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Abstract
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1. Introduction

1.1. The model and main results

Piecewise Deterministic Markov Processes (PDMP) have been extensively studied in the last
two decades (see [7,8,16] for general background) and have recently received renewed atten-
tion, motivated by their natural application in areas such as biology [23,9], communication
networks [10] or reliability of complex systems, to name a few. Understanding the ergodic prop-
erties of these models, in particular the rate at which they stabilize towards equilibrium, has in
turn increased the interest in the long-time behavior of PDMPs.

In this paper we pursue the study of these questions on PDMP models of bacterial chemotaxis,
initiated in [11,12] by means of analytic tools, and deepened in [14,21] on simplified versions
that can be seen as variants of Kac’s classic “telegraph process” [17].

We consider the simple PDMP of kinetic type (Z t )t≥0 = ((Yt ,Wt ))t≥0 with values in
R × {−1,+1} and infinitesimal generator

L f (y, w) = w∂y f (y, w)+

a(y)1{yw≤0} + b(y)1{yw>0}


( f (y,−w)− f (y, w)), (1)

where a and b are nonnegative functions in R. That is, the continuous component Y evolves
according to dYt

dt = Wt and represents the position of a particle on the real line, whereas the
discrete component W represents the velocity of the particle and jumps between +1 and −1,
with instantaneous state-dependent rate given by a(y) (resp. b(y)) if the particle at position y
approaches (resp. goes away from) the origin. This process describes, in a naive way, the motion
of flagellated bacteria as a sequence of linear “runs”, the directions of which randomly change
at rates that depend on the position of the bacterium. The emergence of macroscopical drift is
expected when the response mechanism favors longer runs in specific directions (reflecting the
propensity to move for instance towards a source of nutriments). We refer the reader to [23] for
a scaling limit of the processes introduced in [11,12] that leads to simplified models like (1).

In the particular case where the jump rates are constants such that b > a > 0, the convergence
to equilibrium of the process (1) has been investigated in a previous work [14], where fully ex-
plicit and asymptotically sharp (in the natural diffusive scaling limit of the process) bounds were
obtained. In the present work we will consider position dependent jump-rates which throughout
will be assumed to satisfy:

Hypothesis 1.1. Function b (resp. a) is measurable, even, non decreasing (resp. non increasing)
on [0,+∞), bounded from below by b > 0 (resp. a > 0). Moreover we assume that b(y) > a(y)
for all y ≠ 0.

In the sequel, b̄ stands for supy>0 b(y) ∈ [b,∞] and sgn : R → {−1,+1} denotes the function

sgn(y) = 1{y≥0} − 1{y<0}.

Let us denote byµy,w
t the law of Z t = (Yt ,Wt )when issued from Z0 = (y, w). The following

is our main result:

Theorem 1.2 (Convergence to Equilibrium). There exists κ > 0, K > 0, and λ > 0 such that
for any y, ỹ ∈ R and w, w̃ ∈ {−1,+1},µy,w

t − µ
ỹ,w̃
t


TV

≤ K eκ|y|∨|ỹ|e−λt . (2)
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The constants above can be expressed in terms of the functions a and b following the lines of
the proof. We will try to provide as explicit as possible bounds in each of its steps.

The proof of Theorem 1.2 relies on a probabilistic coupling argument, reminiscent of
Meyn–Tweedie–Foster–Lyapunov techniques, see [20,18]. Variants of this type of methods have
been developed in several previous works on specific instances of PDMP [4,3,1,19]. The model
under study in the present paper is harder to deal with, since the vector fields that drive the
continuous part are not contractive.

Our approach will be based on extensions of some ideas and methods developed in [14].
However, due to the non constant jump-rates, we will have to construct explicit couplings of the
jump-times of two copies of the process issued from different positions. Moreover, in order to
obtain controls of the global coupling time, we will need to introduce and make use of some
discrete time Markov process (reminiscent of [2]) embedded in the trajectories of two coupled
copies of the process Z . These additional technicalities prevent us from getting estimates as
explicit as in [14].

Let us mention that related models on the circle have been studied in [21], using a spectral
decomposition, whereas a general approach to kinetic models including the above one has been
developed in [22], based on functional inequalities. Related PDE techniques have been applied
to similar one dimensional jump processes in [5] with speed in a bounded interval instead of
{−1, 1}, but also with bounded jump rates and independent of the position y.

Before delving into the proof of Theorem 1.2, we point out the explicit form of the equilibrium
of the process (Y,W ) and its relation to one dimensional diffusion processes in a convex
potential.

Proposition 1.3 (Invariant Distribution). The invariant distribution of (Y,W ) on R × {−1,+1}

is given by

µ(dy, dw) =
1

CF
e−F(y)dy ⊗

1
2
(δ−1 + δ+1)(dw)

where CF :=


Re−F(y) dy < ∞ and F is the convex function

y ∈ R → F(y) =

 y

0
sgn(z) (b(z)− a(z)) dz. (3)

The domain of the Laplace transform of µ is (−b̄ + a, b̄ − a)× {−1,+1}.

Example 1.4 (Laplace and Gaussian Equilibria). If a and b are constant functions, then

µ(dy, dw) =
b − a

2
e−(b−a)|y|dy ⊗

1
2
(δ−1 + δ+1)(dw).

If a is a constant function and b is the map y → a + |y|, then

µ(dy, dw) =
1

√
2π

e−y2/2dy ⊗
1
2
(δ−1 + δ+1)(dw).

Fig. 1 compares in the latter case the empirical law of Yt to its invariant measure at increasing
time instants.

Proof of Proposition 1.3. We first note that the constant CF is finite as soon as the functions a
and b satisfy Hypothesis 1.1, since z → b(z) − a(z) is non decreasing and positive on (0,∞).
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Fig. 1. Empirical distribution of Yt starting at (5,−1) for t ∈ {2, 6, 10, 14, 18, 22} with a(y) = 1 and b(y) = 1 + |y|.

Furthermore,

lim
y→+∞

1
y

 y

0
(b(z)− a(z)) dz = b̄ − a.

This ensures that the Laplace transform of µ is finite on (−b̄ + a, b̄ − a)×{−1,+1} and infinite
on the complement. For any function f ∈ C 1 on R × {−1,+1} with compact support one has,
from the definition of F ,

L f (y, 1)+ L f (y,−1)

= ∂y( f (y, 1)− f (y,−1))− sgn(y) (b(y)− a(y)) ( f (y, 1)− f (y,−1))

= ∂y( f (y, 1)− f (y,−1))− F ′(x) ( f (y, 1)− f (y,−1)) .

An integration by parts ensures that 
∂y f (y, 1)− ∂y f (y,−1)


e−F(y) dy =


( f (y, 1)− f (y,−1)) F ′(y)e−F(y) dy,

which yields


L f (y, w)µ(dy, dw) = 0. In other words, µ is an invariant measure for L . �

The next result is independent of the previous and can be seen as a generalization of the scaling
limit of the telegraph process studied by Kac [17] (see also [15,14]). It shows that, under the
suitable scaling, process (1) behaves like the diffusion processes expected from Proposition 1.3:

Theorem 1.5 (Diffusive Scaling). For each N ≥ 1 let aN , bN : R → R+ be jump-rates
satisfying Hypothesis 1.1 such that y → aN (y)+ bN (y) is of class C 1 and

(i) aN (0)+ bN (0) → ∞,

(ii) bN − aN → 2c1 and
a′

N +b′
N

aN +bN
→ 2c2 locally uniformly for some functions c1, c2 : R → R

when N → ∞. Let (Y (N )t ,W (N )
t )t≥0 denote the process driven by (1) with a = aN , b = bN and

assume that Y (N )0 → ξ0 in law as N → ∞. Then, the sequence of processes
ξ (N )·


N≥1

:=


Y (N )τN (·)


N≥1

,
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with τN the solution of τ ′

N (t) =
1
2 (aN (Y

(N )
τN (t)

) + bN (Y
(N )
τN (t)

)), τN (0) = 0, weakly converges in
C([0,∞),R) when N → ∞ to the solution ξt of the stochastic differential equation

dξt = d Bt − (sgn(ξt )c1(ξt )+ c2(ξt )) dt, (4)

where (Bt )t≥0 is a standard Brownian motion independent from ξ0.

