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Abstract:  10 

 11 

An approach is proposed for incorporating into the forest harvesting decision process the variations in 12 

timber growth and yield due to climate change uncertainty. A range of possible climate scenarios are 13 

transformed by a forest growth and yield model into tree growth scenarios, which in turn are 14 

integrated into a multistage stochastic model that determines the timber cut in each future period so as 15 

to maximize net present value over the planning horizon. For comparison purposes a deterministic 16 

model using a single average climate scenario is also developed. The performance of the deterministic 17 

and stochastic formulations are tested in a case study of a medium term forest planning problem for a 18 

Eucalyptus forest in Portugal where climate change is expected to severely impact production in the 19 

coming years. Experiments conducted using 32 climate scenarios demonstrate the stochastic model’s 20 

superior results in terms of present value, particularly in cases of relatively high minimum timber 21 

demand. The model should therefore be useful in supporting forest planners’ decisions under climate 22 

uncertainty. 23 

 24 

Keywords: Forestry, Stochastic Decision models, Forest Planning, Climate Change, Uncertainty.  25 
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1. Introduction 26 

 27 

Uncertainty and risk play an important role in the development of forest management planning 28 

(Pasalodos et al. 2013; Yousepfour et al. 2012). Typical examples of these phenomena are market 29 

uncertainties, usually expressed as fluctuations in the prices of timber products but sometimes also as 30 

bounds on their demand. Another type of uncertainty takes the form of variations in future growth and 31 

yields. These variations are caused in part by fires and pests, but an additional factor with a significant 32 

influence on future yields is climate change. In the Mediterranean region, for instance, especially large 33 

productivity losses are expected in the years ahead as water becomes increasingly scarce due to 34 

projected increases in the frequency and severity of droughts (Christensen et al. 2007; Spathelf et al. 35 

2013). In the particular case of Portugal, existing scenarios predict a decline in annual precipitation of 36 

about 15%, with increases in winter seasons more than offset by decreases over the rest of the year, 37 

especially in spring and autumn for which the projections indicate a fall of up to 30% and 50%, 38 

respectively (Duarte Santos et al. 2001). These reductions will impact the growth and survival of 39 

plants, and therefore also of the timber supply.  40 

 41 

Dealing with climate change is thus a major challenge for forest managers, especially when it comes to 42 

addressing harvest scheduling problems. Failure to correctly anticipate the impact of climate change 43 

on timber availability may leave forestry operators unable to satisfy industry demand for timber or 44 

fulfil supply commitments, leading in turn to financial penalties for breach of contract or other 45 

difficulties. If climate change is to be successfully integrated into forest planning, new tools and 46 

methods are needed. 47 

 48 

The first step in the creation of such tools and methods is the development/use of growth and yield 49 

models sensitive to climate factors that can project forest growth over time under climate change. 50 

Generally speaking, regression and simulation models can produce reasonable predictions of future 51 
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harvest volumes. The inherent variability of growth in these formulations is usually considered 52 

unbiased. Often referred to as empirical growth models, they are based on inventory data and are not 53 

suitable for estimating growth under conditions different from those observed during the period for 54 

which the data were collected (Landsberg and Waring 1997). In other words, they assume that the 55 

growing conditions in the future will be similar to those of the past and therefore cannot be used to 56 

predict growth when climate conditions are changing. Thus, regression and simulation models have 57 

historically been considered inadequate as projection tools for supporting decision-making under 58 

climate change.  59 

 60 

By contrast, process-based growth and yield models are grounded not on historical growth 61 

measurements but rather on physiological processes controlled by climatic and edaphic factors (see, 62 

for example, Kellomäki et al. 1997, Kellomäki and Väisänen 1997). These models predict growth 63 

through the calculation of physiological processes (e.g., radiation interception, canopy photosynthesis, 64 

estimation of respiratory losses, allocation of the resultant carbohydrates to component parts of the 65 

trees) and use environmental data such as climate information as input. Thus, they overcome the 66 

shortcomings of empirical models and can be employed for decision-making under changing climatic 67 

conditions.  68 

 69 

Another option is the use of transfer functions (Pukkala and Kellomaki 2012). This methodology 70 

consists in calculating the relative impact of climate change on growth with a process-based model 71 

and then using the resulting correction factors to adjust the predictions of an empirical model. Another 72 

method is the creation of additive site index models that are able to predict productivity changes in a 73 

changing climate (Albert and Schmidt 2010; Trasobares et al. 2016). Recently, Garcia-Gonzalo et al. 74 

(2014) developed a decision support system (DSS) known as SADfLOR v ecc 1.0 that boosts the 75 

efficiency and effectiveness of forest management under changing environmental conditions. This 76 
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system incorporates a process-based model (Tomé et al. 2004) that is sensitive to environmental 77 

changes and has been shown to be valid for predicting forest growth under climate change.  78 

 79 

The effects of climate change on future timber supply are raising concerns in Portugal regarding the 80 

local pulp and paper industry, one of the country’s leading export sectors whose main source of raw 81 

material is eucalyptus trees. According to the Portuguese Forest Inventory they occupy 739 x 10
3
 ha, 82 

or about 23% of Portugal’s forest cover. Most of the eucalyptus are found in evenly aged stands that 83 

are intensively managed under a coppicing system with 11-12 year rotations. The concerns are 84 

therefore focussed on the effects of climate change on medium term productivity and how to 85 

incorporate climate change uncertainty into the industry’s forest management planning. 86 

 87 

The present paper reports on a case study of a medium-term harvest planning problem for a forest area 88 

in Portugal. The main decisions to be made relate to which stands (units) should be harvested in each 89 

period of the planning horizon. Although this is a well-known problem (e.g. Clutter 1968; Bettinger et 90 

al. 2009; Dykstra 1976; Eriksson 2006; Weintraub 2007), it has not heretofore been addressed in the 91 

context of climate change uncertainty. Previous works have used stochastic programming to integrate 92 

uncertainty through scenarios with a given probability of occurrence (e.g., Hoganson and Rose, 1987; 93 

Eriksson, 2006; Gassmann, 1989; Boychuck and Martell, 1996; Alonso-Ayuso et al. 2011). In Alonso-94 

Ayuso the authors incorporated uncertainty in markets (i.e., timber price variations and bounded 95 

demand) via 16 scenarios, each of which defined price and demand bounds for each period considered. 96 

