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Abstract

Effect systems have the potential to help software developers, but their practical adoption

has been very limited. We conjecture that this limited adoption is due in part to the difficulty

of transitioning from a system where effects are implicit and unrestricted to a system with a

static effect discipline, which must settle for conservative checking in order to be decidable.

To address this hindrance, we develop a theory of gradual effect checking, which makes it

possible to incrementally annotate and statically check effects, while still rejecting statically

inconsistent programs. We extend the generic type-and-effect framework of Marino and

Millstein with a notion of unknown effects, which turns out to be significantly more subtle

than unknown types in traditional gradual typing. We appeal to abstract interpretation to

develop and validate the concepts of gradual effect checking. We also demonstrate how an

effect system formulated in the framework of Marino and Millstein can be automatically

extended to support gradual checking. We use gradual effect checking to develop a fully

gradual type-and-effect framework, which permits interaction between static and dynamic

checking for both effects and types.

1 Introduction

Type-and-effect systems enable static reasoning about the computational effects

of programs. Effect systems were originally introduced to safely support mutable

variables in functional languages (Gifford & Lucassen, 1986), but more recently,

effect systems have been developed for a variety of effect domains, e.g., I/O,

exceptions, locking, atomicity, confinement, and purity (Gosling et al., 2003; Abadi

et al., 2006; Benton & Buchlovsky, 2007; Abadi et al., 2008; Rytz et al., 2012;

Gordon et al., 2013; Rytz et al., 2013).

To abstract from specific effect domains and account for effect systems in general,

Marino & Millstein (2009) developed a generic effect system, which we denote M&M

throughout this paper. In their framework, effect systems are seen as granting and

checking privileges. Genericity is obtained by parameterizing the type system and

runtime semantics of a language over the privileges available and how they are

adjusted and checked during type checking. Marino & Millstein (2009) demonstrate
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2 F. Bañados Schwerter et al.

that several effect systems from the literature can be formulated as instantiations of

the generic framework.

The generic effect system underlies the design of the Scala effect checker plugin,

which extends the M&M framework with a form of effect polymorphism (Rytz et al.,

2012). Several specific effect systems for this plugin include IO effects, exceptions,

and more recently, state effects (Rytz et al., 2013).

Despite their obvious advantages for static reasoning, the adoption of effect

systems has been rather limited in practice. While effect polymorphism supports

the definition of higher order functions that are polymorphic in the effects of their

arguments (e.g., map), writing fully annotated effectful programs is complex, and is

hardly ever done.1

We conjecture that an important reason for the limited adoption of effect systems is

the difficulty of transitioning from a system where effects are implicit and unrestricted

to a system with a fully static effect discipline. Another explanation is that effect

systems are necessarily conservative and therefore occasionally reject valid programs.

We follow the line of work on gradual verification of program properties (e.g., gradual

typing (Siek & Taha, 2006, 2007), gradual ownership types (Sergey & Clarke, 2012),

gradual typestate (Wolff et al., 2011; Garcia et al., 2014)), and develop a theory of

gradual effect systems. Our contributions are as follows:

• We shed light on the meaning of gradual effect checking, and its fundamental

differences from traditional gradual typing (Section 3) , by formulating it

in the framework of abstract interpretation (Cousot & Cousot, 1977). Using

abstract interpretation, we clearly and precisely specify otherwise informal

design intentions about gradual effect systems. Key notions like the meaning of

unknown effects, consistent privilege sets, and consistent containment between

them, are defined in terms of abstraction and concretization operations.

• We extend the generic effect system of Marino and Millstein into a generic

framework for gradual effects. As with gradual typing, our approach relies on

a translation to an internal language with explicit checks and casts. The nature

of these checks and casts is, however, quite different. We prove the type safety

of the internal language and the preservation of typability by the translation

(Section 4).

• We demonstrate how an effect system formulated in the M&M framework can

be immediately extended to support gradual checking by lifting existing adjust

and check functions to the gradual setting (Section 3).

• We present a concrete instantiation of the generic framework to gradually

check exceptions (Section 5). The resulting system is compact and provides a

tangible and self-contained example of gradual effect checking.