Remark 1.6 (Diffusion in a Convex Potential). The drift term in (4) is odd since aN and bN are
even. Notice from point (ii) above that aN (y)+bN (y)

aN (0)+bN (0)
= e2

 y
0 c2(s)ds+o(1) uniformly on compact

sets as N → ∞. Hence aN (y) + bN (y) → ∞ for all y ≥ 0 by (i), and c2 = 0 if and only
if aN (y) + bN (y) ∼ aN (0) + bN (0) for each y ≥ 0. Thus, any diffusion with generator of the
form 1

2 f ′′(y)− U ′(y) f ′(y) for an even convex potential U can be obtained as a limit, taking for
instance aN (y) = aN (0) −→ ∞ and bN (y) = aN (0)+ 2U ′(y).

The remainder of the paper is organized as follows. In the next subsection we briefly recall
generalities on the coupling approach to long-time convergence in total variation distance. We
also define therein the reflected version of the process (1), a detailed study of which is crucial
for proving Theorem 1.2. Section 2 is devoted to the study of jump and hitting times of the latter
process. A coalescent coupling for it is then constructed in Section 3 and the corresponding
convergence estimates are established. The proof of Theorem 1.2 is achieved in Section 4.
Finally, Theorem 1.5 is proved in Section 5.

1.2. Preliminaries

In the sequel we will use the notation
L
= meaning “equal in law to” and E(λ) for an exponential

random variable with mean 1/λ.
Recall that the total variation distance between two probability measures η and η̃ on a

measurable space X is given by

∥η − η̃∥TV = inf

P(X ≠ X̃) : X, X̃ random variables with L(X) = η, L(X̃) = η̃


. (5)

If η and η̃ are absolutely continuous with respect to a measure ν with respective densities f and
f̃ then

∥η − η̃∥TV =
1
2

  f − f̃
 dν = 1 −


f ∧ f̃ dν.

See [18] for alternative definitions of this distance and its main properties. A pair of stochastic
processes (Ut , Ũt )t≥0 constructed on the same probability space, for which an almost surely finite
random time T satisfying Ut+T = Ũt+T for any t ≥ 0 exists, is called a coalescent coupling.
The random variable

T∗ = inf


t ≥ 0 : Ut+s = Ũt+s ∀s ≥ 0


is then called the coupling time. It follows in this case thatL(Ut )− L(Ũt )


TV

≤ P(T∗ > t).

A helpful notion in obtaining an effective control of the distance is stochastic domination
(see [18] for a complete introduction).
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Definition 1.7 (Stochastic Domination). Let S and T be two real random variables with respec-
tive cumulative distribution functions F and G. We say that S is stochastically smaller than T
and we write S ≤sto. T , if F(t) ≥ G(t) for any t ∈ R.

In particular, for a couple (Ut , Ũt ) as above, Chernoff’s inequality yieldsL(Ut )− L(Ũt )


TV

≤ P(T > t) ≤ E


eλT


e−λt (6)

for any non-negative random variable T such that T∗ ≤sto. T , and any λ ≥ 0 in the domain of the
Laplace transform λ → E


eλT


of T .

We will use these ideas to obtain the exponential convergence to equilibrium for (Y,W ) in
Theorem 1.2, and in Theorem 1.9 for its reflected version (X, V ) which we now introduce. The
Markov process ((X t , Vt ))t≥0 is defined by its infinitesimal generator:

A f (x, v)

= v∂x f (x, v)+


a(x)1{v=−1} + b(x)1{v=1} +

1{x=0}

1{x>0}


( f (x,−v)− f (x, v)), (7)

where the maps a and b satisfy Hypothesis 1.1. The term 1{x=0}(1{x>0})
−1 means that V flips

from −1 to +1 as soon as X hits zero. In other words, X is reflected at zero.

Remark 1.8. Given a path ((Yt ,Wt ))t≥0 driven by (1), a path of ((X t , Vt ))t≥0 can be constructed
taking

X t = |Yt | , V0 = sgn(Y0)W0

and defining the set of jump times of V to be

{t > 0 : 1Vt ≠ 0} = {t > 0 : 1Wt ≠ 0} ∪ {t > 0 : Yt = 0} .

Since W does not jump with positive probability when Y hits the origin, one can also construct
a path of ((Yt ,Wt ))t≥0 from an initial value y ∈ R and a path ((X t , Vt ))t≥0 driven by (7): set
σ0 = 0 and (σi )i≥1 for the successive hitting times of the origin and

(Yt ,Wt ) = (−1)i sgn(y)(X t , Vt ) if t ∈ [σi , σi+1).

Let us state our results about the long time behavior of (X, V ).

Theorem 1.9. The invariant measure of (X, V ) is the product measure on R+ ×{−1,+1} given
by

ν(dx, dv) =
2

CF
e−F(x) dx ⊗

1
2
(δ−1 + δ+1)(dv)

where F and CF are given by (3). Moreover, denoting by νx,v
t the law of (X t , Vt ) when X0 = x

and V0 = v, there exists λ > 0, K > 0 and c > 0 such that, for any x, x̃ ≥ 0 and
v, ṽ ∈ {−1,+1},νx,v

t − ν
x̃,ṽ
t


TV

≤ K e−λt ec(x∨x̃). (8)

Following the lines of the proof, the constants λ, K and c can be expressed in terms of the
jump rate functions a and b. Let us summarize some important random times involved in the
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proof of Theorem 1.9 (all related to the reflected process):

• T(x,v) stands for the first jump time starting at (x, v) and ϕ(x,v) stands for its Laplace
transform,

• Z(x,v) stands for the first hitting time of (0,+1) starting at (x, v),
• Tc stands for the first crossing time of the continuous components of two paths,
• T∗ stands for the coupling time (i.e. from T∗ on the two paths are equal forever).

Roughly, we will let both paths evolve until the first crossing time Tc (which is stochastically
controlled by hitting times of 0) and then couple the whole processes by using explicit couplings
of the jump-times. Notice that it is not obvious to deduce Theorem 1.2 from Theorem 1.9.

2. Basic properties of the reflected process

2.1. Distribution of the jump times

Let us denote by T(x,v) the first jump time of the stochastic process (X, V ) starting from
(X0, V0) = (x, v) with infinitesimal generator defined by (7). This random time satisfies

T(x,v) = inf


t ≥ 0 :

 t

0
c(Xs)ds ≥ E


,

where E is an exponential variable with unit mean and c stands for the function b when v = +1
and, when v = −1,

c(x) =


a(x) for x > 0,
+∞ for x ≤ 0.

The process (X, V ) being deterministic between jump times, we have

T(x,v) = inf


t ≥ 0 :

 t

0
c(x + vs)ds ≥ E


.

Consequently, if B is the primitive of b with B(0) = 0, we have

T(x,+1) = B−1 (E + B(x))− x, (9)

and if A is the primitive of a with A(0) = 0,

T(x,−1) =


x − A−1 (A(x)− E) if E < A(x),
x otherwise.

(10)

The functions A−1 and B−1 are well defined since a and b are positive functions.

