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Abstract— In recent years Model Predictive Control (MPC) has 

been successfully used for the control of power electronics 
converters with different topologies and for different applications. 

MPC offers many advantages over more traditional control 

techniques such as the ability to avoid cascaded control loops, easy 

inclusion of constraint and fast transient response. On the other 

hand, the controller computational burden increases exponentially 

with the system complexity and may result in an unfeasible 

realization on modern digital control boards. This paper proposes 

a novel Distributed Model Predictive Control, which is able to 

achieve the same performance of the classical Model Predictive 

Control whilst reducing the computational requirements of its 
implementation. The proposed control approach is tested on a 

AC/AC converter in a back-to-back configuration used for power 

flow management. Simulation results are provided and validated 

through experimental testing in several operating conditions. 

 
Index Terms—Predictive control, Nonlinear control systems, 

Back-to-back converters. 

I. INTRODUCTION 

OWADAYS power electronics is essential to all future 

sustainable energy scenarios since it is the only technology 

that can deliver efficient and flexible conversion and 

conditioning of electrical energy. It is vital in many low carbon 

applications including renewable energy generation, smart 

grids, electric transport (Electric Vehicles, Hybrid Electric 

Vehicles, rail), aerospace, energy saving, motor drives and 

lighting. During the past few decades there has been a 

proliferation of converter topologies and technical solutions for 

various applications both in scientific literature and in Industry. 

Traditional linear control approaches have been widely used for 

power converters; however many other control strategies have 

been proposed in literature and successfully tested, among 

which Model Predictive Control.  

MPC is an optimal control technique whose objective is to 

regulate the states and/or the outputs of the system towards their 

desired values. This is achieved minimizing a cost function 

inside a feasible region [1], [2]. That is, MPC computes optimal 

control inputs so that physical and operational constraints of the 

system to be controlled are fulfilled. Due to its ability to handle 

complex systems with input and state constraints, MPC is 

becoming one of the most successful advanced control 

techniques implemented in industry [3]–[5]. For controlling 

power-electronics-based devices, several MPC approaches 

have been proposed in the specialized literature [6]–[13]. In [6], 

[7], [10] a complete review of those techniques is presented. 

From that review, the authors concluded that one of the mayor 

challenges for MPC schemes for power converters is to ensure 

that the computational burden of the optimization problem 

allow obtaining solutions within a reasonable sampling time, 

especially when the prediction horizon is greater than one 

sampling interval, or when the number of switching states 

increases. Regarding the length of the prediction horizon, in 

[11] a literature review of MPC approaches with prediction 

horizon larger than one is reported and examples of their 

applicability are presented. As for the increasing number of 

converter switching states, above all in novel topologies, some 

finite-control-set MPC (FCS-MPC) approaches as well as 

generalized predictive control (GPC) were posed as alternatives 

in [10]. In particular, FCS-MPC was successfully implemented 

by using a reduced set of switching states as in [6], [7], [9], [14], 

[15]. In [16]–[21] FCS-MPC implementations were used for 

converters with a higher number of switching states, such as 

Cascaded H-Bridge and Diode Clamped converters. However, 

if the number of states increases further, the implementation of 

these FCS-MPC strategies may become unfeasible. Moreover, 

when using FCS-MPC, the converter switching frequency is 

always lower than half of the sampling frequency; therefore a 

high sampling frequency is usually preferred, thus reducing the 

available computational time on modern DSP based control 

boards. Indeed, one of the main conclusions obtained in [10], 

[11] was that finding computationally efficient FCS-MPC 

control algorithms for power converters is still an open issue. 

Motivated by the good performance of the FCS-MPC in 

different reported applications, in this paper an alternative 

formulation for this control problem is proposed, named 

Distributed Model Predictive Control (DMPC) [1], [5], [22]–

[28]. Specifically, the FCS-MPC problem is formulated in a 

distributed fashion, reducing the computational time and 

allowing its implementation in complex power converters, such 

as back-to-back converters and multi-level converters. In the 

proposed approach the entire system is divided into simpler 

subsystems. For each subsystem an FCS-MPC is formulated. 

The single controllers are able to communicate with each other 

in order to jointly decide the local switching sequence. The 

proposed FCS-MPC formulation is able to provide a feasible 

control implementation for systems with hard requirements 

involving fault tolerance, flexibility, and high control 

capabilities, without the solution of one large centralized 

optimization problem [29]–[31]. DMPC has been applied to 

power control of wind turbines [32], [33], voltage control of 

microgrids [34]–[36] and sequential or iterative control of 

industrial processes [37]–[40]. However it has rarely been 
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applied to the low-level control of a power electronic converter. 