• Our initial gradual effect checking semantics requires that all values carry

tag information at runtime. We develop a conservative operational semantics

which does not require values to be tagged, trading off the annotation overhead

for precision with respect to the effect discipline (Section 6).

1 Pure functional languages like Haskell and Clean are notable exceptions.
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Gradual type-and-effect systems 3

• We combine gradual effect checking and gradual typing to provide a gradual

type-and-effect system that provides a programmer-directed combination of

static and dynamic checking of both effects and types (Section 7).

We believe this work can help effect system developers extend their designs with

support for gradual checking, thereby facilitating their adoption.

This paper differs from our previous ICFP paper (Bañados Schwerter et al.,

2014) in several ways. Most importantly, the last two contributions listed above are

original; they are described in detail in Sections 6 and 7, respectively. We also fix

an error in our type safety theorem for gradual effect checking.

2 Background and motivation

In this section, we introduce static effect checking; we introduce gradual typing;

and we give an intuition for how gradual effect checking is related to both. We

finish with a brief introduction to the M&M generic framework for type-and-effect

systems.

2.1 Effect systems

Effect systems classify the computational effects that an expression performs when

evaluated. To illustrate this idea, consider a simple functional language with integers,

booleans, and references. We focus on three mutable state effects: alloc, read, and

write.

A value such as 7 or (λx : Int . x) has no effect; neither does an arithmetic

expression whose sub-expressions are also values, such as 7+12. Conversely, creating

a reference such as ref 6 has type Ref Int and effect alloc. Similarly, an assignment

expression such as x := 2 has type Unit and effect write, and dereferencing a

reference !x has the type of the reference content, and effect read.

Since functions are values they have no effects, but they may perform effects when

applied. To modularly check effects, then, function types are annotated with the

effects of the function body. For instance, the function f:

f = λx : Ref Int . ! x

has type (Ref Int)
{read}
−−−→Int because a read effect happens during the application

of the function. Note that the effect may not happen during some applications of a

function, for instance (assuming y : Bool is in scope):

g = λx : Ref Int . if y then x := 3; 0 else 1

has type (Ref Int)
{write}
−−−−→Int because its applications may perform a write effect.

Of course, an expression can induce more than one effect, hence the use of

effect sets in the annotations. Though the language does not define any notion of

subtyping on types themselves, effect sets induce a natural notion of subtyping (Tang

& Jouvelot, 1995). Consider the following higher order function:
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4 F. Bañados Schwerter et al.

h : ((Ref Int)
{read,alloc}
−−−−−−−→Int)

...−→Int.

This function restricts the effects of its function argument to {read, alloc}. Intu-

itively, it is valid to apply h to f, whose effect set is {read}, because that would not

violate the expectations of h. In other words,

(Ref Int)
{read}
−−−→Int <: (Ref Int)

{read,alloc}
−−−−−−−→Int

because the effects of the former are a subset of the latter. Conversely, it is invalid

to apply h to g.

From effects to privileges. Following Marino & Millstein (2009), we interpret effect

systems in terms of privilege checking: To each effectful operation corresponds a

privilege required to perform it. For instance, we can view alloc, read, and write

as the privileges required to respectively allocate, dereference, and assign a reference.

In this framework, the function type (Ref Int)
{read}
−−−→Int is interpreted as the type

of a function that requires the read privilege in order to be applied. Effect checking

ensures that sufficient privileges have been granted to perform effectful operations.

2.2 Gradual typing

Gradual Typing, introduced by Siek & Taha (2006), combines the flexibility of

dynamic checking with the guarantees of static checking, allowing the programmer

to annotate parts of the program with their types and to defer at will to runtime

checking when static information is insufficient. The appeal of gradual typing has

inspired the development of gradual approaches to a variety of type disciplines,

including objects (Siek & Taha, 2007; Ina & Igarashi, 2011; Takikawa et al., 2012),

ownership types (Sergey & Clarke, 2012), typestate (Wolff et al., 2011; Garcia et al.,

2014), and information flow typing (Disney & Flanagan, 2011).

In Siek & Taha (2006), unannotated programs are given a default unknown

type (denoted ?). For example, function (λx . x) is automatically transformed into

(λx : ? . x). Important goals of gradual typing are to provide static guarantees for

fully annotated parts of the code, to avoid runtime checks and to provide developers

with the benefits of both static and dynamic checking in a single language.

