
Math Geosci (2016) 48:835–870
DOI 10.1007/s11004-016-9648-8

Analysis and Classification of Natural Rock Textures
based on New Transform-based Features

Rodrigo Lobos1,2 · Jorge F. Silva2 ·
Julián M. Ortiz3 · Gonzalo Díaz4 · Alvaro Egaña4

Received: 25 June 2015 / Accepted: 6 July 2016 / Published online: 26 July 2016
© International Association for Mathematical Geosciences 2016

Abstract This work develops a mathematical method to extract relevant information
about natural rock textures to address the problemof automatic classification. Classical
methods of texture analysis cannot be directly applied in this context, since rock tex-
tures are typically characterized by both stationary patterns (a classic kind of texture)
and geometric forms, which are not properly captured with conventional methods.
Due to the presence of these two phenomena, a new classification approach is pro-
posed in which each rock texture class is individually analyzed developing a specific
low-dimensional discriminative feature. For this task, multi-scale transform domain
representations are adopted, allowing the analysis of the images at several levels of
scale and orientation. The proposed method is applied to a database of digital pho-
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tographs acquired in a porphyry copper mining project, showing better performance
than state-of-the-art techniques, and additionally presenting a low computational cost.

Keywords Rock textures · Texture classification · Texture and object source
separation · Feature design · Wavelets and multi-resolution analysis · Pattern
recognition

1 Introduction

Resource evaluation is of great interest in mining because it is the first stage in the
evaluation of the project, where the quantity and quality of the economic ore must be
determined. Subsequent stages such asmine design, planning and process optimization
are performed based on the blockmodel defined during this stage. Currently,models go
beyond the quantification of concentrations of the elements of interest. A full material
characterization is required to assess the performance that the rock will have in a given
process during mining or at the metallurgical plant; therefore, in addition to a proper
estimate of the tonnage andgrades of interest, other characteristics of the rockmust also
be determined. The block model is built considering different kinds of information,
such as geophysical data, geological mapping and logging, results from analytical and
metallurgical tests over the rock, and geotechnical surveys. Visual information takes a
leading role in this characterization process.Many of the characteristics of the rock are
judged from visual inspection: lithology types require a judgement about the texture
of the rock; alteration types are typically defined based on the presence of alteration
minerals, which may appear on the rock with diverse levels of intensity; clast size
and shape are relevant to define the fabric of the rock, etc. Most of this information
will finally be stored as classes in a database, and carried downstream through the
mining process. A proper characterization of some of these features has been found
to be extremely relevant but quite difficult to perform, especially when considering
that a consistent characterization requires a trained geologist. This motivates the study
of rock textures as a key visual feature of the rock (Mock and Jerram 2005; Higgins
2006; Higgins and Chandrasekharam 2007), and also because the relationship with
metallurgical performance has been previously established in many studies (Vink
1997; Bojcevski 2004; Croop and Goodall 2013). A good rock characterization allows
us to have a better prediction of mining and metallurgical process responses (Dunham
and Vann 2007), which has a direct impact on the financial performance of a project
(Dunham et al. 2011).

Despite its great potential, rock texture information is not typically used in mining.
This may be explained due to difficulty in defining, characterizing and quantifying
textures (Bonnici 2012). However, textures have been widely investigated in areas
such as image processing and computer vision (Do andVetterli 2002; Ojala et al. 2002;
Zujovic et al. 2013; Petrou and Sevilla 2006), which offers the possibility of bringing
many new algorithms andmethods to the geosciences. Nevertheless, it should be noted
that the definition of textures in geology, mining engineering and image processing
can be different, which must be taken into account before applying any method.

Several other problems in the mining context have been addressed using computer-
aided techniques and digital image processing, such as ore sorting (Tessier 2007;
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Perez et al. 2011), lithology classification (Chica-Olmo and Abarca-Hernandez 2000;
Thomas et al. 2011), bubble sizing estimation on froth flotation processes (Bonifazi
et al. 2001; Kracht et al. 2013), and detection of big rocks during operation (Cabello
et al. 2002). Furthermore, digital image processing of rocks has been also used for
rock classification (Lepisto et al. 2003; Singh et al. 2004). For rock texture classi-
fication, different approaches have been considered, including the use of gray-level
co-occurrence matrices (Partio et al. 2002), the use of spectral features and natural
network classifiers (Kachanubal and Udomhunsakul 2008), and a hierarchical neuro-
fuzzy class method based on binary space partitioning (Gonçalves and Leta 2010).
These techniques explore the use of textures features; however, their settings exclu-
sively include classeswith homogeneous (stationary) textures, and the context inwhich
these techniques are applied does not correspond to mining.

This works develops new mathematical methods to extract low-dimensional
discriminative features with the objective of performing automatic rock texture classi-
fication. A new approach is proposed, which rests on the extraction of low-dimensional
discriminative features from the digital images based on transform domains and source
separation algorithms. Six classes of rock textures frequently found in porphyry cop-
per deposits are studied. These low discriminative features are designed on a case by
case basis and, thus, the proposed method is customized to the specific deposit and
texture classes. In this context, a classification scheme composed of a concatenation
of five binary detector is built. The proposed approach allows one to deal with the
different nature that a texture image could present, that is, as a stationary or as a struc-
tural pattern. For that, the classes are divided into two groups, which will be called:
stationary textures and structural textures. The first group, which is a typical case stud-
ied in image processing (Petrou and Sevilla 2006), contains rock textures defined by
a stationary pattern formed by crystals with particular spatial distribution (shape and
size). The second group contains rock textures that, as a consequence of the behavior
of the minerals, present structures of different shape, size and orientation, such as
clasts (rock fragments) and veins (fractures in rocks filled with minerals) (Tarbuck
et al. 2000). The existence of the aforementioned two groups does not allow the appli-
cation of standard methods of texture analysis, since the structural information of the
second group is not properly treated (Do and Vetterli 2002; Ojala et al. 2002; Zujovic
et al. 2013; Petrou and Sevilla 2006). Furthermore, other methods, specially devel-
oped to process rock texture information, do not consider the presence of structures
(Jungmann et al. 2011; Donskoi et al. 2007; Chatterjee 2013; Lepistö et al. 2005).

The focus of this work is on the feature extraction (FE), which is the development
of low-dimensional discriminative features. Specifically, a set of features is developed
for each binary classifier and is specially designed to extract characteristic informa-
tion (signature) of a particular class. For this task, transform domains given by the
wavelet transform (WT) (Mallat 2008) and the shearlet transform (ST) (Kutyniok
et al. 2012) are used to properly analyze the stationary patterns and geometric forms
of rock textures, while considering different levels of scale and orientation. As these
two phenomena (stationary patterns and geometric forms) might coexist in an image,
source separation algorithms (Szolgay and Szirányi 2012; Starck et al. 2005) are inte-
grated in our feature design. This classification approach shows better performance
than the state-of-the-art methods used for texture discrimination of natural images.
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The superiority of the proposed features can be explained by the fact that we took into
consideration stationary patterns and structural information at different levels of scale
and orientation, depending on the nature (signature) of the considered rock classes.

The rest of the paper is organized as follows. Section 2 introduces the rock texture
classification problem and gives specific details about the database. Section 3 gives a
general description of the image classification problemandour classification approach.
Section 4 presents themain contribution, where the development process for each low-
dimensional discriminative feature is specified. Section 5 explains the mathematical
expressions needed to assess the performance of the proposed classification scheme,
and shows the experimental results and their analysis. Section 6 provides a summary
of our results and some final remarks.