In order to prove DMPC feasibility for the latter case, in this 

work a Back-to-Back converter topology is used to implement 

and test the performance of DMPC, by both simulation and 

experimental tests. 

The paper is organized as follows: Section II presents the 

DMPC framework as well as its application to the control of a 

Back-to-Back converter. Section III presents the simulations 

results whereas Section IV depicts the experimental results 

obtained with a Back-to-Back converter. In Section V the 

concluding remarks are put forward. 

II. DISTRIBUTED MODEL PREDICTED CONTROL 

In Fig. 1 the DMPC scheme is shown for the case of two 

subsystems. In this figure, Process 1 and Process 2 have local 

MPC controllers. Since these processes interact with each other, 

sharing information between controllers is required in order to 

allow them to compute their own control actions. Otherwise, 

the system may lose performance and/or stability. In order to 

avoid that, at each time step local controllers must decide about 

the control actions to be locally applied and transmit them to 

the other controllers. In [26], [41]–[43] several DMPC 

approaches are discussed. Moreover, in [1], [5], [22]–[28], [30], 

[43], [44] some specific DMPC schemes are presented. Almost 

all of them have been applied to systems with sampling times 

in the range between seconds and minutes. The aim of this 

section is to present the DMPC as an alternative for controlling 

systems whose dynamics are in the microseconds range, 

particularly as an alternative for optimally controlling power 

converters. 

 

Fig. 1: Schematic diagram of a typical DMPC scheme. 

A. Mathematical Formulation of the DMPC Problem 

Consider the discrete-time non-linear system 

( 1) ( ( ), ( ))

( ) ( ( ), ( ))

x k f x k u k

y k g x k u k

+ =

=
                         (1) 

where x(k), u(k), and y(k) respectively denote the state, input, 

and output vectors of the dynamical system at time instant k , 

with f(x(k),u(k)) and g(x(k),u(k)) non-linear functions 

describing the time evolution of the system to be controlled. 

The idea behind MPC is to compute a sequence of control 

actions p( ) ( 1), , ( 1)
T

T T
u k u k u k N = + + − ɶ … such that a cost 

function is minimized throughout a prediction horizon p
N . 

With this purpose, the system model (1) is used to estimate the 

behavior of the controlled system and the quadratic cost 

function (2) is used to measure its performance, where 

ref( 1/ ) ( 1) ( 1 / )e h k y h y h k+ = + − +  is the difference between 

the desired and the predicted output, ref ( 1)y h +  being the 

desired system output and ( 1 / )y h k+  being the predicted 

system output at time step h+1 given the measured state values 

at time step k; and Q and R are positive definite weighting 

matrices, very often diagonal.        

p

p

1

1

( ( ), ( )) ( 1/ ) ( 1/ )

                    ( ) ( )

k N

T

h k

k N

T

h k

L x k u k e h k Qe h k

u h Ru h

+ −

=

+ −

=

 = + + 

 +  

∑

∑

ɶ ɶ

          (2) 

Although MPC has broadly recognized advantages over 

single-input single-output and even over other multiple-input 

multiple-output control strategies, its main disadvantage is the 

computational burden associated with its implementation. 

Thereby, as the number of inputs increase its implementation 

becomes hardly feasible. Furthermore, if the sampling time 

decreases (as in the case of power electronic devises) its 

implementation becomes hardly feasible as well. In both cases, 

an alternative for coping with these shortcomings is 

implementing MPC in a distributed fashion.  

Assume that the whole system (1) can be decomposed into 

M subsystems 

( 1) ( ( ), ( ), ( ))

( ) ( ( ), ( ), ( ))

r r r r

r r r r

x k f x k u k u k

y k g x k u k u k

−

−

+ =

=
               (3) 

where, xr(k), ur(k), and yr(k) are the local states, inputs, and 

outputs of subsystem r, and ( )
r

u k− is a vector containing all 

control inputs but the local ur(k); that is   

1 1 1
( ) [ ( ), , ( ), ( ), , ( )]T T T T T

r r r M
u k u k u k u k u k− − += … …       (4) 