In Badilla et al. 2014, uncertainty in forest growth was also included, with up to 324 scenarios. Both of 97 

these studies found that using multiple stochastic scenarios proved superior to just one scenario with 98 

average values. Unlike the approach to be presented here, however, in the two just-cited papers the 99 

timber growth scenarios were generated as variations in historical data. 100 

 101 

The uncertainty in tree growth due to climate change is represented in our case study through 32 102 
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climate scenarios. They are inputted to a process-based growth and yield model that then generates 32 103 

corresponding tree growth scenarios. This information is incorporated into a multistage stochastic 104 

optimization model developed for our study, whose objective is to maximize the expected net present 105 

value of harvesting operations over the time horizon while satisfying even-flow harvest constraints 106 

and demand bounds for each period.  107 

 108 

Following Badilla et al. (2014), the harvest planning problem is also solved by a simpler deterministic 109 

version of our model using a single average climate scenario, thus mimicking the behaviour of a forest 110 

manager attempting to incorporate climate change without a stochastic analysis. For comparison 111 

purposes the results of this model are contrasted with those obtained from the stochastic formulation. 112 

 113 

The remainder of this paper is divided into five sections. Section 2 develops the deterministic forest 114 

model; Section 3 extends the deterministic harvest scheduling planning problem to include uncertainty 115 

of forest growth due to climate change, setting out the climate scenarios, the resulting tree growth 116 

scenarios and the stochastic model; Section 4 presents our case study; Section 5 discusses the case 117 

study results; and finally, Section 6 concludes.  118 

 119 

 120 

2. The Deterministic Harvest Scheduling Planning Model 121 

In what follows we present a deterministic tactical planning model in which the planner must decide 122 

which stands of trees in a forest area will be cut in each time period of the planning horizon. The entire 123 

forest area is considered suitable for harvesting and by the end of the horizon will be totally harvested. 124 

To reduce the size of the model, the area is divided into several spatially separated stands that are 125 

classified as separate homogeneous strata. This way, spatial information is not needed and the 126 

planning decisions thus reduce to how many hectares of each stratum will be harvested in each period. 127 
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Typically, harvest scheduling problems include timber flow constraints to ensure a sustainable flow of 128 

timber to the pulp mill customers. Since this planning problem is one of deterministic optimization, 129 

the parameters are known or are assumed to be known. Thus, just one scenario reflecting expected 130 

values is used.  131 

 132 

The formal specification of the deterministic linear programming model is as follows: 133 

 134 

Sets 135 

� = ������		��	��
�����	�������, ���. 
� = �
���	�	����		(	��
�
), �ℎ�. 
Parameters 136 

�� = 	���
	��		��
���	ℎ	(�
) 

�� = 	����� �����!	��	��
���	ℎ	��	ℎ
���	���	��	"�����	�	 #�$

�
% 

�"���,& = 	Discounted	net	revenue	per	ℎ
	�����	
�	������	�	�
��	�	if	stratum	�	is	 
harvested	in	period	�	(€/�
)	 
� = 	Interest	rate	used	for	discounting	revenues(%)	 
=� = >�?��	@����	��	���
��	��	"�����	�	(�$)  

A	 = 	B
C����	��� ��
����	��	���@��	ℎ
���	���	
���?��	(%)	@��?���	�?�	 ��	� �����	  137 

"�����	.  138 

Decision variables: 139 

C�� = 	Proportion	of	stratum	ℎ	harvested	in	period	t	 
Accounting variables: 140 

?� = ���@��	ℎ
���	���	��	"�����	� 
 141 

 142 

Page 6 of 37

https://mc06.manuscriptcentral.com/cjfr-pubs

Canadian Journal of Forest Research



Draft

7 

 

Objective Function 143 

max	 F F �"���,&��C��
�	G	H�	G	I

																																																																				(1) 

Constraints 144 

1.	Timber	harvested	145 

F 
��
�	G	H

��C�� =	?� 		∀	�	N	�																																																																	(2) 

2. P
 ℎ		��
���	�		���
��!	ℎ
���	���	����	�ℎ�	"�
�����	ℎ������ 

F C��
�	G	I

= 1	∀	ℎ	N	�																																																																																					(3) 

3. P��� − ���?	��	ℎ
���	�	 ��	��
��� 
?�ST − (1 + A)?� ≤ 	0 ∀	�	 ∈ �1,… 	� − 1�																																	(4) 
?�ST − (1 − A)?� ≥ 	0 ∀ 	�	 ∈ �1,… 	� − 1�																																		(5) 

4.B������	���
��	 ��	��
���	 

	?� 	≥ 	=�																																																																																																					(6) 
Bounds on variables C��  146 

0 ≤ C�� ≤ 1			∀� ∈ �, ℎ ∈ �																																																																						(7) 
 147 

Equation (1) defines the objective function, which maximizes the net present value of timber sales. 148 

Equation (2) calculates the total timber harvested per period. Equation (3) ensures that each stratum is 149 

completely harvested over the planning horizon. Equations (4) and (5) impose the maximum 150 

fluctuation in timber harvested between two consecutive periods. The value of the maximum 151 

fluctuation parameter used in both of these constraints is 15%. Equation (6) ensures that minimum 152 

demand for each period is satisfied. Typically, these constraints reflect timber supply contracts or 153 

market demand. Equation (7) ensures that the decision variables take a value between 0 and 1, 154 

representing the percentage of area harvested. 155 

 156 
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3. The Harvest Scheduling Planning Problem under Uncertainty of 157 

Forest Growth due to Climate Change  158 

3.1.  A climate change case study  159 

 160 

As already explained, our case study considers the uncertainty in future timber growth and yield (the 161 

latter defined as the volume in m
3 

per hectare harvested in each unit) due to climate change. One way 162 

of incorporating this factor is to define scenarios that reflect alternative possible realizations of the 163 

future. Thus, a given scenario is a particular realization of uncertain parameters for each period 164 

through the end of the planning horizon. Here, we consider different climate change scenarios that are 165 

then transformed into scenarios for timber growth and yield based on transformation models (i.e., 166 

process-based growth and yield models) as described in section 3.2 below. For this purpose, we use 167 

the DSS developed by Garcia-Gonzalo et al. (2014). 168 

 169 

A total of 32 possible climate scenarios were developed, each of which is a series of weather data over 170 

the planning horizon. Thus, the climate uncertainties are expressed as scenarios with specific values of 171 

the uncertain parameters for each period. This approach to expressing future uncertainty is well 172 

known. How these climate change scenarios are transformed into growth scenarios is explained in 173 

more detail in section 3.2.  174 

 175 

The 32 scenarios are based on information from the ENSEMBLES project 2009 176 

(www.ensembles.eu.org), which provides climate datasets constructed by the (Hadley Centre) using 177 

emission scenarios developed by the Intergovernmental Panel on Climate Change (Nakicenovic and 178 

Swart 2000). These datasets are considered the most appropriate for Portuguese conditions (Soares et 179 

al. 2012). According to a study conducted in Portugal (the SIAM project), climate change take the 180 

form of a shift in weather patterns by up to 150 km from the southwest of Portugal to the northeast.  181 
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 182 

