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Summary

Several boundary value problems are solved for a new class of constitutive equation, where the
left Cauchy–Green stretch tensor is given as a non-linear function of the Cauchy stress tensor.
Some constitutive inequalities and restrictions are proposed as well.

1. Introduction

Some new constitutive relations for elastic bodies have been presented in the literature, which
cannot be classified as neither Green nor Cauchy elastic bodies, see for example, (1–8). One of
such relatively new constitutive relations corresponds to an implicit relation between the Cauchy
stress tensor T and the left Cauchy–Green stretch tensor B, which is of the form F(T, B) = 0 (see
(2)). Some interesting subclasses of the above implicit model are the classical constitutive equation
for a Cauchy elastic body T = g(B), the new constitutive equation B = h(T) and its subclass
ε = f(T), where ε is the linearised strain tensor. This last constitutive equation has been analysed
in several recent works (6, 7, 9–20), and as mentioned, for example, in (8), it has different potential
applications in the mathematical modelling of the mechanical behaviour of rock and concrete (21,
22), fracture mechanics (13, 15, 20), and in the modelling of some gum metals (23–26). Regarding
the more general implicit relation F(T, B) = 0, in (27) some possible applications in biomechanics
are discussed.

About the constitutive equation B = h(T), a few works have appeared in the literature analysing
that equation (see 28–30), presenting the solutions of some boundary value problems considering
time dependent and also time-independent deformations. In (30) a short note was presented about
some restrictions for such constitutive equations, such that the body is actually elastic, in the sense
of no dissipating work into heat for any process.

Some possible applications for these new constitutive relations B = h(T) could be found in fracture
mechanics (for bodies that can show large elastic deformations), in the study of residual stresses, for
problems where from the experimental point of view we can control the stresses applied on a sample
rather than the deformation1 and in the study of incompressible and nearly incompressible bodies.

†<rogbusta@ing.uchile.cl>
1 See the comments in §6 of (31) and the references cited therein.
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In the case of the study of problems considering stress concentration, in (12, 13, 15) interesting
results have been obtained for the subclass ε = f(T), where in particular it has been shown that for
some special expressions for f the magnitude of the strains is limited, independently of how large the
stresses can be. One hypothesis is that something similar could be obtained for bodies considering
large elastic deformations, for some special expressions for h in B = h(T). Regarding the possible
application of B = h(T) in the study of residually stressed bodies, we can see Equation 20 of (32),
where the residual stress is incorporated as a variable for the energy function for a Green elastic
material, that is, in (32) they have something like T = g(B, TR), where TR are the residual stresses.
Something similar but simpler could be proposed by considering B = h(T), where the residual
stresses TR could be defined (for a given reference configuration) as the stresses for which there is
no external traction, and which satisfy the equilibrium equation and the relation I = h(TR) (see,
for example, (33)). About the modelling of the behaviour of incompressible bodies, from (34) we
can see that such constraints can be incorporated in a rather direct way when using B = h(T), since
the function h should simply satisfy the equation det[h(T)] = 1 for any T, and the assumption that
‘any deformation compatible with the constraint does not do work’ (used in the classical theory of
elasticity) is not necessary here. The same could be done in the case of nearly incompressible bodies,
which could be defined as bodies for which det[h(T)] = 1 + r(T), where |r(T)| ∼ O(δ), δ � 1.

The implicit constitutive theory developed by Rajagopal and his co-workers, and the subclasses
derived from it that have been mentioned before, should be considered as new theoretical tools
for people interested in the modelling of the behaviour of elastic bodies. They would not replace
the classical theory of elasticity entirely, since there could be some problems for which this new
theory B = h(T) could be more convenient, and some other problems where it is well known
the effectiveness of the classical theory of non-linear elasticity (which is based on the assumption
T = g(B)) for the modelling of elastic bodies. In order to decide which of the theories (the classical
or the new) is better for a given problem, we first need to study these new constitutive equations as
much as we can from the theoretical and the experimental point of view. That is the main aim of this
work (devoted in this case only to some theoretical aspects), where we study the constitutive equation
B = h(T) in more detail, assuming that the function h can be expressed as the derivative of a scalar
function � = �(T) in the stress tensor (see Section 2). Thereafter for the special case, where � is an
isotropic function, we express � in terms of the principal stresses, and some constitutive restrictions
and inequalities are proposed. For a specific expression for �, several boundary value problems are
solved considering homogeneous distributions for the stress and the strains (see Section 3), and also
some in-homogeneous distributions for the stresses and strains (see Section 4). In Section 5 some
final remarks are given.

2. Basic equations

2.1 Kinematics and equation of equilibrium

The elastic body is denoted B and an arbitrary point belonging to the body is denoted as X. The
position of such point in the reference configuration is denoted X and X = κr(X). The reference
configuration is denoted κr(B). The position of the same point at a time t in the current configuration
is denoted x, and it is assumed that there exists a one-to-one function χ (X, t) such that x = χ (X, t).
The current configuration is denoted κt(B). The deformation gradient and the left Cauchy–Green
stretch tensor are defined as

F = ∂χ

∂X
, B = FFT, (1)
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where it assumed that J = det F > 0. More details about the kinematics of deforming bodies can be
found, for example, in (35, 36).