 As in the case of MPC, the idea behind DMPC is to compute 

the control actions to be locally applied to the system 

p( ) ( 1), , ( 1)
T

T T

r r ru k u h u h N = + + − ɶ …  given the behavior 

predicted by using the local system model (3), so that both 

global and local cost functions are minimized. For the r-th local 

controller, let 
ref_

( 1/ ) ( 1) ( 1/ )
r r r

e h k y h y h k+ = + − +  denote 

the difference between the desired and the predicted local 

output at time step h+1 given the measured state values at time 

step k, where ref_
( 1)

r
y h + denotes the desired output and 

( 1/ )
r

y h k+ denotes the predicted output. Let 
r

Q and 
r

R be the 

local weighting matrices, i.e., diagonal matrices of proper 

dimension with positive elements. Then replacing local models 

into the global cost function (2) yields  
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p

p

1

1

1
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                           + ( ) ( )

k NM
T
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r h k
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T
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h k
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u h R u h

+ −

= =

+ −

=


 = + +  




  



∑ ∑

∑

ɶ ɶ

   (5) 

Let ( ( ), ( ), ( ))
r r r

L x k u k u k−
ɶ ɶ ɶ denote the cost function for the 

local controller r. From equation (5), it is defined as  

p

p

1

1

( ( ), ( ), ( )) ( 1/ ) ( 1/ )

                                   + ( ) ( )

k N

T

r r r r r r

h k

k N

T

r r r

h k

L x k u k u k e h k Q e h k

u h R u h

+ −

−
=

+ −

=

 = + + 

  

∑

∑

ɶ ɶ ɶ

   (6) 

Thus, 
1

( ( ), ( )) ( ( ), ( ), ( ))
M

r r r

r

L x k u k L x k u k u k−
=

= ∑ɶ ɶ ɶ ɶ ɶ , where, for the 

local controller r, 
p( ) [ ( 1), , ( 1)]

T T T

r r ru k u h u h N= + + −ɶ …

denotes the sequence of optimal local control actions at time 

step k, and
1 1 1

( ) [ ( ), , ( ), ( ), , ( )]T T T T T

r r r M
u k u k u k u k u k− − +=ɶ ɶ ɶ ɶ ɶ… …

denotes the  sequences of control actions of the remaining 

controllers. In this paper, those sequences are assumed constant 

and equal to their measured value throughout p
N . It is 

important to remark that the performance of each controller 

depends upon the decisions made by the remaining controllers. 

Specifically, for controller r both local cost function and 

predictions of the output are function of the measured state and 

input values by the remaining controllers. Hence, it is not 

enough to find the sequence ( )
r

u kɶ but also to quantify its 

impact in the performance of the remainder controllers. With 

this purpose, instead of minimizing ( ( ), ( ), ( ))
r r r

L x k u k u k−
ɶ ɶ ɶ , 

each controller r minimize ( ( ), ( ))L x k u kɶ ɶ with respect to its own 

local variables. Then, each local MPC is formulated as   

( )
1

min ( ( ), ( ), ( ))

s.t.:

( 1/ ) ( ( / ), ( ), ( ))

( ) ( ( / ), ( ), ( ))

r

M

r r r
u k

r

r r r r

r r r r

L x k u k u k

x h k f x h k u h u h

y h g x h k u h u h

−
=

−

−

+ =

=

∑
ɶ

ɶ ɶ ɶ

           (7) 

Note that minimization problem (7) only included the 

constraints associated with the dynamic behavior of the system 

to be controlled. However, other constraints could be also 

added. These constraints often are defined by maximum and 

minimum allowed values for the states, inputs, and/or outputs. 

Therefore, in the general case the constraints of (7) are given by 

( ) ( ( ), ( ), ( ))
r r r r

x h x k u k u k−∈ X , for the trajectories of the local 

states,  ( ) ( ( ), ( ), ( ))
r r r r

u h x k u k u k−∈ U for the local inputs, and 

( ) ( ( ), ( ), ( ))
r r r r

y h x k u k u k−∈ Y  for the local outputs, where 

( ( ), ( ), ( ))
r r r

x k u k u k−X , ( ( ), ( ), ( ))
r r r

x k u k u k−U , and 

( ( ), ( ), ( ))
r r r

x k u k u k−Y  are the feasible sets for the local states, 

the local inputs, and the local  outputs respectively.        

The minimization problem (7) extends the DMPC proposed 

in [1] to systems in which a non-linear prediction model and the 

coupling among the constraints is considered. Nevertheless, the 

main contribution of this paper is the application of the DMPC 

to the control of power converters. To reduce the computational 

burden deriving from its solution, in the proposed DMPC the 

controller r computes its optimal sequence of control actions 

( )
r

u kɶ assuming the remaining sequences of control actions 

( )
r

u k−
ɶ constant and equal to their current measured values. 