To obtain more complete coverage for the climate scenarios of our study area, we combined them with 183 

scenarios for a series of points located within 100 km of the area’s perimeter. The resulting scenarios 184 

cover a wide range of possible climates for the area, including black swans that are represented by 185 

extreme scenarios. Thus, our set of scenarios range from very dry and hot to unusually cool with 186 

heavy rain. The weather indicators for each scenario are daily total solar radiation, monthly rainfall, 187 

mean air temperature, daytime atmospheric vapour pressure deficit (VPD) and frost days per month. 188 

An average climate scenario was also calculated (Table 1).  189 

 190 

Table 1.  191 

 192 

3.2.  Generating the growth scenarios 193 

To predict forest growth and timber yields per period for the 32 climate scenarios over the planning 194 

horizon (fifteen 1-year periods), we used the SADfLOR v ecc 1.0 decision support system (on which 195 

see Garcia-Gonzalo et al. 2014). This DSS supports eucalyptus forest management planning under 196 

climate change scenarios. It contains four modules, of which the projection module and the 197 

management model module are the two main components. The projection module simulates the 198 

growth of trees based on climate scenarios and consists of a set of routines and growth and yield 199 

functions to generate the outcomes of different management alternatives (i.e., cutting rules) for each 200 

land unit and climate scenario. It includes the process-based model Glob3PG, first developed by 201 

(Tomé et al. 2004) and recently updated by (Oliveira 2015). Glob3PG is a hybridization of the 202 

empirical model Globolus 3.0 (Tomé et al. 2006) and the process-based model 3PG calibrated for 203 

Portuguese conditions by (Fontes et al. 2006; Landsberg and Waring 1997). It takes advantage of 204 

3PG’s flexibility and ability to predict the effects of changes in growing conditions (e.g., climate 205 

change, fertilization) and GLOBULUS 3.0’s prediction capacity under current conditions (Barreiro, 206 

2011). 207 
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 208 

Glob3PG generates monthly predictions of the development of eucalyptus globulus stands based on 209 

values for the following input variables: i) stand data, which includes site information (latitude, 210 

maximum available soil water, available soil water, soil class and fertility rating) and biometric 211 

information (initial stem number, stand age, foliage biomass, stem biomass and roots); ii) the cutting 212 

rules (possible cutting ages that define in which period each stand can be harvested), and iii) the 213 

monthly weather data included in the climate scenarios (daily total solar radiation, monthly rainfall, 214 

mean air temperature, daytime atmospheric vapour pressure deficit (VPD) and frost days per month). 215 

 216 

More specifically, the Glob3PG growth and yield model uses these variable data with a series of 217 

equations developed from experimental observations (see Fontes et al. 2006; Landsberg and Waring 218 

1997) to compute the amount of photosynthesis produced and therefore the growth of the different 219 

components of the trees. The model also includes the water balance in the calculation and uses 220 

allometric ratios (which vary widely from specie to specie) to determine how much biomass is 221 

allocated to the different parts of the trees. Thus, these equations transform the climate scenarios (a 222 

sequence of weather data for the entire 15-year planning horizon) into growth scenarios that can then 223 

be used for decision-making under changing climatic conditions. For a given forest unit the projection 224 

module growth and yield simulator computes the monthly growth of the trees and the potential 225 

harvested timber. These values are then converted into annual values for use in the optimization 226 

model.  227 

 228 

Note finally that Glob3PG has recently been validated by comparing its predictions to measured 229 

permanent plots and by contrasting its performance with predictions of the empirical growth and yield 230 

model Globulus 3.0, which had already been validated against permanent inventory plots. These 231 

comparisons analyzed modelling efficiency, bias and estimate accuracy, concluding that the estimates 232 

produced by Glob3PG were indeed accurate (Barreiro, 2011).  233 
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 234 

3.3.  The stochastic optimization model  235 

 236 

The stochastic optimization model is a version of the deterministic model introduced in Section 2 that 237 

has been modified to incorporate uncertainty in tree growth due to climate change as expressed in the 238 

32 tree growth scenarios discussed above. The problem is thus one of multistage stochastic 239 

optimization in which the scenarios have been pre-defined. We assume that each scenario is 240 

equiprobable but we concentrate a larger number of scenarios around average values. 241 

 242 

The scenarios may be visualized as a tree diagram (Figure 1) in which each scenario takes the form of 243 

a path from the root node (node 1) through the leaves that represents the growth of the stand over the 244 

planning horizon. Each stage in the tree is a time period (in this case, one year) in which the stochastic 245 

parameters take a given value. The set of scenarios in each stage constitutes a scenario group in which 246 

growth up to that point has been realized identically.  247 

 248 

The example in Figure 1 has 4 periods and 5 scenarios. The decision on whether or not to harvest a 249 

stand is represented by the variables x
1
, x

2
, x

3
, x

4
 for the respective periods 1, 2, 3 and 4. Thus, x��,T is 250 

the decision variable x in growth scenario 1 for period t and stand h. 251 

 252 

The constraints in the stochastic model reflect the well-known non-anticipativity principle (Wets 253 

1975), which states that given two scenarios _` and _a, if their representations are identical up to a 254 

given period t in the planning horizon, then the decision variables in these scenarios must also be 255 

identical up to period t, (for more details, see Birge and Louveaux 2011 and Rockafellar and Wets 256 

1991). This ensures that the solution (i.e., the decisions) obtained up to a given period will not depend 257 

on information that is not yet available. In an extended formulation of this problem, these non-258 

anticipativity constraints are defined explicitly in the model; in an implicit formulation, they are 259 
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expressed by introducing shared decision variables at each node in the scenario tree (Alonso-Ayuso et 260 

al. 2011).  261 

 262 

Returning to the Figure 1 example, in period 1 all scenarios share identical decisions while up to 263 

period 2 scenarios 1 and 2 are equal. Scenarios 3, 4 and 5 form another scenario group. Thus, 264 

considering a single stand h, the non-anticipativity constraints are as follows: First stage, xbc,T =265 

⋯… =	xbc,e; second stage, xbc,T = xbc,f; third stage, xbc,$ = xbc,g = xbc,e; etc. 266 

 267 

Figure 1. 268 

 269 

We now formally present the stochastic model. Since various of its sets and parameters have already 270 

been defined above in the presentation of the deterministic model, only those not in that formulation 271 

are given here.  272 

 273 

Sets 274 

S = Scenarios {s}. 275 

Parameters 276 

	δ	 = 	Penalty		coeficient	used	to	penalize	the	violation	of	minimum	demand	constraints	  277 

Parameters that vary by scenario: 278 

�"���,l,& = 	discounted	net	revenue	per	ℎ
	�����	
�	������	�	�
��	�	if	stratum	ℎ	is 
harvested	in	period	�	�����		 ��
���			(Euro/�
) 