Lemma 2.1 (Law of Jump Times). Let x ∈ R+. The random variable T(x,+1) is absolutely
continuous with density given by

t → b(t + x)e−(B(t+x)−B(x))1(0,∞)(t).

The random variable T(x,−1) is a mixture of an absolutely continuous random variable and the
constant variable x. Its distribution is

e−A(x)δx + a(x − t)e−(A(x)−A(x−t))1[0,x](t)dt,

where δx denotes the Dirac mass at x and dt the Lebesgue measure on R.



3084 J. Fontbona et al. / Stochastic Processes and their Applications 126 (2016) 3077–3101

Proof. We notice that T(x,+1) is almost surely finite since


∞

0 b(x + s)ds = +∞. Let E be an
exponential variable with unit mean and t ≥ 0, then

P(T(x,+1) > t) = P
 t

0
b(x + s)ds < E


= e−

 t
0 b(x+s)ds .

We obtain the density of T(x,+1) by derivation. The distribution of T(x,−1) is similarly obtained
noting that P(E > A(x)) = e−A(x). �

Lemma 2.2 (Laplace Transform of Jump Times). Let x ≥ 0 be fixed. The Laplace transform of
T(x,+1) is finite on (−∞, b). Furthermore, if λ < b(x),

E

eλT(x,+1)


≤

b(x)

b(x)− λ
.

Proof. Let x ≥ 0 be fixed. Since b is non decreasing, we notice first that T(x,+1)≤sto. E/b(x),
where E is an exponential variable with mean 1. Then its Laplace transform is at least defined
on (−∞, b(x)) and is bounded from above by that of E/b(x) on this interval.

Let us now fix λ < b. Thus there exists z ≥ 0 such that λ < b(x + z). The distribution of
T(x,+1) conditional on T(x,+1) > z is equal to the distribution of z + T(x+z,+1) and the Laplace
transform of T(x,+1) can be split as follows

E

eλT(x,+1)


= E


eλT(x,+1)1T(x,+1)≤z


+ E


eλT(x,+1)1T(x,+1)>z


=

 z

0
b(x + t)e

 t
0 (λ−b(x+u))dudt + e

 z
0 (λ−b(x+u))duE


eλT(x+z,+1)


.

which is finite from the definition of z. �

Lemma 2.3 (Stochastic Order for Jump Times). For 0 ≤ x̃ < x, we have

T(x,+1)≤sto. T(x̃,+1) and T(x,−1)≥sto. T(x̃,−1).

Proof. We first consider v = +1. Let E be an exponential variable with unit mean and

T(x,+1) := B−1 (E + B(x))− x and T(x̃,+1) := B−1 (E + B(x̃))− x̃ .

We have T(x,+1)

0
b(x + s)ds = E =

 T(x̃,+1)

0
b(x̃ + s)ds

with b a non-decreasing function and x > x̃ . Then, clearly one has T(x,+1) ≤ T(x̃,+1) (inequal-
ities are strict when the jump rates are strictly monotone functions). The proof is similar for
T(x,−1). �

Recall that, when a < b are positive constants, the following identities in distribution hold for
exponential random variables:

E(b)
L
= E(a) ∧ E(b − a),

E(a)
L
= E(b)+ ε E(a),

where all random variables on the left hand side are independent and ε is Bernoulli with
parameter (1 − a/b). The next results generalizing these relations will be helpful to construct
a coalescent coupling of two processes starting from different initial data.
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Lemma 2.4 (Decomposition of Jump Times, Part I). For x ≥ x̃ ≥ 0, the identity in law

T(x,+1)
L
= T(x̃,+1) ∧ Z+

holds, with Z+ a random variable with values in (0,∞] independent of T(x̃,+1), such that

P(Z+ > t) = exp (−B(x + t)+ B(x)+ B(x̃ + t)− B(x̃)) for all t ∈ [0, x̃). (11)

Moreover, there exists a coupling (T(x,+1), T(x̃,+1)) such that, almost surely,

T(x̃,+1) ≥ T(x,+1)

and, conditionally on {T(x,+1) = t},

T(x̃,+1)
L
= t + ξt T̂(x̃+t,+1)

with T̂(x̃+t,+1)
L
= T(x̃+t,+1) and ξt a Bernoulli r.v. independent of T̂(x+t,+1) of parameter

βt :=
b(x + t)− b(x̃ + t)

b(x + t)
∈ [0, 1).

We observe that if b(x) goes to +∞ as x → ∞, we have Z+ < +∞ a.s., whereas Z+ = +∞

a.s. if b(x) = b is constant.

Proof. Since b is a non-decreasing function, we have for any t ≥ 0,

B(t + x)− B(x) ≥ B(t + x̃)− B(x̃).

Using the representation (9) and the memoryless property of the exponential distribution, we thus
have for all t ≥ 0 that

P

T(x,+1) > t


= P (E > B(x + t)− B(x))

= P

T(x̃,+1) > t


P (E > B(x + t)− B(x)− B(x̃ + t)+ B(x̃)) .

The first statement follows. We next check that (T(x,+1), T(x̃,+1)) := (T(x̃,+1)∧ Z+, T(x̃,+1)), with
(T(x̃,+1), Z+) as before, is the required coupling. Since

{T(x̃,+1) > Z+} = {T(x̃,+1) > T(x,+1)}, (12)

we deduce that T(x̃,+1) = T(x,+1) +

T(x̃,+1) − T(x,+1)


1{T(x̃,+1)>T(x,+1)}. Thus, we just need to

check that, conditionally on {Tx,+1 = t},

(1{T(x̃,+1)>T(x,+1)}, T(x̃,+1) − T(x,+1))
L
=(ξt , T̂(x̃+t,+1)).

Using (12), and the expression for the density of T(x̃,+1) together with (11), we get

P

T(x̃,+1) > T(x,+1) + r, T(x,+1) > s


= P


T(x̃,+1) > Z+ + r, Z+ > s


=


∞

s


b(x + t)− b(x̃ + t)

b(x + t)
e−(B(x̃+r+t)−B(x̃+t))


e−(B(x+t)−B(x))b(x + t)dt

for all s, r ≥ 0. Alternatively,

P

T(x̃,+1) > T(x,+1) + r, T(x,+1) > s


=


∞

s
P


T(x̃,+1) − T(x,+1) > r, T(x̃,+1) > T(x,+1)|T(x,+1) = t


× e−(B(x+t)−B(x))b(x + t)dt.
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Taking derivative with respect to s in the two above integrals, one concludes by comparing the
two different obtained expressions. �

The function a being non-increasing, we obtain an analogous result for T(x,−1):

Lemma 2.5 (Decomposition of Jump Times, Part II). For x > x̃ > 0, the identity in law

T(x̃,−1)
L
= T(x,−1) ∧ Z−

holds, with Z− a random variable with values in (0, x̃] independent of T(x,−1), such that

P(Z− > t) = exp (−A(x̃)+ A(x̃ − t)+ A(x)− A(x − t)) for all t ∈ [0, x̃). (13)

Moreover, there exists a coupling (T(x,−1), T(x̃,−1)) such that, almost surely,

T(x,−1) ≥ T(x̃,−1)

and, conditionally on {T(x̃,−1) = t},

T(x,−1)
L
= t + χt T̂(x−t,−1)

with T̂(x−t,−1)
L
= T(x−t,−1) and χt a Bernoulli r.v. independent of T̂(x−t,−1) of parameter

αt :=
a(x̃ − t)− a(x − t)

a(x̃ − t)
∈ [0, 1) if t < x̃ and αx̃ := 1.

