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The main objective of this work [previously appeared in literature, the thermodynamical field theory (TFT)]
is to determine the nonlinear closure equations (i.e., the flux-force relations) valid for thermodynamic systems
out of Onsager’s region. The TFT rests upon the concept of equivalence between thermodynamic systems. More
precisely, the equivalent character of two alternative descriptions of a thermodynamic system is ensured if,
and only if, the two sets of thermodynamic forces are linked with each other by the so-called thermodynamic
coordinate transformations (TCT). In this work, we describe the Lie group and the group representations
associated to the TCT. The TCT guarantee the validity of the so-called thermodynamic covariance principle
(TCP): The nonlinear closure equations, i.e., the flux-force relations, everywhere and in particular outside the
Onsager region, must be covariant under TCT. In other terms, the fundamental laws of thermodynamics should be
manifestly covariant under transformations between the admissible thermodynamic forces, i.e., under TCT. The
TCP ensures the validity of the fundamental theorems for systems far from equilibrium. The symmetry properties
of a physical system are intimately related to the conservation laws characterizing that system. Noether’s theorem
gives a precise description of this relation. We derive the conserved (thermodynamic) currents and, as an example
of calculation, a system out of equilibrium (tokamak plasmas) where the validity of TCP imposed at the level of
the kinetic equations is also analyzed.
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I. INTRODUCTION

In a previous work, a macroscopic theory for closure
relations for thermodynamic systems out of Onsager’s re-
gion has been introduced [1,2]. The most important closure
equations are the so-called transport equations, relating the
thermodynamic forces with the conjugate dissipative fluxes
that produce them. The thermodynamic forces are related to the
spatial inhomogeneity and (in general) they are expressed as
gradients of the thermodynamic quantities. The study of these
relations is the object of nonequilibrium thermodynamics.
Indicating with Xμ and Jμ the thermodynamic forces and
fluxes, respectively, the flux-force relations read as

Jν = τμν(X)Xμ, (1)

where τμν(X) are the transport coefficients, and it is clearly put
in evidence that the transport coefficients may depend on the
thermodynamic forces. We suppose that all quantities involved
in Eq. (1) are written in dimensionless form. In this equation,
as well as in the sequel, the Einstein summation convention
on the repeated indices is understood. Matrix τμν(X) can
be decomposed into a sum of two matrices, one symmetric
and the other skew symmetric, which we denote with gμν(X)
and fμν(X), respectively. The second law of thermodynamics
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requires that gμν is a positive-definite matrix. Note that, in
general, the dimensionless entropy production, denoted by σ

with σ = τμν(X)XμXν = gμν(X)XμXν , may not be a bilinear
expression of the thermodynamic forces (since the transport
coefficients may depend on the thermodynamic forces). For
conciseness, in the sequel we drop the symbol X in gμν as well
as in the skew-symmetric piece of the transport coefficients fμν

being implicitly understood that these matrices may depend on
the thermodynamic forces. The aim of the theory in Ref. [1]
is to determine the nonlinear flux-force relations, which are
valid for thermodynamic systems out of the linear region of
the transport processes (commonly referred to as the Onsager
region). This task has been accomplished by means of three
hypotheses: two constraints (A) and (B), and one assumption
(C). In order to establish the vocabulary and notations that
shall be used in the sequel of this work, we briefly recall these
hypotheses [1].

(A) The thermodynamic principles and the theorems
demonstrated for systems far from equilibrium must be
satisfied.

(B) The validity of the thermodynamic covariance principle
(TCP) must be ensured. The TCP establishes that the closure
relations should be covariant under the thermodynamic coor-
dinate transformations (TCT). The TCT are the most general
thermodynamic force transformations which leave unaltered
both the entropy production σ and the Glansdorff-Prigogine
dissipative quantity P [for the definition of P , see the
forthcoming Eq. (2)]. As we shall see soon, the invariance
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FIG. 1. Thermodynamic space. The space is spanned by the
thermodynamic forces. The metric tensor is identified with the
symmetric piece gμν of the transport coefficients, and the expression
of the affine connection �̃κ

μν is determined by imposing the validity
of the universal criterion of evolution. Note that the square of the
length element, ds2 = ds · ds, is always a non-negative quantity for
the second law of thermodynamics.

under TCT is intimately related to the concept of equivalence
between thermodynamic systems.

In addition to (A) and (B), the theory rests upon the
following assumption:

(C) Close to the steady states, the nonlinear closure
equations can be derived by the principle of least action.

This theory, based on (A), (B), and (C), is referred to as the
thermodynamical field theory (TFT).

The physical justifications leading to the introduction
of the above-mentioned hypotheses can be found in the
Appendixes.1 Here, we shall limit ourselves to provide only a
brief description of the mathematical expressions stemmed by
(A), (B), and (C) that we shall use in the forthcoming sections.

Constraint (A) allows introducing a thermodynamic space
equipped by a metric tensor and the appropriate affine
connection. The coordinates of this thermodynamic space
are the thermodynamic forces, the metric tensor is identified
with the symmetric piece of the transport coefficients (which,
for the second law of thermodynamics, is a positive-definite
matrix), and the parallel transport of a vector is made by the
affine connection constructed in such a way that the one of
the most general thermodynamic theorems valid for systems
out of equilibrium, i.e., the universal criterion of evolution
(UCE) [4,5], is always automatically satisfied (see Fig. 1 and
Ref. [1]).

1These hypotheses are also more extensively explained in [3].

For easy reference, we enunciate the universal criterion of
evolution (UCE) [4,5]: Without using either the Onsager recip-
rocal relations or the assumption that the phenomenological
coefficients (or linear phenomenological laws) are constant, for
time-independent boundary conditions, and for conservative
systems,2 when the system relaxes towards a stable steady
state, the dissipative quantity P , defined as

P ≡
∫

�

Jμ

∂X

∂t

μ

dv � 0, (2)

is always a negative quantity. The equality is saturated at the
steady state.

In Eq. (2), � is the spatial volume occupied by the system
and dv denotes the spatial volume element, respectively.
Hence, quantity P ≡ ∫

�
Jμ

∂Xμ

∂t
dv is a sort of intrinsic quantity

of a dissipative system, and it may be referred to as the
Glansdorff-Prigogine dissipative quantity.3 As mentioned, the
UCE determines the expression of the affine connection. When
the transport coefficients are purely symmetric (i.e., when
fμν = 0), it is possible to show that the affine connection
reads as [1]

�̃
μ
αβ = { μ

αβ

} + 1

2σ
XμXκgαβ,κ

− XκXλ

2(n + 1)σ

(
δμ
α gβκ,λ + δ

μ
β gακ,λ

)
(3)

with { μ
αβ

} = 1

2
gμλ(gλα,β + gλβ,α − gαβ,λ) (4)

denoting the Levi-Civita affine connection. From Eq. (3) we
get

�
μ
αβ ≡ �̃

μ
αβ − { μ

αβ

} = 1

2σ
XμXκgαβ,κ

− XκXλ

2(n + 1)σ

(
δμ
α gβκ,λ + δ

μ
β gακ,λ

)
. (5)

Equation (5) clearly shows that the thermodynamic affine
connection differs, widely, from the Levi-Civita connection.4

These two affine connections tend to identify with each other
only for very large values of the entropy production (σ � 1).5

2We recall that conservative systems satisfy the equation ∂tFμi = 0,
with Fμi denoting the ith component of the external force per unit
mass Fμ [5].

3Notice that Eq. (2) generalizes the so-called minimum entropy
production theorem (MEPT), proved by Prigogine in 1947 [6,7],
which applies only in the Onsager region. The MEPT reads as
follows: When a thermodynamic system near equilibrium relaxes
towards a steady state, for time independent boundary conditions and
for conservative systems, the following inequality

∫
�

∂tσ dv � 0 is
satisfied during the evolution. Saturation is reached at the steady state.

4Note that �
μ

αβ is a mixed third-order tensor under TCT.
5As shown in Ref. [1], the geometries of the general relativity (GR)

and the thermodynamical field theory (TFT) are widely different.
Indeed, in GR the geometry is pseudo-Riemannian, the field is
symmetric, and the affine connection is given by the Levi-Civita
expression. In addition, the GR rests upon the validity of the general
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It is worth noting that the angles θμν ≡ arctan(Jμ/Xν)
and αμν ≡ arctan(δJμ/δXν) provide information on the metric
tensor and the affine connection of the thermodynamic space,
respectively. These angles may be measured experimentally.

Now, let us deal with constraint (B). This constraint refers
to the symmetry underneath the thermodynamic covariance
principle (TCP) and the related concept of equivalent ther-
modynamic systems. This is the starting point of this work. In
Refs [1,8], it is shown that the invariance of the entropy produc-
tion may not be sufficient to ensure the equivalent character of
the alternative descriptions (Jμ,Xμ) and (J ′

μ,X
′μ). Additional

conditions may be necessary (e.g. [4,5,8]). The equivalent
character of two alternative descriptions in terms of the ther-
modynamic forces requires that also the Glansdorff-Prigogine
dissipative quantity remains invariant under transformation
of the thermodynamic forces {Xμ} → {X′μ}.6 This additional
restriction must be kept in mind to avoid misinterpretations.
Hence, the admissible thermodynamic forces should satisfy
the following two conditions:

(1) The entropy production σ should be invariant under
transformation of the thermodynamic forces {Xμ} → {X′μ}.

(2) The Glansdorff-Prigogine dissipative quantity P

should also remain invariant under the force transformations
{Xμ} → {X′μ}.

Condition 2 stems from the fact that
(a) The steady state should be transformed into a steady

state.
(b) The stable steady state should be transformed into a

stable state state, with the same degree of stability.
In mathematical terms, this implies that [1]7

σ = JμXμ = J ′
μX

′μ = σ ′,
(6)

P = P ′ =⇒ JμδXμ = J ′
μδX

′μ (t = t ′).