��,l = 	����� �����!	��	��
���	ℎ	��	ℎ
���	���	��	"�����	�	�����		 ��
���			(�$/�
) 
Pr(	) = 	���@
@����!	��	�ℎ�	�  ����� �	��		 ��
���			
Decision variables: 279 

xbc,nproportion	of	stratum	h	harvested	in	period	t	under	scenario	s   280 
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Accounting variables: 281 

?�,l = ���@��	ℎ
���	���	��	"�����	�	�����		 ��
���		 

=	�
 o	�,l = ���@��	���
��	���		
��	����	��	"�����	�	�����		 ��
���		 

p�q 	l = ���
�	��	 ������	���	�������		�����		 ��
���		 

 282 

Objective Function 283 

max	 F Pr	(	)
l	G	r

	p�ql − s F =	�
 o�,l
�	G	I

			∀			N	_																												(8) 

Constraints 284 

1. =�	 ������	���	�������				285 

F F �"���,&,l��C��,l = p�ql
�	G	H�	G	I

			∀			N	_																																												(9) 

1. ���@��	ℎ
���	���			286 

F 
��,l
�	G	Hv

��C��,l =	?�,l		∀	�	N	�, 		N	_																																																						(10) 

2. P
 ℎ		��
���	�		���
��!	ℎ
���	���	����	�ℎ�	"�
�����	ℎ������ 

F C��,l
�	G	I

= 1	∀ℎ	N	�, ∀		N	_																																																																											(11) 

3. P��� − ���?	��	ℎ
���	�	 ��	��
��� 
?(�ST),l − (1 + A)?�,l ≤ 	0 ∀		, � 			N	_, �	 ∈ �1,… , � − 1�						(12) 
?(�ST),l − (1 − A)?�,l ≥ 	0 ∀		, �				N	_, �	 ∈ �1, … , � − 1�													(13) 

4.B������	���
��	 ��	��
���	 

	?�,l + =	�
 o�,l ≥ =�	∀	�	N	�, 		N	_																																																								(14) 
5.p�� − 
��� �"
�����!	 ��	��
���	 

C��,l = C��,lw						∀	�	N	�−,∀	, 	 ≠ 	w, ∀		N	_, ∀ℎ, ∀																																			(15) 
 287 
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Bounds on variables C��,l 288 

0 ≤ C��,l ≤ 1	∀	�	N	�, 		N	_	, ℎ	N	�																																																														(16) 
 289 

Equation (8) defines the objective function, which maximizes the expected net present value of timber 290 

sales penalized by the penalty term (δ) representing the sum of the shortfalls in relation to the 291 

minimum demand constraint per period. Equation (9) calculates the total net present value of timber 292 

sales under each scenario. Equation (10) calculates the total harvested timber per period in each 293 

scenario. Equation (11) ensures that each stratum is completely harvested over the planning horizon 294 

for each scenario. Equations (12) and (13) set the maximum fluctuation of timber harvested between 295 

two consecutive periods under each scenario. Equation (14) defines the minimum demand at each 296 

period in each scenario. The slack variables for the minimum demand constraints can correspond to 297 

either of two situations: (i) the shortfall can be purchased in the market, in which case the penalty on 298 

the slack variables (δ) is the cost of the timber purchase in the market; or (ii) the constraints are hard. 299 

However, since we do not want the model simply to conclude that there is no feasible solution, we add 300 

heavily penalized slack variables (see equation 8) so that a feasible solution will always be delivered. 301 

Since the algorithm will always try to drive the penalized slack variables to 0, if the slack variable of a 302 

solution for a specific scenario is positive then the original problem for that scenario was unable to 303 

satisfy all the minimum demand requirements. Therefore, if the slack variable is positive we will 304 

define the solution as infeasible even though technically speaking it is feasible.  305 

 306 

The even flow requirements +- 15% (equations 12 and 13) could also have been considered as “soft” 307 

constraints, but this would complicate the analysis of the solution since there is a connection between 308 

the demand and the even-flow constraints. If both sets of constraints are soft then those not satisfied 309 

can be in either set. For example, consider a simple case of 3 periods with minimum demand levels in 310 

periods 1, 2 and 3 of 100, 70 and 100, respectively. To simplify, assume there is no growth. Total 311 

timber availability for the 3 periods is then 270. If we add the maximum flow variation constraints of 312 

+- 15%, there is no feasible solution. This is so because, since the period 1 harvest is 100, in period 2 313 
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it must be 85 (it cannot decrease more than 15%), leaving only 85 of the original 270 to satisfy the 314 

minimum demand of 100 in period 3. So either the minimum demand constraint or the maximum flow 315 

variation constraint can be satisfied, but not both. The program can choose which of the constraints to 316 

satisfy depending on which one has the higher penalty. For this reason we chose to model only one of 317 

the constraint sets as soft (i.e., the minimum demand). Formulated in this manner, the model will 318 

generate all possible solutions to the problem, which will fall into either of the following three classes: 319 

(i) the problem is solved and the slack variables are not positive so that the demand and even-flow 320 

constraints are met and the solution is feasible; (ii) the problem is solved and the slack variables are 321 

positive, in which case, although the solution is technically feasible, we define it as infeasible because 322 

it does not satisfy demand; or (iii) the problem is infeasible since even if we include slack variables in 323 

the minimum demand constraints, the even-flow constraints cannot be satisfied. Finally, equation (15) 324 

defines the non-anticipativity constraints while equation (16) ensures that the decision variables take a 325 

value between 0 and 1 (representing the percentage of area harvested).  326 

 327 

The stochastic model seeks to maximize the expected incomes across all scenarios. It is then 328 

formulated with one block of constraints per scenario plus the non-anticipativity constraints that link 329 

the blocks. In cases where the number of scenarios is very large, a direct solution using a commercial 330 

solver package may not be attainable. For such situations, decomposition approaches have been 331 

proposed (Alonso-Ayuso et al 2011 and Badilla et al 2014). In our case, however, since the problem 332 

under consideration is not too large (i.e., neither the number of harvest units nor the number of 333 

scenarios is particularly high), decomposition techniques were not needed. 334 

 335 

4. The Case Study 336 

The management problem for decision-making in the forest area covered by our case study was 337 

described during interviews with the area’s forest industry stakeholders conducted in the framework of 338 

the consultation process reported by Marques et al. (2013). The interviewees highlighted the 339 
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importance of taking climate change into account in their decisions and defined their objectives as the 340 

maximization of economic returns and regulation of harvest flows while satisfying demand. For 341 

purposes of this study, different minimum demand levels per period ranging from low to high were 342 

used. High demand was taken to mean levels similar to the forest’s maximum sustainable harvest 343 

volumes while the lower demand levels encompassed a range significantly below these maxima. 344 

