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Minimization of the ground state of the
mixture of two conducting materials in a small
contrast regime
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Communicated by H. Ammari

We consider the problem of distributing two conducting materials with a prescribed volume ratio in a given domain so as
to minimize the first eigenvalue of an elliptic operator with Dirichlet conditions. The gap between the two conductivities
is assumed to be small (low contrast regime). For any geometrical configuration of the mixture, we provide a complete
asymptotic expansion of the first eigenvalue. We then consider a relaxation approach to minimize the second-order
approximation with respect to the mixture. We present numerical simulations in dimensions two and three to illustrate
optimal distributions and the advantage of using a second-order method. Copyright © 2016 John Wiley & Sons, Ltd.
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1. Introduction

Problems of minimizing the ground state of composite materials appear frequently and are of interest in applications. We refer to
Henrot [1], Cox and McLaughlin [2, 3], Cox and Lipton[4], and included references. In this article, we consider the following problem.
Given a domain � and a subdomain B and two nonnegative numbers ˛ and ˇ, we define the ground state �.B/ of the mixture as the
infimum of the � such that there exists 0 ¤ u such that

� div ..˛ C .ˇ � ˛/�B/ru/ D �u in� and u D 0 on @� . (1.1)

In other words, �.B/ is the smallest eigenvalue of the operator �div ..˛ C .ˇ � ˛/�B/r ./ on H1
0.�/. We are then interested in mini-

mizing �.B/ with respect to B among the subdomains of � of given volume. In general, it is well known that this problem is not well
posed: the infimum is not usually reached at a given B, and we have to consider a relaxed version corresponding to a situation of
homogenization [4].

Nevertheless, when� is a ball, the infimum is reached on a radially symmetric domain B� [5],[6]. In the recent years, much attention
has been put on the determination of the corresponding B�. First, Conca et al. conjectured in [7] that the global minimizer B� in
� should be a concentric ball of the prescribed volume. The conjecture was motivated by the situation in dimension one and by
numerical simulations. Then, Dambrine and Kateb reinforced the conjecture by an order two sensitivity analysis in [8] by proving that
the concentric ball of prescribed volume is a local strict minimizer of �.B/.

However, Conca et. al. proved in [9] that the conjecture is false. Their strategy was the following. They consider the case of small
contrast, that is to say, ˛ and ˇ such that the difference of both conductivities is small: ˇ D ˛.1 C "/ and provide the first-order
asymptotic expansion �1.B/ of �.B/ with respect to the small parameter " for any admissible domain B � �. Then, they minimize the
new objective functional �1.B/ with respect to B and observe that the minimizer B1 of this approximation is not always the concentric
ball of prescribed volume. Finally, thanks to a precise estimate of the remainder in the approximation, they prove that �.B1/ < �.B�/.

Finally, Laurain proved in [10] that the global minimum of the first eigenvalue in low contrast regime is either a centered ball or the
union of a centered ball and of a centered ring touching the boundary, depending on the prescribed volume ratio between the two
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materials. Thus, the small contrast case is well understood when the domain is a ball. Notice that in the large contrast case and the case
of some volume defects, the asymptotic expansion can be found in [11, 12].

We aim in this work to make a precise analysis of the small contrast case in general domains. In Section 2, to begin with, we charac-
terize completely the full asymptotic expansion of �.B/with respect to the small parameter ". Subsequently, we obtain a second-order
approximation �2.B/ of �.B/ with uniform estimates for the remainder, uniform with respect to B. This means that minimizers for
the second-order approximation �2.B/ are approximate minimizers for the original objective functional �.B/. With this motivation, in
Section 3, we study the problem of minimizing �2. Unlike the first-order approximation �1.B/, the minimization problem for �2.B/ is
not, a priori, well posed and thus, qualitatively, resembles more closely the minimization problem for �.B/. A relaxed formulation for
the minimization problem for �2.B/ is obtained using H-measures. It can be seen that the relaxed problem for �2.B/ has a much more
simple aspect compared with the relaxed problem for �.B/ obtained in Cox and Lipton [4]. Then, in Section 4, the optimality conditions
for the relaxed problem for �2.B/ are obtained and the minimization problem is studied numerically using a descent algorithm. Finally,
we present a numerical comparison of optimal solution obtained for the first and second order.

2. Asymptotic expansion of the first eigenvalue with respect to the contrast

We consider the low contrast regime, that is to say, ˛ and ˇ such that the difference of both conductivities is small: ˇ D ˛.1C "/. We
shall denote the first eigenvalue in the problem (1.1) by �".B/ for a given distribution B of the material with conductivity ˇ and a given
value of the contrast parameter " > 0.

The existence of an asymptotic development for �".B/, for given B, is classical from perturbation theory of simple eigenvalues. By the
Krein–Rutman theorem, the first eigenvalue �".B/ in (1.1) is simple. The corresponding normalized eigenfunction, with unit L2 norm
and taken to be nonnegative, will be denoted by u".B/. So, by classical results from perturbation theory (see, for instance, Theorem
3, Chapter 2.5 of Rellich [13]), for a given B, the map " 7! .�", u"/ is analytic in .R, H1

0.�//. Therefore, there are sequences .�i/ of real
numbers and .ui/ of functions in H1

0.�/ such that

�" D

1X
iD0

�i"
i and u" D

1X
iD0

ui"
i . (2.1)

As a consequence, there are constants Cn.B/ such thatˇ̌̌̌
ˇ�" �

nX
iD0

�i"
i

ˇ̌̌̌
ˇ � Cn.B/"

nC1 and

�����u" �
nX

iD0

ui"
i

�����
H1

0

� Cn.B/"
nC1.