2 The Database of Natural Rock Textures

For our study, textures of rocks captured from drill hole cores digital photographs
from a porphyry copper mining project are used to construct a database. Drill hole
cores are stored in trays, which are photographed at high resolution. Although it is
well known that textures are correlated to some of the process performance responses,
given the difficulty in measuring and classifying them, they are seldom used as a
rock feature in the construction of models of the ore deposits. Nonetheless, geologists
have a description of the different types of textures that are of interest and, thus, a
databasewas constructed, where a number of caseswere labeledwith one of six texture
categories. Typically, the rock texture can be described in terms of the matrix texture
which represents the background of the rock, and in terms of the objects present in the
matrix, namely crystals, clasts, and structures. For our application, six categories are
identified (Fig. 1), and described as: (1) aphanitic class, characterized by amatrix of the
rock with the presence of small crystals, those of which only can be observed through
a microscope, leads to a homogeneous surface (the matrix) with slight and regular
local variations; (2) phaneritic class, characterized by larger crystals that constitute
the matrix of the rock and which can be observed through the naked eye, leads to a
surface that shows a homogeneous character with rougher variations (at larger scale)
than the aphanitic class; (3) porphyry class, features a matrix of small sized crystals
(microscopic scale), combined with larger crystals, which are visible by the naked eye
scale, called porphyds, much larger than those found in the phaneritic class; (4) vein
class, characterized by the presence of one or more of veins, usually depicting the
same orientation, that is fractures on the rock with a sheetlike form that are filled with
other minerals; (5) stockwork class, features a random array of veins, with varying
orientations; and (6) breccia class, characterized by a homogeneous matrix containing
large clasts that are objects with angular form.

The database has 16 gray-scale images of 128 × 128 pixels per class, in total 96
images. The images selected show pure classes. Nevertheless, we know, in practice,
there could be an overlap of two or more classes in a single image.

For analysis purposes, it is relevant to identify two groups within the set of images.
Firstly, a group called stationary textures is identified, composed of samples from the
aphanitic, phaneritic and porphyry classes, where low-scale elements form a stationary
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pattern formed by crystals with a particular distribution, shape and size. This group
corresponds to textures associated with igneous rocks. It should be noted that the term
“texture” in this case is applied to describe the shape, size and ordering of the crystals
that form a stationary pattern. Therefore, the main difference between textures in this
set is related to their crystals. In the aphanitic class, there are small crystals which only
can be observed through a microscope; in the phaneritic class, there are larger crystals
that can be observed by the naked eye; in the porphyry class, there are two types of
crystals: small size crystals (microscopic scale) and larger crystals (naked eye scale)
called porphyds. Furthermore, this last class has the biggest size crystals among the
three classes of the group. Secondly, a group called structural textures is composed
of samples from the vein, stockwork, and breccia classes, where structural features
define the corresponding texture, based on the shape and relative orientation of these
objects within the rock (Tarbuck et al. 2000). These textures are also associated with
igneous processes, where intrusion of magmas within already formed rock generates
the structural feature. In the vein class, the rock shows a fracture that is filled by a
different material; therefore, the characteristic feature is the presence of one or few
structures with similar orientation. When the rock has been broken by several veins
in random orientations, then the class is labeled as stockwork. Finally, samples of the
breccia class are characterized by the presence of large clasts (fragments of rocks with
sharp edges), within a homogeneous matrix.

2.1 The Imaging Method

Images used for this study were obtained from the photographs that are routinely
recorded from the drill hole cores obtained at a porphyry copper deposit in northern
Chile, during the exploration campaign of mining projects. A database of photographs
of full trays containing 4.5m of core length was obtained with a regular digital camera,
usually ranging from 4 to 8 megapixel of resolution under controlled illuminating
conditions. These images are stored for future consultation in case a core sample
needs to be identified and recovered from the drill hole core storage. For our study,
sections of the recovered core with pure textures or with clear structures of the six
types were selected and labeled by a experienced field geologist of the project. From
these sections, a library of 16 images for each texture class considered in this study
was built, with 128× 128 pixels in resolution each. It should be emphasized that this
control library was built in this manner to simplify the study and allow the design and
development of specific classifiers considering the characteristic features for the six
texture classes.

3 The Chain Sequential Classification Approach

In this section,we explain the classification approach adopted in this work. First, the
image classification problem is presented in general to, then, show the adopted sequen-
tial classification scheme.
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3.1 The Image Classification Problem

An image z can be represented as a two-dimensional vector z = (z(i, j)){(i, j)} where
(i, j) ∈ {1, . . . , n1} × {1, . . . , n2}. For simplicity, the entries of an image (or pixels)
can be re-sorted in a one-dimensional vector of dimension n = n1 × n2, where each
image z belongs to a subspace Z ⊂ Rn . Associated with each image z, there is a
hidden (non-observed) class label that is denoted by y ∈ Y = {1, . . . , M}, which
represents the identity (or class) of the image. The classification task consists of finding
a mapping fromZ toY , which from the observation stipulates the identity or class of
the image. In the Bayesian setting, the image is modeled as a realization of a random
vector Z(w) with values in Z and the class label is a random variable Y (w) with
values in Y . Then, considering the distribution of the joint vector (Z ,Y ), the optimal
rule (that minimizes the probability of error) is given by (Vasconcelos (2004) and Silva
and Narayanan (2012))

g∗(z) = argmax
i∈Y

P(Y = i |Z = z), ∀z ∈ Z , (1)

where P(Y = i |Z = z) denotes the a posteriori probability of class being i given
the observation z. This is the well-known maximum a posteriori (MAP) decision rule
(Vasconcelos 2004).

Unfortunately, to determine g∗(·), it is necessary to know the joint distribution
P(Z ,Y ), which is not available in practice. In contrast, we can assume that we have
access to independent and identically distributed (i.i.d.) samples

D = {(z1, y1), (z2, y2), . . . , (zN , yN )},

which corresponds to the supervised (training) data. This raises a learning problem,
which corresponds to approximate the optimal rule empirically from the data D .
For this, the problem of dimensionality reduction of the observation space Z needs
to be addressed (van der Maaten et al. 2009). More precisely, starting from a big
observation space of dimension n, a feature transformation (FT) f : Z → X ⊂ Rm

needs to be designed where m < n. In this context, X denotes the feature space,
and X = f (Z) is the new feature vector to do the inference about Y . The application
of the FT is known as feature extraction (FE) process. FE is essential to reduce the
learning problem to something that is tractable in terms of dimensionality, given the
limited data D = {(z1, y1), (z2, y2), . . . , (zN , yN )}. The ideal objective is that f (Z)

keeps (on average) almost all the information of Z to discriminate the hidden variable
Y (Vasconcelos 2004; Silva and Narayanan 2012).

3.2 The Chain Sequential Classifier

For our problem, a sequential approach conformed by a bank of binary classifiers
(or detectors) is proposed. The basic idea was to simplify the decision scheme by
a significant reduction in the dimensionality of the problem (in the FE phase), and
the adoption of a sequence of simpler binary detectors. Therefore, the sequential
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classification strategy decomposes the global decision in a set of binary detectors
(partial decisions), where the objective in each step of the chain is to put the focus on
one of the texture classes at a time, and design a description (feature extraction) that
captures what makes this image class distinctive from the rest. The assumption used
to adopt this divide to conquer approach is that every rock texture has a distinctive
identity that can be represented with a parsimonious representation that discriminates
this class from the rest with high accuracy. Under this assumption, a set of binary
classifiers acting one after the other (on the designed features) offers an attractive
solution for the global decision problem. On the other hand, the incremental nature
of this approach provides the possibility to extend it to more texture classes, while
keeping the complexity of the strategy constrained, as every binary detector is acting
individually on a relatively small feature space by design.