In the present work no time effects will be considered. If T is used to denote the Cauchy stress
tensor, the equation of equilibrium reads

divT + ρb = 0, (2)

where ρ is the density of the body, div is the divergence operator and b represents the body forces
in the current configuration.

2.2 Constitutive relations

Following the discussion presented in the Introduction, let us consider the following implicit
constitutive relation for elastic bodies (see Equation (3.1) of (2)):

F(T, B) = 0, (3)

which in the case that F is isotropic it becomes (see 37, 38)

α0I + α1T + α2T2 + α3B + α4B2 + α5(TB + BT) + α6(T2B + BT2)

+α7(B2T + TB2) + α8(T2B2 + B2T2) = 0, (4)

where the scalar functions αi, i = 0, 1, 2, ..., 8 depend on the following invariants

I1 = tr (T), I2 = 1

2
tr(T2), I3 = 1

3
tr(T3), (5)

I4 = tr (B), I5 = 1

2
tr(B2), I6 = 1

3
tr(B3), (6)

I7 = tr (TB), I8 = tr (T2B) I9 = tr (TB2), I10 = tr (T2B2). (7)

In the particular case that αj = 0, j = 4, 5, 6, 7, 8 and that αi, i = 0, 1, 2, 3 do not depend on B (with
α3 �= 0), from (4) we obtain

B = h(T) = β0I + β1T + β2T2, (8)

where the scalar functions β0, β1 and β2 depend on the invariants I1, I2 and I3 from (5).
In (4), (8) and in the expressions for the constitutive equations to be presented later on, we work

with a dimensionless stress tensor 1
σo

T, where σo is a characteristic value for the stress. We do not
use a different notation for that stress.

In (30) a discussion was presented on restrictions on h(T) such that the body is actually elastic,
in the sense of not dissipating mechanical work into heat for any motion. It was found that if one
assumes the existence of a scalar function � = �(I1, I2, I3) such that B = ∂�

∂T , it is easier to impose
such conditions on �, which we do not discuss here, such that the body is elastic and (8) becomes

B = �1I + �2T + �3T2, (9)

where �i = ∂�
∂Ii

, i = 1, 2, 3. The scalar function � does not have a direct physical meaning, but it
is related to the elastic energy stored by the body as shown in (30).
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If λi, i = 1, 2, 3 are used to denote the principal values of F and σi, i = 1, 2, 3 denote the principal
stresses, then from (9) it is easy to obtain the alternative representation

λ2
i = ∂�

∂σi
, (10)

where �(T) = �(σ1, σ2, σ3) = �(σ2, σ1, σ3) = �(σ1, σ3, σ2). In this work the simpler form (10)
will be used in the subsequent sections.

Since λ2
i > 0, i = 1, 2, 3 we have the restriction (see Section 4.1 in (30), Section 2.4 of (28) and

Section 2.2 of (29)):
∂�

∂σi
> 0, i = 1, 2, 3. (11)

If in the reference configuration the body is unstressed and unstrained, we have the condition

∂�

∂σi
(0, 0, 0) = 1, i = 1, 2, 3. (12)

An additional restriction is presented now. If σa > σb then we propose the constitutive inequality

∂�

∂σa
>

∂�

∂σb
, (13)

which implies that λ2
a > λ2

b. The physical meaning of (13) is that we are requiring that the largest
stretch is produced in the same direction of the largest principal stress. This restriction (13) can be
re-written as

(σa − σb)

(
∂�

∂σa
− ∂�

∂σb

)
> 0,

which is assumed to be valid if σa �= σb, a, b = 1, 2, 3, and if σa = σb we further assume that
∂�
∂σa

= ∂�
∂σb

. The above restriction can be presented as (σa − σb)(λ2
a − λ2

b) > 0, and since λi > 0
the above inequality would be equivalent to (σa − σb)(λa − λb) > 0, which is the well-known
Baker–Ericksen inequality2 (see (39) and Section 51 of (46)). It is interesting to mention that the
Baker–Ericksen and the empirical inequalities (see Section 51 of (46)) have been used to study
boundary value problems, considering the classical Cauchy isotropic elastic body T = g(B), where
the stress distribution T is given as data, and B must be obtained by inverting T = g(B), see for
example, (31, 40–42). In the next section, more comments are given about the comparison of the
results presented in those works with the results shown in this communication.

The inequalities presented in (11), (12) and (13), and some additional expressions to be proposed
in Section 3, impose restrictions on the function � which are not easy to satisfy. In particular (11)
preclude the use of some simple expressions for �, as explained in more detail at the beginning of
Section 3.2.

2 Actually, the Baker–Ericksen inequality is presented as (σa − σb)(λa − λb) > 0 if λa �= λb, that is, the difference with our
case is the interchange of the stretches with the principal stresses as the independent variables.
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2.3 On the boundary value problem and the semi-inverse method

In the classical theory of non-linear elasticity considering a Cauchy elastic body T = g(B), the
procedure used to solve some boundary value problems is based on assuming some simplified
expressions for the deformation field3 x = χ (X), which is used to calculate B, from where we obtain
the components of the stress tensor from T = g(B), which are replaced in (2). In general, the idea
is to reduce the original non-linear partial differential equations into simpler partial or ordinary
differential equations, which can be solved exactly or numerically.