The type consistency relation. A standard type system depends on a set of implicit

type equality restrictions. For example, a function application is valid if the type of

the argument is equal to the type of the function parameter. A gradual type system

loosens this restriction by replacing type equality with a type consistency relation

(∼).

Intuitively, the type consistency relation accepts programs optimistically. A gradual

type system only rejects those programs with contradictory static information:

Through type consistency, gradual typing accepts programs missing type information,

because there’s a chance that they may be right (so runtime checks must be

performed). For example, in function (λf : ? . f 4), the type of f is statically
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unknown, and is accepted because f may be a function accepting integer arguments.

Type consistency is used in a typing rule such as the following:

T-App
Γ; Σ � e1 : T1 Γ; Σ � e2 : T2 T1 ∼ T2−→T3

Γ; Σ � e1 e2 : T3
.

With a proper definition of type consistency, this rule can still be used to reject

clearly incorrect programs. An application (4 2) is rejected, because Int �∼ T1−→T3.

For fully annotated programs, a gradual type system provides the same guarantees

as a static type system.

Definition 1 (Type consistency)

The type consistency relation is defined as follows:

T ∼ T
T ∼ T T ∼ ? ? ∼ T

T1 ∼ T ′
1 T2 ∼ T ′

2

T1−→T2 ∼ T ′
1−→T ′

2

Casts as runtime checks. Whenever static information is insufficient to determine

whether a program is safe or unsafe, the program must be checked at runtime.

A gradual system introduces type casts to check type invariants. Type casts make

explicit the optimistic static assumptions made by a gradual type system, and check

them during execution.

For example, the program ((λf : ? . f 4) 2) is statically accepted by a gradual type

system, even though the argument 2 is not a function. This is because the function

itself may be validly applied in a different context, for example, to an argument

like λx : Int . x. To evaluate this example program, gradual typing systems first

translate the program to an internal language with type casts. The type system for

the internal language is more restrictive, as it is allowed to appeal to type consistency

only for casts. With this restriction, casts become the only language construct where

a type inconsistency may occur. In our example, application f 4 is translated to

(〈Int−→? ⇐ ?〉f) 4. At runtime, this cast triggers an execution error.

2.3 Toward gradual effect checking

Programming in the presence of a statically checked discipline brings stronger

guarantees about the behavior of programs, but doing so is demanding. In addition,

one is limited by the fact that the checker is conservative. Recently, several practical

effect systems have been applied to existing libraries, and the empirical findings

highlight the need to occasionally bypass static effect checking.

For instance, the JavaUI effect system (Gordon et al., 2013), which prevents non-

UI threads from accessing UI objects or invoking UI-thread-only methods, cannot

be used to verify libraries that dynamically check which thread they are running on

and adapt their behavior accordingly. As explained by the authors, the patterns of

dynamic checks they found in existing code go beyond simple if-then-else statements

and so cannot be handled simply by specializing the static type system. While JavaUI

lives with this limitation, the Scala effect plugin (Rytz et al., 2012) has recently been

updated with an @unchecked annotation to simply turn off effect checking locally.
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The use of this annotation, however, breaks the guarantees offered by the effect

system, since there are no associated runtime checks.

This paper develops gradual effect checking, following the core design principles

that are common to all gradual checking approaches: (a) The same language can

support both fully static and fully dynamic checking of program properties. (b) The

programmer has fine grained control over the static-to-dynamic spectrum. (c) The

gradual checker statically rejects programs on the basis that they surely go wrong;

programs that may go right are accepted statically, but subject to dynamic checking.

(d) Runtime checks are minimized based on static information. (e) Violations of

properties are detected as runtime errors—there are no stuck programs.

2.4 Gradual effects in action

Recall the function g defined in Section 2.1, which requires {write} privileges. The

program h g is rejected because h only accepts functions that require {read, alloc}
privileges. Even if the programmer knows that for a particular use of g, the if

condition y is false—and thus needs no write privilege after all—the program is

rejected.

In direct analogy to the unknown type ? introduced by Siek & Taha (2006) for

gradual typing, we introduce statically unknown privileges, denoted ¿, to our language.

One can ascribe unknown privileges to any expression e, using the notation e :: ¿.