 345 

The forest in the case study area is dominated by eucalyptus stands located in central Portugal. Mean 346 

annual rainfall in the area is 826 mm, of which less than 20% (130mm) occurs between May and 347 

September. The soils are of low fertility, with low organic carbon content (0.23-0.28%) and a water 348 

holding capacity averaging 395 mm and ranging between 242 and 737 mm. For the most part they are 349 

sandy and may be classified as Arenosols (FAO/UNESCO) (Madeira and Ribeiro 1995). 350 

Environmental and biometric data from the study area were stored in a relational database. 351 

 352 

The problem facing the planner in this case study is to decide which areas of the forest to cut in each 353 

time period. We assume the entire forest is suitable for harvesting. The 15-year planning horizon 354 

consists of 15 one-year periods over which the forest will be totally harvested. The forest contains 355 

1000 spatially separated stands, so to reduce the size of the planning model we aggregated them into 356 

24 strata having the same rotation cycle, tree age and soil quality. These criteria were used given that 357 

for stands with the same rotation/age, density did not vary significantly. Regeneration is carried out 358 

after harvesting each unit but has no influence on the results of the model. 359 

 360 

As noted earlier, the 32 climate scenarios defined for the study cover a wide range of possible climates 361 

from very dry and hot to cool and rainy, thus including some whose probability for the study area is 362 

extremely low. These scenarios may therefore be considered to cover the whole range of growth 363 

possibilities. Since the available information for calculating the exact probabilities of the individual 364 

scenarios is incomplete, we assume they are all equiprobable. However, expert knowledge does exist 365 
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indicating that extreme scenarios are less likely to occur than those concentrated around the average. 366 

To capture this pattern, we used a higher number of scenarios around the average expected climate. 367 

Thus, 50% of the scenarios represent average weather while 12.5% represent extreme weather and the 368 

remaining 37.5% are somewhere in between.   369 

 370 

The heart of our case study is a series of simulation/optimization experiments to compare and contrast 371 

the results of the deterministic and the stochastic models. The steps in these experiments are as follows 372 

(see Figure 2):  373 

 374 

1. Introduction of biometric data for the 24 forest strata.  375 

2. Introduction of the climate change scenario(s) for use in the simulations. 376 

3. Generation of harvesting prescriptions. In this study, trees can only be harvested if they are 377 

more than 9 years old at the time of cutting. Therefore, while harvesting of some strata can 378 

begin right from the 1
st
 period, in others it cannot start until anywhere from the 2nd to the 9th 379 

period (recall that the periods are one year long). 380 

4. Computation of timber yields associated with each harvesting prescription in all of the strata 381 

over the planning horizon (i.e., 15 years). 382 

5. Calculation of economic indicators such as net present value at average eucalyptus pulpwood 383 

prices and operating costs, using data provided by the Portuguese Forest Service. We used an 384 

average stumpage of 36 € per m
3 
and three different interest rates (3%, 6% and 9%).  385 

6. Generation of the management model. The coefficients for the linear programming models 386 

(stochastic and/or deterministic) are obtained from projections and economic indicators based 387 

on steps 4 and 5. 388 

7. Running an external application (CPLEX) to solve the models. 389 

 390 

Figure 2. 391 
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 392 

We begin with our deterministic model, using a single climate scenario with the average values for all 393 

the parameters of the 32 climate scenarios (precipitation, temperature, etc. Then, the stochastic model 394 

using the whole set of scenarios is solved. To compare the deterministic and stochastic approaches we 395 

input the harvest scheduling plan solution generated by the deterministic model (a single vector of 396 

decisions) into each of the 32 scenarios (as is done in Alonso-Ayuso et al. 2011 and in Badilla et al. 397 

2014) to determine how much timber would be obtained in each period for each scenario using that 398 

specific plan. Once we have that information, we check for each scenario whether the minimum 399 

demand and/or even-flow constraints are satisfied. This procedure provides what we denote the 400 

average-scenario-based solutions. These are then compared with the solutions of the stochastic 401 

approach for different minimum levels of timber demand per period up to 90,000 m
3 

(see Tables 2, 3 402 

and 4). More specifically, for each scenario total net present value of the average scenario approach 403 

(NPVd) (simulating what happens in a given scenario when applying the harvest scheduling plan 404 

obtained in the deterministic model), the total net present value of the stochastic approach (NPVs) and 405 

the percentage difference between them is computed as follows: (NPVd –NPVs) 100 / NPVd, are 406 

presented in Table 3 using a 3% discount rate and Table 4 using a 9% discount rate.  407 

 408 

 409 

5. Results  410 

Total timber production for the average climate scenario is 1.86 million m
3
. Using the stochastic 411 

model, production in the average scenario is similar to the average production of the 32 scenarios. The 412 

maximum timber yield difference among the various scenarios was recorded between Scenario 24  413 

(the “best” scenario) and Scenario 1 (the “worst”), the latter characterized by high average and 414 

maximum temperatures and the lowest precipitation. Their respective yields were 2.24 million m
3
 and 415 

1.36 million m
3
, the “worst” thus producing about 60% of the “best.”  416 

 417 
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As regards the NPV results, at the lowest interest rate (3%) and with no minimum timber demand, the 418 

deterministic (average scenario) approach in most cases produces worse results than the stochastic 419 

approach, although for scenarios where demand is satisfied the difference in total NPV is not great 420 

(Table 3). In 25 cases, the average scenario solution violates the even-flow harvest constraints (Table 421 

2). These violations occur in the upper bound constraints, which means that the average scenario 422 

solution overcuts in these periods. In the worst case, the average scenario cuts 38% more than the limit 423 

allowed by the even-flow constraint. 424 

 425 

At the same 3% interest rate but with a minimum demand per period of 60,000 m
3
, the deterministic 426 

approach falls short of the minimum demand level in at least one period in half of the scenarios (1 to 427 

16). By contrast, the stochastic solutions always satisfy the assumed minimum demand (Table 2). In 428 

the 11 scenarios where the minimum is satisfied by both approaches, the stochastic solution is better in 429 

8 of the cases, or 72%, though the differences are not very substantial.  430 

 431 

When a minimum demand level of 70,000 m
3
 is assumed, the deterministic approach does not satisfy 432 

it in 18 scenarios. In 7 of the other 10 cases, its solution is inferior to the stochastic approach result.  433 