In our case we are interested in studying constitutive equations of the form B = h(T). In the
linearised theory of elasticity, when expressing the linearised strain tensor in terms of the stresses,
the classical procedure to solve some boundary value problems is to express the stress tensor in terms
of a stress potential, such that (2) would be satisfied automatically. Thereafter, the strains in terms of
such stress potential are replaced into the compatibility equation, from where the biharmonic equation
is obtained (see, for example, (43)). In the present case, considering (8)–(10), such a procedure would
not be practical, due to the highly non-linear structure of the compatibility equations for large elastic
deformations (see, for example, Section 34 of (36)), and also due to the in general non-linear nature
of the functions h(T). Therefore, in the present work we adopt the method used, for example, in
(19, 44) for the case of the linearised strain tensor given as a non-linear function of the Cauchy stress
tensor ε = f(T). That procedure is based on assuming a simplified expression for the stress tensor
T, and in parallel on assuming as well a possible expression for the deformation field x = χ (X) that
such a stress tensor may produce. Thereafter, we solve in parallel (2) and (8), that is, we look for T
and x such that

divT + ρb = 0,
∂x
∂X

∂x
∂X

T
= h(T) (14)

are satisfied simultaneously. It is necessary to mention that when the deformation field x = χ (X)
is prescribed, there is no need to consider the compatibility equations as discussed in (45). In (14)
for a fully three-dimensional problem we have three equilibrium equations plus the six components
from the constitutive equations, therefore, in total we have nine equations. Such nine equations
must be solved to obtain the six independent components of the Cauchy stress tensor, plus the three
components of the deformation vector x, that is, we have nine equations for nine unknowns.

3. A specific expression for the constitutive relation. Solutions of some boundary value
problems considering homogeneous deformations and stresses

In this and in the following sections we choose the following particular form for the function �

�(σ1, σ2, σ3) = σ1 + σ2 + σ3 + h1(σ1) + h1(σ2) + h1(σ3) + h2(σ1)(σ2 + σ3)

h2(σ2)(σ1 + σ3) + h2(σ3)(σ1 + σ2) + h3

(
σ1 + σ2 + σ3

3

)
, (15)

where h1, h2 and h3 are single valued functions.
From (15) the restriction (12) is met if

h′
1(0) = 0, h′

3(0) = 0, h2(0) = 0, (16)

3 This is the idea of the the semi-inverse method, see, for example, (46).
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where we use the notation h′(x) = dh
dx . Regarding the inequality (13) in the case of (15) it becomes

h′
1(σ1) − h′

1(σ2) + h′
2(σ1)σ2 − h′

2(σ2)σ1 + h2(σ2) − h2(σ1) > 0, if σ1 > σ2 > 0. (17)

These restrictions hold for the rest of the article.
The specific expression for � shown in (15) can be explained as follow: The first part σ1 +σ2 +σ3

is such that when derived and when we consider σi = 0 we have that λj = 1 (see (12) and (16)).
Regarding h1(σ1) + h1(σ2) + h1(σ3), this can be seen as the counterpart for our new constitutive
theory of the model by Vanalis and Landel (see Equation (29) of (47)). About the part h2(σ1)(σ2 +
σ3) + h2(σ2)(σ1 +σ3) + h2(σ3)(σ1 +σ2), this would be used in order to model the lateral expansion-
compression that in the linearised theory of elasticity is captured with the Poisson ratio, that is, it
would be the non-linear counterpart of that simple model. Finally, h3

(
σ1+σ2+σ3

3

)
would be used to

model in a separate manner the effect of the spherical part of the stress σ1+σ2+σ3
3 in the behaviour

of the body.

3.1 Homogeneous deformation and stress distributions

In this section, we study some problems where the stresses and the components of the deformation
gradient are constant. If the Cauchy stress tensor does not depend on the position X, then if we neglect
the body forces the equilibrium equations (2) are satisfied automatically. If we assume expressions
for x = χ (X) for which ∂x

∂X does not depend on the position X, the relations (8), (10) can be used

to find such ∂x
∂X and x = χ (X) in terms of the stresses. Some of these problems have been already

studied in (30).

3.1.1 Traction of a cylinder. Let us consider the cylinder described in the reference configura-
tion as

0 ≤ R ≤ Ro, 0 ≤ � ≤ 2π, 0 ≤ Z ≤ L. (18)

It is assumed that this cylinder deforms under the influence of the uniform stress tensor

T = σzez ⊗ ez, (19)

where σz is constant. In this case the principal stresses are σ1 = σz, σ2 = σ3 = 0.
Let us suppose that the cylinder deforms as

r = λrR, θ = �, z = λzZ, (20)

where λr , λz are constants.

For this and the following boundary value problems we may have more than one solution,
but in this article we do not study such possible non-uniqueness.

We have λ1 = λz, λ2 = λ3 = λr . From (10) we obtain

λ2
z = ∂�

∂σ1
(σz, 0, 0), λ2

r = ∂�

∂σ2
(σz, 0, 0), (21)
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which in the case of considering (15) become

λ2
z = 1 + h′

1(σz) + 1

3
h′

3

(σz

3

)
, (22)

λ2
r = 1 + h2(σz) + h′

2(0)σz + 1

3
h′

3

(σz

3

)
. (23)

From the physical point of view for this problem we can request that the function � satisfies the
inequalities

σz > 0 ⇒ λ2
z > 1, 0 < λ2

r < 1, (24)

and
σz < 0 ⇒ λ2

r > 1, 0 < λ2
z < 1. (25)

The physical meanings of these inequalities is that for a cylinder deforming only due to the effect
of a uniform axial stress distribution, we expect that under traction the cylinder is stretched (and in
the radial direction it is compressed), whereas the application of a compressive axial stress should
produce an axial compression and a radial expansion.