Regarding the binary classifier, under the assumption that every texture class
can have a distinctive small dimensional feature vector (that discriminates it from
the rest), non-parametric discriminative classifiers can work perfectly well at every
stage in the chain as the celebrated support vector machine (SVM). SVM classi-
fiers benefit from the discrimination power of good features and, consequently, it
is a perfect match to the feature design oriented strategy adopted in this work. In
particular, SVM offers the capacity of defining a large margin decision region in
the designed feature space with a simple decision rule based on the use of repro-
ducible kernels Hilbert spaces and a linear decision approach that avoid overfitting
to training conditions (Burges 1998; Cherkassky and Mulier 2007; Duda et al.
2012). This learning issue is important in our problem, as limited supervised training
data are available. Then, the proposed discriminative approach is the best choice
to avoid major estimation errors by reducing the learning to the definition of a
large margin decision region (in the feature space) instead of more classical non-
discriminative approaches that requires the estimation of the joint distribution (Burges
1998).

The proposed chain sequential classifier (CSC), denoted by gchain(·), works as
follows: for every class index i ∈ {1, 2, 3, 4, 5}, we design a FT

fi : Z → Xi , (2)

where Xi = fi (Z) is the resulting feature vector, and its associated binary classifier
is given by

gi : Xi → {0, 1}, i ∈ {1, 2, 3, 4, 5}. (3)

Thegeneral idea of the decision scheme is the following: thefirst classifier g1(·)decides
or “detects” the presence of the class 1, the second g2(·), based on the decision of the
first stage, decides or detects the presence of the class 2, until the last g5(·) that decides
if the observation belongs to the class 5 or 6. In other words, given the raw observation
Z our scheme receives as an entry a set of 5 partial binary decisions

(g1( f1(Z)), g2( f2(Z)), . . . , g5( f5(Z))) ∈ {0, 1}5, (4)
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Fig. 2 Decision-tree-decoding
structure of the sequential
classification approach 0
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Fig. 3 Block diagram of the proposed chain sequential classifier

where the final decision decodes that path by the tree structure illustrated in Fig. 2.
More formally, if Ŷi = gi ( fi (Z)) ∈ {0, 1} denotes the output of the i-classifier (with
i ∈ {1, 2, 3, 4, 5}), and Ŷ6 = 1 is fixed, then the final decision is given by

Ŷ (Z) = gchain(Z) = min
{
i ∈ {1, . . . , 6} : Ỹi = 1

}
. (5)

4 Transform-based Feature Design for Binary Detection

Thiswork puts the focus on the FE,which is the problemof designing { fi }5i=1 in Eq. (2)
for each binary classifier in the sequential strategy illustrated in Fig. 3. The objective
for each stage is to find a parsimonious representation with a good discriminative
power to discriminate the rock class of interest. In this section, we develop the feature
transformation (FT) in Eq. (2) for each geological texture class in Eq. (3), and we
evaluate its detection rate adopting SVM classifiers.
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4.1 Aphanitic Class Detection: First Binary Classifier

Stationary textures present stationary patterns at different scales (Tarbuck et al. 2000).
To detect the presence of these stationary patterns, it is necessary to have a technique
that analyzes them at different scales or resolutions. For that, the texture-cartoon sepa-
ration technique proposed by Szolgay and Szirányi (2012) is adopted. This technique
is capable of separating the stationary patterns (or texture) from the geometric forms
(or cartoon) according to a pre-established filter of width σ > 0. The parameter σ

is associated with the scale of the texture-cartoon separation (for more details see
Appendix 3). Therefore, changing the value of the width parameter σ allows us to
separate the stationary patterns at different scales.

In particular, theAphanitic class can be seen as a stationary texturewhose stationary
pattern is present at a very small scale (microscope scale). It is found empirically that
for a small σ (according to the size of the images a small filter width would correspond
toσ in the range [0.8–1.2]) the texture-cartoon separation technique captures thewhole
image in the texture component, while leaving the cartoon component empty. On the
contrary, the cartoon part of the other five remaining classes (phaneritic, porphyry,
vein, stockwork and breccia) is not significantly altered. Therefore, focusing just on
the cartoon part, the relative change of image borders before and after the separation
can be determined as a key feature. It is expected that for the aphanitic images this
relative change should be very high, while the other classes would be very small.

4.1.1 Designed Feature

Denoting an image by z and its texture and cartoon parts associated with a filter σ by
ztσ and zuσ , respectively, the quantity of image borders can be quantified by the total
variation (TV) operator (Rudin et al. 1992). Specifically, for an image its TV is given
by ‖ ∇z ‖�1 , where ‖ · ‖�1 denotes the �1-norm and ∇ is the gradient operator. Then,
the relative change previously described can be quantified by

f1(z) ≡ | ‖ ∇z ‖�1 − ‖ ∇zuσ ‖�1 |
‖ ∇z ‖�1

∈ [0, 1], ∀z ∈ Z . (6)

To illustrate the trend of this feature, Fig. 4 shows the texture and cartoon components
for an aphanitic sample and a stockwork sample, as well as the value of f1 in both
cases.

4.1.2 Detection

Concerning the detection of aphanitic class, f1 is adopted as the only feature vector
to train a collection of SVM classifiers. In Fig. 5, the discriminative ability of f1 is
shown presenting its value for each image in the aphanitic class and for images in the
remaining classes. It can be seen howmembers of the aphanitic class are located at high
values close to one while the others have small values close to zero. The presence of
these two separated clusters in the feature space gives evidence that decision regions
can be established with good discrimination and, consequently, low probability of
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Fig. 4 Each row shows an original image and its cartoon and texture components for an aphanitic and
a stockwork samples, respectively, setting σ = 1. In the first case f1 = 0.811 and in the second one
f1 = 0.134
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Fig. 5 Discriminative ability of f1. The x-axis shows different samples. 1–16 correspond to aphanitic
samples, 17–96 correspond to samples of the other classes. The y-axis shows the value of f1 for each
sample

error. The width of the filter chosen was σ = 1, which allows an adequate isolation
of the small-scale stationary patterns of the aphanitic texture (Fig. 4). In general,
the optimum value of σ should be a function of the scale at which the images of
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the database were acquired. In our context using σ = 1, a considerable change in
the border content of our target image class is observed between the original and its
cartoon version (after separation).

Equipped with this one-dimensional feature, a family of SVM classifiers is built.
As database 16 samples for our target aphanitic class and 80 samples for the remaining
5 classes (the alternative hypothesis) are considered. Three types of kernel types were
studied obtaining the best performance with the linear kernel (over the polynomial
or radial function basis (RBF) kernels). This fact is consistent with the almost linear
separability of the classes in the f1 feature domain (Fig. 5). For performance, a cross-
validation is used to make an efficient use of the data. In particular, a leave-one-out
approach is adopted, where each sample is separated and a model is trained with the
remaining samples. Next, the trained model is tested over the previously separated
sample. For this case, if a sample of the aphanitic class is separated the trained model
is obtained using 15 samples of this class and 80 of the other. Conversely, if one sample
of the remaining classes is separated, the trained model is obtained using 16 samples
of the aphanitic class and 79 of the other. Finally, 93.8 % of accuracy is obtained that
is consistent with the distribution illustrated in Fig. 5, and the ability of SVM to obtain
a large margin decision boundary. Therefore, in this binary detection, the hypothesis
that the aphanitic class has a low-dimensional signature (that can be represented in
this case by a scale feature) is validated.