Then, each controller sends to the remaining controllers the 

control actions that it is currently being applied. Furthermore, 

each controller measures its local states and sends those 

measurements to the remainder controllers so that each 

controller has the state vector ( )x k . With the local 

measurements, and the information received from the other 

controllers, controller r is able to estimate the feasible sets 

( ( ), ( ), ( ))
r r r

x k u k u k−X , ( ( ), ( ), ( ))
r r r

x k u k u k−U , and 

( ( ), ( ), ( ))
r r r

x k u k u k−Y , and also is able to solve (7). The 

following steps are necessary for implementing the proposed 

distributed control strategy: 

1. Each subsystem measures and sends to the remaining 

subsystems the values of its corresponding states xr(k) and 

control inputs ur(k). 

2. With the information provided by the remainder of them, 

each subsystem solves the minimization problem in (10). 

3. Each subsystem updates its control action sequence as 
*( 1) ( )

r r
u k u k+ = , with * ( )ru k  being the optimal solution 

of (10). 

4. The first element of the sequence is applied and the 

remaining elements are used as the initial conditions for 

the next time step. 

In comparison with the algorithm in [18], the steps suggested 

in this paper do not involve iterative procedures to obtain ( )
r

u kɶ

. Furthermore, contrary to the procedure in [18], both 

subsystems weighting and the update of ( )
r

u kɶ according to the 

weight assigned to each subsystem are prevented. 

Consequently, the complexity and the computational burden of 

the DMPC are both reduced. This is particularly important 

when DMPC is applied to power electronics converter control. 

In fact, these systems can became rather complex and present a 

broad control set that is hard to compute even using fast DSP 

control boards. For example in case of multilevel converters, 

the control set can include several hundreds of converter states 

[45]–[48] and, thus, a centralized MPC implementation became 

hardly feasible. 

However, when (10) is proposed for power converters 

control, in the specialized literature several other approaches for 

non-linear DMPC have been reported [34].  

C

S1abc S2abc

Source1 Source2

VDC

Vs1abc

Is1abc

Vc1abc

Vs2abc

Is2abc

Vc2abc

 

Fig. 2: Schematic view of the setup used to formulate the proposed DMPC 

strategy. 
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B. Back-to-Back Converter Application 

The proposed DMPC is applied to the direct power control 

and DC-Link voltage control of a Back-to-Back converter, 

shown in Fig.2.The Back-To-Back configuration considered in 

this work, allows the power transfer (both active and reactive) 

between the two energy sources (or grids) Vs1abc and Vs2abc while 

keeping the capacitor voltage VDC regulated at a desired value. 

With this aim, the switching states S1abc(t) and S2abc(t) are 

computed within each sampling interval, usually in the order of 

tens of microseconds [9], [18], [49], [50]. The two power 

converters considered here are traditional three-phase two level 

structures in order to simplify the system configuration and 

demonstrate the feasibility of the proposed control approach. 

However more complex topologies could be considered, like 

multilevel converters, for example in high power applications. 

In  

Fig. 2, the variables Is1abc, Is2abc, Vc1abc and Vc2abc respectively 

denote the measured currents and voltages at grids 1 and 2. 

Furthermore, series L-R filters L1-rL1 and L2-rL2 were considered 

as commonly found in grid connected power converters (e.g. 

photovoltaic inverters or active front ends for drives). This 

system is described from the following set of equations, where 

k1=Ts/L1, k2= rL1Ts/L1, k3=Ts/ L3, k4= rL2Ts/L2, k5=Ts/C. 

( )

( )

( )

s1abc s1abc 1 s1abc DC 1abc 2 s1abc

s2abc s2abc 3 s2abc DC 2abc 4 s2abc

DC DC 5 s1abc 1abc s2abc 2abc

( 1) ( ) ( ) ( ) ( ) ( )

( 1) ( ) ( ) ( ) ( ) ( )

( 1) ( ) ( ) ( ) ( )T T

I h I h k V h V h S h k I h

I h I h k V h V h S h k I h

V h V h k I h S h I S h

+ = + − −

+ = + − −

+ = + −

   (8) 

This model is converted from the natural reference frame 

(e.g. abc) in a stationary reference frame (e.g. αβ) using the 

Clarke’s transform. The final model used for the control design 

is shown in the following set of equations. 