Equations (6) are satisfied iff the transformed thermodynamic
forces and conjugate fluxes read as [1]

X
′μ = ∂X

′μ

∂Xν
Xν, J ′

μ = ∂Xν

∂X
′μ Jν. (7)

By direct inspection, it is easy to verify that the general
solutions of Eq. (7) are [1]

X
′μ = X1Fμ

(
X2

X1
,
X3

X2
, . . . ,

Xn

Xn−1

)
(t = t ′), (8)

covariance principle in the space-time and on the validity of the
equivalence principle. In the GR, the universal criterion of evolution
is not satisfied. In the TFT, the geometry is non-Riemannian, the
field is asymmetric, and the thermodynamic affine connection is
given by �

μ

αβ = �̃
μ

αβ
. The TFT rests upon the validity of the (special)

covariance principle TCP and on the validity of the universal criterion
of evolution. In the TFT, the equivalence principle is not satisfied. For
more details, see the annex of [1].

6An extensive explanation on this point can be found in the
Appendixes.

7Notice that we have to use also the invariance t = t ′. This will
avoid certain paradoxes to which Verschaffelt [9] has called attention
(cf. also [10]).

where Fμ are arbitrary functions of variables Xj/Xj−1 with
j = 2, . . . ,n. Transformations (8) may be referred to as the
thermodynamic coordinate transformations (TCT). Hence, the
TCT may be highly nonlinear coordinate transformations but,
in the Onsager region, we may or we must require that they
have to reduce to

X
′μ = cμ

ν Xν (t = t ′), (9)

where cμ
ν are constant coefficients (i.e., independent of the

thermodynamic forces).
As we shall see more in detail in the next section, the

TCT are not, simply, transformations written in a projective
form, but they form a nontrivial bundle whose base is
the projective space and whose fiber is the space of maps
from the projective space to the nonvanishing real numbers.
The thermodynamic equivalence principle leads, naturally,
to the following (TCP): the nonlinear closure equations, i.e.,
the flux-force relations, must be covariant under TCT [8]. The
essence of the TCP is the following. The equivalent character
between two representations is warranted if, and only if, the
fundamental thermodynamic equations are covariant under
under transformations of the (admissible) thermodynamic
forces (the TCT). This is the correct mathematical formalism to
ensure the equivalence between two different representations.

Finally, let us discuss assumption (C). According to this
assumption, the (nonlinear) closure equations can be derived
by the principle of least action. More specifically, assumption
(C) states the following [1]: There exists an action which is
stationary with respect to arbitrary variation of the transport
coefficient and the affine connection. The physical justification
of this assumption can be found in the Appendix A. In the
framework of the TFT introduced by one of us [1,2], one can
find the expression of the thermodynamic action [1]:

I =
∫ [

R − (
�λ

αβ − �̃λ
αβ

)
S

αβ

λ

]√
g dnX (10)

with dnX denoting an infinitesimal volume element in the
space of the thermodynamic forces and g the determinant of
gμν (see [1]).8 In addition, R is the curvature of the space. In
the Appendixes, it is indicated how (10) has been derived.

As shown in [1], in general, action (10) is quite complex.
However, in the case of magnetically confined plasmas (which
is the case analyzed in this work) the skew-symmetric pieces of
the transport coefficients fμν are zero, and the action simplifies
notably because the terms appearing in Eq. (10) reduce to [1]

R = Rμνg
μν,

Rμν = �κ
νκ,μ − �κ

νμ,κ + �κ
νλ�

λ
κμ − �κ

νμ�λ
κλ,

S
μν
λ = �ν

λαgνα + �
μ
λαgμα − 1

2
�

μ
αβgαβδν

λ − 1

2
�ν

αβgαβδ
μ
λ ,

�
μ
αβ = 1

2σ
XκXμgαβ,κ − XκXλ

2(n + 1)σ

(
δμ
α gβκ,λ + δ

μ
β gακ,λ

)
(11)

8Hence, the Lagrangian depends only on the thermodynamic forces.
Of course, the thermodynamic forces depend on space and time.

042103-3



GIORGIO SONNINO et al. PHYSICAL REVIEW E 94, 042103 (2016)

with gμν denoting the inverse matrix of gμν and the coma (,) in
the subscripts stands for the partial derivative with respect to
the thermodynamic forces. The most general expressions for
S

μν
λ ,�

μ
αβ , and �̃

μ
αβ (and, then, for �

μ
αβ), valid when fμν �= 0,

can be found in [1]. It can be shown that action (10) is stationary
when the thermodynamic affine connection �

μ
αβ is equal to �̃

μ
αβ ,

with �̃
μ
αβ given by Eq. (3) (only when fμν = 0). An explanation

about the physical meaning of the terms appearing in the
thermodynamic action (10) is reported in the Appendixes. By
variational methods we get the differential equations for gμν

and fμν . These equations can be found in Ref. [1]. In the
Appendixes, we report the approximated differential equation
for gμν obtained in the so-called weak-field approximation
(i.e., when the metric tensor is close to Onsager’s matrix) and
for σ � 1 [see Eqs. (A4) and (A5)].

The aim of this paper is to describe and to study the group
of symmetry stemmed by the hypotheses (A), (B), and (C),
and in particular by the TCP. This work is constituted by two
parts. In the first two sections of the paper we derive theoretical
results on the group of symmetry associated to the invariance
of the (thermodynamic) Lagrangian under TCT. The last two
sections are, instead, devoted to the application of the obtained
results to concrete (and quite complex) cases such as transport
processes in magnetically confined plasmas. More specifically,
we have the following.

(i) Theory. In Sec. II, we show that the TCT group (indicated
by Gn) is a fiber bundle where the bundle is Sn−1

+ (the
top half of the unit sphere embedded in Rn) and the fiber
is the space of maps Sn−1

+ → R× (with R× denoting the
nonvanishing real numbers). The nature of this bundle is made
clear by the algebraic theorem demonstrated in Sec. III. In
Sec. III, we demonstrate the following theorem: The TCT
group may be split in a semidirect product of two subgroups
where the first one is a normal, Abelian, subgroup. In the
subsections (of Sec. III) we shall see that the TCT group is a
noncompact, infinite Lie group. However, there exist nonlinear
TCT admitting Lie subalgebras (i.e., subspaces whose the Lie
brackets remain in the subspace) associated to finite, compact
TCT subgroups. As known to the N generators of a Lie group,
there are N conserved Noether’s currents.9This motivates the
presence of the subsequent sections.

(ii) Applications. Section IV provides an example of
application of the TCT group. Here, we derive the expressions
of the two Noether’s currents for fully collisional tokamak
plasmas (more precisely, for fully collisional, L-mode, JET
plasmas). In Sec. V, we can find an example of application of
the TCP. We derive the expression of the collisional operator
in tokamak plasmas which is, currently, largely used in the
numerical simulations. At the end of this section, we apply
the TFT formalism, based upon the validity of the TCP,
to estimate the heat loss in fully collisional FTU plasmas.
We show that the theoretical predictions are in fairly good
agreement with experimental data in the expected region of
validity. To perform this comparison, the Shafranov shift has

9Note that in our case the N Noether’s currents are conserved in
the thermodynamic space (i.e., the variables are the thermodynamic
forces and not the spatial and time variables).

also been taken into account. Concluding remarks can be found
in Sec. VI. In the Appendixes, we report a brief description
of the thermodynamical field theory (TFT), the demonstration
of the theorem satisfied by the TCT group, and the details of
calculation of Noether’s currents, respectively.

II. TOPOLOGICAL DESCRIPTION OF THE TCT GROUP

A. Construction

As shown in Ref. [1], the TCT are given by Eqs. (8):

Xμ → X′μ = X1Fμ

(
X2

X1
,
X3

X2
, . . . ,

Xn

Xn−1

)
, (12)

where Fμ are arbitrary functions of variables Xj/Xj−1

with (j = 2, . . . ,n). We demand that the n functions Fμ be
smooth, so that the TCT preserve equations satisfied by the
derivatives of thermodynamic quantities, and also that the
transformation be nondegenerate with a smooth inverse, so
that the transformed theory contain all of the information
of the original theory. The nondegenerate property is also a
necessary and sufficient condition for the finiteness of the
transformed transport coefficients, even though it implies that
the Fμ themselves may sometimes diverge. For example, from
the transformation

X′1 = X2, X′2 = X1,

one obtains

F 1(X2/X1) = X2/X1, F 2(X2/X1) = 1

showing that F 1(X2/X1) diverges at X1 = 0, whereas the X′μ
are always finite.

The space of thermodynamic forces, linear combinations
of {X1, . . . ,Xn}, is the real Euclidean space Rn. On the other
hand, the ratios {Xμ/Xμ−1} are coordinates for a different
space, the real projective space RPn−1, which is defined to be
the quotient of Rn minus the origin by the scaling map Xμ →
αXμ where α is any nonzero real number. Note that some of the
Xμ may vanish; removing the origin simply implies that not all
of the Xμ vanish simultaneously. Figure 2 illustrates a space,
which is diffeomorphic to the RPn−1. Observe that X′μ is an

P

z = Several axes

Sn−1

Sn−1
+

z

-P

FIG. 2. The projective space RPn−1 is diffeomorphic to Sn−1
+

made by the upper hemisphere + half equator (without the red and
yellow points) + the red point.
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arbitrary smooth, degree 1 function of the X’s with the property
that X → X′ is invertible. This implies that X′μ/X′μ−1 is an
arbitrary degree 0 function with these same properties. Now,
{X′μ/X′μ−1} are again coordinates of RPn−1. The fact that
X′μ/X′μ−1 is degree 0 implies that it is invariant under the
transformation Xμ → αXμ and so the map X′μ/X′μ−1 is in
fact a map from RPn−1 → RPn−1:

RPn−1→RPn−1:
Xμ

Xμ−1
	→ X′μ

X′μ−1
= Fμ

(
X2

X1 ,
X3

X2 , . . . ,
Xn

Xn−1

)
Fμ−1

(
X2

X1 ,
X3

X2 , . . . ,
Xn

Xn−1

) .