Example 2.6 (Explicit Laws for Jump Times). In the case b(x) = b + x with b > 0 (as in the
TCP model studied in [10,6]), T(x,+1) has the density

f(x,+1)(t) = (b + x + t)e−
(t+x+b)2−(x+b)2

2 1{t>0}

and an everywhere finite Laplace transform given by E[eλT(x,+1) ] = 1 + λη(x + b − λ), with

η(u) = e
u2
2
√

2π (1 − Φ(u)) and Φ the cumulative distribution function of a standard Gaussian
variable. We also notice in this case that for 0 ≤ x̃ ≤ x ,

T(x,+1)
L
= T(x̃,+1) ∧ E(x − x̃),

for E(x − x̃) an exponential variable of mean 1/(x − x̃) independent of T(x̃,+1), and

P

E(x − x̃) > T(x̃,+1)


= 1 − (x − x̃)η(x + b).

2.2. Hitting time of the origin

Let (x, v) ∈ R+ × {−1,+1}. We notice that

Z(x,+1)
L
= Z(x,−1) + Sx ,

where Z(x,v) is the first hitting time of (0,+1) of a path starting from (x, v) and Sx is an excursion
above x independent of Z(x,−1). Consequently Z(x,−1) is stochastically smaller than Z(x,+1).

The Laplace transform of the hitting time of zero starting from (x, v) was explicitly computed
in [14] in the case where a and b are both constant. Let us recall this result in the following
proposition.
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Proposition 2.7 (Hitting Time of 0 for Constant Jump Rates [14]). Let us define λc =
1
2 (

√
b −

√
a)2 and, for any λ ≤ λc,

c(λ) =
b − a −


(a + b − 2λ)2 − 4ab

2
and

ψ(λ) =
a + b − 2λ−


(a + b − 2λ)2 − 4ab

2a
.

Then, for any λ ∈ (−∞, λc],

E


eλZ(x,−1)


= exc(λ) and E


eλZ(x,+1)


= ψ(λ)exc(λ).

Moreover, these Laplace transforms are infinite on (λc,∞).

If the jump rates a and b are not constant, the evolution away from the origin is no longer
invariant by translation. Consequently, we have to consider a new way to estimate the distribution
of the hitting time of zero.

Proposition 2.8 (Hitting Time of 0 for General Jump Rates). Let M > 0 such that
b(M)

a(M)
eM(

√
b(M)−

√
a(M))

2 
1 − e−A(M)


< 1.

Then, the Laplace transform of the first hitting time Z(x,v) of (0,+1) starting from (x, v) ∈

R × {−1,+1} satisfies

E

eλZ(x,v)


≤ Ce

(x∨M)(b(M)−a(M))
2 for all λ ≤

1
2
(


b(M)−


a(M))2,

where C > 0 is an explicit constant depending on M, a and b.

Proof. We first notice that f (x, v) = eαx+βv with α, β > 0, is a Lyapunov function for the
infinitesimal generator A of ((X t , Vt ))t≥0 defined by (7). More precisely, we have

A f (x,+1) = f (x,+1)

α − b (x)


1 − e−2β


,

A f (x,−1) = f (x,−1)

−α + a(x)


e2β

− 1


for all x > 0. If we choose α, β > 0 and a compact set K = [0,M] × {−1, 1} such that

− α + a(M)


e2β
− 1


< 0 and α − b(M)


1 − e−2β


< 0, (14)

by monotony of a and b there are ρ = ρ(α, β,M, a) > 0 to be specified and c > 0 such that

A f (x, v) ≤ −ρ f (x, v)+ c1K (x, v).

The Laplace transform of the first hitting time of [0,M)× {−1, 1} starting from (x, v), denoted
τ(x,v) := inf{t > 0 : (X t , Vt ) ∈ [0,M)× {−1, 1}}, can then classically be controlled as follows:

f (X t∧τ(x,v) , Vt∧τ(x,v))e
ρt∧τ(x,v)

= f (x, v)+

 t∧τ(x,v)

0
[A f (Xs, Vs)+ ρ f (Xs, Vs)] eρsds + Nt∧τ(x,v)

≤ f (x, v)+ Nt∧τ(x,v)
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where (Nt )t≥0 is a martingale with respect to the filtration generated by ((X t , Vt ))t≥0. Taking
the expectation in the previous inequality we deduce that, for x > M ,

E

eρτ(x,v)


≤ eα(x−M)+β(v+1). (15)

We next choose α, β > 0 in order to optimize ρ. For α, β,M > 0 satisfying (14), we set

ρ =


b(M)(1 − e−2β)− α


∧


α − a(M)(e2β

− 1)

.

First we choose α > 0 such that

2α = b(M)(1 − e−2β)+ a(M)(e2β
− 1)

and then

β =
1
4


log (b(M))− log (a(M))


. (16)

With this choice, we have

2α = b(M)− a(M) and ρ(M) =
1
2


b(M)−


a(M)

2
. (17)

Condition (14) is satisfied for any M > 0 since

−α + a(M)


e2β
− 1


= α − b(M)


1 − e−2β


= −

1
2


b(M)−


a(M)

2
.

We now obtain an estimate for the Laplace transform of Z(x,+1). Let M > 0 be arbitrarily fixed
for the moment and λ > 0 such that λ ≤ ρ(M). For x ≥ M , we have

Z(x,+1)
L
= τ(x,+1) + Z(M,−1) (18)

where τ(x,+1) and Z(M,−1) are independent.
Let us denote by T1 and T2 the first and second inter-jump time lengths of V . From Fig. 2 we see
that, before a path starting from (M,−1) hits (0,+1), either

1. T1 = M , in which case we have Z(M,−1) = M ;
2. T1 < M and T2 > T1, in which case

Z(M,−1) = 2T1 + Z(M,+1) ≤ 2M + Z(M,+1); or

3. T1 < M and T2 ≤ T1, and then

Z(M,−1) = T1 + T2 + Z(M−T1+T2,−1) ≤ 2M + Z(M−T1+T2,−1).

Since Z(s,−1)≤sto. Z(M,−1) for s ∈ [0,M] and, moreover, Z(M,+1)≤sto. τ(M,+1) + Z(M,−1) with
Z(M,−1) and τ(M,+1) independent, we deduce that

Z(M,−1)≤sto. 2M + τ(M,+1) + Z(M,−1).

Lemma 2.1 ensures that P(M,−1)(T1 = M) = e−A(M). As a consequence, if ϕ is the Laplace
transform of Z(M,−1), one has

ϕ(λ) ≤ e−A(M)eλM
+


1 − e−A(M)


e2λME


eλτ(M,+1)


ϕ(λ).

For any λ < ρ(M) we get, thanks to Hölder inequality and (15), that

E

eλτ(M,+1)


≤


E


eρ(M)τ(M,+1)

λ/ρ(M)
≤ e2λβ(M)/ρ(M).
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Fig. 2. The three different types of paths from (M,−1) to (0,+1).

Thanks to (16), if M is chosen in order that
b(M)

a(M)
eM(

√
b(M)−

√
a(M))

2 
1 − e−A(M)


< 1

then for any λ ≤ ρ(M), ϕ is finite and

ϕ(λ) ≤
e−A(M)eλM

1 −

1 − e−A(M)


e2λ(M+β(M)/ρ(M))

.

Combining (18) and (15) with the previous estimate completes the proof in the main case x ≥ M .
If x ≤ M then

Z(x,−1)≤sto. Z(M,−1) and Z(x,+1)≤sto. M + τ(M,+1) + Z̃(M,−1),

and one can conclude as in the previous case. �

3. The coupling time for the reflected process

This section is dedicated to the construction of a coalescent coupling of two paths of the
reflected process driven by (7) starting from two different initial conditions.