In this section, we will first identify the coefficients �i , ui then prove that the constants Cn.B/ can be taken uniform in B. This will serve
in obtaining an approximate model problem for the eigenvalue minimization problem.

2.1. Computation of the coefficients in (2.1)

The terms in the asymptotic expansions in (2.1) may be identified, formally, by injecting the expansions in the equations defining
.�", u"/, that is,

�div

 
˛.1C �B"/r

 
1X

iD0

ui"
i

!!
D

 
1X

iD0

�i"
i

! 
1X

iD0

ui"
i

!
in�,

1X
iD0

ui"
i D 0 on @�,

Z
�

 
1X

iD0

ui"
i

!2

D 1.

and we obtain, then, the following relationships by identifying the coefficients of the same order in the previous power series.8̂̂<̂
:̂
�˛�u0 � �0u0 D 0 in�

u0 D 0 on @� 8i � 0,Z
�

u2
0 D 1 .

(2.2)

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:
�˛�ui � �0ui D div .˛�Brui�1/C

iX
kD1

�kui�k in� 8i � 1,

ui D 0 on @� 8i � 0,
iX

kD0

Z
�

ukui�k D 0 8i � 1.

(2.3)
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It is possible to rigorously justify the relations by using the expansions (2.1) in the weak formulation of the partial differential
equation in (1.1). We then have an iterative procedure to compute the pair .�i , ui/.

The case: i D 0. By definition, one has

� ˛�u0 � �0u0 D 0 in� (2.4)

u0 D 0 on @�. (2.5)

Hence, the couple .�0, u0/ is an eigenpair of �˛� with homogeneous Dirichlet boundary condition. Clearly, u0 � 0 in � because
u" ! u0 as "! 0, and the eigenmodes u" are nonnegative. Now, by the Krein–Rutman theorem, because all eigenmodes change sign
except those associated with the first eigenvalue, we obtain that �0 is the ground state of �˛�with Dirichlet boundary condition and
u0 is the positive eigenmode with L2-norm 1.

Now assume that, for a given i, we have knowledge of all the �k , uk for k < i. We now then treat
The case k D i. We know that ui satisfies the equation

�˛�ui � �0ui D div .˛�Brui�1/C

iX
kD1

�kui�k in�,

ui D 0 on @�,

(2.6)

Notice that the right-hand side has the unknown quantity �i . We shall first obtain an expression for �i in terms of �k ’s and uk ’s for
k < i, which have been assumed to be calculated previously. The compatibility condition, the Fredholm alternative for Equation (2.6),
imposes the orthogonality of the right-hand side of the former equation to the kernel of�˛���0I with Dirichlet boundary condition,
which is spanned by u0 Z

�

 
div .˛�Brui�1/C

iX
kD1

�kui�k

!
u0 D 0.

This gives the expression for the eigenvalue �i

�i D

Z
B
˛rui�1 � ru0 �

i�1X
kD2

Z
�

�i�ku0uk (2.7)

taking into account the fact that the L2 norm of u0 is 1 and u0 and u1 are orthogonal. In the sequel, whenever there is a sum whose
upper limit is less than the lower limit, we shall adopt the convention that the sum is 0.

Now, to end, we note that ui is not completely determined by Equation (2.6), but only up to the kernel of �˛� � �0I. For i D 0,
the nonnegativity of u0 and the normalization condition (the third relation in (2.2)) determined uniquely the u0. For general i, having
determined uniquely the uk for k < i, the term ui is determined uniquely using the normalization condition (the third relation in (2.3),
which can be written as Z

�

uiu0 D �
1

2

i�1X
kD1

Z
�

ukui�k . (2.8)

and should be understood as the orthogonality relation
R
�

uiu0 D 0 when i D 1.

2.2. Uniform estimate of the remainders

We seek to estimate the remainder in the expansions (2.1), uniformly in B. Our main results in this section are the following estimates.

Proposition 2.1
There exists a constant C, independent of B, such that

j�" � .�0 C "�1/j �

r
�0

˛
C"2. (2.9)

Proposition 2.2
There is a constant C > 0 independent of B such that

j�" �
�
�0 C "�1 C "

2�2

�
j � 2 C"3

r
�0

˛
. (2.10)

The main tool we use for the estimation of the remainders is the notion of h � quasimode with h D O."k/, for k D 1, 2 in the sequel.
The notion of quasimode is defined as follows.

Definition 2.3
Let A be a self-adjoint operator on a Hilbert space H with domain D.A/. For a fixed h > 0, a pair .�, u/ 2 R � D.A/ n f0g is called an
h-quasimode if we have
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k.A � �/ukH � hkukH.

The interest of such a definition relies on the following fact: if .�, u/ is an h-quasimode of A, then the distance from � to the spectrum
of A is less than h and the distance between u and certain eigenspaces of A can be estimated (See Lemma 2-2 in [14]). We will prove
that our truncated power series expansions are quasimodes in the Hilbert space H�1.�/.