So, we have learned that the TCT yields a map from RPn−1

to itself. Furthermore, the invertibility condition implies that
this map is invertible and the smooth inverse condition implies
that this map is a diffeomorphism. Thus, every TCT defines a
diffeomorphism of RPn−1 to itself.

At this point, it is tempting to conclude that the group of
TCTs is just the group diff(RPn−1) of such diffeomorphisms.
However, this is not quite true because the ratios X′μ/X′μ−1

do not contain all the information in the X′μ. To reconstruct all
the X′μ from the ratios, one also needs to know, for example,
X′1 or equivalently the real-valued function F 1 : RPn−1 →
R, which intuitively gives the overall scale dependence of
the TCT. Therefore, the group G of TCTs is a product of
diff(RPn−1) with the multiplicative group of maps fromRPn−1

to the nonvanishing realsR× where the nonvanishing condition
is needed to ensure nondegeneracy.

B. A subtlety

This is the right answer locally. Globally there is one
subtlety: we have double counted the map which flips the
sign of all of the forces X. It was the element α = −1 which
we have the quotient when constructing RPn−1 from Rn. More
precisely, RPn−1 can be constructed from Rn minus the origin
in two steps: first, the quotient by the maps X 	→ αX with α

positive, yielding the sphere Sn−1, and then the quotient by
α = −1 yielding RPn−1. This second action, whose quotient
maps Sn−1 toRPn−1, has the same action on the X’s as the map
−1 inRPn−1 → R×. How does this double counting affect G?

Given a TCT, one may calculate the ratio {X′μ/X′μ−1}.
Since G is the group of TCTs while diff(RPn−1) is the
group of maps {X′μ/X′μ−1}, there must exist a projection
G → diff(RPn−1). The argument above implies that the kernel
of this projection is the space of nonvanishing maps from
RPn−1 to R×. Therefore, the group G of TCTs is a bundle
whose base is diff(RPn−1) and whose fiber is the space of
maps RPn−1 → R×. Which bundle is it?

When traversing a noncontractible loop in RPn−1, which
necessarily lifts in Sn−1 to a path between two antipodal points,
the sign of the R× must change. This means that the group of
scalings RPn−1 → R× is nontrivial fibered over diff(RPn−1)
such that, upon traversing the nontrivial cycle once, the sign
of R× is inverted.

Assembling all these arguments, we arrive at our final result.
The group G of TCTs is the nontrivial bundle of the maps
RPn−1 → R× over diff(RPn−1). There is a simple mathemati-
cal formulation for this group G. Let P : Rn\{0} → RPn−1 be
the quotient X ∼ αX which defines the real projective space
RPn−1. Then, the group G of TCTs is the group of maps

f : RPn−1 → Rn\{0} such that P ◦ f : RPn−1 → RPn−1 is
a diffeomorphism. Here, the centered circle (◦) stands for
function composition. Note that given a TCT F : Rn → Rn

is given by F (0) = 0 and away from the origin F = f ◦ P .
This construction is summarized in the commutative diagram

R
n\{0}
P

f◦P
R

n\{0}
P

RP
n−1

f

P◦f
RP

n−1

(13)

where the definition of the group G of TCTs is the set of
maps f such that the diagram commutes and P ◦ f is a
diffeomorphism.

C. Examples

The simplest example is the case n = 1, where there is
only one force X. Now, RPn−1 is just a point. The group of
diffeomorphisms of the point is a trivial group, consisting of
only the identity element. Any bundle over a point is trivial,
so in this case the total space of the bundle is just R× itself
and so the group of TCTs is the group of maps from the
point to R× which is just R× itself, the multiplicative group
of nonvanishing real numbers α. The action of this group on
the force X is just multiplication by α. So, there is a one to
one correspondence between TCTs and nonzero real numbers
α. Therefore, we find that if there is only one thermodynamic
force, then the TCTs are linear.

The case n = 2 shows the full structure of the group.
The projective space RP1 is a semicircle with both extremes
identified, which topologically is just the circle S1. Therefore,
the group of TCTs is locally the product of the group of
diffeomorphisms of the circle, which physically describes
the mixing between X1 and X2, with the group of scalings
S1 → R×. Now, a rotation of the (X1,X2) plane by 180◦ is
a rotation of RP1 all the way around and so it acts trivially
on RP1. However, it corresponds to the element −1 of the
maps from RP1 to R×. So indeed the group G is not simply
a product of the groups of scalings and rotations; the scalings
are nontrivially fibered over the rotations.

III. ALGEBRAIC DESCRIPTION OF THE TCT GROUP

In this section, we shall provide the algebraic description
of the TCT group. In particular, we shall define the TCT group
and we enunciate the theorem satisfied by the TCT group.
Details related to the demonstration of this theorem can be
found in the Appendix.

Let Sn−1 be the n − 1 dimensional unit sphere (‖x‖ = 1),
represented as a C∞ differentiable manifold, as a submanifold
embedded in Rn. Define the equivalent relation R as follows:
x, y ∈ Sn−1 are equivalent iff y = ±x. Denote by �

p
n the

subgroup of diff (RPn−1) and let Y ∈ �
p
n iff Y(−x) = −Y(x)

where Sn−1 � x → Y(x) ∈ Sn−1. The TCT group, denoted by
Gs , is the subgroup of homogeneous diffeomorphisms from
diff(Rn\{0}) i.e., diff(Rn\{0}) � x 	→ Yg(x) ∈ diff(Rn\{0}).
Then, Yg ∈ Gn iff

Yg(λx) = λYg(x), λ ∈ R,g ∈ Gn. (14)
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It is possible to demonstrate that the TCT group Gn may
be split in a semidirect product of two subgroups where the
first one is a normal, Abelian, subgroup. In particular, let us
introduce two subgroups Nn and Hn defined as follows.

Let Nn denote the subset (normal subgroup) of Gn having
the form

Yg (x) = xrg(x), g ∈ Nn ⊂ Gn (15)

with rg(x) denoting a positive C∞(Rn\{0}) homogeneous
function, i.e.,

rg(λx) = rg(x) > 0, λ ∈ R. (16)

Denote by Hn the subgroup of Gn with the properties

‖Yh(x)‖ = ‖x‖, Yh(−x) = −Yh(x) with h ∈ Hn.

(17)
As it is proved in the Appendix, the TCT group is the semidirect
product of the Abelian normal subgroup Nn and the subgroup
Hn, i.e.,

Gn = Nn
� Hn. (18)

The irreducible representations of the group G are then related
to the irreducible representations of the subgroups H and N .
In the previous section, we have shown that G is a bundle
whose base is diff (RPn−1). Expression (18) specifies, in more
rigorous terms, which bundle it is.

A. Properties of the general element of the TCT group

From Eq. (12), we easily get (no Einstein’s convention on
the repeated indexes)

Uμ
ν ≡∂X

′μ

∂Xν = F μδ1
ν + ∂F μ

∂Y ν

X1

Xν−1

(
1 − δ1

ν

)
− X1Xν+1

(Xν)2

∂F μ

∂Y ν+1

(
1 − δn

ν

)
with

Y ν ≡ Xν

Xν−1
, μ, ν = 1, . . . ,n. (19)

As shown in [1], matrix Uμ
ν satisfies the important relations

Xν ∂Uμ
ν

∂Xκ
= 0, Xκ ∂Uμ

ν

∂Xκ
= 0. (20)

Close to the identity, it is useful to write the TCT as

Uμ
ν = δμ

ν + εαδU
μ

ν(α), X
′μ = Xμ + εαξ

μ

(α) with

δU
μ

ν(α) = ω
μ

ν(α) + Xκ∂νω
μ

κ(α), ξ
μ

(α) = ω
μ

ν(α)X
ν (21)

where εα are infinitesimal parameter coefficients.

B. Examples

1. Linear TCT

In general, the TCT group Gn is a noncompact, infinite
Lie group. However, Gn admits several compact and finite
subgroups. Linear transformations of the thermodynamic
forces are an important subgroup of the Gn. A significant

example is the two-dimensional linear transformation

X
′1 = a1X

1 + ε1a2X
2 = X1 + ε1ξ

1,

X
′2 = ε2b1X

1 + b2X
2 = X2 + ε2ξ

2 with

a1 − 1 = ε1α1, b2 − 1 = ε2β2 (22)

and

ωμ
ν =

(
α1 a2

b1 β2

)
and ξμ =

(
α1X

1 + a2X
2

b1X
1 + β2X

2

)
. (23)

The four generators of the group are

t1 = −iX1∂X1 , t2 = −iX1∂X2 ,
(24)

t3 = −iX2∂X1 , t4 = −iX2∂X2 .

The Lie algebra reads as

[tμ,tμ] = 0, [tμ,tν] = −[tν,tμ],

[t2,t4] = −it2, [t3,t4] = it3,
(25)

[t1,t2] = −it2, [t1,t3] = it3,

[t1,t4] = 0, [t2,t3] = it4 − it1.

From the Lie algebra, we may construct the adjoint representa-
tions of the generators of the group T (κ)

μν through the structure
constants

T (κ)
μν = if ν

μ(κ) with [tμ,tκ ] = f ν
μ(κ)tν . (26)

We get

T (1)
μν =

⎛
⎜⎝

0 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 0

⎞
⎟⎠, T (2)

μν =

⎛
⎜⎝

0 −i 0 0
0 0 0 0
i 0 0 −i

0 i 0 0

⎞
⎟⎠,

T (3)
μν =

⎛
⎜⎝

0 0 i 0
−i 0 0 i

0 0 0 0
0 0 −i 0

⎞
⎟⎠, T (4)

μν =

⎛
⎜⎝

0 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 0

⎞
⎟⎠.

(27)

It is worth mentioning that the previous transformations
play an important role in physics, for example, in tokamak
plasmas in the fully collisional transport regime (the so-
called Pfirsch-Schlüter transport regime) [11,12]. Here, the
two thermodynamic forces read as X1 = (neTe)−1∇rP and
X2 = −T −1

e ∇rTe, with ne, Te, and P denoting the electron
density number, the electron temperature, and the total pressure
of the plasma, respectively. In this case, the subgroup of Gn is
finite and compact.