For instance, if g is defined as

g = λx : Ref Int . if y then (x := 3; 0) :: ¿ else 1,

then it is given the type (Ref Int)
{¿}
−→Int. The application h g is now statically

accepted by the gradual effect system. At runtime, if only the else branch is ever

executed, then no error occurs. If, on the other hand, the programmer wrongly

assumed that g would not require the write privilege and the then branch is

executed, an effect error is raised, preventing the assignment to x.

The ascription expression e :: ¿ introduces dynamic checking semantics. Statically,

it hides the privileges required by e from the surrounding context, and allows the

subexpressions of e to attempt effectful operations. At runtime, checks occur to

ensure that the static privileges that e requires are available as needed.

One can partially expose (and hence dynamically check) required privileges by

ascribing specific privileges in addition to ¿. For instance, e :: {read, ¿} statically

reveals that e requires the read privilege, but hides other potential requirements.2

The static-to-dynamic spectrum. We have illustrated the use of gradual effect check-

ing from the point of view of “softening static checking”—introducing islands

of dynamicity in an otherwise static verification process. Gradual verification is

about supporting both ends of the static-to-dynamic spectrum as well as any middle

ground. We now discuss gradual effect checking from the point of view of “hardening

2 In a static effect system, an effect ascription e :: {read} is directly analogous to a type ascription
(Pierce, 2002). Static effect ascriptions were introduced by Gifford & Lucassen (1986).
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dynamic checking”—introducing static checks in an otherwise dynamic verification

process.

A fully dynamic effectful program corresponds to a gradually typed program in

which all effectful operations are wrapped by a :: ¿ ascription.3 Static checking

trivially succeeds because all expressions hide their required privileges. Forbidden

effects are only detected at runtime. Then, the programmer can progressively

introduce static privilege annotations (function argument types, ascriptions) and

remove :: ¿ ascriptions, statically revealing required privileges. The static checker

may reject the program if inconsistencies are detected, or it may accept the program

and runtime errors may occur. As more static information is revealed, fewer dynamic

checks are required. The effect discipline is hardened.

2.5 Generic effect systems

To avoid re-inventing gradual effects for each possible effect discipline, we build on

the generic effect framework of Marino & Millstein (2009), which we briefly describe

in this section.

The M&M effect framework defines a parameterized typing judgment Φ; Γ; Σ �
e : T . It checks an expression under a set of privileges Φ, representing the effects

that are allowed during the evaluation of the expression e. For instance, here is the

generic typing rule for functions:

T-Fun
Φ1; Γ, x : T1; Σ � e : T2

Φ; Γ; Σ � (λx : T1 . e)ε : {ε}(T1
Φ1−→T2)

.

Since a function needs no specific permissions, any privilege set Φ will do. The

function body itself may require privileges Φ1 and these are used to annotate the

function type. We explain the tag ε shortly.

A given privilege discipline (mutable state, exceptions, etc.) is instantiated by

defining two operations, a check predicate and an adjust function. The check

predicate determines whether the current privileges are sufficient to evaluate non-

value expressions. To achieve genericity, the checkC predicate is indexed by check

contexts C , which represent the non-value expressions. The adjust function modifies

the available privileges for evaluating the subexpressions of a given expression

form. This function takes the current privileges and returns the privileges used to

check the considered subexpression. To achieve genericity, the adjustA function is

indexed by adjust contexts A, which represent the immediate context around a given

subexpression.

To increase its overall expressiveness, the framework also incorporates a notion

of tags ε, which represent auxiliary static information for an effect discipline (e.g.,

abstract locations). Expressions that create new values, like constants and lambdas,

are indexed with tags. The check and adjust contexts contain tag sets π so that checkC

and adjustA can leverage static information about the values of subexpressions. To

3 This corresponds to the translation of terms from the untyped λ-calculus to the gradually typed
λ-calculus, which assigns type ? to every expression (Siek & Taha, 2006).
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8 F. Bañados Schwerter et al.

facilitate abstract value-tracking, type constructors are annotated with tagsets, so

types take the form T ≡ πρ. For more precise control, effect disciplines can associate

tags to privileges e.g., read(ε1), read(ε2), etc.4

For example, a check predicate for controlling mutable state is defined as follows:

check!π(Φ) ⇐⇒ read ∈ Φ,

checkrefπ(Φ) ⇐⇒ alloc ∈ Φ,

checkπ1:=π2
(Φ) ⇐⇒ write ∈ Φ,

checkC (Φ) holds for all other C.