2.2.1. Remainder of order one. The first step is to prove a uniform bound in B of kukH1.�/.

Lemma 2.4
There exists C, which is independent of B, such that

ku1kH1
0.�/
� C and j�" � �0j � C". (2.11)

Proof of Lemma 2.4
By using (2.7), with i D 1, we have the following expression and uniform bounds for �1.B/

�1 D

Z
B
˛jru0j

2 � ˛

Z
�

jru0j
2 D �0 . (2.12)

By (2.3), for i D 1, u1 satisfies the following:

� ˛�u1 � �0u1 D div .˛�Bru0/C �1u0 in�, (2.13)

u1 D 0 on @�, (2.14)Z
�

u0u1 D 0. (2.15)

After multiplying the first relation by u1 and integrating over�, by integration by parts, we obtainZ
�

˛jru1j
2 � �0

Z
�

u2
1 D �

Z
B
˛ru0 � ru1.

By the characterization of the spectrum of an elliptic self-adjoint operator using the Rayleigh’s quotient, we know that for all v in H1
0.�/

orthogonal to the first eigenfunction u0, it holds that

�1

Z
�

v2 � ˛

Z
�

jrvj2, (2.16)

where �1 > �0 is the second eigenvalue of �˛� in H1
0.�/. We have used the superscript here to distinguish the second eigenvalue �1

from �1 which appears in the second term of the expansion (2.1). Because u1 is orthogonal to u0, it follows using (2.16) that

˛

�
1 �

�0

�1

�Z
�

jru1j
2 �

Z
�

˛jru1j
2 � �0

Z
�

u2
1 � ˛ku0kH1

0.�/
ku1kH1

0.�/
(2.17)

where at the end, we have used (2.13) and followed it by a simple estimation. We have obtained the upper bound for u1. Finally, using
the variational characterization of the first eigenvalue for elliptic self-adjoint operators, we obtain

�0 D

Z
�

˛jru0j
2 �

Z
�

˛jru"j
2 �

Z
�

˛.1C �B"/jru"j
2 D �"

�

Z
�

˛.1C �B"/jru0j
2 � .1C "/

Z
�

˛jru0j
2 D .1C "/�0

which allows us to conclude that j�" � �0j � C".

To use the quasimode strategy, we compute

�div .˛.1C �B"/r.u0 C "u1// � .�0 C "�1/.u0 C "u1/

D �˛�u0 � �0u0 C " .�˛�u1 � �0u1 � �1u0 � div .˛�Bru0//

C "2 .��1u1 � div .˛�Bru1//

D "2 .��1u1 � div .˛�Bru1//

(2.18)

where we have used (2.4) and (2.6) with i D 1.
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Proof of Proposition 2.1
We need a uniform bound on the normalized right-hand side: �1u1 C div .˛�Bru1/. Obviously, this term is only defined in H�1.�/;
hence, we have to make the estimation in the H�1.�/ norm. To that end, we use a test function ' 2 H1

0.�/ and compute the
duality product:

h�div .˛�Bru1/,'iH�1.�/�H1
0.�/
D

Z
�

˛�Bru1 � r' D

Z
B
˛ru1 � r'

� ˛ku1kH1
0.�/
k'kH1

0.�/
.

This proves that

kdiv ˛.�Bru1/kH�1.�/ � ˛ku1kH1
0.�/

. (2.19)

And

h�1u1,'iH�1.�/�H1
0.�/
D

Z
�

�1u1' � �1ku1kL2.�/k'kL2.�/

� �1ku1kH1
0.�/
k'kH1

0.�/
� Ck'kH1

0.�/

using the estimation (2.12) and the fact that u1 is bounded independently of B proved in Lemma 2.4. This gives

k�1u1kH�1.�/ � C . (2.20)

Hence, we obtain from (2.18), using (2.19) and (2.20) that there exists a constant C independent of B such that

k � div .˛.1C �B"/r.u0 C "u1// � .�0 C "�1/.u0 C "u1/kH�1.�/ � C"2 (2.21)

Moreover, using u0 2 H1
0 as test function in the definition of the H�1-norm of u0 C "u1, we obtain

ku0 C "u1kH�1.�/ D sup
'2H1

0.�/

hu0 C "u1,'iH�1,H1
0

k'kH1
0.�/

D sup
'2H1

0.�/

Z
�

.u0 C "u1/'

k'kH1
0.�/

�

Z
�

.u0 C "u1/u0

ku0kH1
0.�/

D

Z
�

u2
0�Z

�

jru0j
2

� 1
2

D

s
˛

�0
.

(2.22)

Hence, by (2.21) and (2.22), we obtain

k � div .˛.1C �B"/r.u0 C "u1// � .�0 C "�1/.u0 C "u1/kH�1.�/ �

r
�0

˛
C"2 ku0 C "u1kH�1.�/

As a consequence of the theory of quasimode, there is an element of the spectrum of the self-adjoint operator �div.˛.1C �B"/r�/

in H�1.�/ at distance at most
q
�0
˛

C"2 from �0 C "�1. To finish, we need to argue that this element of the spectrum is �", the first
eigenvalue of �div .˛.1C �B"/r�/. If these were higher eigenvalues, then as " ! 0, they would tend to a higher eigenvalue of the
operator �˛�. But this would lead to a contradiction, because this sequence is within a distance O."2/ from the sequence �0 C "�1

which tends to �0, the first eigenvalue of�˛�, which is simple.