The restriction (25)2 can be complemented recognising that in compression, when the stress σz
is very large, λz should approach zero from above (remembering that λi > 0 always), therefore we
add the restriction

σz → −∞ ⇒ λz → 0. (26)

For λr we can also propose a similar restriction, in this case when we have traction. If the stress is
positive, independently of the behaviour of λz, we can expect that for the cylinder there is a limit for
λr to become small4, that is:

σz → ∞ ⇒ λr → 0. (27)

From (22), (23) the two restrictions (24), (25) become

σz > 0 ⇒ h′
1(σz) + 1

3
h′

3

(σz

3

)
> 0, −1 < h2(σz) + h′

2(0)σz + 1

3
h′

3

(σz

3

)
< 0, (28)

σz < 0 ⇒ −1 < h′
1(σz) + 1

3
h′

3

(σz

3

)
< 0, h2(σz) + h′

2(0)σz + 1

3
h′

3

(σz

3

)
> 0. (29)

It is interesting to compare the results presented above with the study of Batra (41) and Marzano
(42), where the same problem of calculating the expression for B was considered, for the case T is
given as in (19), but for an isotropic Cauchy elastic body T = g(B).

3.1.2 Shear of a slab. Let us consider the slab defined in the reference configuration as

−Li

2
≤ Xi ≤ Li

2
, i = 1, 2, 3. (30)

4 We could have materials for which there exists a, b with 0 ≤ a < 1, 0 ≤ b < 1 such that for this problem σz → −∞ ⇒ λz → a
and σz → ∞ ⇒ λr → b, but for simplicity in this work we do not consider such more general cases.
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This slab is under the stress distribution

T = τ (e1 ⊗ e2 + e2 ⊗ e1), (31)

where τ is constant. The principal stresses are

σ1 = τ, σ2 = −τ, σ3 = 0. (32)

We assume that the slab deforms as

x1 = λaX1 + κX2, x2 = λbX2, x3 = λcX3, (33)

where λa, λb, λc and κ are constants. The tensor B is of the form

B = (λ2
a + κ2)e1 ⊗ e1 + κλb(e1 ⊗ e2 + e2 ⊗ e1) + λ2

be2 ⊗ e2 + λ2
ce3 ⊗ e3. (34)

The eigenvectors of T and B should be the same if � is an isotropic function (see (10)), and it is
easy to see that that is the case if

λ2
b = λ2

a + κ2. (35)

Considering the above relation from (34) we obtain the principal stretches

λ1 =
√

λ2
a + κ2 + κ

√
λ2

a + κ2, (36)

λ2 =
√

λ2
a + κ2 − κ

√
λ2

a + κ2, (37)

λ3 = λc. (38)

From (10) considering (32) we have

λ2
1 = ∂�

∂σ1
(τ, −τ, 0), λ2

2 = ∂�

∂σ2
(τ, −τ, 0), λ2

3 = ∂�

∂σ3
(τ, −τ, 0). (39)

and from (36)–(38) we obtain

λ2
1 = 1 + h′

1(τ ) − h′
2(τ )τ + h2(−τ ), (40)

λ2
2 = 1 + h′

1(−τ ) + h′
2(−τ )τ + h2(τ ), (41)

λ2
3 = 1 + h2(τ ) + h2(−τ ). (42)

The results presented here can be compared with the results obtained, for example, by Destrade
et al. (31) (see also (40)), where they considered the problem of a slab deforming due to a shear
stress of the form (31) for an isotropic Green elastic solid. It is interesting to compare, for example,
(33) with Equation (3.11) of that paper.

Unlike the case of the cylinder in traction/compression presented in the previous section, in the
case of the shear of a slab is not simple to propose some restrictions similar to (24)–(27), therefore
here we refrain from doing so.
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3.1.3 A slab under a spherical stress. Consider the same slab described in (30), now deforming
under the influence of the spherical stress

T = σS

3∑
i=1

ei ⊗ ei, (43)

from where we have σ1 = σ2 = σ3 = σS .
It is assumed that this slab deforms as

xi = λXi, i = 1, 2, 3, (44)

where λ is constant. From (44) we have that λ1 = λ2 = λ3 = λ and from (10) we obtain

λ2 = ∂�

∂σ1
(σS, σS, σS). (45)

In this problem it is possible to propose the following inequalities or restrictions

σS > 0 ⇒ λ2 > 1, σS < 0 ⇒ 0 < λ2 < 1. (46)

The physical meaning of (46) is that for a compressible slab under a spherical stress, we expect a
volumetric expansion if such stress is positive, and a compression if that stress is negative. Compare
this with the P-C (Pressure-Compression) inequality presented in Section 51 of (46), which is of the
form (σ ∗

S − σS)(λ∗ − λ) > 0 if σ ∗
S �= σS .