In this case, only state-manipulating expressions have interesting check predicates,

which simply require the corresponding privilege. A tag set π that sits in an expression

position of a check context represents the class of values that could appear in

that position at runtime. A more complex check predicate could make use of the

information in the tag sets, for example, to limit access to memory for an individual

value (through its tag annotation). For example, we could annotate some individual

references with an imm tag (for immutability). A predicate like

checkπ1:=π2
(Φ) ⇐⇒ write ∈ Φ and imm �∈ π1

would reject programs that attempt to update these individual references, but still

accept assignments to references where imm is guaranteed to not happen.

Since the assignment expression involves evaluating two subexpressions (the refer-

ence and the new value), there are two adjust contexts. The ↓:=↑ context corresponds

to evaluating the reference to be assigned, and the π :=↓ context corresponds to

evaluating the assigned value. The ↓ symbol denotes the subexpression for which

privileges should be adjusted. The ↑ symbol denotes a subexpression that would be

evaluated after the current expression.

For certain disciplines, like mutable state, the adjust function is simply the identity

for every context. But one could, for example, require that all subexpressions assigned

to references must be effect-free by defining adjust as follows:

adjustπ:=↓(Φ) = ∅,
adjustA(Φ) = Φ otherwise.

All typing rules in the generic system use check and adjust to enforce the intended

effect discipline. For instance, here is the typing rule for assignment:

T-Asgn

adjust↓:=↑(Φ) ; Γ; Σ � e1 : π1Ref T1

adjustπ1:=↓(Φ) ; Γ; Σ � e2 : π2ρ2

checkπ1:=π2
(Φ) π2ρ2 < : T1

Φ; Γ; Σ � (e1 := e2)ε : {ε}Unit
.

The subexpressions e1 and e2 are typed using adjusted privilege sets. Their corre-

sponding types have associated tagsets πi that are used to adjust and check privileges.

Note that in accord with left-to-right evaluation, adjustπ1:=↓ knows which tags are

4 Gradual effects are compatible with effect systems that do not need tags. See Section 5.
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associated with typing e1. Finally, checkπ1:=π2
verifies that assignment is allowed with

the given permissions and the subexpression tag sets. Subtyping is used here only to

account for inclusion of privilege sets between function types.

For maximum flexibility, the framework imposes only two constraints on the

definitions of check and adjust:

Property 1 (Privilege monotonicity)

• If Φ1 ⊆ Φ2, then checkC (Φ1) =⇒ checkC(Φ2);

• If Φ1 ⊆ Φ2, then adjustA(Φ1) ⊆ adjustA(Φ2).

Property 2 (Tag monotonicity)

• If C1 � C2, then checkC2
(Φ) =⇒ checkC1

(Φ);

• If A1 � A2, then adjustA2
(Φ) ⊆ adjustA1

(Φ).

Privilege monotonicity captures the idea that once an expression has sufficient

privileges to run, one can always safely add more. This corresponds to effect

subsumption in many particular effect systems. In contrast, tag monotonicity

captures the idea that more tags implies more uncertainty about the source of

a runtime value. The � relation holds when contexts have the same structure and

the tagsets of the first context are subsets of the corresponding tagsets of the second

context. For example, refπ1 � refπ2 if and only if π1 ⊆ π2. In summary, check

and adjust are order-preserving with respect to privileges and order-reversing with

respect to tags. For example, the order-reversing constraint on tags can be used in

adjust to limit the privileges available for assignment to a particular set of locations,

or to limit the side effects for the arguments of a particular set of operators. The

restrictions for tags in check can be used to limit the set of values that can perform

an effectful operation to those carrying at most a particular set of tags, and thus to

introduce fine-grained “per-value” effect restrictions.

The framework can be instantiated with any pair of check and adjust functions

that satisfy both privilege and tag monotonicity. The resulting type system is safe

with respect to the corresponding runtime semantics: no runtime privilege check

fails, so no program gets stuck.