Another example of linear TCT, widely used in tokamak
plasmas in the weak-collisional transport regime (the so-
called banana regime), is provided by the Hinton-Hazeltine
transformations [13]. In this case, the TCT read as

X
′1 = X1 − 5

2X2 − 5
2Z−1X3,

X
′2 = X2,

(28)
X

′3 = X3,

X
′4 = X4

with Z denoting the charge number. In this
particular case, X1 = −(neTe)−1∇rP ,X2 = −T −1

e ∇rTe,
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X3 = −T −1
i ∇rTi , and X4 = 〈B2〉−1/2〈BEA

‖ 〉, with B and
EA

‖ denoting the intensity of the magnetic field and the
electric field generated by the external coils, parallel to the
magnetic field, respectively. The angular brackets denote the
averaged magnetic surface operation (see, for example, [11]).
In this case, the space of the thermodynamic forces is four
dimensional. The TCT group possesses 16 generators, which
are similar to the ones given by Eqs. (24), with adjoint
representations also similar to Eqs. (27), but the dimensions
of the matrices are 16 × 16. Note that, also in this case, the
TCT subgroup is compact and finite.

2. Nonlinear TCT

The linear transformations are an example of (closed)
subalgebra of the TCT group. However, it is easy to convince
ourselves that nonlinear examples of TCT subalgebras may
also be found. Consider, for example, the following TCT:

X
′1 = a1X

1, X
′2 = b1X

1 + b2

(
X2

X1

)
X2 with

a1 − 1 = ε1α1, b2 − 1 = ε2β2. (29)

The three generators of the group and their adjoint representa-
tions read as, respectively,

t1 = − iX1∂X1 , t2 = −iX2∂X2 , t3 = −i

(
X2

X1

)
X2∂X2 ,

T (1)
μν =

⎛
⎝0 0 0

0 0 0
0 0 −i

⎞
⎠, T (2)

μν =
⎛
⎝0 0 0

0 0 0
0 0 i

⎞
⎠,

T (3)
μν =

⎛
⎝0 0 i

0 0 −i

0 0 0

⎞
⎠. (30)

IV. NOETHER’S CURRENT FOR FULLY COLLISIONAL
TOKAMAK PLASMAS

As known, through Noether’s theorem one can determine
the conserved quantities from the observed symmetries of a
physical system. In particular, consider the action

I =
∫

L(�A,∂μ�A,Xμ)
√

gdXn (31)

with φA denoting the set of differentiable fields defined over
all space of the thermodynamic forces and L the Lagrangian
density, respectively. In our case, �A = {gκν,fκν,�

λ
κν}. Let

the action be invariant under certain transformations of the
thermodynamic forces coordinates Xμ and the field �A:

Xμ → Xμ + δXμ = Xμ + εαξ
μ

(α),

�A(X) → �A(X) + δ�A(X)

= �A(X) + δ̄�A(X) + δ̃�A(X)

= �A(X) + εα�A
(α)(X), (32)

where δ�A denotes the transformation in the field variables,
δ̄�A the intrinsic changes of the field, and δ̃�A the transfor-
mation of the field variables due to the coordinates variation,
respectively. Noether’s theorem states that N currents densities

are conserved, with N equals to the number of generators of
the Lie group associated to the TCT [14,15]. In our case,
the action remains invariant only under TCT (and not under
the field transformations). Hence, the expressions of the N

Noether currents jμ
α reduce to

jμ
α = ∂L

∂�A
μ

Lξα
�A − Lξμ

α with (33)

∂μ

[√
gJμ

α

] = 0, J μ
α ≡ g−1/2jμ

α (α = 1, . . . ,N).

Here, Lξ denotes the Lie derivatives along the ξμ
α vector and

L ≡ L√
g, respectively.

As an example of application, let us consider the action (10)
and the case of tokamak plasmas in fully collisional transport
regime, with the TCT given by Eqs. (22)–(25). After (some
tedious) calculations, and under the realistic approximation
1/σ � 1 valid for tokamak plasmas, we finally get (see
Appendixes)

Jμλ
ν = 1

2gκλAμη
νκη + 1

2gβλA
μη

νηβ − gκβA
μλ
νκβ,

(34)
A

μη

νκβ = Xμ�
η

κβ,ν − �
μ
κβδα

ν + �α
νβδμ

κ + �μ
νκδ

μ
β .

Note that there are no Noether’s currents in the fully collisional
transport regimes since in this case all derivatives of the
transport coefficients with respect to Xμ (and, hence, �κ

μν

and its derivatives �κ
μν,η) are identically equal to zero. These

currents appear only in the nonlinear transport regime where
the derivatives of the transport coefficients with respect to
the thermodynamic forces do not vanish [1]. Even though
calculations are more complex, it is possible to show that
the above conclusions apply also to the weak collisional
(banana) and these plateau transport regimes. Figure 3 shows
one component of Noether’s current J 11

1 against the two
thermodynamic forces X1 and X2. The contour plot of this
current is illustrated in Fig. 4 [these graphics have been

X1
X2

J111

FIG. 3. Component J 11
1 corresponding to Eq. (33).

042103-7



GIORGIO SONNINO et al. PHYSICAL REVIEW E 94, 042103 (2016)

J111X1

X2

FIG. 4. Contour plot of the J 11
1 profile.

produced by Peeters, from the Université Libre de Bruxelles
(ULB), Brussels (Belgium)].

V. DERIVATION OF THE COLLISIONAL OPERATOR
THAT ENSURES, AT THE LOWEST ORDER, THE
COVARIANCE UNDER TCT OF THE CLOSURE

TRANSPORT RELATIONS

The aim of this section is to derive the expression of the
collisional operator for magnetically confined plasmas, which
guarantees that the thermodynamic covariance principle (TCP)
is satisfied by the closure transport relations (i.e., the flux-force
relations). Let us consider a two-component system of charged
particles. The statistical state is represented by two reduced
distribution functions f α corresponding to ions i and electrons
e [16] (no Einstein’s convention on index α):

∂

∂t
f α(q,v,t) = −v · ∂

∂q
f α(q,v,t)

− eα

mα

[
E(q,t) + 1

c
v ∧ B(q)

]
· ∂

∂v
f α(q,v,t)

+Cα(f,f ). (35)

Here, α = e,i and c is the speed of light in vacuum. Moreover,
eα and mα are the charge and the mass of species α, q and
v denote the generalized coordinates and the velocity of the
particle, and E and B the electric and the magnetic fields,
respectively. Note that the first term on the right-hand side of
Eq. (35) represents the free flow, the second term corresponds
to the electromagnetic contribution, and the last term is the
contribution due to collisions. In many applications in plasmas
physics (including those involving the radio-frequency waves),
collisions dominate the thermal particles. Therefore, the
distribution function can conveniently be expanded about a
Maxwellian

f α(x,v,t) = f α
eq(x,v,t)[1 + χ (x,v,t)], (36)

where x denotes the position of the particle. In Eq. (36),
we have introduced the reference state f α

eq(x,v,t), i.e., the

local plasma equilibrium (L.P.E.), and the deviation from the
reference state χ . The local plasma equilibrium is defined in
the following way. The electron-electron and ion-ion collisions
bring the plasma in a short time to a state of local plasma
equilibrium satisfying the equations

Cee = Cii = 0 (37)

with Cee and Cii denoting the electron-electron and ion-ion
collisions, respectively (see below the expression of the
collisional operator). The L.P.E. is the solution of Eqs. (37):

f α
eq(x,v,t) = (2π )−3/2nα(x,t)

[
mα

Tα(x,t)

]3/2

exp(−cN · cN ),

cN ≡
(

mα

Tα

)1/2

[v − u(x,t)], (38)

where uα, nα, Tα are the mean velocity, the number density,
and temperature, respectively. The deviation χ may be
developed in terms of the Hermite polynomials H (m)

r1r2...
:

χα(x,cN,t) =
∞∑

n=0

qα(2n)(x,t)H (2n)(cN )

+
∞∑

n=0

qα(2n+1)
r (x,t)H (2n+1)

r (cN )

+
∞∑

n=0

qα(2n)
rs (x,t)H (2n)

rs (cN ) + . . . (39)

with qα(m)(x,t) denoting the Hermitian moments [16].
The Landau collisional operator can be brought into the
form [11,17]

Cα(f,f ) =
∑
β=e,i

Cαβ with

Cαβ(f α(1),f β(2)) = 2πe2
αe2

β ln �

∫
dv2∂̃rGrs(v1 − v2)

× ∂̃sf
α(1)f β(2) (40)
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with r,s identifying the components of a vector, and indices (1)
and (2) the colliding particles (1) and (2), i.e., (1) ≡ (x1,v1,t)
and (2) ≡ (x2,v2,t). Here, ln � and Grs are the Coulomb
logarithm (linked to the Debye length λD) and the Landau
tensor, respectively, i.e.,

ln � = ln
3(Te + Ti)λD

2Ze2
,

λD =
[

4πZe2(neTe + niTi)

TeTi(1 + Z)

]−1/2

, (41)

Grs(a) = a2δrs − aras

a3

with a denoting the relative velocity of two particles, i.e.,
a ≡ v1 − v2. The operator ∂̃r is defined as follows:

∂̃r ≡ m−1
α ∂v1r

− m−1
β ∂v2r

. (42)

By inserting Eqs. (36)–(39) into Eq. (35), and by truncating the
expansion up to the second order of the (small) drift parameter
ε (defined as the Larmour radius over a macroscopic length),
we get the vector moment equations [11]

�αταεrmnq
α(1)
m bn + ταQα(1)

r + gα(1)
r + ḡα(1)

r + O(ε2) = 0,

�αταεrmnq
α(3)
m bn + ταQα(3)

r + gα(3)
r + ḡα(3)

r + O(ε2) = 0,

�αταεrmnq
α(5)
m bn + ταQα(5)

r + ḡα(5)
r + O(ε2) = 0,

Qα(m)
r = n−1

α

∫
dv H (m)

r [(mα/Tα)1/2(v − uα)]Cα, (43)

where the Einstein convention is adopted on the repeated
indices m and n, but not on the index α. Here, bn is a unit
vector along the magnetic field B, i.e., bn ≡ Bn/B, εrmn is
the completely antisymmetric Levi-Civita symbol, �α is the
Larmor frequency of species α, and τα is the relaxation time of
species α, respectively. Moreover, gα(n)

r , ḡα(n)
r , and Qα(n)

r are
the dimensionless source terms related to the thermodynamic
forces, the additional sources terms in the long mean free
path transport regime, and the dimensionless friction terms,
respectively (the exact definitions of these quantities may be
found in Ref. [11]).