At higher minimum demand levels, more of the solutions fail to reach them and are therefore 434 

infeasible, and the deterministic solutions are always worse than the stochastic ones. This is so 435 

because the deterministic approach, since it uses an average expected climate scenario, does not take 436 

into account the worst scenarios, that is, scenarios producing less timber than the average scenario. For 437 

some periods in the worst scenarios the timber available for cutting in the stands selected by the 438 

deterministic model’s harvest plan is considerably less than the expected timber for the average 439 

scenario, thus violating the timber demand constraint. In these scenarios the deterministic model tends 440 

to overcut in the initial periods of the planning horizon, reducing timber stock to a level insufficient to 441 

satisfy demand in the later periods. With very high timber demand levels (e.g., 90,000 m
3
) the 442 

deterministic approach fails to reach the minimum demand levels in almost all scenarios while the 443 
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stochastic approach satisfies them in 22 scenarios, though this implies that in 10 scenarios it, too, does 444 

not fulfil the minimum. The stochastic solutions are considerably better in the cases where both 445 

approaches satisfy demand and even-flow constraints (Tables 2, 3 and 4). 446 

 447 

Table 2. 448 

 449 

With the higher discount rates (6% and 9%), the deterministic approach results are worse than those 450 

obtained at 3%. The difference is greater for the relatively inferior scenarios (Table 4) given that at 451 

higher interest the model becomes greedier, that is, the deterministic approach harvests even more 452 

timber in the early periods, leaving low timber stocks for the later ones. In the worst scenarios, the 453 

decline in timber harvested in the later periods is considerable.  454 

 455 

Tables 3 and Table 4. 456 

 457 

 458 

6. Conclusions 459 

An approach was developed for incorporating into the forest harvesting decision process the variations 460 

in timber growth and yield attributable to the uncertainties of climate change. The basis for the 461 

approach is the transformation of a range of different possible climate scenarios into an equal number 462 

of tree growth scenarios using a process-based forest growth and yield model. These tree growth 463 

scenarios are integrated into a proposed stochastic optimization model that determines the amount of 464 

timber to be cut in each future period so as to maximize the net present value of the harvesting 465 

operations over the entire planning horizon. For comparison purposes we also specified a deterministic 466 

model to represent the traditional methodology of a decision maker who accommodates uncertainty 467 

only partially using a single average climate scenario.  468 
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 469 

A case study of a forest area in Portugal was conducted using various sets of relevant data in order to 470 

contrast the results of the two models, and in particular to determine the direction and magnitude of 471 

the impact of including climate change uncertainty using the proposed methodology on the net present 472 

value of harvesting the study area. A total of 32 scenarios based on these data were constructed for use 473 

in the stochastic model while the deterministic model used the average values of these scenarios. The 474 

planning horizon for the case study consisted of 15 annual periods, and solutions were generated using 475 

discount rates of 3%, 6% and 9%. The stochastic model was subject to non-anticipativity constraints 476 

and a range of different minimum timber demand levels.  477 

 478 

The results of the case study indicated that the proposed stochastic approach performed better than the 479 

traditional deterministic approach. With the lowest discount rate (3%), the deterministic model’s net 480 

present values were only slightly below those of the stochastic model, but the difference widened at 481 

higher minimum demand levels where the stochastic model’s performance was clearly superior. At the 482 

highest discount rate (9%), meanwhile, the stochastic model always generated considerably better 483 

results. Furthermore, as minimum demand rises the deterministic model displayed growing difficulty 484 

in satisfying it, with a significant proportion of its solutions falling short of the demand constraint. 485 

This suggests that while at relatively low timber demand levels the benefits of the rather complex 486 

stochastic model are relatively minor, as demand levels grow its advantages become ever more 487 

evident.  488 

 489 

The proposed methodology thus demonstrates the value of explicitly introducing climate change 490 

uncertainty in forestry harvest management using a stochastic approach. The superiority of its results 491 

in terms of objective values and feasibility of the solutions is especially apparent at high timber 492 

demand levels where the feasible region is smaller and the forest is less flexible. The stochastic model 493 

developed for this study should thus provide valuable support for forest managers in making more 494 
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robust harvesting decisions and better adapt forest management plans to climate dynamics. A possible 495 

extension of this work would be to consider uncertainty in future timber markets expressed in terms of 496 

future prices and demand levels.  497 

 498 
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Tables. 640 

 641 

Table 1. Summary of the meteorological data averages over the 15-year planning horizon for the 32 642 

scenarios.  643 

Scenario 

 

Taverage 

(
0
 C) 

Tmax  

(
0
 C) 

Tmin  

(
0
 C) 

Annual Rain 

(mm) 

Annual Rad  

(MJ m
2
) 

RainDays 

(nr Days) 

FrostDays 

(nr Days) 

1 18.2 35.5 5.6 277.6 191.8 48.9 6.5 

2 18.2 32.0 7.6 310.3 200.2 50.2 6.1 

3 18.0 36.6 5.1 386.9 185.8 61.6 8.3 

4 17.8 35.4 5.5 409.0 185.4 61.9 6.5 

5 17.0 36.6 4.0 515.0 180.0 71.7 9.3 

6 17.2 36.4 4.7 524.8 179.8 71.3 6.8 

7 16.9 34.7 4.9 610.7 174.3 81.7 6.9 

8 17.0 34.4 5.2 621.1 176.3 78.9 5.3 

9 16.3 34.7 4.1 689.2 171.6 87.7 10.8 

10 15.0 33.4 3.1 729.9 168.7 96.9 21.2 

11 15.9 35.4 3.6 700.2 174.5 86.8 14.5 

12 15.0 34.8 2.6 708.6 173.6 90.3 23.3 

13 16.0 34.7 3.9 756.7 176.2 91.0 14.1 

14 15.8 33.1 4.4 762.0 174.0 91.6 12.8 

15 16.0 32.0 5.3 766.2 172.0 90.5 9.9 

16 15.7 33.9 3.9 811.6 174.6 90.6 13.5 

17 16.8 33.2 5.3 718.9 174.5 82.0 2.9 

18 15.9 34.2 3.6 757.8 174.4 86.5 14.1 

19 16.1 34.8 4.2 869.4 171.5 94.7 6.0 

20 14.9 33.6 3.2 890.9 170.0 98.7 16.7 

21 15.7 34.2 4.1 877.2 169.8 98.1 9.7 

22 15.6 34.8 3.5 913.7 171.1 98.3 11.1 
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23 14.9 32.4 3.8 933.3 167.8 108.3 17.0 

24 15.1 32.6 4.1 935.2 167.6 108.3 13.0 

25 15.7 34.9 3.8 950.1 170.7 99.4 11.3 

26 15.1 34.2 3.2 977.6 171.5 97.1 13.3 

27 15.3 34.3 3.6 1004.6 169.3 103.9 12.0 

28 15.2 31.9 4.4 1100.0 161.9 114.3 10.8 

29 15.7 31.0 5.4 1111.3 161.4 110.9 4.6 

30 15.6 31.8 5.1 1183.3 161.2 113.4 5.3 

31 15.0 33.5 3.7 1269.2 165.6 112.7 10.7 

32 15.3 33.7 3.9 1224.5 165.2 109.5 9.5 

Average 16.1 34.0 4.3 790.5 173.5 90.2 10.7 

Taverage is the average annual temperature, Tmax is the average annual maximum temperature, Tmin is the 644 

average annual minimum temperature, Annual Rad is the average annual incoming radiation, RainDays is the 645 

average annual number of days with precipitation, FrostDays is the average annual number of days with frost.  646 