3 Gradual effects as an abstract interpretation

In this section, we present a formal analysis of gradual effects, guided by the design

principles presented in Section 2.3. We use abstract interpretation (Cousot & Cousot,

1977) to define our notion of unknown effects, and find that as a result the formal

definitions capture our stated design intentions, and that the resulting framework

for gradual effects is quite generic and highly reusable.

3.1 The challenge of gradual effects

The central concept underlying gradual effects is the idea of unknown privileges, ¿.

This concept was inspired by the notion of unknown type ? introduced by Siek &

Taha (2006), but this concept is not as straightforward to understand and formalize.
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First, gradual types reflect the tree structure of type names. Siek and Taha treat

gradual types as trees with unknown leafs. Two types are deemed consistent whenever

their known parts match up exactly. For instance, the types ? → Int and Bool → ?

are consistent because their → constructors line up: ? is consistent with any type

structure. In contrast, privilege sets are unordered collections of individual effects,

so a structure-based definition of consistency is not as immediately apparent.

Second, under gradual typing, the unknown type always stands for one type,

so casts always associate an unknown type with one other concrete type. On the

contrary, the unknown privileges annotation ¿ stands for any number of privileges:

zero, one, or many.

Third, simple types are related to the final value of a computation. In contrast,

privileges are related to the dynamic extent of an expression as it produces a final

value. As such, defining what it means to gradually check privileges involves tracking

steps of computation, rather than wrapping a final value with type information.

Finally, as we have seen in Section 2.1, effect systems naturally induce a notion of

subtyping, which must be accounted for in a gradual effect system. In general, sub-

typing characterizes substitutability: which expressions or values can be substituted

for others, based on static properties. In prior work, Siek and Taha demonstrate

how structural subtyping and gradual typing can be combined (Siek & Taha, 2007),

but the criteria for substitutability differ substantially between structural types and

effects, so it is not straightforward to adapt Siek and Taha’s design to suit gradual

effects.

Our initial attempts to adapt gradual typing to gradual effects met with these

challenges. We found abstract interpretation to be an informative and effective

framework in which to specify and develop gradual effects. The rest of this section

develops the notion of unknown effect privileges and consistent privilege sets. The

rest of the paper then uses the framework as needed to support the notions required

to formalize gradual effect checking.

3.2 Fundamental concepts

This subsection conceives gradual effects as an instance of abstract interpretation.

We do not assume any prior familiarity with abstract interpretation: we build up

the relevant concepts as needed.

For purpose of discussion, consider again the effect privileges for mutable state

from Section 2.1:

Φ ∈ PrivSet = P
(
{read, write, alloc}

)
,

Ξ ∈ CPrivSet = P
(
{read, write, alloc, ¿}

)
.

We already understand privilege sets Φ, but we want a clear understanding of

what consistent privilege sets Ξ—privilege sets that may have unknown effects—

really mean. Consider the following two consistent privilege sets:

Ξ1 = {read} Ξ2 = {read, ¿}.
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The set Ξ1 is completely static: It refers exactly to the set of privileges {read}. The

set Ξ2 on the other hand is gradual: It refers to the read privilege, but leaves open

the possibility of other privileges. In this case, the ¿ stands for several possibilities:

no additional privileges, the write privilege alone, the alloc privilege alone, or

both write and alloc.

Thus, each consistent privilege set stands for some set of possible privilege sets. To

formalize this interpretation, we introduce a concretization function γ, which maps

a consistent privilege set Ξ to the concrete set of privilege sets that it stands for.5

Definition 2 (Concretization)

Let γ : CPrivSet → P(PrivSet) be defined as follows:

γ(Ξ) =

{
{Ξ} ¿ /∈ Ξ

{(Ξ \ {¿}) ∪ Φ | Φ ∈ PrivSet} otherwise.

Reconsidering our two example consistent privilege sets, we find that

γ(Ξ1) = {{read}},

γ(Ξ2) =

{
{read, write}, {read, alloc},
{read}, {read, alloc, write}

}
.

Since each consistent privilege set stands for a number of possible concrete privilege

sets, we say that a particular privilege set Φ is represented by a consistent privilege

set Ξ if Φ ∈ γ (Ξ).

