

have a strong selective pressure to maintain similitude

to their host models. The hosts instead, have a strong

selective pressure to change the structure of the model

(in this case tRNA) or of the molecules that interact with

it (in this case the ribosome or an aaRS), such that they

stop recognizing the mimic and become more resistant

to the pathogen/parasite (Elde et al., 2009; Elde and

Malik, 2009). Nevertheless, most tRNA mimics are from

within the same organism. Thus, there is strong selec-

tive pressure over both the mimic and the model for

maintenance of mimicry (Katz et al., 2014).

Final remarks

Aa-tRNAs are central in translation of the genetic infor-

mation, connecting cellular memory stored in nucleic

acids with structural and catalytic functions performed

mainly by proteins. Thus, these molecules are believed

to have performed a major role in the evolution from a

probable ‘RNA world’ where RNA had both memory and

catalytic functions to a world where these functions are

performed mainly by specialized molecules: catalysis by

proteins and memory by DNA. In this scenario, it is

probable that beside tRNA, there are only a few other

information molecules in living organisms that are as old

and as well conserved in the three domains of life plus

viruses. Although there are some differences between

organisms, the fact that bacterial and eukaryal tRNAs

can easily be interchanged for both aminoacylation and

mRNA translation (Shafritz and Anderson, 1970; Berthe-

lot et al., 1973; Weisblum, 1999) is evidence for how

well these molecules have retained their structure. Such

a long period of time has created multiple chances for

nature to evolve new functions for these old molecules

that carry an activated amino acid with very high speci-

ficity. As discussed in this review, several of these newer

functions correspond to pathways unrelated to transla-

tion per se. These functions include several synthetic

and regulatory pathways, some of which might be very

ancient themselves. For instance, indirect pathways for

synthesis of aminoacyl-tRNA are thought to be very old,

preceding the corresponding direct pathways (Woese

et al., 2000; Ibba et al., 2000; Sheppard et al., 2008).

The tRNA dependent synthesis of tetrapyrroles has also

been proposed to be significantly older than the corre-

sponding tRNA independent pathway (Schulze et al.,

2006) maybe even predating LUCA and having arisen in

the RNA world (Benner et al., 1989). Surprisingly,

although many of these alternative pathways are old

and usually use the same tRNAs as in translation, there

are very few cases where a ‘cross-talk’ between transla-

tion, alternative synthetic pathways and regulatory proc-

esses has been proposed. Potential cross-talk has been

suggested for pathways that use large amounts of aa-

tRNA, such as synthesis of peptidoglycan in gram-

positive bacteria (Shepherd and Ibba, 2013a,b) or tetra-

pyrroles in organisms with high demand of them for

either photosynthesis (Jahn, 1992) or oxygen consump-

tion (Levic�an et al., 2005; 2007; Katz and Orellana,

2012a; Farah et al., 2014). Nevertheless, for the most

part we are unaware of the effect that changes in tRNA

have on most of the pathways using tRNA outside of

translation. For instance, the effects of tRNA fragmenta-

tion or modification on the regulation of protein stability

or tRNA dependent synthesis of amino acids are com-

pletely unknown. We expect that the mass-spec and

high-throughput sequencing tools that have been devel-

oped in the last years, as well as the vast amount of

genomic sequences that have been made available, will

enhance research about the roles of tRNAs in regulating

translation and the alternative pathways where these

molecules have a central role.
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