4.2 Phaneritic Class Detection: Second Binary Classifier

The phaneritic class can be considered as a classical texture class because it has
stationary patterns. In contrast with the aphanitic class, these patterns occur at several
scales (Fig. 1). Importantly for feature design, there exists a specific scale at which just
the phaneritic class presents a stationary pattern and the others remaining classes do
not. Then, the objective of the feature extraction part of this stage is to take advantage
of this observation. For that, we first isolate the stationary pattern using the texture-
cartoon separation technique indicated in Sect. 4.1 by fixing a particular σ in the
range [5–6], according to the image size. More precisely, a filter size in the range [5–
6] assigns a considerable proportion of stationary patterns of the phaneritic samples
to the cartoon part. Meanwhile, the cartoon component of the other remaining four
classes should not present significant stationary information. Consequently, in this
range better discrimination of the phaneritic class is achieved that translates in better
classification performance.

4.2.1 Designed Features

To quantify the presence of the particular stationary pattern of the phaneritic class,
a transform domain representation is proposed, the wavelet transform (WT) (Mallat
2008) (more details in The Wavelet Transform in Appendix 1). For an image z in
the pixel-based domain, the WT corresponds to a decomposition (or projection) of
its information at several scales and locations. That decomposition is carried out by
an orthonormal basis whose elements, called wavelets, are denoted by ψ j,k , where j
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and k correspond to a specific scale and location indexes, respectively. Then, after the
projection of z onto the family {ψ j,k}, theWT is the set of wavelet coefficients {d j,k =
〈ψ j,k, z〉} given by the inner product between z and eachwaveletψ j,k . Additionally, by
fixing the scale index j , the j-wavelet sub-band corresponds to thewavelet coefficients
at all possible locations at scale j .

It is known that the histogram of coefficients in a wavelet sub-band can be modeled
by a generalized Gaussian density (GGD) (Do and Vetterli 2002), which is para-
metrized by a spread and a shape parameter, denoted by α and β, respectively. An
interesting fact is that these parameters allow one to infer the form of the probability
density function (PDF) associated with a sub-band. A high spread parameter means
a wide PDF and a small shape parameter means a fast decay in the tail trend (more
details are available in Appendix 2). With this statistical model, we have a probabilis-
tic distribution for each wavelet sub-band of the image. As a result, it is possible to
quantify the presence of the isolated stationary pattern for the phaneritic class because
when a stationary pattern is present in an image, the PDF of the associated wavelet
sub-bands tends to be wide. This means a high value for the spread and the shape
parameters. On the other hand, in the rest of the remaining four classes, where there is
not such a stationary pattern, the PDF shape is thin, having smaller spread and shape
parameters. This distinctive feature is clearly illustrated in Figs. 6, 7 and 8.

Finally, for the feature extraction of the second binary classifier, the WT with
three scales is computed, which gives a set of nine spread parameters and nine shape
parameters. As a result, the feature vector of the second binary classifier is given by
the set of statistical parameters of each of the nine sub-bands

Fig. 6 Each row shows an original image and its cartoon and texture components for samples of the
phaneritic and breccia classes, respectively, setting σ = 5.5
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Fig. 7 Histogram and the fitted model (α = 0.683, β = 1.274) of wavelet coefficients in a particular
sub-band at the second scale for the cartoon image of a phaneritic sample
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Fig. 8 Histogram and the fitted model (α = 0.014, β = 0.421) of wavelet coefficients in a particular
sub-band at the second scale for the cartoon image of a breccia sample

f2 ≡

⎛
⎜⎜⎜⎝

α1 β1
α2 β2
...

...

α9 β9

⎞
⎟⎟⎟⎠ . (7)

4.2.2 Detection

Concerning the problem of detecting the phaneritic class, Fig. 9 illustrates the discrim-
inative ability of f2 by showing the parameters of the fourth sub-band in the feature
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Fig. 9 Discriminative ability of f2. Considering just one wavelet sub-band, the x-axis shows the value of
the spread parameter for 16 samples of the phaneritic class and 64 samples of the other classes. Analogously,
the y-axis shows the respective values of the shape parameter

vector, which is associated with the second level of resolution. These parameters are
calculated using a wavelet decomposition of three scales after an isolation of the sta-
tionary pattern using a filter of width σ = 5.5. The chosen number of scales permits
an appropriate resolution analysis of the images according to their size (128 × 128
pp.). Higher levels of decomposition of the wavelet were explored but they did not
capture any stationary pattern and their contribution was negligible. As well as for the
first binary detector, an adequate value for σ depends on the scale at which the images
were acquired. Considering the scale used in the acquisition process (all photographs
are acquired using the same resolution in the digital camera), it is found that σ = 5.5
allowed good isolation of the stationary patterns. In fact with this setting, two clusters
can be obtained one for the phaneritic class and the other for the remaining four classes
(porphyry, vein, stockwork and breccia). Remarkably, the other sub-bands present a
similar discriminative trend, so clear decisions regions are expected when the para-
meters of all sub-bands are gathered in the designed nine-dimensional feature vector
in Eq. (7).

Moving to the detection problem, the same family of SVM classifiers used for the
first detector in Sect. 4.1 is trained. In this context, 16 samples for the phaneritic class
and 64 samples for the alternative hypothesis are available. Again cross validation is
adopted and the performance for all choices of kernels was obtained. The SVM with
the polynomial kernel offered the best performances with a classification accuracy
of 92.5 %. This high accuracy validates the feature design strategy developed in this
section and the assumption of the existence of a discriminative signature for this
particular class.
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Fig. 10 a Sample of the stockwork class and its component of geometric forms and its component of
stationary patterns, respectively ( f3 = 599.53). b Sample of the porphyry class and its component of
geometric forms and its component of stationary patterns, respectively ( f3 = 312.27)

4.3 Stockwork Class Detection: Third Binary Classifier

The third binary classifier is intended to detect the stockwork class. This class can
be considered as a structural texture. As a result, it is relevant to extract information
associated with the presence of a geometric form, which is an array of veins of a
sheetlike form, illustrated in Fig. 10a. In addition, the images of this class can present
a stationary pattern in some parts, which hinders the analysis of the mentioned geo-
metric forms. For that reason, the stationary patterns from the geometric forms need
to be isolated. To do this, a source separation technique is used, which is based on
representing the image in two alternative transform domains (Starck et al. 2005; Fadili
et al. 2010; Kutyniok and Lim 2012).

4.3.1 Designed Feature

We model a stockwork image z by the sum of two independent sources

z = zs + zg, (8)

where zs corresponds to the stationary patterns (texture), and zg corresponds to the
geometric forms (veins).With this model, the source separation technique uses the fact
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that these two independent sources are compressible in the wavelet and the shearlet
domains, respectively (Appendix 4; Kutyniok and Lim 2012). Figure 10 shows the
result of a separation using the adopted source separation technique, where it can be
seen that zg captures the geometric forms properly.