2.2.2. Remainder of order two. We first prove a uniform upper bound for �2 and u2.

Lemma 2.5
There exists C, which is independent of B, such that

ku2kH1
0.�/
� C and �2 � C. (2.23)

Proof of Lemma 2.5
First, notice that by (2.7) applied with i D 2, we obtain

�2 D

Z
B
˛ru0 � ru1 � ˛ku0kH1

0.�/
ku1kH1

0.�/
� C (2.24)

where C is independent of B by the estimate (2.11). In a second step, we search a uniform estimate for u2. To that end, we follow the
strategy already used to estimate u1. The main change is that u2 is not orthogonal to u0, so the adaptation is not straightforward. To
overcome the difficulty, we introduce the combination u2 C au0 where
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a D �

Z
�

u2u0

is chosen such that u2 C au0 is L2.�/-orthogonal to u0.
By (2.8) for i D 2, we have Z

�

u2u0 D �
1

2

Z
�

u2
1 (2.25)

which gives

a D
1

2

Z
�

u2
1 �

1

2
ku1k

2
H1.�/

� C (2.26)

with C independent of B (by (2.11)). We now estimate u2 C au0. For this, we multiply Equation (2.4) by a and add it to Equation (2.6)
to obtain

�˛�.u2 C au0/ � �0.u2 C au0/ D div .˛�Bru1/C �1u1 C �2u0, in�

u2 C au0 D 0 on @�

Using u2 C au0 as a test function, it follows that

˛

Z
�

jr.u2 C au0/j
2 � �0

Z
�

.u2 C au0/
2

D �

Z
B
˛ru1 � r.u2 C au0/C

Z
�

�1u1.u2 C au0/C

Z
�

�2u0.u2 C au0/

�
�
˛ku1kH1

0.�/
C �1ku1kH1

0.�/
C j�2j ku0kH1

0.�/

�
ku2 C au0kH1

0.�/

� C ku2 C au0kH1
0.�/

(2.27)

where C is independent of B, by estimates (2.11), (2.12), and (2.24). Because u2 C au0 is orthogonal to u0, similarly as in the estimation
(2.17), we conclude that u2 C au0 is bounded in H1

0.�/ uniformly in B. Therefore,

ku2kH1
0.�/
� C C aku0kH1

0.�/
� C 0

with C 0 independent of B by estimate (2.26).

Proof of Proposition 2.2
We compute

� div
�
˛.1C �B"/r.u0 C "u1 C "

2u2/
�
� .�0 C "�1 C "

2�2/.u0 C "u1 C "
2u2/

D� ˛�u0 � �0u0 C " .�˛�u1 � �0u1 � �1u0 � div .˛�Bru0//

C "2 .�˛�u2 � �0u2 � �1u1 � �2u0 � div .˛�Bru1//

C "3 .��1u2 � �2u1 � div .˛�Bru2//C "
4.�2u2/

D"3 .��1u2 � �2u1 � div .˛�Bru2//C "
4.�2u2/

(2.28)

using Equations (2.4) and (2.6) for i D 1, 2. Then, as

k � div .˛�Bru2/kH�1.�/ � ˛ ku2kH1
0.�/

,

it follows from Equation (2.28) and estimates (2.11), (2.12), and (2.23), that for "� 1,

kdiv
�
˛.1C �B"/r.u0 C "u1 C "

2u2/
�
C .�0 C "�1 C "

2�2/.u0 C "u1 C "
2u2/kH�1.�/

�
�
.˛ C �1/ku2kH1

0.�/
C j�2j ku1kH1

0.�/

�
"3 C .j�2j ku2kH1

0.�/
/"4

� C1"
3 C C2"

4 � C"3,

(2.29)

Moreover, one has

ku0 C "u1 C "
2u2kH�1.�/ D sup

'2H1
0.�/

Z
�

.u0 C "u1 C "
2u2/'

k'kH1
0.�/

�

Z
�

.u0 C "u1 C "
2u2/u0

ku0kH1
0.�/

D

Z
�

u2
0 C "

2

Z
�

u0u2

ku0kH1
0.�/

.

Then, using relation (2.25), we obtain
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ku0 C "u1 C "
2u2kH�1.�/ �

1 �
"2

2

Z
�

u2
1

ku0kH1
0.�/

�
1 � "2

2 C2

ku0kH1
0.�/

,

because u1 is bounded in H1
0.�/ and consequently, in L2.�/ as shown in (2.11). For " < 1

C , we obtain

ku0 C "u1 C "
2u2kH�1.�/ �

1

2ku0kH1
0.�/

D
1

2

r
˛

�0
(2.30)

By (2.29) and (2.30), we then have for " < 1=C small enough

k�div
�
˛.1C �B"/r.u0 C "u1 C "

2u2/
�
� .�0 C "�1 C "

2�2/.u0 C "u1 C "
2u2/kH�1.�/

� 2 C"3

r
�0

˛
ku0 C "u1 C "

2u2kH�1.�/.
(2.31)

By the quasimode argument, there is an element of the spectrum of�div .˛.1C�B"/r�/ in H�1.�/whose distance from�0C"�1C"
2�2

is at most 2 C"3
q
�0
˛

. By similar arguments as those at the end of Proposition 2.1, one concludes that such an element is precisely �",
the first eigenvalue of�div.˛.1C �B"/r�/.