If we consider these two resulting sets of privilege sets, it is immediately clear

that Ξ1 is more restrictive about what privilege sets it represents (only one), while

Ξ2 subsumes Ξ1 in that it also represents {read}, as well as some others. Thus, Ξ1 is

strictly more precise than Ξ2, and so γ induces a precision relation between different

consistent privilege sets.

Definition 3 (Precision)

Ξ1 is less imprecise (i.e., more precise) than Ξ2, notation Ξ1 � Ξ2, if and only if

γ(Ξ1) ⊆ γ(Ξ2).

Precision formalizes the idea that some consistent privilege sets imply more

information about the privilege sets that they represent than others. For instance,

{read} is strictly more precise than {read, ¿} because {read} � {read, ¿} but not

vice-versa.

3.3 Lifting predicates to consistent privilege sets

Now that we have established a formal correspondence between consistent privilege

sets and concrete privilege sets, we can systematically adapt our understanding of

the latter to the former.

Recall the checkC predicates of the generic effect framework (Section 2.5), which

determine if a particular effect set fulfills the requirements of some effectful operator.

5 We introduce an abstraction function α in Section 3.4.
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12 F. Bañados Schwerter et al.

Gradual checking implies that checking a consistent privilege set succeeds so long

as checking its runtime representative could plausibly succeed. We formalize this as

a notion of consistent checking.

Definition 4 (Consistent checking)

Let checkC be a predicate on privilege sets. Then, we define a corresponding consistent

check predicate AcheckC on consistent privilege sets as follows:

AcheckC (Ξ) ⇐⇒ checkC (Φ) for some Φ ∈ γ(Ξ).

Under some circumstances, however, we must be sure that a consistent privilege

set definitely has the necessary privileges to pass a check. For this purpose, we

introduce a notion of strict checking.

Definition 5 (Strict checking)

Let checkC be a predicate on privilege sets. Then, we define a corresponding strict

check predicate strict-checkC on consistent privilege sets as follows:

strict-checkC (Ξ) ⇐⇒ checkC (Φ) for all Φ ∈ γ(Ξ).

By defining both consistent checking and strict checking in terms of representative

sets, our formalizations are both intuitive and independent of the underlying checkC

predicate. Furthermore, these definitions can be recast directly in terms of consistent

privilege sets once we settle on a particular checkC predicate (cf. Section 5).

3.4 Lifting functions to consistent privilege sets

In addition to predicates on consistent privilege sets, we must also define functions

on them. For instance, the M&M framework is parameterized over a family of

adjust functions adjustA : PrivSet → PrivSet, which alter the set of available effect

privileges (Section 2.5). Using abstract interpretation, we lift these to consistent adjust

functions
AadjustA : CPrivSet → CPrivSet. To do so, we must first complete the abstract

interpretation framework.

Consider our two example consistent privilege sets. Each represents some set of

privilege sets, so we expect that adjusting a consistent privilege set should be related

to adjusting the corresponding concrete privilege sets. The key insight is that adjust-

ing a consistent privilege set should correspond somehow to adjusting each individual

privilege set in its represented collection. For example, AadjustA
(
{read, alloc}

)
should

be related to the set
{
adjustA

(
{read, alloc}

)}
, and AadjustA

(
{read, ¿}

)
should be

related to the following set:{
adjustA

(
{read, write}

)
, adjustA

(
{read, alloc}

)
,

adjustA
(
{read}

)
, adjustA

(
{read, alloc, write}

) }
.

To formalize these relationships, we need an abstraction function

α : P(PrivSet) → CPrivSet that maps collections of privilege sets back to corre-

sponding consistent privilege sets. For such a function to make sense, it must at

least be sound.
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Proposition 1 (Soundness)

Υ ⊆ γ(α(Υ)) for all Υ∈ P(PrivSet).

Soundness implies that the corresponding consistent privilege set α(Υ) represents

at least as many privilege sets as the original collection Υ. A simple and sound

definition of α is α(Υ) = {¿}. This definition is terrible, though, because it needlessly

loses information. For instance, α(γ(Ξ1)) = {¿}, and since {¿} represents every possible

privilege set, that mapping loses all the information in the original set. At the least,

we would like α(γ(Ξ1)) = Ξ1.