After the source separation is conducted, the ST is applied directly to zg (see
details on The Shearlet Transform in Appendix 1). If we fix a given scale j , and we
compute the transform coefficient for each possible location, it is possible to calculate
in which orientation the associated Shearlet coefficient achieves its maximum (Gibert
et al. 2014). Next, all the maximum coefficients found can be added into one single
value, which is called orientation energy (OE), and is denoted by ξ j . More formally,
considering the shearlet coefficients of zg, denoted by {SH j,l,k(zg)}, where j , l, and k
are the scale, orientation and location parameters, respectively, for a pixel k = (k1, k2)
and a scale j , it is possible to define

ξ j,k(l) ≡ |SH j,l,k(zg)|, l ∈ L j , (9)

where L j corresponds to the orientations associated with the scale j (more details in
The Shearlet Transform in Appendix 1). Then, the OE of z at scale j corresponds to

ξ j (z) ≡
∑

k∈Z2

max
l∈L j

ξ j,k(l). (10)

It happens that ξ j tends to be high for the stockwork class, and small for the remaining
three classes. Specifically, for our database just the OE of the second scale will be
used, as it provides enough discrimination for the problem (Fig. 11). Thus, the feature
used by the third binary classifier is given by

f3 ≡ ξ2. (11)

4.3.2 Detection

In Fig. 11, the discriminative ability of f3 is illustrated by showing the OE for each
sample of the stockwork class and the remaining three classes (vein, porphyry and
breccia). It should be mentioned that for the Shearlet transform only three levels
of scale were considered. This is because higher decomposition levels do not show
adequately the structures of the stockwork samples due to the size of the images
(128× 128). Furthermore, the use of the second scale to calculate the OE is due to the
fact that the structures (sheetlike veins) of the stockwork class are well represented at
this level of resolution, which translates in high value for the OE. This can be observed
in Fig. 11,where samples of the stockwork class are located at high values and the other
three classes show small values, providing a clear decision boundary in the feature
space. To implement that decision region (or classifier), a family of SVM classifiers
is trained with different kernel functions (linear, polynomial, and RBF). For training,
16 samples of the stockwork class and 48 samples of the remaining three classes are
considered. For testing, cross-validation strategy was used as explained in Sect. 4.1.2.
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Fig. 11 Discriminative ability of f3. The x-axis shows different samples. From 1–16 correspond to stock-
work samples, and from 17–64 to samples of other classes. The y-axis shows the value of f3 for each
sample

From the distribution of the feature presented in Fig. 11, a simple affine decision
boundary is observed. Consistent with this observation, a linear SVM classifier shows
the best performance for this task with 96.9 % of accuracy (correct classification rate).
This performance supports the discrimination ability of f3 for the accurate detection
of the stockwork class.

4.4 Vein Class Detection: Fourth Binary Classifier

The fourth stage is designed to detect the vein class. Images of this class are charac-
terized by the presence of a considerable thick vein, an object with a sheetlike form
following an orientation. Figure 12a shows a sample of the class and its respective
vein with a vertical orientation.

A feature extraction methodology is proposed with the purpose of quantifying the
presence of this signature and differentiate it from the objects inside images of the
other two remaining classes (breccia and porphyry). In fact, the other two classes
are composed of clasts and porphyds (crystals), which have a more isotropic form
than veins. Therefore, it is that isotropy difference the mean to discriminate the vein
class from breccia and porphyry. For that purpose, the ST is adopted (The Shearlet
Transform in Appendix 1).

Yi et al. (2009) showed that a small proportion of the highest shearlet coefficients
corresponds to the borders of the image. Therefore, if the image has an object with
a particular orientation, the shearlet sub-band associated with that orientation should
have large coefficients (located at the borders of the object). On the other hand, in
the sub-band with orientation orthogonal to the object orientation, there should not
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be large coefficients. Figures 12, 13 and 14 illustrate this observation. Based on this,
the sum of the absolute value of the coefficients of each sub-band is computed (or
the �1-norm of the sub-band), which is known as the energy of the sub-band. The
maximum of these computed energies should be associated with the sub-band with
the same orientation of the object. Finally, the ratio between the energy of the sub-
band orthogonal to the object orientation and the energy of the sub-band with the
same orientation is computed. This ratio should be close to zero for our target class.
Conversely, for objects with an isotropic form, the energy of each sub-band should
be similar since the object has borders in each direction, and the ratio between any
sub-band an its orthogonal counterpart should be close to one.

4.4.1 Designed Feature

More formally, given an image z, its Shearlet coefficients {SH j,l,k(z)}, and a per-
centage value p ∈ (0, 1), we define

SH p(z) ≡ {1Pp (SH j,l,k(z)) · SH j,l,k(z), j ≤ 0, l ∈ L j , k ∈ Z2}, (12)

where Pp is the set of the p-percentage most significant shearlet coefficients of z,
and

1Pp (SH j,l,k(z)) =
{
1, SH j,l,k(z) ∈ Pp,

0, SH j,l,k(z) /∈ Pp.
(13)

Therefore, SH p(z) corresponds to the shearlet coefficients where the 1 − p less
significant fraction is set to zero. We denote the elements of this set bySH

p
j,l,k(z) ≡

1Pp (SH j,l,k(z))SH j,l,k(z), and the sub-band corresponding to the scale parame-
ter j and the orientation parameter l by SH

p
j,l(z). Next, for a scale j , considering

its associated orientations l ∈ L j , we define the set K
p
j ≡ {κ p

j,l ∈ [0, 1], l ∈ L j },
where

κ
p
j,l ≡

⎛
⎝min(‖ SH

p
j,l(z) ‖�1 , ‖ SH

p
j,l

(z) ‖�1)

max(‖ SH
p
j,l(z) ‖�1, ‖ SH

p
j,l

(z) ‖�1)

⎞
⎠

2

, (14)

with l ∈ L j being the closest orientation to the orthogonal orientation of l. With this
definition, we define

κ
p∗
j ≡ κ

p
j,l∗ , where (15)

l∗ ≡ argmax
l∈L j

‖ SH
p
j,l(z) ‖�1 . (16)

Finally, our designed feature is given by

f4 ≡ κ
p∗
j , (17)

where j = 2 and p = 0.03.
Figures 12, 13 and 14 illustrate howhighmagnitude Shearlet coefficients are located

at the borders of images, andhow f4 varies as the isotropyof objects increases. It should
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Fig. 15 Discriminative ability of f4. The x-axis shows different samples. 1–16 correspond to vein samples,
and 17–48 to samples of other classes. The y-axis shows the value of f4 for each sample

be mentioned that to focus the analysis on the signature objects of the class, a texture-
cartoon separation was done using σ = 8 before applying the ST (see Appendix 3).
As well as for the first and second classifiers, the optimal value of σ depends on the
scale at which the images were originally acquired. In our context after a systematic
experimental analysis, we found that smaller values (σ  8) do not isolate properly
the objects, and higher values (σ � 8) blur the borders of the main vein in the vein
class, which has a negative effect in terms of classification performance.

The decision of using the second scale of the shearlet decomposition (i.e., j = 2)
relies on the fact the vein object is well represented at this level of resolution. Other
levels of scale did not provide additional complementary information to discriminate
our target signature (in the sense of quantifying the anisotropy of the target object).
In fact, the effect of considering the isotropy coefficients of other levels in the feature
vector did not translate in an improvement in the classification performance.

Finally, the percentage of coefficients p was chosen small enough to exclusively
detect the borders of the image (Figs. 12, 13, 14).