3. Minimization of the second-order approximation of �.B/

Although our main interest is to minimize the ground state �" with respect to the set B, given " > 0, the general feeling is that the
optimization problem is not well posed. A relaxed problem, which is not so simple to describe, was obtained in Cox and Lipton [4].
In order to understand the nature of the problem for small contrasts, Conca et al. used a first-order approximation [9]. Indeed, after
proving a slightly weaker estimate as compared with Proposition 2.1 using a more ad hoc method of estimation, they conclude thatˇ̌̌̌

inf
B
�".B/ � �0 � " inf

B
�1.B/

ˇ̌̌̌
� C"

3
2 . (3.1)

This permits to obtain approximate minimizers for the eigenvalue functional �" by minimizing, instead, the functional �0C"�1. This is a
well-posed problem, and because the original problem may not be well posed, it may fail to capture some of the features of the original
minimization problem. With this motivation, we go further and do a second-order approximation. Indeed, Proposition 2.2 allows us to
conclude that ˇ̌̌̌

inf
B
�".B/ � inf

B
.�0 C "�1.B/C "

2�2.B//

ˇ̌̌̌
� C"3 . (3.2)

Thus, we can obtain approximate minimizers for the functional �", for given " > 0 small enough, by minimizing the functional �0 C

"�1 C "
2�2, which is a second-order approximation of �". We then study the following problem:

minimize f�0 C "�1.B/C "
2�2.B/ ; B 	 �, jBj D mg, 0 < m < j�j, m fixed

or equivalently

minimize f�1.B/C "�2.B/ ; B 	 �, jBj D mg,

because �0 is independent of B and " > 0 is fixed. From the expressions for �1.B/,�2.B/ computed in the previous section, we finally
consider the problem

minimize F.�/ :D ˛

Z
�

�.ru0 C "rv.�// � ru0

over the class of admissible domains represented by their characteristic functions

Uad :D f� ; � D �B, B 	 �, jBj D mg 	 L1.�/,

and v D v.�/2 H1
0.�/ satisfies

� ˛�v � �0v D �1.�/u0 C div .˛�ru0/, (3.3)

�1.�/ :D

Z
�

˛�jru0j
2, (3.4)

v ? u0 in L2.�/.
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3.1. Relaxation of the minimization problem

The functional F is lower-semicontinuous for the weak-
 topology on L1.�/, being quadratic with respect to �, but the admissible
set Uad is not closed for this topology. In order to have a well-posed minimization problem, we need to work on the closure Uad and
calculate the lower semicontinuous envelope of F with respect to the weak-
 topology on L1.�/.

NF.�/ :D infflim inf F.�n/ : �n * � in L1.�/�g, � 2 Uad ,

where

Uad D Uad
L1.�/�

D f� 2 L1.�/ ; 0 � � � 1,

Z
�

� D mg.

We shall follow the general procedure to compute NF and obtain the following theorem.

Theorem 3.1
For any � 2 Uad , we have

NF.�/ D ˛

Z
�

� Œru0 C "rv1.�/� .ru0 � "�.1 � �/jru0j
2,

where v1.�/2 H1
0.�/ is solution of

� ˛�v � �0v D �1.�/u0 C div .˛�ru0/, (3.5)

�1.�/ :D

Z
�

˛� jru0j
2, (3.6)

v ? u0 in L2.�/.

The proof of Theorem 3.1 will use some results on H-measures. This tool was introduced by Gérard [15] and Tartar [16] to understand
the obstruction to compactness via a matrix of complex-valued Radon measures .�ij.x,
xi//1�i,j�p on RN � SN�1 on the space-frequency domain associated with weakly convergent sequences. We refer to the two previous
references for a complete presentation of H-measures and to [17] for their applications in small contrast homogenization. We will need
the two following results (Theorem 2-2 and Lemma 2-3 in [17]).

Theorem 3.2 ([17])
Let u" be a sequence which weakly converges to 0 in L2.RN/p. There exists a subsequence and an H-measure � such that

lim
"!0

Z
RN

q.u"/.Nu" D

Z
RN

Z
SN�1

pX
i,jD1

qij.x, 	/�ij.dx, d	/

for any polyhomogeneous pseudo-differential operator q of degree 0 with symbol .qij.x, 	//.

We shall also use the following lemma due to Kohn and Tartar that deals with the special case of sequences of characteristic functions.

Lemma 2.6 ([17])
Let�" be a sequence of characteristic functions that weakly-
 converges to some � in L1.�, Œ0, 1�/. Then the corresponding H-measure
� for the sequence .�" � �/ is necessarily of the type

�.dx, d	/ D �.x/.1 � �.x//
.dx, d	/,

where, for a given x, the measure 
.dx, d	/ is a probability measure with respect to 	 .
Conversely, for any such probability measure 
 2 P.�,SN�1/, there exists a sequence �" of characteristic functions which weakly-


converges to � 2 L1.�, Œ0, 1�/ such that �.1 � �/
 is the H-measure of .�" � �/.

Proof of Theorem 3.1
Let � 2 Uad . Let f�ng be a sequence in Uad such that

�n
?
* � 2 Uad . (3.7)

We then analyze the limit of

F.�n/ D ˛

Z
�

�njru0j
2„ ƒ‚ …

An

C˛ "

Z
�

�nrvn � ru0„ ƒ‚ …
Bn

,

with vn :D v.�n/2 H1
0.�/ such that

� ˛�vn � �0vn D �1.�n/u0 C div .˛�nru0/, (3.8)

�1.�n/ D

Z
�

˛�njru0j
2,

vn ? u0 in L2.�/. (3.9)

Step 1: Passing to the limit in An is easy. By the convergence (3.7), we have
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An D �1.�n/ �! ˛

Z
�

� jru0j
2 D �1.�/. (3.10)

Step 2: Now we study the limit of the sequence vn. By (3.9), we know that�
1 �

�0

�1

�Z
�

jrvnj
2 � C,

using a similar estimation as (2.17). Then kvnk
2
H1

0
� C and hence,

vn * v1 D v1.�/ weak-H1
0.�/

up to a subsequence. Because H1
0.�/ is compactly embedded in L2.�/,

vn �! v1 in L2.�/

up to a subsequence. Therefore, we can pass to variational limit from (3.8) to obtain