( )

( )

( )

s1αβ s1αβ 1 s1αβ DC 1αβ 2 s1αβ

s2αβ s2αβ 3 s2αβ DC 2αβ 4 s2αβ

DC DC 5 s1αβ 1αβ s2αβ 2αβ

( 1) ( ) ( ) ( ) ( ) ( )

( 1) ( ) ( ) ( ) ( ) ( )

( 1) ( ) ( ) ( ) ( ) ( )T T

I h I h k V h V h S h k I h

I h I h k V h V h S h k I h

V h V h k I h S h I h S h

+ = + − −

+ = + − −

+ = + −

   (9) 

When MPC is applied to such system if a finite control set is 

considered 8 switching states for each converter side can be 

applied. Thus, the classical FCS-MPC for this converter needs 

to evaluate all the possible combination of switching states 

(82=64). When using DMPC it is possible to separate the control 

problem in two subsystems, each of them having its own FCS-

MPC controller and thus reducing the number of switching 

states combination to evaluate to 8×2=16. This data shows that 

using DMPC the controller computational burden is 

approximately one fourth of classical FCS-MPC. However 

communication between the controller algorithms of the two 

converter sides are needed in order to maintain the DC-Link 

well regulated. 

In order to formulate the DMPC control problem, let 

s1αβ s2αβ DC( ) ( ), ( ), ( )
T

T T
x h I h I h V h =  

be the state vector of the 

system. Then, with the proposed partitioning, and given the 

framework presented in Section II-A (specifically equations 

(5)-(7)), the following local cost functions are defined for the 

control of the back-to-back converter: 

1 1αβ 2αβ 1 1 1

2 αβ1 αβ2 2 2 2

( ( ), ( ), ( )) ( 1/ ) (2 / )

( ( ), ( ), ( )) ( 1/ ) (2 / )

T

T

L x k S k S k e k k Q e k

L x k S k S k e k k Q e k

= +

= +

ɶ ɶ ɶɶ

ɶ ɶ ɶɶ

              (10) 

with 

[ ]1 1ref 1 1ref 1 DCref DC( 1/ ) ( 1/ ), ( 1/ ), ( 1/ )
T

e k k P P k k Q Q k k V V k k+ = − + − + − +

(11) 

[ ]2 2ref 2 2ref 2 DCref DC( 1/ ) ( 1/ ), ( 1/ ), ( 1/ )
T

e k k P P k k Q Q k k V V k k+ = − + − + − +

(12) 

and 
3 3

1Q
×∈ Rɶ , 

3 3

2Q
×∈ Rɶ  diagonal matrices with positive 

elements. Note that the local cost functions 

1 1αβ 2αβ( ( ), ( ), ( ))L x k S k S kɶ ɶɶ  and 
2 1αβ 2αβ( ( ), ( ), ( ))L x k S k S kɶ ɶɶ  are 

only coupled by the deviation of the capacitor voltage. Indeed, 

according to the converter model (9), this is the only term that 

is affected by both subsystems. 

With the local cost functions 
1 1αβ 2αβ
( ( ), ( ), ( ))L x k S k S kɶ ɶɶ  and 

2 1αβ 2αβ
( ( ), ( ), ( ))L x k S k S kɶ ɶɶ  already defined, the sequence 

1αβ
( )S kɶ

is given by the solution of the following optimization problem: 

1αβ

1 1αβ 2αβ 2 1αβ 2αβ
( )

1 1 1αβ 2αβ

1αβ 1 1αβ 2αβ

1 P1 1αβ 2αβ

1 Q1 1αβ 2αβ

min ( ( ), ( ), ( )) ( ( ), ( ), ( ))

s.t.:

( ) ( ( ), ( ), ( ))

( ) ( ( ), ( ), ( ))

( ) ( ( ), ( ), ( ))

( ) ( ( ), ( ), ( ))

S k
L x k S k S k L x k S k S k

x h x k S h S h

S h x k S h S h

P h x k S h S h

Q h x k S h S h

+

∈

∈

∈

∈

X

U

Y

Y

ɶ

ɶ ɶ ɶ ɶɶ ɶ

 (13) 

whereas the sequence 
2αβ

( )S kɶ  is obtained by solving the 

minimization problem 

( )

( )

( )

( )

( )

2αβ

1 1αβ 2αβ 2 1αβ 2αβ
( )