For collision-dominated plasmas (i.e., in absence of turbu-
lence), the entropy production �α of the plasma for species α

may be brought into the form [11]

�α = −τα

N∑
n=0(1)

qα(n+1)
r Qα(2n+1)

r . (44)

The lower limit for n is 0 for the electrons and 1 for the ions.
Hence, thanks to this theorem, Qα(n)

r and qα(n)
r are the ther-

modynamic forces and the thermodynamic fluxes for magnetic
confined plasmas, respectively. Equation (44) tells us that the
last equation of Eqs. (43) is the closure equation (flux-forces
relation) for tokamak plasmas, derived by kinetic theory. The
region where the transport coefficients do not depend on the
thermodynamic forces is referred to as Onsager’s region or the
linear thermodynamic regime. A well-founded microscopic
explanation on the validity of the linear phenomenological
laws was developed by Onsager in 1931 [18,19]. Onsager’s
theory is based on three assumptions: (i) the probability
distribution function for the fluctuations of thermodynamic

quantities (temperature, pressure, degree of advancement of
a chemical reaction, etc.) is a Maxwellian; (ii) fluctuations
decay according to a linear law; and (iii) the principle of the
detailed balance (or the microscopic reversibility) is satisfied.
Out of Onsager’s regime, the transport coefficients may depend
on the thermodynamic forces. This happens when the above-
mentioned assumption (1) and/or assumption (2) are/is not
satisfied. Magnetically confined tokamak plasmas are a typical
example of thermodynamic systems out of Onsager’s region. In
this case, even in absence of turbulence, the local distribution
functions of species (electrons and ions) deviate from the
(local) Maxwellian [see Eq. (36)]. After a short transition
time, the plasma remains close to (but, it is not in) a state of
local equilibrium (see, for example, [11,12]). The neoclassical
theory is a linear transport theory (see, for example, [11])
meaning by this, a theory where the moment equations are
coupled to the closure relations (i.e., flux-force relations),
which have been linearized with respect to the generalized
frictions (see, for example, Ref. [16]). This approximation is
clearly in contrast with the fact that the distribution function
of the thermodynamic fluctuations is not a Maxwellian and
it could be a possible cause of disagreement between the
theoretical predictions and the experimental profiles [12,20].
However, it is important to mention that it is well accepted that
the main reason of this discrepancy is attributed to turbulent
phenomena existing in tokamak plasmas. Fluctuations in
plasmas can become unstable and therefore amplified, with
their nonlinear interaction, successively leading the plasma to
a state, which is far away from equilibrium. In this condition,
the transport properties are supposed to change significantly
and to exhibit qualitative features and properties that could
not be explained by collisional transport processes, e.g., size
scaling with machine dimensions and nonlocal behaviors
that clearly point at turbulence spreading, etc. (see, for
example, Ref. [21]). Hence, the truly complete transport theory
of plasmas must self-consistently incorporate the instability
theory that includes the influence of nonlinear transformations
on fluctuations. This global approach is the purpose of
the so-called anomalous transport theory (still far from a
complete and comprehensive theory). This type of problem
is, however, far beyond the scope of this work. Here, more
modestly, we deal with plasmas in the collisional-dominated
transport regime, characterized by a time scale which is much
longer than one involved in the so-called fluctuation-induced
turbulence transport.

Our aim is to determine the simplest expression of the
collisional operator such that the resulting closure equation
satisfies the TCP (without, of course, violating the energy,
mass, and momentum conservation laws). Concretely, in
mathematical terms, we need to identify an operator able to kill
the terms that do not satisfy the TCP and, in order not to violate
the conservation laws, which commutes with the operator ∂̃r .
The last equation in Eq. (43) will satisfy the TCP if

when Cαβ → λCαβ then Qα(m)
r → λQα(m)

r (45)

with λ denoting a constant parameter. We introduce now the
operator OTCT defined as follows:

OTCT ≡
[

2 − χα(1)
∂

∂χα(1)
− χβ(2)

∂

∂χβ(2)

]
. (46)
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It is easily checked that this operator possesses the following
properties:

OTCT(χα) = χα, OTCT((χα)2) = 0,

OTCT(χα(1)χβ(2)) = 0, [OTCT,∂̃r ] = 0, (47)

where the square brackets denote the Lie brackets. The last
equation in Eq. (43) (the closure equation) satisfies the TCP
iff

C
αβ

TCT = Cαβ[OTCT(f (1)f (2))] (48)

or

C
αβ

TCT = 2πe2
αe2

β ln �

∫
dv2∂̃rGrs(v1 − v2)∂̃s

×{f α(1)eqf
β(2)eq[χα(1) + χβ(2)]}. (49)

Equation (49) can conveniently be written in the form

C
αβ

TCT = 2πe2
αe2

β ln �

∫
dv2∂̃rGrs(v1 − v2)

× ∂̃s(f α(1)f β
eq(2))+ with

(f α(1)f β
eq(2))+ ≡f α(1)f β

eq(2) + f α
eq(1)f β(2). (50)

Thanks to the last relation in Eqs, (47), we also get

∫
dv Cα

TCT = 0 (α = e,i) number of particles conservation, (51)

∑
α

mα

∫
dv vrC

α
TCT = 0 (r = 1,2,3) momentum conservation, (52)

∑
α

1

2
mα

∫
dv v2Cα

TCT = 0 energy conservation (53)

with Cα
TCT = �β=e,iC

αβ

TCT. Equation (50) is the linearized
collision operator used in existing literature [13,22]. However,
it should be noted that in previous literature the quadratic con-
tributions in the distribution functions are ignored without any
physical justification. Here, on the contrary, the linearization
process of the collisional operator rests upon the validity of a
fundamental principle, that is, the thermodynamic covariance
principle. Notice that to linearize the collisional operator does
not mean that we are in the Onsager regime. As known,
this regime is attained by performing two operations: (1)
the transport phenomena is evaluated by determining a finite
number of Hermitian moments of the distribution functions,
and (2) the truncated set of moment equations is linearized in
some appropriate way [11,16].

In order to test the validity of the TFT, we have computed a
concrete example of heat loss in L-mode, collisional, tokamak
plasmas. To perform correctly this calculation, we have solved
Eq. (A5), subject to boundary conditions, by taking into
account the so-called Shafranov’s shift. The Shafranov shift
is the outward radial displacement (r) of the center of
the magnetic flux surfaces with the minor radius r of the
tokamak, induced by the plasma pressure βmag. This shift
compresses the surfaces on the outboard side [23]. In terms of
number density, temperature and the intensity of the magnetic
field βmag = P/Pmag, with P = nT and Pmag given in the
forthcoming Eq. (55). Figure 5 depicts the Shafranov shift due
to βmag versus the minor radius of the tokamak. Equation (A5)
has been solved with the boundary conditions obtained by
imposing that, for very large values of the thermodynamic
forces there are no privileged directions for hμν in the
thermodynamic space [12]. In order to take into account the
Shafranov displacement, in the limit of high aspect ratio, the
magnetic configuration B is written in the form (normalized

to 2π )

B = F∇φ + ∇φ × ∇� with F � B0R0 and �(r)

� B0

∫ r

0
r ′/q(r ′) dr ′. (54)

Here, φ, r , and � are the toroidal angle, the minor radius
coordinate, and the poloidal magnetic flux, respectively. B0 and
R0 denote the intensity of the magnetic field at the magnetic
axis of the tokamak and the major radius of the tokamak,
respectively. In coordinates (R,φ,Z), the Shafranov shift (r)
is estimated to be roughly equal to

R = R0 + (r) + r cos θ, Z = r sin θ with

(r) � βmagr
2/R0, βmag = 2μ0nT/B2

v (55)

FIG. 5. Shafranov shift. In tokamak plasmas, the plasma pressure
leads to an outward shift  of the center of the magnetic flux surfaces.
J indicates the direction of the electric current that flows inside
the plasma. Note that the poloidal magnetic field increases and the
magnetic pressure can, then, balance the outward force.

042103-10



SYMMETRY GROUP AND GROUP REPRESENTATIONS . . . PHYSICAL REVIEW E 94, 042103 (2016)

0 5 10 15 20 25 30
0

5

10

15

r (cm)

E
l.

E
n.

F
lu

x
(W

/c
m

2 )

TFT
Linear

FTU experiment

Collisional regime Turbulent regime

FIG. 6. Electron heat loss in fully collisional FTU plasmas vs
the minor radius of the tokamak. The highest dashed line is the
experimental profile. These data have been provided by Marinucci
from the ENEA C.R.-EUROfusion in Frascati [24]. The bold line
is the theoretical profile obtained by the nonlinear theory satisfying
the TCP (TFT) and the lowest dashed profile corresponds to the
theoretical prediction obtained by Onsager’s theory (i.e., by the
neoclassical theory).

with θ, μ0, and Bv denoting the poloidal angle, the magnetic
permeability constant, and the poloidal magnetic field, respec-
tively.