� ˛�v1 � �0v1 D �1.�/u0 C div .˛ �ru0/. (3.11)

Moreover, passing to the limit from (3.9), we have

v1 ? u0 in L2.�/,

accordingly, because ku0kL2 D 1, v1 D v1.�/ is uniquely defined in (3.11) and v1 depends (linearly) only on � and not on the
convergent subsequence of fvng.
Step 3: The main difficulty is to pass to the limit in Bn, which is quadratic with respect to �n. First, we can rewrite Bn as

Bn D

Z
�

�nrwn � ru0 C

Z
�

�nrzn � ru0, (3.12)

wn, zn2 H1
0.�/ such that

� ˛�wn D �0vn C �1.�n/u0, (3.13)

��zn D div .�nru0/. (3.14)

On the one hand, because

�0vn C �1.�n/u0 �! �0v1 C �1.�/u0 in L2.�/,

(3.13) implies

wn �! w in H1
0.�/,

where w2 H1
0.�/ satisfies the equation

�˛�w D �0v1 C �1.�/u0

and, in consequence, Z
�

�nrwn � ru0 �!

Z
�

� rw � ru0. (3.15)

The difficulty is now to calculate the limit in the second term of Bn in (3.12). We observe that div �nru0 * div �ru0 weakly in H�1.�/,
and because .��/�1 is a isomorphism from H�1.�/ into H1

0.�/, we obtain L2-weak convergence of rzn. However, this is not enough
for passing to the limit in the second term of Bn because, in the product �nrzn, both sequences �n and rzn only converge weakly. For
handling this convergence problem, we use the results on H-convergence stated before.
Step 4: For simplicity if� is Rn, in view of Theorem 3.2 and Lemma 2.6, the limit of the second term in (3.12) becomes

lim
n!1

Z
RN
�nrzn � ru0 D

Z
RN
� Q.�/ � ru0 �

Z
RN
�.1 � �/Mru0 � ru0,

where the pseudo-differential operator Q is defined in Lemma A1 (in the Appendix), and its symbol has been calculated therein and

M D

Z
SN�1

	 ˝ 	 
.x, d	/,


 D 
.x, 	/ is a probability measure with respect to 	 that depends on the sequence f�ng and Q.�/ D rz with z 2 H1
0.�/ verifies the

equation

��z D div .� ru0/.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 3549–3564

3
5

5
7



C. CONCA ET AL.

Step 5: But we need to work on � bounded. To that end, we use a localization procedure. This argument proceeds as follows. Let .�k/

be a sequence of smooth compactly supported functions in C10 .RN/ such that supp �k � � for all k and �k converges to 1 strongly in
L2.�/. Then the second term on the right-hand side of (3.12) can be written asZ

�

�nrzn � ru0 D

Z
RN
�k�nrzn � ru0 C

Z
RN
.1 � �k/�nrzn � ru0. (3.16)

Note that the last term in (3.16) converges to 0 uniformly with respect to n when k tends to infinity because zn is bounded in H1.�/.
We now fix k and consider another smooth compactly supported function k 2 C10 such that k � 1 inside the support of �k . The first
term on the right-hand side of (3.16) is thus equal to Z

�

�k. k�n/r. kzn/ � ru0. (3.17)

Rewriting the equation (3.14) in RN as

��. kzn/ ��..1 �  k/zn/ D div . k�nru0/C div ..1 �  k/�nru0/,

we can show that the function  kzn is the sum of Qzn, Lzn on the support of �k being Qzn, Lzn solutions of the following equations in the
whole space RN

��Qzn D div  k�nru0 in RN,

�Lzn D div znr k Cr k � .�nru0 Crzn/ in RN.

We then notice that
div  k�nru0 * div  k�ru0 weakly in H�1.RN/ and

div znr k Cr k � .�nru0 Crzn/! div zr k Cr k � .�ru0 Crz/ strongly in H�1.RN/

because this last term clearly converges weak-L2.�/. Using the fact that .��/�1 is an isomorphism from H�1.RN/ into H1.RN/, we thus
have

Qzn * Qz weakly in H1.RN/

and
Lzn ! Lz strongly in H1.RN/

where Qz, Lz verify
��Qz D div  k�ru0 in RN,

�Lz D div zr k Cr k � .�ru0 Crz/ in RN.

Obviously z D QzC Lz on the support of �k .
Now noting that the integral (3.17) has close relationship with the formulation of the H-measures, we see that as in the whole space

case,rQzn depends linearly on . k�n/ through the pseudo-differential operator Q of symbol (A2). Therefore, applying Theorem 2 of [15],
we conclude that the limit of the first term on the right-hand side of (3.16) is equal to

lim
n!1

Z
RN
�k. k�n/r.Lzn C Qzn/ � ru0 D

Z
RN
�k. k�/rLz � ru0 C lim

n!1

Z
RN
�k. k�n/rQzn � ru0

D

Z
RN
�k. k�/rLz � ru0 C

Z
RN
�k. k�/rQz � ru0 �

Z
RN
�k k�.1 � �/Mru0 � ru0

D

Z
�

�k�rz � ru0 �

Z
�

�k�.1 � �/Mru0 � ru0.