4.4.2 Detection

The discriminative ability of f4 is illustrated in Fig. 15. In general, the discrimination
power of this feature is clear in the sense that vein samples are concentrated at low
values (in the range [0, 0.2]) of the feature space while samples from breccia and
porphyry are located in a wider range from 0.1 to 1. For a significant portion of
the samples, no overlap is observed between the two classes. However, a zero error
decision region is not possible to establish. The reason is that some images of breccia
and porphyry present some anisotropic objects that translate in some overlap with vein
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samples in the feature space. Concerning classification performances, the same family
of SVMclassifiers is trainedwith 16 samples of the vein class and 32 samples of the two
alternative classes. For testing, cross validationwas used as in Sect. 4.1.2, and again the
minimum empirical risk principle was adopted for selecting the best SVM kernel. The
polynomial kernel showed the best classification rate with a 79.2 % of accuracy. This
smaller rate, compared with previous stages, is reflected in the distribution presented
in Fig. 15.

4.5 Porphyry and breccia Classification: Fifth Binary Classifier

The fifth binary classifier is intended to discriminate the porphyry class from the
breccia class. In the first case, the porphyry class corresponds to a stationary texture
which presents stationary patterns of small and big scale. In the second case, the breccia
class corresponds to a structural texture which is characterized by the presence of big
objects called clasts. The objective here is to extract and quantify the information
given by the small-scale stationary patterns present in the porphyry class, which are
barely present in the breccia class. For that purpose, the local binary patterns (LBPs)
are used (Ojala et al. 2002). LBP associates a binary pattern to each pixel of an image.
Specifically, for each pixel its value is compared with the value of the other pixels in a
neighborhood considering a certain profile. This process creates a binary vector. The
entries in the vector depend on whether the compared pixel was higher or smaller than
the neighbor pixel. Finally, a histogram is computed with the frequency of the binary
patterns in the image.

The low scale stationary patterns present in the porphyry class create elevated zones
in the LBP histogram (Fig. 16). On the other hand, the absence of stationary patterns in
the breccia class results in a flat LBP histogram. The feature of the fifth binary classifier
is designed to capture this difference. To do so, the kurtosis of the LBP histogram is
proposed as feature, since this value is associated with the histogram flatness.

4.5.1 Designed Feature

More precisely, given an image and its LBP histogram denoted by h, f5 is given by

f5 =
1
n

∑n
i=1(hi − h)4

( 1
n

∑n
i=1(hi − h)2

)2 , (18)

where n is the number of bins in the histogram, hi is the histogram value at i-bin, and
h is the histogram mean. Note that there are no parameters to be chosen in f5.

4.5.2 Detection

Concerning the classification of this final stage, Fig. 17 shows the values of f5 for
samples of the two classes porphyry and breccia. Remarkably, two clear cluster in this
one-dimensional feature space can be observed, where the samples of the porphyry
class are concentrated in the range [0.25, 12] of the feature space, while samples of
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Fig. 16 a An example of porphyry (left) and breccia (right) classes, respectively. b The LBP histogram of
the porphyry image ( f5 = 8.465). c The LBP histogram of breccia image ( f5 = 21.572)
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Fig. 17 Discriminative ability of f5. The x-axis shows different samples. 1–16 correspond to porphyry
samples, and 17–32 to breccia samples. The y-axis shows the value of f5 for each sample
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the breccia class are concentrated in a non-overlapping range [18, 26] of the feature
space. The presence of these two well-established clusters allowed us to build an
SVM classifier with good classification performance. For that, our family of SVM
classifiers is trained in this case with 16 samples of the breccia class and 16 samples of
the porphyry class. Cross validation is adopted as before, and the minimum empirical
risk rule is used to select the best kernel. As expected from Fig. 17, where a linear
boundary shows an almost perfect decision, the best performance was obtained by the
linear kernel achieving 93.2 % of classification accuracy. This evidence supports the
hypothesis of this work that a small dimensional feature is able to capture a signature
that discriminates porphyry from breccia in this last decision stage.

5 Global Classification Performance

This section analyzes the classification performance of the chain sequential classifier
(CSC) presented in Sect. 3. To compute the performances of this strategy, it is instru-
mental to know the performance of any of the partial decisions of the chain. In fact
the performance of the CSC is a function of the partial performances reported and
analyzed in Sect. 4.

From the binary sequential approach in Eq. (5), its probability of error is given by

P(gchain(X) �= Y ) = 1 − P(gchain(X) = Y ),

= 1 −
6∑

l=1

P(gchain(X) = Y |Y = l)P(Y = l). (19)

From Eq. (19), the probability of error reduces to calculating the conditional proba-
bilities {P(gchain(X) = Y |Y = l)}6l=1, which involve the knowledge of the success
probability for each binary detector {P(gi (Xi ) = Yi )}5i=1 in Eq. (3). More precisely,
from the structure in Fig. 3, we have that

P(gchain(X) = Y |Y = l) =
l∏

i=1

P(gi (Xi ) = Yi ), (20)

where the random binary vector (Y1, ..Y5) ∈ {0, 1}5 in Eq. (20) denotes the binary
coding of the true class Y , using for that coding the path structure illustrated in Fig.
2. Finally, since the same number of images per class is available in our database,
P(Y = l) = 1/6, ∀l ∈ {1, . . . , 6} is considered. Finally, replacing Eq. (20) in Eq.
(19), it follows that

P(gchain(X) �= Y ) = 1 − 1

6
·

6∑
l=1

(
l∏

i=1

P(gi (Xi ) = Yi )

)
. (21)
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5.1 Analysis and Results

Equation (21) is used to determine the performance of our method globally. Therefore,
the set of probabilities {P(gi (Xi ) = Yi )}5i=1 of every binary detector, reported in Sect.
4, is used.As a summary of these results, Table 1 reports the performance of each binary
classifier, where its success probability and the selected SVM kernel are listed. Here,
it is possible to compare the quality of features designed for each of the stages in Sect.
4, where the performance for each binary detector is very good in general supporting
the main assumption considered in this work that every class has a discriminative
signature that is reflected in a small dimension feature vector that discriminates that
particular class from the rest. The only exception of this rule is g4, associated with
the detection of the vein class where the designed feature shows lower accuracy. This
can be attributed to the complexity of discriminating the vein class from the breccia
and porphyry classes. In fact, from the way the feature extraction was designed for
this detector (detecting if the objects inside the images have a particular anisotropic
orientation), it happens that there are some images from the breccia class that contains
structures with a certain degree of anisotropy, which causes confusions. This can be
observed in Fig. 15.

Finally, to evaluate the performances of our designed small dimensional discrim-
inative features in the context of the proposed sequential strategy driven by SVM
detectors, we consider two widely adopted and recognized state-of-the-art methods
used to discriminate texture in natural images (Do andVetterli 2002; Ojala et al. 2002),
based on WT and LBP, respectively. Table 2 presents the probability of error of our
scheme gchain and the other two classifiers. Remarkably, the proposed method shows
an important reduction in classification errors when compared with the methods based
on WT or LBP. In particular, our method offers a reduction in error classification (a
significant 32.1 % relative improvement) with respect to the wavelet-based method
which is the most competitive for this task.