Figure 6 shows a comparison between experimental data
for fully collisional FTU (Frascati tokamak upgrade) plasmas
and the theoretical predictions. In the vertical axis we have
the (surface magnetic-averaged) radial electron heat flux,
and in the horizontal axis the minor radius of the tokamak.
The lowest dashed profile corresponds to the Onsager (neo-
classical) theory and the bold line to the nonlinear theory
[thermodynamical field theory (TFT)] satisfying the TCP,
respectively. The highest profile is the experimental data
provided by the ENEA C.R.-EUROfusion [24]. As we can
see, the TCP principle is well satisfied in the core of the plasma
where plasma is in the collisional transport regime. Towards
the edge of the tokamak, transport is dominated by turbulence.
We conclude this section by mentioning that close to Onsager’s
region, i.e., gμν � Lμν + hμν (with Lμν and hμν denoting
the Onsager matrix and its perturbation, respectively), at the
leading order in hμν we may transform the closure equation
for magnetically confined plasmas [i.e., the last equation in
Eqs. (43)] in a differential equation, which is covariant under
TCT. It is possible to show that the equation to be satisfied
by perturbation hμν is the covariant (under TCT) Laplacian
operator constructed with the metric Lμν .

VI. CONCLUSIONS AND PERSPECTIVES

We have studied the Lie group associated to the thermody-
namic covariance principle (TCP). This principle affirms that
the nonlinear closure equations must be covariant under the
transformations of thermodynamic forces leaving invariant the
entropy production and the Glansdorff-Prigogine dissipative

quantity. This class of admissible transformations, referred to
as the thermodynamic covariant transformations (TCT), is the
most general class of force transformations able to warrant the
equivalence between thermodynamic systems. According to
the TCP, the Lagrangian of a thermodynamic system should
be invariant under TCT. The TCT form a group.

The first part of the work deals with theory. In particular,
we have shown that the TCT group is a bundle whose base is
diff(RPn−1) and the fiber is the space of maps RPn−1 → R×.
The TCT group may also be split as semidirect product
of an Abelian normal subgroup and another subgroup of
TCT. The irreducible representations of the TCT group are
therefore related to the irreducible representations of these
two subgroups.

The second part of the work is devoted to applications.
We applied the formalism to magnetically confined plasmas.
As an example of calculation, we have derived the Noether’s
current associated to this TCT invariance for magnetically
confined plasmas in fully collisional transport regime. Always
in the case of collisional tokamak plasmas, we have derived
the expression of the collisional operator able to determine
the closure equations satisfying the TCP. We have shown
that (contrary to Onsager’s theory) the theoretical predictions
based on the validity of TCP are in fairly good agreement with
experiments in the expected region of validity.

The mathematical study corresponding to the Lie symmetry
group associated to this symmetry is under progress. Currently,
we are also studying the symmetry-breaking mechanism
and the Hamiltonian formulation of problems related to
thermodynamic systems out of equilibrium.

It is worth mentioning that the TCP is actually largely
used in a wide variety of thermodynamic processes ranging
from nonequilibrium chemical reactions to transport processes
in tokamak plasmas. As far as we know, the validity of
the thermodynamic covariance principle has been verified
empirically without exception in physics until now. The
influence of nonlinear transformations on fluctuations will be
subject of future works.

We close this section by mentioning some perspectives of
this work.

(i) Up to now, we have applied the above formalism to
thermodynamic systems under the hypothesis of weak-field
approximation (i.e., the correction to the Onsager metrics is
very small) and by assuming that the dimensionless entropy
is much greater than one (i.e., σ � 1). Of course, these
approximations correspond to a limit case.10 Under these
assumptions, by analyzing several cases of thermodynamic
systems out of equilibrium, we checked that there is a fairly
good agreement between the theoretical predictions of the TFT
and experiments (see Sec. V and the examples examined in
the works cited in the Bibliography). However, disagreements
appear in the region where σ ∼ 1. In particular, in Sec. V
we showed that the disagreement appears in the region of
the tokamak where the plasma is in the turbulent regime.
Incidentally, this corresponds also to the region where σ ∼ 1.
Until now, we never explored the solutions of the equations
when the system is in this intermediate region. Note that when

10Note that the case σ � 1 corresponds to Onsager’s regime.
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σ ∼ 1, Eqs. (A4) and (A5) lose validity and they have to be
replaced by the expressions obtained by solving the equations
reported in Ref. [1]. To be clear, the differential equations for
getting the nonlinear closure equations may still be solved by
adopting the weak-field approximation, but we have to give up
to the approximation σ � 1. In addition, when the system is in
this intermediate region the source of the thermodynamic space

Tμν = −S
αβ

λ

δ�̃λ
αβ

δgμν takes all its importance and its expression
can no longer be neglected. In this regard, we would like
to recall that the universal criterion of evolution (UCE) is
derived by Glansdorff and Prigogine without neglecting, in
the hydrodynamic or in the plasma-dynamic equations, the
terms leading to turbulence and without assuming the linear
phenomenological laws. Briefly, the main result of our analysis
is that the UCE holds also for systems in the turbulent
regime and comparisons between the TFT predictions and
experiments should be carried out in the region σ ∼ 1. The
study of transport processes in the intermediate region σ ∼ 1
is under progress.

(ii) Another aspect that should be analyzed more in depth
is the stability of the solutions. This important problem is
treated in Ref. [5] from a thermodynamical point of view and
in Ref. [25] by geometrical methods. In [25], the problem
has been approached by supposing the validity of the general
covariance. However, as mentioned in the Introduction of this
paper, this kind of covariance is not always satisfied and the
thermodynamic covariance principle (TCP) must be applied.
Works on this matter are also under progress.
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APPENDIX A: THERMODYNAMICAL FIELD THEORY
IN BRIEF [1]

In this Appendix, we summarize briefly the main results of
the thermodynamical field theory (TFT). The following table
provides a sketch of the TFT.

More in detail, the TFT is based upon two constraints
(A) and (B) and one assumption (C). Let us analyze these
hypotheses.

Constraint (A). The second law of thermodynamics and the
universal criterion of evolution (UCE) [with the minimum
entropy production theorem (MEP) as special case of the
UCE] should be respected. Constraint (A) allows to introduce
the space of the thermodynamic forces (or, simply, the
thermodynamic space). In particular,

(i) the second law of thermodynamics allows introducing
the metric tensor;

(ii) the UCE determines the expression of the affine
connection.

As mentioned in the Introduction, these quantities may
be measured experimentally (and estimated theoretically by
TFT).

Constraint (B). This constraint refers to the principle of
equivalence between two thermodynamic systems. Equiva-
lence is ensured by imposing the invariance of both ex-
pressions: the dimensionless entropy production σ and the
Glansdorff-Prigogine dissipative quantity P . To a principle of
equivalence is associated a symmetry group. In our case, to the
thermodynamic equivalence is associated the TCT (thermo-
dynamic covariance transformations) group. The concept of
equivalent thermodynamic systems was originally introduced
by De Donder and Prigogine, and it has been recently
deeply investigated and revised in Refs. [1,8]. This statement

Thermodynamical field theory (TFT)

Hypotheses of the TFT Two Constraints and one assumption

Constraint (A) Validity of the laws and the theorems of the
thermodynamics of irreversible processes

Constraint (B) Validity of the thermodynamic covariance principle (TCP)

Assumption (C) Introduction of the principle of least action
Geometry Non-Riemannian
Metric Symmetric piece of the transport coefficients

Affine connection �̃
μ

αβ . If fμν = 0, �̃
μ

αβ is given by Eq. (11) [or by Eq. (A4)
in the weak-field approximation and for σ � 1]
In general, �̃

μ

αβ is given by Eq. (57) reported in Ref. [1]

Nonlinear transport coefficients Solutions of Eq. (A5) in the weak-field approximation
and for σ � 1. In general, they are the solution of the
first equation in Eqs. (65) reported in Ref. [1]

Action I = ∫
[R − (�λ

αβ − �̃λ
αβ )Sαβ

λ ]
√

g dnX

Source term of the space Tμν = −S
αβ

λ

δ�̃λ
αβ

δgμν
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stems from the Einstein formula linking the probability of
a fluctuation W with the entropy production strength IS,
associated with the fluctuations from the nonequilibrium
steady state. Denoting by ξi (i = 1 . . . m) the m deviations
of the thermodynamic quantities from their equilibrium value,
Prigogine proposed that the probability distribution of finding
a state in which the values ξi lie between ξi and ξi + dξi is
given by [7]

W = W0 exp[IS/kB] where IS =
∫ F

E

dIs,

dIs

dt
≡

∫
�

σ dv (A1)

with dv denoting the spatial volume element and the inte-
gration is over the spatial volume � occupied by the system.
Here, kB is the Boltzmann constant and W0 is a normalization
constant that ensures the sum of all probabilities equals one, re-
spectively. E and F indicate the equilibrium state and the state
to which a fluctuation has driven the system, respectively. We
note that the probability distribution (A1) remains unaltered
for flux-force transformations leaving invariant the entropy
production. On the basis of the above observations, and other
concrete examples analyzed in [6,7], De Donder and Prigogine
formulated, for the first time, the concept of equivalent systems
from the thermodynamical point of view. For De Donder and
Prigogine, thermodynamic systems are thermodynamically
equivalent if, under transformation of fluxes and forces, the
bilinear form of the entropy production remains unaltered, i.e.,
σ = σ ′ [7]. Hence, in classical textbooks on linear and nonlin-
ear irreversible thermodynamics, the concepts of equivalence
of thermodynamic systems is formulated only in terms of
invariance of the entropy production under the thermodynamic
force transformations (see, for example, [26,27]).