Finally, making k tends to1, we obtain the desired bounded domain case.
We go back to the calculation of the limit in (3.12). Indeed, gathering the limit (3.15) and limit calculated in the previous discussion,

it follows that

lim
n!1

Bn D

Z
�

� rv1.�/ � ru0 �

Z
�

�.1 � �/

Z
SN�1

.	 � ru0/
2 
.dx, d	/. (3.18)

From (3.10) and (3.18), finally, one has

lim
n!1

F.�n/ D lim
n!1

An C " lim
n!1

Bn

D
1

˛
�1.�/C "

Z
�

� rv1.�/ � ru0 � "

Z
�

�.1 � �/

Z
SN�1

.	 � ru0/
2 
.dx, d	/.

Step 6: Now we calculate
NF.�/ D inf

�
lim F.�n/.

To that end, we notice that
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SN�1

.	 � ru0/
2 
.dx, d	/ � jru0j

2.x/ a.e. x 2 �,

because 
 is a probability measure with respect to 	 a.e. x 2 �. Moreover, this value is reached when we take the Dirac measure ıru0.x/,
that is, when


.x, 	/ D ı�x dx, 	x D ru0.x/=kru0.x/k.

From the converse part of Lemma 2.3 in [17], the minimum for

inf
�

lim F.�n/

is also achieved. So, finally, we can conclude

NF.�/ D

Z
�

� .ru0 C "rv1.�// � ru0 � "

Z
�

� .1 � �/ jru0j
2. (3.19)

Recall that v1 D v1.�/ depends linearly on � .

3.2. Optimality conditions for the relaxed problem.

The relaxed functional NF achieves its minimum of Uad because it is lower-semicontinuous, and the constraint set is compact for the
weak-
 topology. We first investigate the differentiability properties of NF in order to obtain optimality conditions for a minimizer of NF
on the compact convex set Uad .

Proposition 3.4
The functional NF is Fréchet differentiable of every order, and we have the following expressions for the Gateaux derivatives of the first
and second order

NF0.�/' D

Z
�

Œ2".rv1.�/C �ru0/C .1 � "/ru0� � ru0 '. (3.20)

and

NF00.�/.','/ D 2"

Z
�

.rv1.'/C 'ru0/ � ru0 '. (3.21)

Proof
The linearity of the application � 7! v1.�/ and the expression for NF show clearly that it is quadratic with respect to � . So, the Fréchet
derivatives exist. In order to calculate the first-order derivative, we rewrite (3.19) as

NF.�/ D "

Z
�

�rv1.�/ � ru0 C "

Z
�

�2jru0j
2 C .1 � "/

Z
�

� jru0j
2.

But, using v1.�/ as test function in (3.11), we obtain

NF.�/ D �"

Z
�

jrv1.�/j
2 �

�0

˛
v2
1.�/C "

Z
�

�2jru0j
2 C .1 � "/

Z
�

� jru0j
2.

A simple calculation gives us

NF0.�/' D �2"

Z
�

rv1.�/ � rv1.'/ �
�0

˛
v1.�/v1.'/C 2"

Z
�

� jru0j
2' C .1 � "/

Z
�

jru0j
2'.

We now notice that v1.'/ satisfies (3.11). Then, again taking v1.�/ as test function, we can explicitly write the aforementioned
expression in terms of ' to obtain (3.20) then (3.21).

We wish to investigate the critical points for the constrained minimization problem of minimizing NF over Uad . To that end, we use the
Lagrange’s multipliers method with the constraint

C.�/ :D

Z
�

� D m, � 2 Uad hence C0.�/' D

Z
�

'.

Therefore, the critical points satisfy the Euler–Lagrange equation: for all admissible '

ŒNF0.�/CƒC0.�/�' D 0

for someƒ 2 R; that is,
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�

Œ2".rv1.�/C �ru0/C .1 � "/ru0� � ru0 ' Cƒ

Z
�

' D 0 8'.

Consequently, the density of Uad in L2.�/ implies

2"rv1.�/ � ru0 C .2"� C 1 � "/jru0j
2 D ƒ on�.

Proposition 3.5
If �� is optimal in the relaxed formulation, then there is realƒ such that

2"rv1.�/ � ru0 C .2"� C 1 � "/jru0j
2 D ƒ in�.

Integrating over� and considering u0 as test function in (3.11), we obtain the following consequenceZ
�

rv1.�/ � ru0 D 0 and 2"

Z
�

� jru0j
2 C

1 � "

˛
�0 D ƒj�j.

4. Numerical illustrations

Let us emphasize that the original problem of minimizing the leading eigenvalue with respect to the inclusion B is not well posed;
usually, it admits no solution.

In this section, we shall illustrate the behavior of the solution of the approximated problem through numerical simulations. To that
end, we place ourselves under assumption of low contrast regime, that is, ˇ D ˛.1C "/ for small ". In the following examples, we will
consider " D 0.1 and " D 10�6.

We use an optimization algorithm to minimize NF: we have implemented a gradient-based steepest descend numerical algorithm for
the local proportion � . At each step of the optimization algorithm, we update the local proportion with a step �i > 0 by

�i D min.1, max.0, Q�i//with Q�i D �i�1 � �i NF
0.�i�1/Cƒi

whereƒi is the Lagrange multiplier for the volume constraint. The Lagrange multipliersƒi are approximated at each iteration by simple
dichotomy in order to obtain the constraint

R
�
�i D m corresponding to a fixed proportion.

The optimization procedure is coupled with finite elements approximations of the boundary values problems needed to com-
pute both NF and its derivative NF0. To calculate the eigenpair .�0, u0/ and all the states vi,1, we use P2 finite elements, while the local
proportions �i have been discretized with P1.