2 2 1αβ 2αβ

2αβ 2 1αβ 2αβ

2 2 1αβ 2αβ

2 2 1αβ 2αβ

min ( ( ), ( ), ( )) ( ), ( ), ( )

s.t.:

( ) ( ), ( ), ( )

( ) ( ), ( ), ( )

( ) ( ), ( ), ( )

( ) ( ), ( ), ( )

S k

P

Q

L x k S k S k L x k S k S k

x h x h S h S h

S h x h S h S h

P h x h S h S h

Q h x h S h S h

+

∈

∈

∈

∈

X

U

Y

Y

ɶ

ɶ ɶ ɶ ɶɶ ɶ

 (14) 

where ( )P1 1αβ 2αβ
( ), ( ), ( )x h S h S hY , ( )P2 1αβ 2αβ

( ), ( ), ( )x h S h S hY , and 

( )Q1 1αβ 2αβ
( ), ( ), ( )x h S h S hY , ( )Q2 1αβ 2αβ

( ), ( ), ( )x h S h S hY are the control 

sets for the active and reactive power at each side of the 

converter. 

In order to implement this control strategy, the active power 

references must be calculated. Given the desired value for the 

voltage at the capacitor, VDCref, and given the actual measured 

voltage value, VDC, the required change in the active power flow 

to regulate the voltage at the desired value is given by 

( )2 2

DC DCref DC

s2

C
P V V

NT
= −                     (15) 

where N denotes the desired number of time steps required for 

reaching the desired value, and C is the capacitance of the DC 

link. Once the value of 
DCP is computed, the desired active 

power transfer should be modified accordingly. In this case, 
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such a variation was equally distributed between the two 

converter sides, i.e., 
1ref 1des DC0.5P P P= +  and 

2ref 2des DC0.5P P P= + , with 1desP and 2desP the desired power 

transfer from one side of the converter to the other. It is 

important to highlight that, since the active power balance 

through the converter has always to be equal to 0, P1des and P2des 

have to be chosen with the same value but opposite sign. 

Additionally, exploiting the α-β  model of the converter, the 

active and reactive power flow through the converter is 

predicted as follows: 

( )

( )

s α s α s β s β

s β s α s s

3
( ) ( ) ( ) ( ) ( )

2

3
( ) ( ) ( ) ( ) ( )

2

i i i i i

i i i i i

P h V h I h V h I h

Q h V h I h V h I hα β

= +

= −

  1,2i =  (16) 

Note that the prediction of the active and reactive power as 

well as the prediction of the source currents requires the 

knowledge of the source voltage evolution at both sides. Thus, 

given the current and the past voltage a measurement, the 

voltage at the next time step is computed using a first order 

Lagrange extrapolation: 

s α s α s α

s β s β s β

( 1) 2 ( ) ( 1)

( 1) 2 ( ) ( 1)

i i i

i i i

V h V h V h

V h V h V h

+ = − −

+ = − −
  1, 2i =    (17) 

Even if the prediction horizon Np has been set to 1 in this 

DMPC application, a two-step ahead prediction is required, in 

order to take into account the one sampling interval delay 

introduced by the digital implementation. In fact the first step 

of prediction is related only to the measured variables and the 

switching states calculated during the previous sampling 

interval. Then, taking these predicted values as initial 

conditions, the values of 
1αβ ( )S kɶ and 

2αβ ( )S kɶ are computed 

according to (13) and (14). However, due to the reduction of the 

time required for computing 
1αβ

( )S kɶ  and 
2αβ

( )S kɶ , prediction 

horizons longer than 1 could be implemented using the 

proposed DMPC. 

Fig 3 shows the detailed block schemes of the implemented 

DMPC for a Back-To-Back converter and the coupling between 

the two converters control can be appreciated. The control of 

each converter side has to be executed 8 times in order to 

calculate the minimum cost function value. This represents a 

consistent reduction of the number of iteration, when compared 

with classical MPC which has to be executed 64 times before 

reaching the minimum cost function value. For each side of the 

converter the following implementation step has to be 

sequentially executed: 

1. Calculate the Active power reference according to (16). 

2. Calculate the state variables (AC currents and DC-Link 

voltage) prediction using (9). It is important to note that, 

since the control is distributed, the control of side 1 uses 

the output of the controller on side 2 (i.e. the side 2 

converter state) to calculate the DC-link voltage 

prediction and vice versa on converter side 2. 

3. Calculate Active and Reactive power predictions using 

(16) and (17). 

4. Calculate the cost functions in (10). 

5. Repeat the steps 1-4 for the 8 possible converter states on 

each converter side. 