However, the condition of the invariance of the entropy
production is not sufficient to ensure the equivalence character
of the two descriptions (Jμ,Xμ) and (J ′

μ,X′μ). Indeed, we
can convince ourselves that there exists a large class of
transformations such that, even though they leave unaltered
the expression of the entropy production, they may lead to
misinterpretations reported by Prigogine and Glansdorff [5,7].
In addition, the above De Donder–Prigogine definition is
unable to determine, univocally, the most general class of
the thermodynamic force transformations able to ensure
the equivalence among thermodynamic systems (see [26]).
These obstacles may be overcome if we take into account
one of the most fundamental and general theorems valid
in thermodynamics of irreversible processes: the universal
criterion of evolution (UCE) [4,5]. In Refs [1,8], it is shown
that to ensure the equivalent character of the two descriptions
{Xμ} and {X′μ}, it is not sufficient to require that the entropy
production of the system σ = gμνX

μXν is invariant under
the flux-force transformation, but we should also require
that the Glansdorff-Prigogine dissipative quantity remains
invariant under transformation of the thermodynamic forces
{Xμ} → {X′μ}. In the Introduction, it is shown that the most
general force transformations can be brought into the form

[see also Eq. (8)]

X
′μ = X1Fμ

(
X2

X1
,
X3

X2
, . . . ,

Xn

Xn−1

)
(t = t ′), (A2)

where Fμ are arbitrary functions of variables Xj/Xj−1 with
j = 2, . . . ,n. In Sec. II, it is shown that the TCT group is a
fiber bundle where the bundle is Sn−1

+ (the top half of the unit
sphere embedded in Rn) and the fiber is the space of maps
Sn−1

+ → Rx (the real numbers, where the real number zero is
excluded).

The thermodynamic equivalence principle leads, naturally,
to the following thermodynamic covariance principle (TCP):
the nonlinear closure equations, i.e., the flux-force relations,
must be covariant under TCT [8]. Note that the TCP is trivially
satisfied by the closure equations valid in the Onsager region.

Magnetically confined tokamak plasmas are a typical
example of thermodynamic systems, out of Onsager’s region,
where the equivalence between two different choices of the
thermodynamic forces is warranted only if both the entropy
production and the Glansdorff-Prigogine dissipative quantity
P , defined above, remain unaltered under transformation of
these thermodynamic forces [12]. We also mention that the
linear version of the TCT is actually widely used for studying
transport processes in tokamak plasmas (see, for examples, the
papers cited in the book [11] and [13]).

Assumption (C). According to this assumption, there exists
an action which is stationary with respect to arbitrary variation
of the transport coefficient and the affine connection [1]. We
can understand the reason why we may introduce this principle.
To this, first let us consider two cases: magnetically confined
plasmas and chemical reactions far from equilibrium.

In tokamak plasmas, the thermodynamic forces and the
conjugate fluxes are the parallel-generalized frictions and the
Hermitian moments, respectively [11]. By using the fluid
moment equations, in Ref. [28] it is shown that magnetically
confined plasmas tend to relax towards the mechanical
equilibrium11 following the shortest path, traced out in the
space of the parallel-generalized frictions.

In chemical reactions out of equilibrium the thermodynamic
forces and the conjugate flows are the chemical affinities (over
temperature) and the chemical velocities, respectively [7].
By using the law of mass action, in Ref. [29] it is shown
that chemical reactions tend to relax towards nonequilibrium
steady state following the shortest path, traced out in the space
of the chemical reactions (over temperature).

It is quite natural to ask the following: Why should
the thermodynamic forces, and not other quantities, obey
this law? The answer is because these variables are purely
nonconservative quantities. As known, the thermodynamic
variables can be classified as conservative or nonconservative.
A fluctuation of a conservative variable can be dissipated only
through the boundaries and, due to this severe constraint, its
evolutionary trajectory towards the steady state may be very
complex in the phase space. On the contrary, a fluctuation of
a nonconservative variable can be dissipated freely into the

11In tokamak plasmas, the mechanical equilibrium corresponds to
a nonequilibrium (generally stable) steady state.
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surrounding and its evolutionary trajectory tends to approxi-
mate that of the shortest path. As mentioned, in thermodynam-
ics, one of the most dissipative quantities is P . By noticing that
the transport coefficients depend only on the thermodynamic
forces Xμ, it turns out that also quantity P depends only on
the thermodynamic forces. Since the thermodynamic forces
are nonconservative variables (and quantity P is defined
in the space of the thermodynamic forces), it is not so
surprising to have been able to prove that, in the space of
the thermodynamic forces, the Xμ tend to follow the shortest
path for reaching the (nonequilibrium) steady state. Of course,
also the fluxes, conjugate to the thermodynamic forces, have a
similar behavior. In fact, fluxes are nonconservative quantities
and they are linked to the conjugate thermodynamic forces
through the closure relations (1).12

The above results lead to the idea of imaging that there are
true closure equations and that any other transport equations
we draw are false. This concept allows introducing an action
admitting an extremum and to enunciate the principle of least
action [30].13 If there is a change in the first order, when we
deviate the curve in a certain way, there is a change in the action
that is proportional to the deviation. So that if we calculate the
action for the false closure equations, we will get a value that
is bigger (or lower) than if we calculate the action for the
true closure equations. If we have the true path, a curve that
differs only a little bit from it will, in the first approximation,
make no difference in the action; any difference will be in the
second approximation, if we really have an extremum. The
only way that it could really be an extremum is that in the
first approximation it does not make any change. This leads to
enunciate the above-mentioned principle of least action [30].
Following the procedure indicated in the Introduction, we get
the expression of the thermodynamic action [see Eq. (10)]:

I =
∫ [

R − (
�λ

αβ − �̃λ
αβ

)
S

αβ

λ

]√
g dnX. (A3)

Action (10) is derived by imposing that [1] (i) it is constructed
with the two pieces of the transport coefficients gμν and
fμν , the affine connection �

μ
αβ , and only with the first-order

derivatives of these fields; (ii) it is invariant under TCT [this
constraint ensures the validity of the TCP, i.e., the closure
equations should be covariant under TCT, Constraint (B)]; (iii)
it is stationary when �

μ
αβ = �̃

μ
αβ , i.e., the action is stationary

only when the affine connection coincides with the expression
able to satisfy (automatically) the UCE; (iv) metric gμν and
the skew-symmetric piece of the transport coefficients fμν

12Note that if the skew-symmetric piece of the transport coefficients
fμν is zero, the thermodynamic forces and the conjugate fluxes can be
seen as the contravariant and the covariant components of the same
thermodynamic vector, respectively.

13To avoid misunderstanding, while it is correct to mention that this
postulate affirms the possibility of deriving the nonlinear closure
equations by a variational principle, it does not state that the
expressions and theorems obtained from the solutions of these
equations can also be derived by a variational principle. In particular,
the universal criterion of evolution cannot be derived by a variational
principle.

tend to the Onsager matrices as the thermodynamic system
approaches equilibrium.

The nonlinear closure equations are derived from a
variational principle. These correspond to the differential
equations that make the action (10) locally stationary for
arbitrary variations with respect to gμν and fμν , performed
independently with each other [1].

Let us now explain the physical meaning of the terms
appearing in the action (10). As known, the first piece
of Lagrangian, i.e., R

√
g, is due to geometry and it is a

generic contribution which appears whenever the curvature
of the space is constructed through the Riemann tensor (e.g.,
space-time, thermodynamic space, etc). Indeed, the vanishing
divergence of the tensor derived by the term R

√
g reflects

the geometric unchangeable property which comes from the
theorem that the boundary of a boundary is zero. As known,
this theorem is the geometrical version of the algebraic Bianchi
identity.14 On the other hand, the tensor derived by the term
(�λ

αβ − �̃λ
αβ)Sαβ

λ

√
g reflects physics. The physical meaning of

the tensor, constructed by this piece of Lagrangian, rests upon
the Noether current. In our case (i.e., the TFT), this theorem
reflects the required symmetry expressing the invariance of
the Lagrangian under TCT. The tensor derived by the Noether
current is the source of the thermodynamic space and, as shown
in [1], it vanishes in the Onsager region. Indeed, it is possible
to show that the source term of the thermodynamic space is

the second order thermodynamic tensor Tμν = −S
αβ

λ

δ�̃λ
αβ

δgμν [1],

with
δ�̃λ

αβ

δgμν denoting the variation of �̃λ
αβ with respect to gμν .

By imposing the stationary of action (10) with respect
to small variations of the transport coefficients, we get the
nonlinear transport equations [1]. These equations tend to
the Onsager transport equations when the system approaches
equilibrium. We mention that it is possible to prove that,
in the weak-field approximation, i.e., when gμν(X) � Lμν +
hμν(X), with Lμν and hμν(X) denoting the Onsager transport
coefficients matrix and the (weak) perturbation of the Onsager
matrix, respectively, and for very large values of the entropy
production (σ � 1), we have [1]

�κ
μν = �̃κ

μν = 1
2Lκη(hμν,ν + hνη,μ − hμν,η) + h.o.t., (A4)

where h.o.t. stands for higher order terms. Clearly, a transport
theory without knowledge of microscopic dynamical laws
cannot be developed. Transport theory is only but an aspect
of nonequilibrium statistical mechanics, which provides the
link between microlevel and macrolevel. This link appears
indirectly in the unperturbed matrices, i.e., the Lμν (and the
f

μν

0 ) coefficients used as an input in the equations. These
coefficients, which depend on the specific material under
consideration, have to be calculated in the usual way by
kinetic theory. The perturbation fields (i.e., the corrections
to the Onsager transport coefficients) hμν(X) depend on the

14If we consider an infinitesimal cubical coordinate volume in the
space of the thermodynamic forces, when a generic vector Aμ is
parallel transported around all the six surfaces of the cube, all the
edges are traversed twice, once in each direction. These displacements
have signs depending upon the direction in which an edge is traversed,
so all the displacements add up to zero [31].
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thermodynamic forces and for σ � 1 they are solutions of the
equations [1]

Lλκ ∂2hμν

∂XλXκ
+ Lλκ ∂2hλκ

∂XμXν
− Lλκ ∂2hλν

∂XκXμ
− Lλκ ∂2hλμ

∂XκXν

= 0 + h.o.t. (A5)

For σ ∼ 1, Eqs. (A4) and (A5) lose validity and the correct
equations become much more complex. Note that for σ � 1
we enter into the Onsager regime. Equation (A5) should be
solved with the appropriate boundary conditions. Concrete
examples can be found in Refs. [2,25], where the nonlinear
thermoelectric effect and chemical reactions out of the Onsager
region are analyzed in detail. In these cases, the boundary
conditions are obtained by imposing that, for very large
values of the gradient of the inverse of the temperature
and of the applied electric field, the electrical and heat
fluxes and the chemical flows have no privileged directions
in the thermodynamic space [2,25]. As mentioned above,
the Onsager matrix Lμν is derived by kinetic theory and
introduced, as an input, into Eq. (A5). It is worth mentioning
that for the case of chemical reactions, the solution of Eq. (A5),
subject to the appropriate boundary conditions, coincides,
exactly, with De Donder’s law of mass [25,26].