We will present examples in dimensions two and three. The computations have been made with the FEM library FreeFem++ [18]. The
subsequent figures show the local proportion of the material with higher conductivity. We do a comparative analysis in dimensions two
and three for square and cube cases, respectively, confirming the mentioned properties in [9] with respect to the distribution of the
material with higher conductivity that depends on the shape of the domain�. The volume always refers to the percentage of volume
occupied by the higher conductivity material.

4.1. The square and the cube.

The computations are made on the unit square Œ0, 1�2 with a regular mesh of 80,000 triangles. For a very small value of ", here 10�6, we
have obtained the optimal designs displayed into Figure 1 for different volume proportions. The dark red region corresponds to B and
material ˇ, and the local proportion is then 1. The blue region corresponds to material ˛, and the local proportion is then 0.

The numerically computed optimal region B contains neighborhoods around corners, and the center always is also included. Similar
results were obtained by Conca et al. [9] with a first-order approximation only. Nevertheless, the local proportion is very often either
0 or 1. Let us now consider the same cases with a much larger parameter ". In Figure 2, we present the results obtained with " D 0.1.
We observe that the mixture is much more important: the interest of higher-order approximation appear,s as one can expect, for
reasonably large value of the small parameter ". For very small values of ", like 10�6, the first-order model should already provide a very
good approximation.

Figure 1. Nearly optimal distribution B in the square case for " D 10�6.
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Let us now present in Figure 3 the simulations on the unit cube Œ0, 1�3. For visualization, we have remove the phase where � D 0.
Because the computation have been made on a laptop, the resolution is coarser in these simulations in dimension three, and we kept
the same numbers of degree of freedom.

Figure 2. Nearly optimal distribution B in the square case for " D 0.1.

Figure 3. Nearly optimal distribution B in the cube case for " D 10�6.

Figure 4. Absolute value of the gap between optimal design for the first-order and second-order models. The parameter " takes the value 10�1 on the first line,
5.10�3 on the second line and 10�6 on the third line.
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Figure 5. Nearly optimal distribution B in a crescent for " D 10�6.

Figure 6. Nearly optimal distribution B in a perforated ellipse for " D 10�6.

Figure 7. Optimal design for second-order model for various fractions. The parameter " takes the value 10�1.
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Figure 8. Absolute value of the gap between optimal design for the first-order and second-order models. The parameter " takes the value 10�1 on the first line
and 10�3 on the second line.

4.2. Numerical comparison of the first-order and second-order model.

Because the original problem does not have in general a solution, it makes little sense to test how good are the optimal domains
obtained by the first-order approximation method [5] and by the second-order method. Nevertheless, one may wonder if the optimal
solution obtained by the first-order and second-order methods really differ. Even if the computed value of the ground state only varies
between the first-order and second-order model, at the second order in " (so that it can hardly be seen), we claim that the optimal
design really differs in general. Of course, it depends on the range of the small parameter ". In order to illustrate and defend this claim,
we have plotted in Figure 4 the absolute value of the difference between the characteristic function of the optimal domain computed
by the method of [9] (based on the first-order approximation) and the optimal density computed with the method presented in this
work. In order to catch more precisely this gap, we use a refined mesh made of 180,000 triangles and P2 finite elements.

It appears that the second-order method really differs for rather large values of " and brings a real gain in decreasing the leading
eigenvalue by generating mixture in a transition zone between the two phases as it is expected. The size of the mesh appears in the last
line when " D 10�6, and it corresponds to the width of the light curved lines. On the contrary, the mixing zone has the size of several
element when " take larger values.

4.3. Others domains

For the sake of completeness, we present computations in other plane domains for the comparison with [9]: a crescent in Figure 5 and
a perforated ellipse in Figure 6.

Let us emphasize that in the last case, even for " D 10�6, we observe clearly in Figure 6(c) a small area where � takes values strictly
between 0 and 1 where we see the effect of the modeling with a second-order approximation. This can be explained by the fact that
the first eigenmode is more oscillating in a more complex geometrical configuration.

In order to enlighten this observation, let us consider a perforated square. The need of relaxation appears clearly in Figures 7 and
8 for various configurations of perforated squares. The results illustrated through Figures 7 and 8 for domains with many inclusions
provide a convincing case for the use of the second-order approximation. The used meshes involve around 110,000 triangles.

Appendix

Lemma A1
For � 2 L1.RN/, if z 2 H1

0.R
N/ solves

��z D div .�ru0/ in RN , (A1)

then � 7! Q.�/ :D rz defines a pseudo-differential operator with symbol

q.x, 	/ D �
	 � ru0.x/

j	j2
	 . (A2)

Note that q is homogenous of degree 0 in 	 .
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Heuristic Proof of Lemma A1
We first consider the whole space case in order to use Fourier calculus. Indeed, denoting bybthe Fourier transform and starting from
Equation (3.14), formally we freeze ru0 we can calculate as follows

.��z/b.	/ D .div .�ru0//b.	/
�.�j	j2bz/ D �i	 � ru0.x/b�

bz D � i	 � ru0.x/

j	j2
b� ,

which gives crz.	/ D �i	bz.	/ D �i	

�
�

i	 � ru0.x/

j	j2
b�� D �� 	 � ru0.x/

j	j2
	

�
„ ƒ‚ …

q.x,�/

b� .

For a rigorous derivation, we refer to [16]
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