As in the case of the problem about the traction/compression of a cylinder presented in Section
3.1.1, here we can also propose something similar to (26) as:

σS → −∞ ⇒ λ → 0, (47)

that is, we are saying that the slab becomes a point only when the spherical stress (in compression)
would go to infinite.

From (15) we have

λ2 = 1 + h′
1(σS) + 2h′

2(σS)σS + 2h2(σS) + 1

3
h′

3(σS). (48)

and from (46) and (48) we obtain

σS > 0 ⇒ h′
1(σS) + 2h′

2(σS)σS + 2h2(σS) + 1

3
h′

3(σS) > 0, (49)

σS < 0 ⇒ −1 < h′
1(σS) + 2h′

2(σS)σS + 2h2(σS) + 1

3
h′

3(σS) < 0. (50)

3.1.4 Biaxial stress on a plate. For the same slab described in (30), let us suppose that it deforms
under the presence of the uniform stress

T = σ1e1 ⊗ e1 + σ2e2 ⊗ e2. (51)
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This plate is supposed to deform as

xi = λiXi, no sum in i, i = 1, 2, 3. (52)

Using this and (51) from (10) we obtain

λ2
1 = ∂�

∂σ1
(σ1, σ2, 0), λ2

2 = ∂�

∂σ2
(σ1, σ2, 0), λ2

3 = ∂�

∂σ3
(σ1, σ2, 0), (53)

and from (15) we have

λ2
1 = 1 + h′

1(σ1) + h′
2(σ1)σ2 + h2(σ2) + 1

3
h′

3

(
σ1 + σ2

3

)
, (54)

λ2
2 = 1 + h′

1(σ2) + h′
2(σ2)σ1 + h2(σ2) + 1

3
h′

3

(
σ1 + σ2

3

)
, (55)

λ2
3 = 1 + h′

2(0)(σ1 + σ2) + h2(σ1) + h2(σ2) + 1

3
h′

3

(
σ1 + σ2

3

)
. (56)

3.2 A particular expression for the constitutive relation

In (15) we have three single valued functions to be found from experiments. Such functions could
be found considering, for example, experimental results for the traction/compression of a cylindrical
bar (the problem described in Section 3.1.1), and the volumetric expansion/compression of a slab
presented in Section 3.1.3. If λz(σz), λr(σz) and λ(σS) would be known from experiments, we could
find hi(x), i = 1, 2, 3 by solving the ordinary differential equations (22), (23) and (48).

Considering that these new constitutive theories have been proposed very recently, and that it
is still necessary to study for which specific materials such new theories provide a better choice
than the classical Green elastic body, in this article we propose some prototype expressions for hi,
i = 1, 2, 3 instead looking for such functions from experiments. Such expressions must satisfy the
different restrictions on � or hi, i = 1, 2, 3 mentioned in the previous sections. The restrictions (26)
and (27) mean that for a cylinder in compression, we can expect that independently of the specific
material being modelled, λz becomes constant and close to zero for σz < 0 if |σz| is large enough,
whereas the same happens for λr , but now in the case σz > 0 (traction). In the case of the restriction
(47) for a slab in compression under a spherical stress, we can also expect that λ becomes constant
and close to zero for σS large enough. These and the other restrictions on hi, i = 1, 2, 3, especially
λj > 0, are strong and not easy to be satisfied. In the present communication we use the following
expressions for the functions h1, h2 and h3:

h1(x) = a1

[
x arctan

(
x

b1

)
− 1

2
b1 ln

(
b2

1 + x2
)]

+ c1

[
x arctan

(
x

d1

)
− 1

2
d1 ln

(
d2

1 + x2
)]

,

(57)

h2(x) = a2 arctan

(
x

b2

)
+ c2 arctan

(
x

d2

)
, (58)

h3(x) = a3

[
x arctan

(
x

b3

)
− 1

2
b3 ln

(
b2

3 + x2
)]

+ c3

[
x arctan

(
x

d3

)
− 1

2
d3 ln

(
d2

3 + x2
)]

,

(59)
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Table 1 Values for the constants used in (57)–(59)

a1 b1 c1 d1 a2 b2 c2 d2 a3 b3 c3 d3
1 1 −0.520 1 0.433 1 −0.520 1 0.433 1 -0.371 1

(a) (b) (c)

Fig. 1 (a) Results for λz and λr in terms of σz for the problem of uniform traction of a cylinder. (b) Results
for κ and λa for the shear of a slab. (c) Results for a slab under a spherical stress

where a1, a2, a3, b1, b2, b3, c1, c2 and c3 are constants. From (57)–(59) we obtain

h′
1(x) = a1 arctan

(
x

b1

)
+ c1 arctan

(
x

d1

)
, (60)

h′
2(x) = a2

b2

(
1 + x2

b2
2

) + c2

d2

(
1 + x2

d2
2

) , (61)

h′
3(x) = a3 arctan

(
x

b3

)
+ c3 arctan

(
x

d3

)
. (62)

In Table 1 some numerical values for the different constants are given.
In Fig. 1(a) results are presented for the traction (compression) of a cylinder, where we have λz and