6. Identify the minimum cost function value on each side and 

select the switches state on each converter side 

accordingly. 

III. SIMULATION RESULTS 

The proposed DMPC has been at first tested and compared with 

centralized FCS-MPC using a MATLAB-PLECS co-

simulation. As it will be shown, DMPC is able to maintain the 

same performances of the classical FCS-MPC. For such reason 

and considering that FCS-MPC has been widely described and 

compared in literature, comparison with other control 

techniques has been avoided. The parameters for the simulated 

system, reflecting the experimental setup of Fig. 4, are listed in 

Table I. Using the setup of Fig.4 the system does not need any 

resistive load since the power is able to circulate through both 

converter sides while the voltage source provides only the 

system losses. Step changes in active and reactive power flows 

between port 1 and 2 with maximum values of respectively 

4kW and 1kVAR are shown in Fig. 5. The reference values are 

accurately followed while the variation of the DC-Link voltage 

remains limited. It should be noted that initially, although all 

the reference powers are set to zero, a small amount of power is 

drained from both grids to maintain the DC-Link voltage at the 

desired level, as a consequence of the presence of discharge 

resistors in parallel with the DC-Link capacitors.

 

Fig.3 Detailed block scheme of the implemented DMPC for a Back-To-Back converter. 
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TABLE I: SYSTEM PARAMETERS 

 

Symbol Description Value a 

L1, L2 Line inductances 11 [mH] 

rL1, rL2 DC resistance of line inductors 200 [mΩ] 

C DC-Link capacitance 3.6 [mF] 

Ts Sampling time 100μs 

Vs1abc Grid 1 RMS phase voltage 180Vrms 

Vs2abc Grid 2 RMS phase voltage 60Vrms 

F Grids Frequency 50Hz 

N DC-Link voltage horizon 100 

w1 Cost Function weight for active and 

reactive power 

1 

w2 Cost Function weight for the DC-

Link voltage 

20 

 

C

S1abc

S2abc

Programmable 

AC source

VDC

Vs1abc Is1abc

Vs2abc Is2abc

3:1 

Transformer

 
Fig. 4: Experimental setup used for validating the proposed DMPC strategy. 

(a)      (b)  
Fig. 5: Simulation results – Step changes in the demanded active (blue) and reactive (red) power flows. From top to bottom: reference and measured DC-Link 

voltages, reference and measured powers at port 1, reference and measured powers at port 2: (a) MPC (b) DPC. 

(a)           (b)  

Fig. 6: Simulation results - Measured phase voltages and currents at port 1 (up) and port 2 (bottom) before and after a 4 KW change in the demanded active 

power: (a) MPC (b) DPC. 
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Fig. 7: Simulation results - Frequency spectrum of the measured phase currents at port 1 (up) and port 2 (bottom) 

Measured phase voltages and currents before and after the 

demanded active power step at t=0.4s of Fig.  5 are shown in 

Fig. 6. In this particular case 4KW are drained from grid 1 and 

fed into grid 2. As it can be noted a fast current transient, 

without noticeable overshoot is achieved. The frequency 

spectrum for the phase currents when providing 4kW of active 

power and 0kVAR of reactive power are shown in Fig. 7. As 

expected since DMPC, as FCS-MPC, has a variable switching 

frequency lower than the sampling frequency, low order 

harmonics can be noted. However, the magnitude of the various 

harmonics remains below 3%. Overall, MPC and DPC achieve 

the same transient performance while the steady state 

performance of DPC are marginally deteriorated, with respect 

of MPC, by the delay introduced between the two partitions of 

the distributed control technique. 

IV. EXPERIMENTAL RESULTS 

Experimental tests have been carried out on the 20kW Back-

To-Back converter of Fig. 7. A programmable AC source has 

been used for emulating the grid under ideal and non-ideal 

operating conditions, such as grid voltage dips and frequency 

changes. A 3:1 transformer has been inserted between the AC 

source and one of the two inverters as shown in Fig. 4 in order 

to demonstrate the feasibility of the proposed control strategy 

even when the Back-to-Back converter operates as solid-state 

transformer between grids at different voltages.  

 

Fig. 8- Back-to-Back converter used during experimental testing. 