3.1. The first crossing time

Let us consider (x, v) and (x̃, ṽ) two initial data with x̃ < x . The first crossing time of two
paths (X, V ) and (X̃ , Ṽ ) starting respectively from (x, v) and (x̃, ṽ) is defined by

Tc = Tc(x, v, x̃, ṽ) = inf


t ≥ 0 : X t = X̃ t


.

Since (X t )t≥0 is continuous, Tc is stochastically smaller than the hitting time of zero Z(x,v) of
the initially upper path, whatever the joint law of the pair. The first crossing point XTc is such
that

XTc ≤ sup
t∈[0,Z(x,v)]

X t ≤
1
2


Z(x,v) + x


. (19)

Notice that at time Tc the two velocities are opposites.
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3.2. A way to stick the two paths

In what follows we assume that (X0, V0) = (x,+1) and (X̃0, Ṽ0) = (x,−1) and construct
two paths which are equal after a coalescent time T∗ = T∗(x). The successful coupling consists
in producing a jump of (exactly) one of the two velocities V or Ṽ at a crossing time of their
position components X and X̃ . We will use the coupled jump-times studied in Lemmas 2.4 and
2.5 in order to minimize the time required to do so, in the spirit of [14].

To be more precise, given x > 0 fixed, let us denote by U+ and U− (respectively L− and L+)
the first and the second inter-jump time lapses of the path starting from (x,+1) (resp. starting
from (x,−1)). These random variables are constructed as follows. We first choose U+ with
distribution T(x,+1) and L− with distribution T(x,−1) independently. We then define U− and L+

in such a way that (U+, L+) and (U−, L−) have the laws of the couplings defined in Lemmas 2.4
and 2.5 respectively and that L+ −U+ and U− − L− are independent conditionally on (U+, L−).
More precisely, conditionally on U+ and L−, we introduce two independent Bernoulli variables
ξ and χ with

P(ξ = 1|U+, L−) =
b(x + U+)− b(x − L− + U+)

b(x + U+)
and

P(χ = 1|U+, L−) =
a(x − L−)− a(x + U+ − L−)

a(x − L−)
1{L−<x} + 1{L−=x}

and two independent random variables L+−U+ and U−−L− with the same law as Tx+U+−L−,+1
and Tx+U+−L−,−1 respectively. Then we set

L+ := U+ + ξ(L+ − U+) and U− := L− + χ(U− − L−).

Fig. 3 shows the four possible outcomes. Those where exactly one of the Bernoulli variables
is equal to 1 allow us to stick the paths at time U+ + L− (i.e. on the rightmost corner of the
rectangle): the velocities of the two paths are the same right after that instant, and the overshot
length (beyond the rectangle’s corner) determined by the previous coupling is compatible with
the law of the two marginal processes from that moment on (because of their Markov property).
We then say that the coupling attempt succeeded, and this happens conditionally on (U+, L−)

with probability

P(ξ = 0, χ = 1|U+, L−)+ P(ξ = 1, χ = 0|U+, L−)

=


b(x − L− + U+)

b(x + U+)


1 −

a(x − L− + U+)

a(x − L−)


+


1 −

b(x − L− + U+)

b(x + U+)


a(x − L− + U+)

a(x − L−)


1{L−<x}

+
b(U+)

b(x + U+)
1{L−=x}. (20)

Observe that the success or failure of the coupling attempt is determined by the Bernoulli
random variables ξ and χ . If the coupling attempt fails, the two trajectories cross or bounce off
of each other at time U+ + L− and by similar reason as before the (already determined) lengths
(L+ − U+) and (U− − L−) can be used to restart two (upward and downward) trajectories from
x − L− + U+, independently of each other conditionally on the past and consistently with the
pathwise laws of each of the two processes.
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Fig. 3. Position of both paths after one step.

The coupling construction is now obvious: we repeat this scheme starting from the new
crossing or bouncing point, until we succeed in sticking the two paths. Notice that this iterative
algorithm is more efficient than the general procedure of the Meyn–Tweedie method [20] since,
after a fail, the two processes have already the same position (and still opposite velocities).

We point out that the coupling scheme implemented for the reflected process in [14] in the
constant jump rates case is a particular case of the above described scheme. Notice however
that here, in general, the upper path starting from (x,+1) does not necessarily remain above the
other path until the coupling time. We then cannot control the coupling time by the hitting time
of 0 for the process starting at (x,+1) as it was done in [14]. On the other hand, contrary to the
constant rates case where the coupling could only succeed right after the lower process hits 0,
the coupling can now succeed at an arbitrary step of the scheme, though not with a probability
bounded from below uniformly in x (this can be easily seen from formula (20) e.g. in the case
when a is constant and b(x) = a + x). Therefore, a new approach to estimate the coupling time
is needed, which is developed in the next subsection.

3.3. Coupling time from a crossing point

In this section we will use the notation Px (resp. Ex ) for the distribution (resp. the expectation)
of a random variable associated with the coupling scheme given that the two copies started at
position x > 0.
We first observe that for fixed R > 0, the probability of success in one step can be bounded from
below (considering the last term in (20) and taking expectation) uniformly over x ∈ [0, R] by
some number pR ∈ (0, 1) satisfying

pR ≥ e−A(R)


∞

0
b(u)e−

 u
0 b(R+s)dsdu. (21)
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This suggests that the number of trials below a fixed height R > 0 required in order to get a
successful coupling can be stochastically dominated by some geometric random variable. Notice
that we do not expect a successful coupling to occur only below level R. We will rather use
the above remark in order to construct the scheme in such a way that the coalescent time will
be always smaller than or equal to some real random variable that we can control in terms of
geometric number of positive time lapses.

First, we define a sequence of “rectangles” of potential trajectories of the two copies in the
coupling scheme, on which the two copies will live at all times, irrespective of whether the
coupling attempt has already been successful or not (of course once it has been so, their positions
and velocities coincide from that moment on). More precisely, we define a discrete time Markov
chain (Φn)n≥0 starting at x by

Φ0 = x,
Φn+1 = Φn + T n+1

(Φn ,+1) − T n+1
(Φn ,−1),

(22)

where conditionally on all the past up to (and including) time n, T n+1
(Φn ,+1) and T n+1

(Φn ,−1) are
independent and respectively equal in law to T(y,+1) and T(y,−1) on the event {Φn = y}. Plainly,
(Φn)n≥1 describes the height of the right-most corner of the nth rectangle obtained by iterating
the construction of Fig. 3. Consider also the sequence of positive random variables (real time
lengths) (σn)n≥0 defined by

σ0 = 0,
σn+1 = T n+1

(Φn ,+1) + T n+1
(Φn ,−1),

(23)

which give the (real) time-position of the rectangles’ right-most corners, and finally set Σn =n
i=1 σi , with the convention Σ0 = 0. Following Lemmas 2.4 and 2.5 and in order to determine

at which attempt the coupling is successful, we introduce two sequences (ξn)n≥1 and (χn)n≥1 of
Bernoulli random variables, conditionally independent of each other given (σk,Φk)k≥0 and such

that for n ≥ 0, on

Φn = y, T n+1

(Φn ,+1) = t, T n+1
(Φn ,−1) = s


,

P(ξn+1 = 1| (σk,Φk)k≤n+1) =
b(y + t)− b(y − s + t)

b(y + t)
, and

P(χn+1 = 1| (σk,Φk)k≤n+1) =
a(y − s)− a(y + t − s)

a(y − s)
1{s<y} + 1{s=y}.

We also set ξ0 = χ0 = 1 for notational simplicity. Observe that (σn,Φn, ξn, χn)n≥0 is a Markov
process. We denote by (Fn)n≥0 the filtration it generates. We then define a sequence of random
variables (κn) by

κn = 1{ξn=1,χn=0} + 1{ξn=0,χn=1}.