  647 
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Table 2. Solutions obtained with the deterministic approach for 32 scenarios, various minimum demand levels 648 

(0 to 90,000 m
3
) and two interest rates (3% and 9%). The Inf Demand columns indicate the number of scenarios 649 

where the deterministic solution (i.e., using the average obtained for an average scenario) falls short of the 650 
minimum demand level while the Inf. Even-flow columns indicate, for cases satisfying minimum demand, the 651 
number of scenarios where the even-flow constraints are violated. 652 

  3% 9% 

Demand Inf Demand Inf. Even-flow Inf Demand Inf. Even-flow 

0 m
3
  0 25 0 28 

60000 m
3
  16 5 16 16 

70000 m
3
  18 4 20 5 

80000 m
3
  22 3 26 5 

90000 m
3
  26 3 26 4 

 653 
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Table 3. Comparison of net present value (NPV) obtained under stochastic approach (NPVs) with NPV obtained under deterministic-average scenario approach 654 

(NPVd) in each scenario, for different levels of minimum timber demand when maximizing expected NPV using a 3% interest rate.  655 
  Minimum demand per period 

 0 m
3 
 60,000 m

3 
 70,000 m

3 
 80,000 m

3 
 90,000 m

3 
 

Scenario NPVs NPVd Gap NPVs NPVd Gap NPVs NPVd Gap NPVs NPVd Gap NPVs NPVd Gap 

1 36659654 36477956* -0.50 35687429 - - 35099590 - - 34257132 - - - - - 

2 41555003 41877631* 0.78 40015766 - - 38939524 - - 37270232 - - - - - 

3 40254726 39801216* -1.13 38954245 - - 38090234 - - 36913916 - - - - - 

4 41161227 40690648* -1.14 39760446 - - 38806278 - - 37515136 - - - - - 

5 42961770 42395503 -1.32 41397227 - - 40317811 - - 38912775 - - - - - 

6 43521507 42945723 -1.32 41897978 - - 40770292 - - 39301255 - - - - - 

7 47921935 47333611* -1.23 45899543 - - 44624997 - - 42963869 - - - - - 

8 48217379 47628671* -1.22 46166079 - - 44869791 - - 43175084 - - - - - 

9 48730788 47991545* -1.52 46718926 - - 45519427 - - 43953091 - - 42414157.28 - - 

10 48418687 47678689* -1.53 46429313 - - 45252472 - - 43713198 - - 42216116.62 - - 

11 44270999 43619958 -1.47 42702527 - - 41646183 - - 40237262 - - - - - 

12 43596000 42953541 -1.47 42096096 - - 41095080 - - 39771114 - - - - - 

13 52775794 52041054* -1.39 50799144 - - 49802645 - - 48609813 - - 47602925.24 - - 

14 53935409 53198604* -1.37 51859984 - - 50810968 - - 49545480 - - 48453212.94 - - 

15 56000062 55238137 -1.36 53680364 - - 52569839 - - 51201414 - - 50048480.74 - - 

16 53762273 53001524* -1.42 51653349 - - 50636779 - - 49406456 - - 48398043.89 - - 

17 49987803 49097151* -1.78 48235936 48055441 -0.37 47335131 47135090* -0.42 46208863 - - 45137263.15 - - 

18 46792186 46020085* -1.65 45367646 45132052 -0.52 44630949 44375107 -0.57 43735451 - - 42942229.05 - - 

19 51826008 50975409* -1.64 50089318 49843469 -0.49 49129268 48823021 -0.62 47912417 47499749 -0.86 46833474.22 45810498 -2.18 

20 50587451 49779668* -1.60 48957927 48711046 -0.50 48059488 47754182 -0.64 46925402 46524207 -0.85 45947049.79 44991674 -2.08 

21 50514482 49652584* -1.71 48706800 48570726 -0.28 47848976 47588968 -0.54 46619303 46303585* -0.68 45496976.7 - - 

22 50017684 49152229* -1.73 48246743 48090481 -0.32 47409375 47132460 -0.58 46212581 45882184 -0.71 45131466.84 - - 

23 58907406 57717498* -2.02 56441971 56256474* -0.33 55405680 54942886* -0.84 54119230 53335356* -1.45 53069012.14 51434482* -3.08 

24 59195813 57987664* -2.04 56697809 56508511* -0.33 55649318 55178416* -0.85 54347244 53546743* -1.47 53280259.35 51605404* -3.14 

25 48302346 47526600 -1.61 46557979 46483656 -0.16 45595464 - - 44303232 - - 43030436.55 - - 

26 48248913 47475016* -1.60 46519122 46440946 -0.17 45563880 - - 44283332 - - 43020710.28 - - 

27 49155092 48362553 -1.61 47148506 47285552 0.29 46179294 46279053 0.22 44931254 - - 43729806.49 - - 

28 52434271 51627296* -1.54 50036433 50380867* 0.69 48903377 49196820* 0.60 47403386 - - 45911920.61 - - 

29 57921884 56949096* -1.68 55019351 55463262* 0.81 53861545 54062813 0.37 52217713 52183088 -0.07 50740012.03 49791309* -1.87 

30 57432733 56443381* -1.72 54579972 54980020* 0.73 53440572 53604325 0.31 51826504 51763354 -0.12 50381519.58 49439804 -1.87 

31 51751619 50811996* -1.82 49488495 49618699 0.26 48562644 48522832 -0.08 47165482 47063068 -0.22 45841852.8 - - 

32 51974831 51025434* -1.83 49686919 49820814 0.27 48750837 48712181 -0.08 47336970 47234042 -0.22 45992578.02 - - 

AVGSC 36659654 - - 35687429  -. 35099590  - 34257132  - 30461665.49 -  

- Indicates that the demand constraints slack variables are positive, meaning that the scenario would be infeasible since a very high penalty term (s)is used. *Indicates that minimum demand 656 
constraints are satisfied but even-flow constraints (α = 15%) are not.  657 

NPVs = total net present value of the stochastic approach for each scenario; NPVd = total net present value of the average scenario approach for each scenario; GAP = the percentage difference 658 
between the results of the two approaches, i.e., (NPVd – NPVs)x100/NPVd. AVGSC =average scenario. 659 
 660 
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Table 4. Comparison of net present value (NPV) obtained under stochastic approach (NPVs) with NPV obtained under deterministic-average scenario approach 661 

(NPVd) in each scenario, for different levels of minimum timber demand when maximizing expected NPV using a 9% interest rate. 662 
  Minimum demand per period 