Due to the high power rating of the IGBT modules used in 

this converter (1.2 kV, 400 A) and due to their consequent 

impossibility to work at switching frequencies higher than few 

kHz, the sampling period for the control has been set to 100 μs 

as listed in Table I.. However, the use of modern Silicon 

Carbide devices, not available on the converter used for the 

experimental tests, allows obtaining a higher switching 

frequency for the same power rating of the application. Given 

the variable switching frequency of DMPC (typically around 

half of the sampling frequency) and the difficulty to use a lower 

sampling time in the available experimental rig, has resulted in 

increased values of the L-R filters and DC-Link parameters. 

The control board (not shown in Fig. 7 and connected to the 

converter using fiber optic cables) used during the experimental 

testing feature a Texas Instruments C6713 DSP together with a 

ProAsic 3 FPGA. The executions time on this control platform 

are calculated and shown in Fig. 8 where it is clear that, without 

considering the time necessary for executing communication 

protocols, The execution time for DMPC is 50% smaller of the 

FCS-MPC execution time. This allows DMPC to be 

implemented at much higher sampling frequencies than 

classical FCS-MPC, while a sampling frequency of 10kHz is 

already critical for the implementation of a classical FCS-MPC, 

which takes the 89% of the available time (100µs) to be 

executed.  

 
Fig. 9- Execution time for classical FCS-MPC, DMPC and Data 

communications only. 

Experimental results under no-load condition are shown in 

Fig. 9, while Fig. 10 shows the obtained results when an active 

power flow of 4kW from port 1 to port 2 is demanded. In both 

cases DMPC is able to maintain the controlled variables at the 

desired reference values without noticeable steady state errors. 

A 4 kVAR step change of reactive power flow is shown in Fig. 

11. The active power flow is completely unaffected by the 
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change in reactive power flow direction; phase currents 

immediately change according to the demanded reactive power 

flow. In Fig. 12 increased current distortion are present with 

respect to the obtained results in Fig. 11. This is mainly due to 

the different load conditions and to the fact that the DMPC 

resulting switching frequency is, as for any finite control set 

predictive control technique, variable. In Fig. 13 an 8 kW 

variation of the demanded active power flow with a slope of 1.5 

kW/s is shown; in this case, DMPC is able to maintain accurate 

tracking during the duration of the active power transient.  

            

Fig. 10- Experimental results – DC-Link voltage, active/reactive powers, phase voltages and currents at both grid sides under no load conditions. 

            

Fig. 11- Experimental results – DC-Link voltage, active/reactive powers, phase voltages and currents at both grid sides during a continuous 4kW active power 

flow from port 1 to port 2. 

            

Fig. 12- Experimental results - DC-Link voltage, active/reactive powers, phase voltages and currents at both grid sides during a reactive power flow inversion of 

±2kVAR while maintaining 1kW active power flow from port 1 to port 2. 
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Robustness to disturbances on the grid has been verified by 

introducing a 10 Hz frequency change and a 0.4 s long, 100% 

voltage dip at both grid sides as shown in Fig. 14 and Fig. 15, 

respectively. The frequency change (highlighted by the 

magenta line in Fig. 14) has negligible effects on the converter 

operation thanks to the fast response of DMPC and the absence 

of Phase Locked Loop in the controller implementation. During 

the voltage dip, the demanded active power grows as a 

consequence of the DC-Link discharge. Both ports try to reduce 

the DC-Link voltage discharge and normal operation are 

quickly restored after the voltage dip. 

.              

Fig. 13- Experimental results - DC-Link voltage, active/reactive powers, phase voltages and currents at both grid sides during an active power flow inversion 

±4kW while maintaining 0kVAR of reactive power in both ports. 

            

Fig. 14- Experimental results – DC-Link voltage, active/reactive powers, phase voltages and currents at both grid sides before and after a step change 50/60 Hz 

of the grid frequency. 

            

Fig. 15- Experimental results – DC-Link voltage, active/reactive powers, phase voltages and currents before, during and after a 0.4s long simultaneous 100% 

voltage dip at both grid sides. 
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V. CONCLUSIONS    

In this paper, a distributed model predictive control strategy 

was proposed for the control of back-to-back converters. This 

control strategy was selected because it allows reducing the 

computational burden of predictive controllers, which is a 

widely recognized issue of these controllers in power 

electronics applications. Simulation and experimental tests 

were performed to evaluate the performance of the proposed 

control strategy. In both cases the control objectives were 

adequately satisfied despite the changes in the operating 

conditions of the converter and of the grid. Power flow has been 

successfully controlled while keeping voltage and current 

waveform of both converters regulated at the desired values and 

with high power quality, as well as the voltage at the DC-Link.  
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