According to the discussion at the end of the previous subsection, the discrete time instant (or
rectangle number) at which the coupling succeeds is

ρ := inf {n ≥ 1 : κn = 1}

and the real time spent in order that this happens is

T∗ := Σρ =

ρ
i=1

σi .
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The trajectories of the two copies can be easily constructed from the previous objects, but we
actually do not need to work with them.
Let us now introduce the discrete random variable

ρR := inf {n ≥ 1 : κn = 1 and Φn−1 < R} .

Both ρ and ρR are stopping times with respect to (Fn)n≥0. Since ρ ≤ ρR a.s., we clearly have

T∗ ≤ T R
∗ :=

ρR
i=1

σi . (24)

Our goal now is to exhibit an upper bound for the Laplace transform of the random time T R
∗

under Px . We need to introduce the stopping time (with respect to (Fn)n≥0)

τR(x) := inf{n ≥ 0 : Φn ∈ [0, R]}, (25)

and the real time

ΣτR (x) :=

τR(x)
i=0

σi (26)

accumulated when the sequence (Φn)n≥0 reaches [0, R] for the first time. Let ϕ(x,v) denote the
Laplace transform of T(x,v) for (x, v) ∈ R+

× {−1,+1}. We have

Lemma 3.1. Assume there exist positive real numbers R, λ, β such that λ < β, λ + β < b̄ and
ϕ(R,+1)(β + λ)ϕ(R,−1)(λ− β) < 1. Then, τR < ∞ a.s. and

Ex


exp


βΦτR + λ

τR
i=0

σi


ητR


≤ eβx1x>R

where η := (ϕ(R,+1)(β + λ)ϕ(R,−1)(λ− β))−1 > 1.

Proof. For each x > R and β > λ, from the stochastic monotonicity of the jump times (see
Lemma 2.3) we get

Ex


eβΦ1+λσ1


= eβxE


e(β+λ)Tx,+1


E


e(λ−β)Tx,−1


≤ eβxϕ(R,+1)(β + λ)ϕ(R,−1)(λ− β). (27)

If ϕ(R,+1)(β + λ)ϕ(R,−1)(λ − β) < 1, we deduce from (27) that eβΦτR∧n+λ
n

i=1 σi ητR∧n is a
positive supermartingale with respect to (Fn)n≥0, hence

eβx1x>R ≥ Ex


exp


βΦτR∧n + λ

τR∧n
i=0

σi


ητR∧n


≥ Ex


ητR∧n

.

Letting n → ∞ in the last expectation we get by monotone convergence Ex [ητR ] < ∞, hence
τR < ∞ a.s. Letting then n → ∞ in the first expectation and using Fatou’s Lemma the statement
follows. �

For each γ > 0 and R > 0, we now set

E R(γ ) := sup
y∈[0,R]

Ey


eγ T(y,+1)1κ1=0


.
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Proposition 3.2 (Laplace Transform of the Coupling time Starting at a Crossing Point). Assume
that (R, λ, β) satisfy the conditions of Lemma 3.1 and moreover that E R(λ+ β) < 1. Then, the
Laplace transform of T∗ satisfies

Ex


eλT∗


≤

eβx1x>Rϕ(0,+1)(λ)ϕ(R,−1)(λ)

1 − E R(λ+ β)
. (28)

Proof. Fix x ∈ R and R, λ, β satisfying conditions of Lemma 3.1. From (24), we just need to
estimate T R

∗ . To this aim, we consider the process (Φ̂n, σ̂n)n≥0 defined in terms of (Φn, σn)n≥0
in the following way: first set τ̂0 = 0 and τ̂1 = τR(x)+ 1 and for all n ≥ 1,

τ̂n+1 = τ̂n + τ n
R + 1, with τ n

R := inf{n ≥ τ̂n : Φn ∈ [0, R]} − τ̂n .

In other words, τ̂n+1 is the index of the first attempt to couple the paths that follows the first
(discrete) return time τ̂n + τ n

R of (Φk)k≥0 into [0, R] after τ̂n . Then, we set Φ̂0 = x , σ̂0 = 0,

Φ̂1 = Φτ̂1 , σ̂1 =
τ̂1

i=1 σi and

Φ̂n+1 = Φτ̂n+1 , σ̂n+1 =

τ̂n+1
i=τ̂n+1

σi .

Thus, σ̂n+1 is the sum of the real time

Σ n
τ n

R
:=

τ̂n+1−1
i=τ̂n+1

σi

needed after σ̂n in order to observe again a “rectangle corner” in [0, R], plus the time στ̂n+1 spent

in one coupling attempt right thereafter. Then, Φ̂n+1 ∈ R+ is the position of the discrete chain
(or rectangle corner) at the time instant σ̂n+1. Notice that for each i ≥ 0, τ̂i is a stopping time
with respect to the filtration (Fn)n≥0 and that, conditionally on Fτ̂n ∩ {Φ̂n = x}, (τ n

R,Σ
n
τ n

R
) has

the same law as the pair (τR(x),ΣτR(x)) defined in (25) and (26). We can now write

T R
∗ =

ρ̂R
i=0

σ̂i ,

where ρ̂R := inf

n ≥ 1 : κτ̂n = 1


is a stopping time with respect to the filtration

(Gn)n≥0 :=


Fτ̂n


n≥0 .

We notice that ρ̂R < ∞ a.s. since the probability of fail in one step starting from a position
x ∈ [0, R] is uniformly bounded on [0, R] by 1 − pR . We then can write

Ex [e
λT R

∗ ] =

∞
n=1

Ex

e
λ

n
i=0

σ̂i
1ρ̂R=n

 =

∞
n=1

Ex

e
λ

n
i=0

σ̂i
1κτ̂n =0,κτ̂n−1

=0,...,κτ̂0=1

 . (29)

On one hand, we have

Ex [e
λσ̂1 ] = E


eλΣτR (x)eλστR (x)+1


= E


E


eλστR (x)+1 |FτR(x)


eλΣτR (x)


≤ E


EΦτR (x)


eλσ1


eλΣτR (x)


.
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By Lemma 2.3, Ey

eλσ1


= ϕ(y,+1)(λ)ϕ(y,−1)(λ) ≤ ϕ(0,+1)(λ)ϕ(R,−1)(λ) for any point y ∈

[0, R]. Thus, using also Lemma 3.1 we get

Ex [e
λσ̂1 ] ≤ ϕ(0,+1)(λ)ϕ(R,−1)(λ)e

βx1x>R ,

and

E

eλσ̂n1κτ̂n =1|Gn−1


= EΦ̂n−1


eλσ̂11κτ̂1=1


≤ ϕ(0,+1)(λ)ϕ(R,−1)(λ)e

βΦ̂n−11Φ̂n−1>R .

On the other hand, we have

Ex


eλσ̂1e

βΦ̂11Φ̂1>R1κτ̂1=0


= E


eλΣτR (x)EΦτR (x)


eλσ1+βΦ11Φ1>R1κ1=0


and for all y ∈ [0, R]

Ey


eλσ1+βΦ11Φ1>R1κ1=0


≤ E R(λ+ β)eβy .

Then, again from Lemma 3.1 we get

Ex


eλσ̂1e

βΦ̂11Φ̂1>R1κτ̂1=0


≤ E R(λ+ β)eβx1x>R

and then, for all k = 1, . . . , n − 1,

E


eλσ̂k e
βΦ̂k1Φ̂k>R1κτ̂k =0|Gk−1


= EΦ̂k−1


eλσ̂1e

βΦ̂11Φ̂1>R1κτ̂1=0


≤ E R(λ+ β)e

βΦ̂k−11Φ̂k−1>R .