λr as functions of σz considering (22), (23) and (57)–(59). It is possible to see that the results satisfy
(11) for the range of values considered for σz. In Fig. 1(b) results are presented for the shear of a slab
(see (40)–(42)), in particular for λ2

a and κ as functions of τ . From (57)–(59) and (42) it is easy to see
that for that particular expression for � we have λ2

3 = 1 for any τ . In Fig. 1(c) results are presented
for λ as a function of σS for a slab under spherical stress considering (48), (57)–(59). Finally, in
Fig. 2 we have a contour plot for h′

1(σ1) − h′
1(σ2) + h′

2(σ1)σ2 − h′
2(σ2)σ1 + h2(σ2) − h2(σ1), for

σ1 > σ2 > 0. It is possible to see that the inequality (17) is satisfied for � given by (15), (57)–(59).
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Fig. 2 Contour plot for h′
1(σ1) −h′

1(σ2) +h′
2(σ1)σ2 −h′

2(σ2)σ1 +h2(σ2) −h2(σ1) for the problem of biaxial
traction of a plate, where σ1 > σ2 > 0

4. Non-homogeneous deformations

In this section some boundary value problems are solved, wherein we have non-homogeneous
distributions for the stresses and strains, considering the particular expression for � given in Sections
3 and 3.2. Some of these problems have been studied already by Rajagopal and Saravanan considering
(8) (see 28, 29), using different expressions for the function h(T).

The problems to be studied in this section correspond to the inflation of a sphere, the flexure of a
slab and the closing, radial expansion and stretching of an opened cylindrical tube. In the classical
theory of non-linear elasticity when we assume T = g(B), exact solutions have been obtained for
the above problems (see, for example, Section 57 of (46)). In that context the first problem has
been treated by Green and Shield (48), whereas the problem of the flexure of a slab was considered
originally by Rivlin (49) and thereafter by Ericksen (50). The problem of the opened cylindrical tube
was studied originally by Rivlin (51) (see footnote 1, pp. 189 of (46) for a detailed account about
that problem).

4.1 Inflation of a sphere

Let us consider the sphere defined in the reference configuration as

Ri ≤ R ≤ Ro, 0 ≤ � ≤ 2π, 0 ≤ � ≤ π. (63)
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This sphere is assumed to deform under the influence of a Cauchy stress tensor field of the form

T = σr(r)er ⊗ er + σθ (r)eθ ⊗ eθ + σφ(r)eφ ⊗ eφ. (64)

It is assumed that σθ (r) = σφ(r).
Under the influence of this stress tensor we suppose that the sphere deforms as

r = f (R), θ = �, φ = �, (65)

from where we obtain

B = (f ′)2er ⊗ er +
(

f

R

)2

eθ ⊗ eθ +
(

f

R

)2

eφ ⊗ eφ, (66)

where we use the notation f ′ = df
dR .

For this problem we have σ1 = σr , σ2 = σ3 = σθ and λ1 = f ′(R), λ2 = λ3 = f (R)
R . The components

σr , σθ and the function f must satisfy the equilibrium equation (2) and the constitutive relation (10):

dσr

dr
+ 2

r
(σr − σθ ) = 0 ⇔ dσr

dR
+ 2f ′

f
(σr − σθ ) = 0, (67)

(f ′)2 = ∂�

∂σr
,

(
f

R

)2

= ∂�

∂σθ
, (68)

where � is given in (15), (57)–(59). These three equations must be solved to find the functions σr(R),
σθ (R) and f (R).

For the particular expression for � given in (15), (57)–(59) it has not been possible to find exact
solutions for (67)2 and (68), therefore, such equations are solved numerically using the finite element
method and the program Comsol 3.4 (52). To do that, let us rewrite the equations in the following
manner. From (68)2 we have

f (R) = R

√
∂�

∂σθ
, (69)

therefore, in (68)1 we obtain

d

dR

(
R

√
∂�

∂σθ

)
=
√

∂�

∂σr
. (70)

Using (69) and f ′ =
√

∂�
∂σr

(see (68)1), (67)2 becomes

−dσr

dR
= 2

√
∂�
∂σr

R
√

∂�
∂σθ

(σr − σθ ). (71)

We have eliminated the function f (R) from the list of unknowns, and (70), (71) can be used to obtain
σr(R) and σθ (R).
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Fig. 3 Dimensionless radial expansion of the inner surface of the sphere as a function of the pressure

To solve (70), (71) using the finite element method we assume there exist functions ςr(R) and
ςθ (R) such that

σr(R) = dςr

dR
, σθ (R) = dςθ

dR
. (72)

Regarding the boundary conditions, let us assume that for the inner surface of the sphere we apply
a pressure P, whereas we assume a stress free condition for the outer surface, that is:

σr(Ri) = −P, σr(Ro) = 0. (73)

The boundary condition (73)2 is satisfied directly, but (73)1 is satisfied indirectly by assuming

ςθ (Ri) = ςθi , (74)

where ςθi is a given value for ςθ . Additionally we assume

ςθ (Ro) = 0, ςr(Ri) = 0. (75)

In Figs. 3 and 4 some results are presented for the particular case Ri = 0.2m and Ro = 0.4m.
In Fig. 3 we see the behaviour of f (Ri)/Ri (the dimensionless expansion of the inner surface of
the sphere) as a function of P. Notice that P and the different components of the stress tensor are
dimensionless, where we have divided them by σo (see paragraph after (8)).