Table 1 Success probability and SVM kernel of each binary classifier

Binary classifier Success probability (P(gi (Xi ) = Yi )) SVM configuration

g1 0.938 Linear kernel

g2 0.925 Polynomial kernel

g3 0.969 Linear kernel

g4 0.792 Polynomial kernel

g5 0.932 Linear kernel

Table 2 Error probability of
each method

Method Probability of error

CSC 0.241

LBP-based method 0.365

Wavelet-based method 0.355
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Fig. 18 a Success probability
of the CSC for each class.
b Success probability of the
wavelet-based method for each
class. c Success probability of
the LBP-based method for each
class. The corresponding labels
are: 1 aphanitic; 2 phaneritic;
3 stockwork; 4 vein; 5 porphyry;
6 breccia
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To complement this analysis, Fig. 18 shows the success probability per class, where
as expected the two natural-texture methods have good performances for stationary
texture classes (aphanitic, phaneritic andporphyry).However for the structural textures
(stockwork, vein and breccia), where there are a combination of stationary patterns (at
a given scale) and objects, the performance is affected. This verifies the motivation of
thiswork, inwhich conventional natural-texture discriminativemethods haveproblems
detecting objects with the presence of both texture patterns and cartoon components.
In contrast, our approach based on the use of features that capture both texture and
object as information for discrimination achieves a more uniform success probability
among the classes, and, more importantly, better performance overall.

6 Conclusions

This work proposes a new set of discriminative features for detecting natural rock
texture based on the extraction of texture information (related to thematrix of the rock)
and object information (related to the presence of large objects within the matrix) in
transform-based domains. In addition, a chain sequential classification approach is
proposed, that, on the one hand, facilitates the design of isolated features, and on the
other, provides a way to address the practical issue of limited data.

The proposed classification scheme has the ability to discriminate stationary tex-
tures from structural textures, by means of a separation into texture and cartoon
components. Because of this ability, the proposed framework offers very good perfor-
mance for the problem of automatic rock classification for the six classes addressed,
showing significant improvements with respect to well-known state-of-the-art tech-
niques used conventionally for texture classification (indexing) of natural images.
These findings stress how relevant is for natural rock image classification to develop
specific features for this task.

It is important to emphasize that the assumption that it is possible to design a set
of small dimensional discriminative features for every rock class is validated in this
work. A concrete methodology to extract that discriminative information from the
image is proposed for every stage of the chain illustrated in Fig. 3. The existence of
this set of small dimension and high discriminative features is the main justification
that supports the fact that the sequential classification strategy (using SVM classifiers)
is performing better than state-of-the-art methods. SVM has the ability to learn (in a
non-parametric fashion) largemargin decision regionswith limited supervised samples
fromeach class. Then, the features proposed in thiswork facilitate andmake this simple
classification strategy possible.

On the direction of adopting more complex classifiers, much work can be done to
address the classification problem using a global strategy, instead of the sequential
approach proposed here. In theory, a global strategy is optimal when the joint dis-
tribution is known between the features and the class label (Sect. 3.1). This was not
feasible in our problem considering that very limited data were available. However,
the sequential approach shows to be an excellent alternative under the condition that
the classification problem can be addressed in a small dimensional feature space in
each stage of the chain. To move from the sequential to the joint strategy, more data
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are needed as the natural way to address this problem is to construct a large feature
space (the union of the features designed for each detector can be an initial alterna-
tive) to address the decision problem from there. This work offers concrete directions
to construct this large features space, and we believe that equipped with more data
improvements and better performances can be expected.
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Appendix 1: The Wavelet and Shearlet Transforms

In this section, two mathematical tools are presented: the wavelet transform (WT)
and the shearlet transform (ST), which allow to analyze an image at different scales,
locations and orientations. A brief mathematical background is introduced showing
only the continuous case for the sake of brevity (Mallat 2008; Easley et al. 2008).

The Wavelet Transform

TheWT corresponds to a decomposition of a one-dimensional function f by a family
of functions {ψ j,k}( j,k)∈Z2 , which form an orthonormal basis of L2(R), and provide a
partition of L2(R) in several scales (Mallat 1989, 2008). These functions are obtained
through the dilation and translation of a kernel function ψ , called mother wavelet, as
follows:

ψ j,k(x) = 2− j/2ψ(2− j x − k), ( j, k) ∈ Z2. (22)

The mother wavelet is constructed from a scaling function φ which satisfies the two-
scale difference equation (Strang 1989). The construction is given by

ψ(x) = √
2

∑
n∈Z

g(n)φ(2x − n), (23)

where g(n) = (−1)nh(1−n) and h is a filter thatmustmeet several conditions to obtain
an adequate family {ψ j,k}( j,k)∈Z2 (Strang 1989). Thus, the decomposition of a function

f is given by a set of wavelet coefficients {d j [k] ≡ 〈 f, ψ j,k〉 = ∫ +∞
−∞ f (x)ψ j,k(x)dx :

( j, k) ∈ Z2}, where each coefficient captures the information that the function has
between two subsequent resolution levels at a particular position. Fortunately, to cal-
culate these coefficients it is not necessary to know ψ j,k explicitly, and it is enough
to have access to the filter h. In fact, given a scale j it is possible to calculate the
coefficients of the next scale j + 1 by

d j+1[k] =
+∞∑

n=−∞
g[n − 2k]a j [n], (24)
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where

a j+1[k] =
+∞∑

n=−∞
h[n − 2k]a j [n]. (25)

The coefficients {a j [k] ≡ 〈 f, φ j,k〉 = ∫ +∞
−∞ f (x)2− j/2φ(2− j x − k)dx, ( j, k) ∈ Z2}

are known as approximate coefficients, and capture the content that a function has at
a particular scale level.

In the case of a two-dimensional function f (x) (like an image), where x = (x1, x2),
to keep an orthonormal decomposition there are three kinds of wavelet coefficients
given by

d1j+1[k] =
∑

(n1,n2)∈Z2

hHH (n1 − 2k1, n2 − 2k2)a j [n1, n2], (26)

d2j+1[k] =
∑

(n1,n2)∈Z2

hHL(n1 − 2k1, n2 − 2k2)a j [n1, n2], (27)

d3j+1[k] =
∑

(n1,n2)∈Z2

hLH (n1 − 2k1, n2 − 2k2)a j [n1, n2], (28)

where
a j+1[k] =

∑

(n1,n2)∈Z2

hLL(n1 − 2k1, n2 − 2k2)a j [n1, n2], (29)

k = (k1, k2) ∈ Z2, hHH (k) = g(k1)g(k2), hHL(k) = g(k1)h(k2), hLH (k) =
h(k1)g(k2), and hLL(k) = h(k1)h(k2). Furthermore, the approximate coefficients
are given by {a j [k] = ∫ +∞

−∞ f (x)2− j/2φ2(2− j x − k)dx, ( j, k) ∈ Z3}. It is important
to mention that to use the algorithm given by Eqs. (26)–(29), the initial approxi-
mate coefficients a0[·] are needed. In our problem, these coefficients are related to
the resolution of the camera, and are given by a fraction of the digital image val-
ues (Mallat 2008). Finally, just considering the parameter i ∈ {1, 2, 3} and the scale
parameter j , the concept of wavelet sub-band is introduced corresponding to the set
W (i)

j ( f ) = {d(i)
j [k], k ∈ Z2}.

The Shearlet Transform

The ST corresponds to a two-dimensional function decomposition by analyzing func-
tions, the so-called shearlets, which are waveforms indexed by scales, orientations,
and locations (Kutyniok et al. 2012; Easley et al. 2008).