By successively conditioning in (29), we finally have

Ex [e
λT R

∗ ] ≤ eβx1x>R

∞
n=1

ϕ(0,+1)(λ)ϕ(R,−1)(λ) (E R(λ+ β))n

=
eβx1x>Rϕ(0,+1)(λ)ϕ(R,−1)(λ)

1 − E R(λ+ β)

for parameters as required. �

Let us now verify the existence of (R, λ, β) such that all the assumptions of Proposition 3.2
hold. Notice first that for all β > λ > 0 and each R > 0 we have

ϕ(R,−1)(λ− β) ≤
ā + (β − λ)e−(ā+β−λ)R

ā + β − λ
, (30)

thanks to the fact that T(R,−1)≥sto. E(a) ∧ R. Since also T(R,+1)≤sto. E(b(R)), we furthermore
have

ϕ(R,+1)(λ+ β) ≤
b(R)

b(R)− (λ+ β)
(31)

for all λ+ β < b(R).
Given λ > 0, we take β > λ of the form β = αλ for α > b̄+ā

b̄−ā
(or simply α > 1 if b̄ = ∞).

Then, we have b̄ > α+1
α−1 ā, hence we find R large enough such that

b(R)


1 − e−ā R

>
α + 1
α − 1

ā.
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Thanks to (30) and (31), the assumptions of Lemma 3.1 are satisfied for all λ ∈ (0, λc), where

λc := inf

λ > 0 : (α + 1)λ ≥ b(R)


1 − e−(ā+(α−1)λ)R


−
α + 1
α − 1

ā


.

Indeed, from (30) and (31), condition ϕ(R,+1)(β + λ)ϕ(R,−1)(λ− β) < 1 holds as soon as

b(R)


ā + (α − 1)λe−(ā+(α−1)λ)R

< (ā + (α − 1)λ) (b(R)− (α + 1)λ)

⇔ b(R)(α − 1)λe−(ā+(α−1)λ)R < (α − 1)λb(R)− (ā + (α − 1)λ) (α + 1)λ

⇔ (α + 1)λ < b(R)


1 − e−(ā+(α−1)λ)R


−
α + 1
α − 1

ā.

Since the previous inequality is satisfied for λ = 0, by continuity we have λc > 0; the function
of λ on the r.h.s. being strictly concave, we also have λc < ∞.

Finally, notice that by Lemma 2.3 and Hölder’s inequality, for any q > 1,

E R(γ ) ≤ (1 − pR)
1−1/qϕ

1/q
(0,+1)(qγ ),

with pR ∈ (0, 1) a quantity as in (21). Taking q = q(γ ) = γ−1, this in turn yields, for each fixed
R > 0, lim supγ→0 E R(γ ) ≤ (1 − pR) < 1. Therefore, there exists λ′

c ∈ (0, λc) small enough
such that E R((α + 1)λ) < 1 for all λ ∈ (0, λ′

c).

3.4. The coupling time for the reflected process

Let us consider two initial data (x, v) and (x̃, ṽ), with x ≥ x̃ . The coalescent time T∗(x, x̃)

of a path (X, V ) starting from (x, v) and a path


X̃ , Ṽ


starting from (x̃, ṽ) is equal to the first

crossing time Tc(x, x̃) of both paths plus the time spent to stick them using the coupling described
in Section 3.2. Consequently, the coupling time is stochastically smaller than the hitting time
Z(x,v) of the origin of the upper path (X, V ), plus some remainder term.

For any (R, λ, β) satisfying assumptions of Proposition 3.2, the Laplace transform of the
coupling time T∗(x, x̃) is bounded by

E

eλT∗(x,x̃)


≤
ϕ(0,+1)(λ)ϕ(R,−1)(λ)

1 − E R(λ+ β)
E


eλTc(x,x̃)eβXc1Xc>R


where the first crossing time Tc(x, x̃) is smaller than Z(x,v) and the first crossing point Xc is
bounded from above by 1

2


Z(x,v) + x̃ − x


. Consequently,

E

eλT∗(x,x̃)


≤
ϕ(0,+1)(λ)ϕ(R,−1)(λ)

1 − E R(λ+ β)
eβ(x̃−x)/2E


e(λ+β/2)Z(x,v)


.

Using now Proposition 2.8, for 0 < λ < β satisfying conditions of Proposition 3.2 with
λ+ β/2 < 1

2 (
√

b(Mc)−
√

a(Mc))
2, we get

E

eλT∗(x,x̃)


≤ C

ϕ(0,+1)(λ)ϕ(R,−1)(λ)

1 − E R(λ+ β)
e
β(x̃−x)

2 e
x(b(Mc)−a(Mc))

2 (32)

with C is given in Proposition 2.8 and

Mc = sup


M > 0 :


b(M)

a(M)
eM(

√
b(M)−

√
a(M))

2 
1 − e−A(M)


< 1


.
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Finally, combining estimate (32) with inequality (6), we conclude the bound (8) and the proof of
Theorem 1.9.

4. The unreflected process

Let us construct a coalescent coupling of two unreflected processes starting from (y, w) and
(ỹ, w̃) respectively. For a given time t0 > 0, the coupling algorithm is the following:

1. Define (x, v) = (|y|, w sgn(y)) and (x̃, ṽ) = (|ỹ|, w̃ sgn(ỹ)).
2. Couple two reflected processes starting at (x, v) and (x̃, ṽ) as in Section 3.
3. Let them evolve until their common hitting time of 0.
4. Construct until that time the two associated unreflected processes starting at (y, w) and (ỹ, w̃)

as explained in Remark 1.8. The algorithm stops if, when at the origin, the two copies have
the same velocities. Otherwise, go to Step 5.

5. Try to couple the unreflected processes starting from (0,+1) and (0,−1) before a fixed time
t0.

6. In case of failure, return to step 1 for two initial conditions in [−t0, t0] × {−1,+1}.

The only remaining task is to analyze Step 5 of this algorithm. To that end, one has to study
the law of (Yt ,Wt ) when Y0 = 0 and W0 = ±1. Let us denote by (Tn)n≥0 (with T0 = 0) the
successive jump times of the unreflected process. The variable Sn = Tn − Tn−1 stands for the nth
inter-jump time. In order to lighten the computation, we restrict ourselves to the law after 1 or 2
jumps.

Remark 4.1 (Jump Times of the Unreflected Process). We can explicitly compute the law of the
jump-times of the unreflected process. For y ∈ R, set A(y) = A(|y|) and B(y) = B(|y|) where
A and B were defined on R+ in Lemma 2.1. For y > 0, the law of the first jump time starting
from (y,−1) has the density f(y,−1) given by

f(y,−1)(t) =


a(y − t)e−(A(y)−A(y−t)) if t < y,
e−A(y)b(t − y)e−B(t−y) if t ≥ y.

Moreover, the survival function F̄(y,+1)(t) := P(y,+1)(T1 > t) is given for y ≥ 0 by

F̄(y,+1)(t) = e−(B(y+t)−B(y)),

and for y < 0 by

F̄(y,+1)(t) =


e−(A(y)−A(y+t)) if y + t < 0,
e−A(y)e−B(t+y) if y + t ≥ 0.

For any bounded measurable function g on R × {−1,+1}, one then has

E(0,−1)

g(Yt ,Wt )1{T1<t,T2>t}


= E(0,−1)


g(t − 2S1,+1)1{S1<t,S1+S2>t}


=

 t

0
g(t − 2s,+1) f(0,−1)(−s)F̄(−s,+1)(t − s) ds

=

 t

−t
g(u,+1)h−1(u) du,
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where

h−1(u) =
1
2

f(0,+1)


t − u

2


F̄( t−u

2 ,+1)


t + u

2


.