APPENDIX B: SPLITTING OF THE TCT GROUP

In this Appendix, we shall prove the validity of Eq. (18).
Denote by Sn−1 the n − 1 dimensional unit sphere represented
as a C∞ differentiable manifold, which in our case is a
submanifold embedded in Rn of the form

‖x‖ = 1. (B1)

Here, the function Rn � x 	→‖x‖ ∈ R+ is some C∞(Rn)
function having also the properties of a norm. For instance,

‖x‖ =
⎡
⎣ n∑

j=1

(xj )2kwj

⎤
⎦

1
2k

, wj > 0, k = 1,2, . . . .

Let �S
n = diff(Sn−1) be the group of diffeomorphisms of Sn−1

and let �
p
n ⊂ diff(Sn−1) be the subgroup of �S

n that preserves
the equivalence relation R induced on Sn−1 by x,y ∈Sn−1 are
equivalent iff y = ±x.

Remark 1. The quotient space Sn−1/R is a diffeomorphism
with the n − 1 dimensional projective space Pn−1, so �

p
n

is isomorphic to diff(RPn−1). For all map x → Y(x) where
Y ∈�S

n we have Y ∈�P
n iff

Y(−x) = −Y(x). (B2)

We denote by Nn the Abelian group generated by all
C∞(Sn−1) positive functions where the group operation is
defined by multiplication, with the additional symmetry
property

f (x) ∈ Nn if f (−x) = f (x).

We also denote by Gn ⊂ diff(Rn\{0}) the TCT group: the
subgroup of the group of diffeomorphisms of Rn\{0} has the
additional homogeneity property

Rn\{0} � x 	→ Yg(x) ∈ Rn\{0}, (B3)

Yg(λx) = λYg(x); λ ∈ R,g ∈ Gn. (B4)

We denote by Nn the subset (normal subgroup, see below) of
Gn having the form

Yg (x) = xrg(x), g ∈ Nn ⊂ Gn (B5)

where rg(x) is a positive C∞(Rn\{0}) homogeneous function

rg(λx) = rg(x) > 0, λ ∈ R. (B6)

We have the following proposition.
Proposition 2. Nn is a normal Abelian subgroup, and for

all g,g1,g2 ∈ Nn we have

rg1g2 (x) = rg1 (x)rg2 (x), (B7)

rg−1 (x) = 1

rg(x)
. (B8)

Proof. The group properties (B7) and ( (B8)) result
immediately, by direct calculation from the general definition
of the group product in Gn:

Yg1g2 (x) := [Yg1 ◦ Yg2 ](x), g1,g2 ∈ Gn

and by the definition (B5). The Abelian character results from
Eq. (B7). In order to prove that Nn is a normal subgroup, let
h ∈ Nn and let be g ∈ Gn an arbitrary element of the TCT
group. We have to prove that

u := ghg−1 ∈ Nn (B9)

or, equivalently, to prove that

Yu(x) = Yghg−1 (x) = [Yg ◦ Yh ◦ Yg−1 ](x) = xr(x), (B10)

where

Yh(x) = xrh(x) (B11)

with rh(x) denoting a positive C∞(Rn\{0}) homogeneous
function. Let us also denote

Yz(x) = [Yg ◦ Yh](x). (B12)

From Eqs. (B4) and (B11), we get

Yz(x) = rh(x)Yg(x) (B13)

and from Eqs. (B10), (B13), and (B4) we find

Yu(x) = [Yz ◦ Yg−1 ](x) = [rhYg ◦ Yg−1 ](x)

= [rh ◦ Yg−1 ](x)[Yg ◦ Yg−1 ](x) = r[Yg−1 (x)]x.

Observe that r[Yg−1 (x)] possesses all the properties required
by Eq. (B6), which proves Eq. (B10). �

Let us now denote by Hn the subgroup of Gn having the
properties

‖Yh(x)‖ = ‖x‖, (B14)

Yh(−x) = −Yh(x), (B15)

h ∈ Hn. (B16)
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Remark 3. Setting in Eq. (B14) ‖x‖ = 1 and by using
Eq. (B15), we note that the diffeomorphism group Hn is
isomorphic to the diff(RPn−1) where Pn−1 is the n − 1
dimensional projective space since Pn−1 can be represented
as Sn−1 with identified antipodal points.

We have the following proposition.
Proposition 4. For all g ∈ Gn we have the unique repre-

sentation

g = hgN, gN ∈ Nn, h ∈ Hn, (B17)

Yg(x) = [Yh ◦ YgN
](x). (B18)

Proof. Existence of the representation: note that by setting

Yh(x) = Yg(x)‖x‖
‖Yg(x)‖ , (B19)

YgN
(x) = xrN (x), (B20)

rN (x) = ‖Yg(x)‖
‖x‖ , (B21)

Eq. (B18) is verified and rN (x) has the property (B6). In
order to prove uniqueness, we consider that in Eq. (B18)
Yh ∈ Nn, with properties (B14) and (B15), but otherwise
arbitrary, and YgN

(x) = xr(x) with r(x) an arbitrary smooth,
homogeneous function of zero degree. We rewrite Eq. (B18)
by using Eq. (B4):

Yg(x) = Yh[xr(x)] = r(x)Yh(x). (B22)

Since r(x) > 0 we have

‖Yg(x)‖ = |r(x)|‖YgN
(x)‖ = r(x)‖x‖ (B23)

which leads to

r(x) = rh(x) = ‖Yg(x)‖
‖x‖ . (B24)

From Eqs. (B24) and (B23) we obtain Eq. (B19), so the proof
of uniqueness of the representation (B17). �

Irrespective to the choice of the norm in the definition of the
subgroup Hn, we may easily convince ourselves that they are
all equivalent up to a group isomorphism. For easy reference,
we recall the semidirect product definition and properties
[32–35].

Theorem 5. Let N,H subgroups of the group G, where
N is a normal subgroup. Then, the following statements are
equivalent: (a) G = NH and N ∩ H = {e}. (b) For all g ∈ G

there exists a unique representation g = nh with n ∈ N and
h ∈ H . (c) For all g ∈ G there exists a unique representation
g = hn with n ∈ N and h ∈ H . (d) The natural embedding
i : H → G, composed with the natural projection p : G →
G/N , yields an isomorphism ψ : H → G/N , ψ = p ◦ i with
inverse χ̂ : G/N → H . (e) There exists a homomorphism
χ : G → H that is the identity on H and whose kernel is N .

If one of the above properties are verified, G is said to
split in a semidirect product of the subgroups H and normal
subgroup N . In this case, the representations of the group G

are related to the representations of the subgroups H and N .
By using Theorem 5 and Propositions 4 and 2, we finally

get the following theorem.

Theorem 6. The TCT group Gn is a semidirect product of
the Abelian normal subgroup Nn and the subgroup Hn:

Gn = Nn
� Hn. (B25)

APPENDIX C: CALCULATION OF THE NOETHER
CURRENT

We sketch in some detail the derivation of Eq. (34). From
action (10), we have

I =
∫ [

R − (
�λ

αβ − �̃λ
αβ

)
S

αβ

λ

]√
g dnX =

∫
L dnX (C1)

with

L ≡ [
R − (

�λ
αβ − �̃λ

αβ

)
S

αβ

λ

]√
g. (C2)

For easy reference, we report the expression of the Noether
current

jμ
α = ∂L

∂�A
μ

Lξα
�A − Lξμ

α with

�A = (
gμν,�

κ
μν

)
(α = 1, . . . ,N). (C3)

The first term appearing in Noether’s current (C3), i.e.,
∂L/∂�A

μ , is computed directly from Eqs. (11) and (C2). We
get

∂L

∂gκν,λ

=
[

1

2
gακSνκ

α + 1

2
gανSκλ

α − 1

2
gαλSκν

α + 1

2σ
XαXλSνκ

α

− XκXλ

2(n + 1)σ
Sαν − XνXλ

2(n + 1)σ
Sακ

+ 1

2σ
XαXλ

(
�κ

αβgβν + �ν
αβgακ

)
− Xλ(Xν + Xκ )

2(n + 1)σ

(
�α

αβgβκ + �κ
αβgαβ

) − 1

2σ

×
(

XβXλgκν − XνXλ

n + 1
gβκ−XκXλ

n + 1
gβν

)
�α

αβ

]√
g,

∂L

∂�
η

κη,λ

=
(

1

2
gκλδν

η + 1

2
gνλδκ

η − gκνδλ
η

)√
g. (C4)

The Lie derivatives of the fields �A = (gμν,�
μ
νκ ) read as

LδX(α)εαgμν = [
∂μ

(
δXλ

(α)ε
α
)]

gλν + [
∂ν

(
δXλ

(α)ε
α
]
gλμ

+ δXλ
(α)ε

αgμν,λ,

LδX(α)εα�μ
νκ = [

∂κ (δXη

(α)ε
α)

]
�μ

νη + [
∂ν(δXη

(α)ε
α)

]
�μ

ηκ

− [
∂β(δXμ

(α)ε
α)

]
�β

νκ + δXλ
(α)ε

α�
μ
νκ,λ

+ ∂2
νκ

(
δX

μ

(α)ε
α
)

(C5)

with displacement δX(α) coinciding with ξα (i.e., δX(α) ≡
ξα). Note that, in literature, the Lie derivative of the affine
connection is referred to as the pseudo-Lie derivative due to
the presence of the last term in the second equation of Eq. (C5)
(i.e., the second derivative of the infinitesimal vector δX

μ

(α)ε
α).

Now, taking into account Eqs. (22)–(25), in the limit of σ � 1,
we get Eq. (34).
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