 0 m
3 
 60,000 m

3 
 70,000 m

3 
 80,000 m

3 
 90,000 m

3 
 

Scenario NPVs NPVd Gap NPVs NPVd Gap NPVs NPVd Gap NPVs NPVd Gap NPVs NPVd Gap 

1 23405037 22840019* -2.41 23471195 - -1.67 23385386 - -1.10 23141059 -  - -  

2 24536549 24161271* -1.53 24590717 - -1.72 24608596 - -1.74 24515687 -  - -  

3 24685992 24281675* -1.64 24703692 - -1.12 24655999 - -0.87 24511314 -  - -  

4 24852138 24551413* -1.21 24877595 - -0.90 24850371 - -0.77 24730660 -  - -  

5 25539860 25457136 -0.32 25514761 - 0.01 25506358 - -0.06 25436245 -  - -  

6 25662802 25625977 -0.14 25638825 - 0.07 25630199 - -0.02 25564164 -  - -  

7 27705256 27846613* 0.51 27652240 - 0.50 27619954 - 0.30 27454908 -  - -  

8 27783679 27945735* 0.58 27731111 - 0.51 27696394 - 0.31 27527669 -  - -  

9 28226209 28308094* 0.29 28212920 - 0.16 28116581 - 0.20 27972948 -  27698277 -  

10 28141989 28207020* 0.23 28128183 - 0.18 28040857 - 0.21 27900945 -  27630849 -  

11 26049466 26019786 -0.11 26043542 - -0.02 26023788 - -0.06 25976074 -  - -  

12 25909509 25828683 -0.31 25903468 - -0.06 25886924 - -0.09 25829460 -  - -  

13 30860627 30897217* 0.12 30836126 - 0.24 30815016 - -0.16 30677595 -  30488163 -  

14 31150432 31245488* 0.31 31124576 - 0.25 31054605 - -0.03 30913759 -  30726288 -  

15 31942770 32111072* 0.53 31913204 - 0.26 31765525 - 0.14 31612370 -  31362890 -  

16 31355362 31427247* 0.23 31328297 - 0.32 31277080 - -0.04 31120581 -  30910265 -  

17 29088751 29016567* -0.25 29086462 29008930* -0.27 29048541 28946838 -0.35 29035581 -  28952623 -  

18 28268816 28040808* -0.81 28384198 28193623* -0.67 28381315 28161164 -0.78 28351680 -  28195537 -  

19 30195588 30193731* -0.01 30161616 30171935* 0.03 30096359 30082383 -0.05 29977622 -  29860882 29831751 -0.10 

20 29894783 29812510* -0.28 29898117 29862441* -0.12 29841060 29783085 -0.19 29709671 -  29581197 29560168 -0.07 

21 29406475 29381770* -0.08 29381615 29365972* -0.05 29326979 29291208 -0.12 29235648 -  29132282 -  

22 29300733 29242921* -0.20 29288464 29251235* -0.13 29234406 29181115 -0.18 29137070 -  29024238 -  

23 33951778 34162675* 0.62 33986304 34163782* 0.52 33905126 33976941* 0.21 33762128 33751492* -0.03 33518454 33361784* -0.47 

24 34023216 34233256* 0.62 34043643 34218248* 0.51 33959081 34029232* 0.21 33809048 33798331* -0.03 33563781 33409596* -0.46 

25 28159739 28184554* 0.09 28155821 28172330* 0.06 28120237 - -0.05 28037298 -  27919083 -  

26 28177113 28205075* 0.10 28176610 28197470* 0.07 28142440 - -0.04 28056776 -  27932854 -  

27 28538777 28577294* 0.13 28514255 28547343* 0.12 28413926 - 0.20 28329855 -  28231058 -  

28 29773498 29660576* -0.38 29712802 29461717* -0.85 29608317 29350399 -0.87 29473649 29157225 -1.07 29218815 -  

29 32577397 32577917* 0.00 32475306 32347247* -0.39 32276792 32166900* -0.34 31997371 31859857* -0.43 31606567 31533882* -0.23 

30 32388540 32437400* 0.15 32307528 32236012* -0.22 32117615 32060360* -0.18 31841176 31764215* -0.24 31477730 31434619* -0.14 

31 29785302 29826636* 0.14 29754178 29754658* 0.00 29641852 - 0.00 29494481 -  29291376 -  

32 29856137 29886689* 0.10 29815432 29804054* -0.04 29700001 29689867* -0.03 29547703 29515320* -0.11 29340669 -  

AVGSC 29454410 - - 29411921  - 29318377  - 29191757  - 29017524.93  - 

- Indicates that the demand constraints slack variables are positive, meaning that the scenario would be infeasible since a very high penalty term (s)is used. *Indicates that minimum demand 663 
constraints are satisfied but even-flow constraints (α = 15%) are not.  664 

NPVs = total net present value of the stochastic approach for each scenario; NPVd = total net present value of the average scenario approach for each scenario; GAP = the percentage difference 665 
between the results of the two approaches, i.e., (NPVd – NPVs)x100/NPVd. AVGSC =average scenario. 666 
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Figure captions 667 

 668 

Figure 1a is an example of a scenario tree covering 4 stages (time periods). In all, 12 nodes 669 

are represented. Figure 1b presents the 5 growth scenarios in disaggregated form; the non-670 

anticipativity constraints are represented by the nodes within rectangles. In period 1, all 671 

scenarios share identical decisions (to harvest or not harvest the stand) since no knowledge 672 

of future uncertainty has yet been acquired. By contrast, in period 2 (t = 2), node 2 673 

represents scenarios 1, 2 while node 3 shares scenarios 3, 4 and 5.  674 

 675 

Figure 2. Steps followed and flow of information for solving the case study management 676 

problem.  677 

 678 

  679 
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 680 

Figure 1a is an example of a scenario tree covering 4 stages (time periods). In all, 12 nodes 681 

are represented. Figure 1b presents the 5 growth scenarios in disaggregated form; the non-682 

anticipativity constraints are represented by the nodes within rectangles. In period 1, all 683 

scenarios share identical decisions (to harvest or not harvest the stand) since no knowledge 684 

of future uncertainty has yet been acquired. By contrast, in period 2 (t = 2), node 2 685 

represents scenarios 1, 2 while node 3 shares scenarios 3, 4 and 5.  686 

  687 
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 688 

 689 

Figure 2. Steps followed and flow of information to address the case study management 690 

problem.  691 

 692 
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Highlights 

 

• We present a stochastic model to account for climate change in forest planning 

• The climate change scenarios are transformed into tree growth scenarios  

• The stochastic model is solved subject to non-anticipativity constraints 

• The stochastic approach performs considerably better than the deterministic 

• The deterministic approach provides infeasible solutions in most of the scenarios 
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