Similarly,

E(0,+1)

g(Yt ,Wt )1T2<t,T3>t


= E(0,+1)


g(t − 2S2,+1)1S1+S2<t,T3>t


=

 t

0

 t−s2

0
g(t − 2s2,+1) f(0,+1)(s1) f(s1,−1)(s2)F̄(s1−s2,+1)(t − s1 − s2) ds1 ds2

=

 t

−t
g(u,+1)h1(u) du,

where

h1(u) =

 t+u
2

0

1
2

f(0,+1)(s1) f(s1,−1)


t − u

2


F̄(s1−

t−u
2 ,+1)


t + u

2
− s1


ds1.

Since L((Yt ,Wt )|Y0 = 0,W0 = w) = L((−Yt ,Wt )|Y0 = 0,W0 = −w), two copies as in step 5
of the algorithm couple before time t ≥ 0 with probability larger than

εt = 2
 t

−t
h−1(u) ∧ h1(u) du > 0.

Remark 4.2 (Explicit Lower Bound). A lower bound of ε can be derived from the fact that
y → a(y) and y → b(y) respectively belong to [a(t), a(0)] and [b(0), b(t)] on the interval
[−t, t].

Let us now control the total duration of the algorithm. Notice that the estimates on the reflected
process in Section 3 do no longer depend on the initial conditions, after the first crossing time
of the reflected copies in the compact set [−R, R] × {−1,+1}. This implies that, after the
first iteration of Step 2 in the above algorithm, the duration of each step can be controlled
independently of the initial data, and of the previous steps.

Moreover, the algorithm succeeds after at most a random number of iterations with geometric
law of parameter εt0 . Since the duration of each step in the algorithm has a finite exponential
moment, this is thus true for the coupling time as well. The upper bound of Theorem 1.2 can
then be deduced. As a conclusion the bounds in Theorems 1.2 and 1.9 depends in the same way
on initial data but the rate of convergence is smaller for the unreflected process.

5. Diffusive scaling

We finally prove Theorem 1.5. Omitting for a moment the sub and superscripts for notational
simplicity, and writing

jt := Wt + κ ′(Yt )− 2

a(Yt )1{Yt Wt ≤0} + b(Yt )1{Yt Wt>0}


κ(Yt )Wt ,

Jt :=
 t

0 jsds and Ŷt := Yt + κ(Yt )Wt for a given positive function κ of class C 1, we see by
Dynkin’s theorem that the processes

Mt := Ŷt − Jt = Yt + κ(Yt )Wt − Jt
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and

Nt := Ŷ 2
t − 2

 t

0
κ(Ys)ds − 2

 t

0
Ys jsds − 2

 t

0
κ ′(Ys)κ(Ys)Wsds

are local martingales with respect to the filtration generated by (Yt ,Wt ).
In fact, using f (y, w) = y + κ(y)w and g(y, w) = (y + κ(y)w)2, since w2

= 1, we have

L f (y, w) = w + κ ′(y)− 2

a(y)1{yw≤0} + b(y)1{yw>0}


κ(y)w,

Lg(y, w) = 2w(1 + κ ′(y)w)(y + κ(y)w)− 4

a(y)1{yw≤0} + b(y)1{yw>0}


yκ(y)w

= 2κ(y)+ 2y

w + κ ′(y)− 2


a(y)1{yw≤0} + b(y)1{yw>0}


k(y)w


+ 2κ ′(y)κ(y)w.

Integrating by parts we then get that

M2
t = Ŷ 2

t − 2Ŷt Jt + J 2
t

= Ŷ 2
t − 2

 t

0
(Ys + κ(Ys)Ws) jsds − 2

 t

0
JsdŶs + 2

 t

0
Js jsds

= Nt + 2
 t

0
κ(Ys)ds − 2

 t

0
κ(Ys)Ws jsds + 2

 t

0
κ ′(Ys)κ(Ys)Wsds

− 2
 t

0
JsdŶs + 2

 t

0
Js jsds

= Nt + 2
 t

0
κ(Ys)ds − 2

 t

0
κ(Ys)Ws[ js − κ ′(Ys)]ds − 2

 t

0
Jsd Ms .

Thus, noting that

js = κ ′(Ys)+ sgn(Ys)

[2a(Ys)κ(Ys)− 1] + 21{Ys Ws>0} [1 − κ(Ys)(a(Ys)+ b(Ys))]


we see that for κ(Ys) = (a(Ys)+ b(Ys))

−1 the processes

Mt = Yt −


−

 t

0


a′(Ys)+ b′(Ys)

(a(Ys)+ b(Ys))
2 + sgn(Ys)


b(Ys)− a(Ys)

a(Ys)+ b(Ys)


ds

−
Wt

a(Yt )+ b(Yt )


,

Nt = M2
t − 2

 t

0


1

a(Ys)+ b(Ys)
+ Ws sgn(Ys)

b(Ys)− a(Ys)

(a(Ys)+ b(Ys))2


ds

are local martingales.
The function τN of the statement is well defined by the Cauchy–Lipschitz Theorem, thanks to

the assumptions on the coefficients and the fact that Yt has Lipschitz trajectories. Moreover, τN
is strictly increasing, the coefficients a and b being positive functions. Recalling the dependence
on N of the coefficients, and setting for each N ∈ N,

β
(N )
t := −

1
2

 t

0


a′

N (ξ
(N )
s )+ b′

N (ξ
(N )
s )

aN (ξ
(N )
s )+ bN (ξ

(N )
s )

+ sgn(ξ (N )s )


bN (ξ
(N )
s )− aN (ξ

(N )
s )


ds

−
W (N )
τN (t)

aN (ξ
(N )
t )+ bN (ξ

(N )
t )



3100 J. Fontbona et al. / Stochastic Processes and their Applications 126 (2016) 3077–3101

and

α
(N )
t := t +

 t

0
W (N )
τN (s)

sgn(ξ (N )s )
bN (ξ

(N )
s )− aN (ξ

(N )
s )

aN (ξ
(N )
s )+ bN (ξ

(N )
s )

ds,

we see from the previous and Doob’s optional stopping theorem that the processes
ξ
(N )
t − β

(N )
t


t≥0

and

(ξ
(N )
t − β

(N )
t )2 − α

(N )
t


t≥0

are local martingales with respect to the filtration generated by the process (ξ (N )t ,W (N )
τN (t)

)t≥0.

Define now for each R > 0 the stopping time σ N
R = inf{t ≥ 0 : |ξ

(N )
t | ≥ R}. The hypotheses

and Remark 1.6 imply that, for every T > 0,

P

 sup
t≤σ N

R ∧T

α(N )t − t
 ≥ ε

 + P

 sup
t≤σ N

R ∧T

β(N )t +

 t

0
sgn(ξs)c1(ξs)+ c2(ξs) ds

 ≥ ε


−−−−→
N→∞

0

for all ε > 0, and

E

 sup
t≤σ N

R ∧T

ξ (N )t − ξ
(N )
t−

2

 + E

 sup
t≤σ N

R ∧T

β(N )t − β
(N )
t−

2


≤ 0 + O((aN (0)+ bN (0))−1) −−−−→

N→∞
0.

The processes

ξ
(N )
t


t≥0

,

α
(N )
t


t≥0

and

β
(N )
t


t≥0

thus satisfy the hypotheses of Theorem 4.1

in [13, p. 354] (in the respective roles of the processes Xn(·), An(·) and Bn(·) therein), which
ensures that L((ξ (N )t , t ≥ 0)) converges weakly to the unique solution of the martingale problem
with initial law L(ξ0) and generator given for f ∈ C∞

c (R) by

G f (x) :=
1
2

f ′′(x)− (sgn(x)c1(x)+ c2(x)) f ′(x).
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