The shearlet functions correspond to the set {ψ(d)
j,l,k : d = 0, 1, j ≥ 0, −2 j ≤ l ≤

2 j −1, k ∈ Z2}, where each element is obtained by the action of a family of operators
on a single function ψ defined by the sum of two functions ψ(1) and ψ(2), whose
frequency supports are restricted to D0 = {(w1, w2) : |w1| ≥ 1/8, |w2/w1| ≤ 1} and
D1 = {(w1, w2) : |w2| ≥ 1/8, |w1/w2| ≤ 1}, respectively (Easley et al. 2008).

The operations used onψ correspond to: scaling operators, associatedwithmatrices
A0 and A1 called anisotropic dilation matrices; shearing operators, associated with
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matrices B0 and B1 called shearing matrices; and the translation operator. Thus, a
shearlet at scale j , orientation l, and location k is given by

ψ
(d)
j,l,k(x) = 2

3 j
2 ψ(d)(Bl

d A
j
d x − k), (30)

where A0 =
(
4 0
0 2

)
, A1 =

(
2 0
0 4

)
, B0 =

(
1 1
0 1

)
, and B1 =

(
1 0
1 1

)
. One should note

the connection between shearlets and wavelets as both are derived from analogous
processes, and both give a complete description of L2(R2) in the sense that wavelets
form an orthonormal basis and shearlets form a parseval frame (Easley et al. 2008).
Nevertheless, shearlets allowamore refined analysis since they consider the orientation
index (l).

The shearlet coefficients for a two-dimensional function f are given by

{SH (d)
j,l,k( f ) = 〈 f, ψ(d)

j,l,k〉 : d = 0, 1, j ≥ 0, − 2 j ≤ l ≤ 2 j − 1, k ∈ Z2}, (31)

where 〈·〉 denotes the inner product in L2(R2). The different orientations are subject
to which part of the support of ψ is being considered, which is associated with the
parameter d. For this reason, it is convenient for the notation to eliminate this parameter
by re-labeling the orientation parameter in the shearlet coefficient expression (Yi et al.
2009)

SH j,l,k( f ) =
{
SH (d)

j,(l−1−2 j ),k
( f ), 1 ≤ l ≤ 2 j+1,

SH (d)

j,(3·2 j−l),k
( f ), 2 j−1 < l ≤ 2 j+2,

then l ∈ L j = {1, . . . , 2 j+2}. Finally, considering just the scale and orientation
parameters, the concept of shearlet sub-band is introduced corresponding to the set
SH j,l( f ) = {SH j,l,k( f ), k ∈ Z2} (Kutyniok et al. 2012; Easley et al. 2008).

Appendix 2: Wavelet Statistical Texture Modeling

Do and Vetterli (2002) showed that a good statistical model for a natural texture is
that the wavelet coefficients for a given sub-band follow an i.i.d. distribution. More
precisely, a suitable PDF for a specific wavelet sub-band W (i)

j (z) is given by the
generalized Gaussian density (GGD)

P(W (i)
j (z) = w) = p(w;α, β) = β

2αΓ (1/β)
e−(|w|/α)β , (32)

whereΓ (·) is the Gamma function, and α as well as β are real parameters that describe
the form of the PDF. α is called the spread parameter, related to the standard deviation,
where a high value means a wide PDF. β is called the shape parameter and is related to
the tail asymptotic behavior, where a small value implies a light tail. Both parameters
can be estimated by a maximum-likelihood approach using the coefficients inW (i)

j (z).
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For instance, if a wavelet decomposition of three scale levels is applied to a stationary
texture image, it is possible to assign the parameters α and β to each wavelet sub-band.
Thus, a model of 18 parameters is assigned to the image.

Appendix 3: Texture-Cartoon Separation

Thismethod is composedof two stages (Szolgay andSzirányi 2012). In thefirst one, the
image z is filtered by aσ -sized low-pass filter Lσ forming zσ = Lσ ∗z, where∗ denotes
the convolution operator. For each pixel x , the value �LT V (x) = |∇zσ (x) − ∇z(x)|
is calculated, which corresponds to the change of the local total variation (LTV) after
the filtering process. If�LT V (x) has a high value, the cartoon image pixel zu(x)will
be equal to the filtered image pixel zσ (x), if it does not, zu(x) = z(x). It should be
noted that to have a good separation it is necessary to fix σ adequately. For this task,
the following orthogonality measure between two images z1 and z2 is used

ADE(z1, z2) =
∣∣∣∣arcsin

( 〈z̄1, z̄2〉
‖ z̄1 ‖�2 · ‖ z̄2 ‖�2

)∣∣∣∣ , (33)

where z̄1 and ‖ · ‖�2 denote the vector formed by the concatenation of columns of z1
and the �2-norm, respectively.

Next, an interval [s1, s2] of possible σ -values is fixed, and the image z is divided
in B blocks. Each block is separated using the previous process for each σi ∈ [s1, s2]
forming zbu,σi

and zbv,σi
. Next, the blocks zbu, b ∈ {1, . . . , B}, that compose the cartoon

image are given by
zbu = zbu,σm

, (34)

where
σm = arg min

σi∈[s1,s2]
(ADE(zbu,σi

, zbv,σi
)). (35)

Finally, the cartoon and texture images for this first stage are denoted by zIu and zIv ,
respectively, and it is possible to start the second stage. In this part, a new cartoon
image denoted by zIIu is created from zIu . The process begins with a partition of z

II
u in B

blocks, and then for each b ∈ {1, . . . , B} the following diffusion equation is applied
(Perona and Malik 1990)

zII,bu (x, t + 1) = zII,bu (x, t) + λ

|η(x)|
∑

(x ′)∈η(x ′)
∇(x ′) × (g(∇(x ′)zI,bu (x)))∇(x ′)zIIu (x, t),

(36)
where λ ∈ R is a scalar constant that determines the rate of diffusion, |η(x)| is the
number of elements of the spatial neighborhood of pixel x , g is a weigh function used
to not blur cartoon edges, and ∇(x ′)zIIu (x, t) is an approximation of the image gradient
at a particular direction given by

∇(x ′)zIIu (x, t) = zIIu (x ′, t) − zIIu (x, t). (37)
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The last step is to find the iteration tADE in which the separation carried out in (36)
is optimum. For this process, the orthogonality measure given in (33) is used. Thus,
the final blocks ubII, b ∈ {1, . . . , B}, of the second stage are calculated as follows:

zII,bu (x) = zII,bu (x, tADE), (38)

where
tADE = arg min

i∈{1,...,Imax}
(ADE(zII,bu (x, ti ), z

II,b
v (x, ti ))), (39)

and Imax is a previously fixed number of diffusion iterations. Finally, denoting by zu
and zv the final cartoon and texture images, respectively, we have that

zu = zIIu , (40)

zv = z − zu . (41)

7 Appendix 4: Source Separation Technique

For this method, it is supposed that the image model has the form

z = zS1 + zS2 , (42)

where zS1 and zS2 are two information sources which are sparse in different transform
domains (Starck et al. 2005). An important point to highlight is that each of these
sources should not have a good sparsity in the domain in which the other source is
sparse. Denoting by Φ1 and Φ2 the synthesis matrices associated with the domains
in which the sources are sparse, the separation process is carried out by solving the
following optimization problem (Fadili et al. 2010)

(ẑS1 , ẑS2) = arg min
zS1 ,zS2

‖ ΦT
1 zS1 ‖�1 + ‖ ΦT

2 zS2 ‖�1 +λ ‖ z − zS1 − zS2 ‖2�2 , (43)

where λ ∈ R and ‖ z − zS1 − zS2 ‖2�2 correspond to a regularization parameter and a
term that penalizes a possible noise component in the image, respectively.
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