In Fig. 4 for the case5 P ≈ 0.803 results for σr(R), σθ (R), f (R)
Ri

and J = λ1λ
2
2 are presented.

5 The particular value for P, which was used to obtain the results presented in Fig. 4, was the maximum pressure that it was
possible to apply without having problems of convergence for the finite element code.
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Fig. 4 On the left, distributions for the components of the stress. On the right, behaviour of f (R)
Ri

and J (in
both cases P = 0.803)

4.2 Flexure of a slab

Consider the slab defined in the reference configuration as

0 ≤ X ≤ H, −LY

2
≤ Y ≤ LY

2
, −LZ

2
≤ Z ≤ LZ

2
, (76)

where we use the notation X , Y , Z for Xi, i = 1, 2, 3, respectively. This slab is assumed to deform
under the application of a stress tensor of the form (in the current configuration)

T = σr(r)er ⊗ er + σθ (r)eθ ⊗ eθ + σz(r)ez ⊗ ez. (77)

We further assume that the slab deforms as

r = f (X), θ = kY , z = λZ, (78)

where k, λ are constants and we impose the restriction f (X) > 0, 0 ≤ X ≤ H. For this problem the
left Cauchy–Green stretch tensor is given as

B = (f ′)2er ⊗ er + (fk)2eθ ⊗ eθ + λ2ez ⊗ ez, (79)

where f ′ = df
dX . We take σ1 = σr , σ2 = σθ , σ3 = σz, λ1 = f ′(X), λ2 = kf (X) and λ3 = λ.

From the equations of equilibrium and the constitutive relations (10) we obtain the following four
equations, which can be solved to find r = f (X), σr = σr(r) = σr(X), σθ = σθ (r) = σθ (X) and
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σz = σz(r) = σz(X):

dσr

dr
+ 1

r
(σr − σθ ) = 0 ⇔ dσr

dX
+ f ′

f
(σr − σθ ) = 0, (80)

(f ′)2 = ∂�

∂σr
, (fk)2 = ∂�

∂σθ
, λ2 = ∂�

∂σz
. (81)

These equations are also solved using the finite element method as in the previous section. In order
to do so, we rewrite these equations in the following way. From (81)2 we have

f (X) = 1

k

√
∂�

∂σθ
. (82)

Using this in (81)1 we obtain

d

dX

(√
∂�

∂σθ

)
= k

√
∂�

∂σr
. (83)

From (81)1 we have f ′(X) =
√

∂�
∂σr

and using (82) in (80)2 we obtain

−dσr

dX
= k

√
∂�
∂σr√
∂�
∂σθ

(σr − σθ ). (84)

Finally, (81)3, which could be considered as an algebraic equation that can be used to find, for
example, σz, is converted into a differential equation by taking its derivative in X, becoming

0 = d

dX

(
∂�

∂σz

)
. (85)

As in Section 4.1, in order to solve (83)–(85) with the finite element method, we assume the
existence of functions ςr(X), ςθ (X) and ςz(X) such that

σr(X) = dςr

dX
, σθ (X) = dςθ

dX
, σz(X) = dςz

dX
. (86)

Regarding the boundary conditions, we assume that the upper and lower surfaces of the slab are
free of traction, that is:

σr(0) = 0, σr(H) = 0. (87)

Regarding (81)3, since we are solving it considering the alternative representation (85), we impose
the condition

∂�

∂σz
(X = 0) = λ2. (88)

Two additional boundary conditions are

ςθ (H) = 0, ςz(H) = 0. (89)
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Fig. 5 (a) The results for kH in terms of the dimensionless total bending moment. (b) The results for the axial
stretching λ as a function of the dimensionless total axial force

The boundary condition (87)2 is imposed directly, but regarding (87)1 we use instead

ςθ (0) = ςθi , (90)

where ςθi is a given value for that constant such that (87)1 is satisfied.
In Figs 5 and 6 some results are presented for the particular case H = 0.2m. In Fig. 5(a) results

are presented for kH (see (78)) in terms of the dimensionless total bending moment M
λLZ H2 , where

M = ∫
Sθ

σθ (r − ri) da and Sθ is the surface defined in the current configuration as θ = kLY
2 . We

have that
M

λLZ H2
= 1

H2

∫ ro

ri

σθ (r)(r − ri) dr, (91)

where ri and ro are the inner and outer radii of the bent slab, that is, ri = f (0), ro = f (H). In order to
obtain such results it was assumed that λ = 1. It is necessary to indicate that the condition (87)1 was
satisfied indirectly by considering (90) using the bisection method. In Fig. 5(b) results are presented
for λ the axial stretch (see (78)) as a function of the dimensionless total axial force N

kLY H2 , where

N = ∫
Sz

σz da and Sz is the surface defined (in the current configuration) as z = λLZ
2 . We have

N
kLY H2

= 1

H2

∫ ro

ri

σz(r)r dr. (92)

For those results (Fig. 5(b)) we assumed that k = 2 1
m .

Finally, in Fig. 6 results for σr(X), σθ (X), σz(X), f (X)/H and J = λ1λ2λ3 are presented for the
case λ = 1, k = 3.5 1

m .
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Fig. 6 Distributions for the components of the stress tensor, f (X)/H and J for the case λ = 1 and k = 3.5 1
m

4.3 Closing, radial expansion and stretching of a cylindrical tube

In this last problem we consider the cylindrical and opened tube defined in the reference
configuration as

Ri ≤ R ≤ Ro, 0 ≤ � ≤ 2π − α, 0 ≤ Z ≤ L, (93)

where α is the initial opening angle. This tube is assumed to be deformed under the action of a stress
tensor field of the form

T = σr(r)er ⊗ er + σθ (r)eθ ⊗ eθ + σz(r)ez ⊗ ez. (94)

This stress field is supposed to deform the tube as

r = f (R), θ = k�, z = λZ, (95)

where k = 2π
2π−α

and λ is a positive constant. Under this deformation the opened tube is closed.
From (95) the left Cauchy–Green deformation tensor becomes

B = (f ′)2er ⊗ er +
(

fk

R

)2

eθ ⊗ eθ + λ2ez ⊗ ez, (96)

where f ′ = df
dR .

From the equations of equilibrium and the constitutive relations, considering the above expressions
for the stress tensor and the left Cauchy–Green stretch tensor, we obtain the following four equations
that can be used to find r = f (R), σr = σr(r) = σr(R), σθ = σθ (r) = σθ (R) and σz = σz(r) = σz(R):

dσr

dr
+ 1

r
(σr − σθ ) = 0 ⇔ dσr

dR
+ f ′

f
(σr − σθ ) = 0, (97)

(f ′)2 = ∂�

∂σr
,

(
fk

R

)2

= ∂�

∂σθ
, λ2 = ∂�

∂σz
, (98)

where we have taken σ1 = σr , σ2 = σθ , σ3 = σz, λ1 = f ′(R), λ2 = f (R)k
R and λ3 = λ.
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Fig. 7 Distribution for the circumferential stress considering different opening angles (in degrees), assuming
λ = 1 and σr (Ri) = 0

These equations are solved using the finite element method, the procedure to solve these equations
is the same as outlined in the previous two Sections 4.1 and 4.2, and so we do not repeat that here.
Regarding the boundary conditions, we assume

σr(Ri) = −P, σr(Ro) = 0. (99)

An interesting case to study is when P = 0, where the stresses and strains appear only due to the
closing of the tube.

In Figs. 7–9 some results are presented for a tube where Ri = 0.2m, Ro = 0.4m. In Fig. 7, the
distribution of circumferential stress is presented for different values of α (in degrees), assuming
λ = 1 and σr(Ri) = 0 (no load on the inner surface of the tube).

In Fig. 8(a) we have results for λ in terms of the total dimensionless axial force N
2πR2

i
=

1
R2

i

∫ ro
ri

σz(r)r dr, where N = ∫
Sz

σz da and the surface Sz is defined by z = λL. Such results where

obtained assuming α = 120◦ and σr(Ri) = 0. In Fig. 8(b) results are shown for the dimensionless
inner radial expansion f (Ri)/Ri as a function of P (the inner pressure), assuming α = 120◦ and
λ = 1.

Finally, in Fig. 9 results are presented for the different components of the stress, f (R)/Ri and
J = λ1λ2λ3, for the case λ = 1, α = 160◦ and σr(Ri) = 0.

5. Final remarks

In this work, we have solved several boundary value problems for a relatively new class of constitutive
relations, where the left Cauchy–Green stretch tensor is given as a non-linear function of the Cauchy
stress tensor. Considering that so far it has not been possible to find exact solutions for the case of non-
homogeneous distributions for the stresses and strains, we needed to propose a particular expression
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Fig. 8 (a) Axial stretch λ as a function of the dimensionless total axial force N
2πR2

i
, assuming α = 120◦ and

σr (Ri) = 0. (b) Radial expansion f (Ri)
Ri

at R = Ri as a function of the applied pressure P, assuming α = 120◦
and λ = 1

Fig. 9 Components of the stress tensor, f (R)/Ri and J = λ1λ2λ3 for the case λ = 1, α = 160◦ and σr (Ri) = 0

for the constitutive equation (see (15), (57)–(59)), which was used to solve three boundary value
problems with the finite element method. That expression for � is such that we have limiting strain
behaviour for the different simple boundary value problems considering homogeneous distributions
of stresses and strains, such as the extension of a cylinder (see Fig. 1(a)), the shear of a slab
(see Fig. 1(b)) and the expansion-compression of a slab under a spherical stress distribution (see
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Fig. 1(c)). From such results presented in Section 3 we see that the constitutive inequalities or
restrictions proposed in Section 2.2 are satisfied. Regarding the results obtained in Section 4, we
can observe that the distribution for the stresses are qualitatively similar to what it is observed for
similar problems, considering the classical Green elastic body.

As indicated in the Introduction, this relatively new class of constitutive equation λ2
i = ∂�

∂σi
could

be useful for problems where we have stress concentration and the strains are limited, and in the
modelling of residually stressed bodies. To be able to asses the possible usefulness of this new theory
for such problems, it is necessary to study that constitutive equation as much as possible from the
theoretical and also the experimental point of view, and the present article aims to fill that gap (in
this case addressing only some theoretical aspects), presenting some simple constitutive inequalities,
exploring some possible expressions for the constitutive relations, and also showing a method to
solve some simple boundary value problems.
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