Our actual definition of α is far better than the one proposed above:

Definition 6 (Abstraction)

Let α : P(PrivSet) → CPrivSet be defined as follows6:

α(Υ) =

{
Φ Υ = {Φ}
(
⋂

Υ) ∪ {¿} otherwise.

In words, abstraction preserves the common concrete privileges, and adds un-

known privileges to the resulting consistent set when needed. For example,

α({{read, write}}) = {read, write},
α({{read, write}, {read, alloc}}) = {read, ¿},

α({{read}, {alloc}}) = {¿}.

As required, this abstraction function α is sound. Even better though, given our

interpretation of consistent privilege sets, this α is the best possible one.

Proposition 2 (Optimality)

Suppose Υ ⊆ γ(Ξ). Then , α(Υ) � Ξ.

Optimality ensures that α gives us not only a sound consistent privilege set, but also

the most precise one.7 In our particular case, optimality implies that α(γ(Ξ)) = Ξ for

all Ξ but one: α(γ({read, write, alloc, ¿})) = {read, write, alloc}. Both consistent

privilege sets represent the same thing.

Using α and γ, we can lift any function f on privilege sets to a function on

consistent privilege sets. In particular, we lift the generic adjust functions:

Definition 7 (Consistent adjust)

Let AadjustA : CPrivSet → CPrivSet be defined as follows:

AadjustA(Ξ) = α
(
{adjustA(Φ) | Φ ∈ γ (Ξ)}

)
.

The Aadjust function reflects all of the information that can be retained when

conceptually adjusting all the sets represented by some consistent privilege set.

6 For simplicity, we assume Υ is not empty, since α(∅) = ⊥ plays no role in our development.
7 Abstract interpretation literature expresses this in part by saying that α and γ form a Galois connection

(Cousot & Cousot, 1979).

https:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0956796816000162
Downloaded from https:/www.cambridge.org/core. Universidad de Chile, on 05 Jan 2017 at 18:21:25, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0956796816000162
https:/www.cambridge.org/core


14 F. Bañados Schwerter et al.

Fig. 1. Syntax of the source language for gradual effect checking.

The Acheck and Aadjust operators are critical to our generic presentation of gradual

effects. Both definitions are independent of the underlying concrete definitions of

check and adjust. As we show through the rest of the paper, in fact, the abstract

interpretation framework presented here time and again provides a clear and effective

way to conceive and formalize concepts that we need for gradual effect checking.

4 A generic framework for gradual effects

In this section, we present a generic framework for gradual effect systems. As

is standard for gradual checking, the framework includes a source language that

supports unknown annotations, an internal language that introduces runtime checks,

and a type-directed translation from the former to the latter.

4.1 The source language

The core language (Figure 1) is a simply typed functional language with a unit

value, mutable state, and effect ascriptions e :: Ξ. The language is parameterized on

some finite set of effect privileges Priv, as well as a set of tags Tag. The Priv set is the

basis for consistent privileges CPriv, privilege sets PrivSet, and consistent privilege

sets CPrivSet. The Tag set is the basis for tag sets TagSet. Each type constructor

is annotated with a tag set, so types are annotated deeply. Each value-creating

expression is annotated with a tag so that effect systems can abstractly track values.

The type of a function carries a consistent privilege set Ξ that characterizes the

privileges required to execute the function body.

The source language also specifies a set of adjust contexts A and check contexts

C . Each adjust context is determined by an evaluation context frame f (Section 4.2).

They index AadjustA to determine how privileges are altered when evaluating in

a particular context. Similarly, the check contexts correspond to program redexes:

function application, reference allocation, dereferencing, and assignment. They index
AcheckC to determine which privileges are needed to perform the operation. Using

tag sets, the framework can express check predicates that forbid particular values
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Fig. 2. Type system for the source language for gradual effect checking.

and adjust functions that allow more effect privileges for certain sets of values.

Section 2.5 presents an example of using tags to refine a check predicate. Marino

& Millstein (2009) use tag annotations to model more sophisticated scenarios like

transactional memory, type qualifiers, and threads.

Figure 2 presents the type system. The judgment Ξ; Γ; Σ � e : T means that the

expression e has type T in the lexical environment Γ and store typing Σ, when

provided with the privileges Ξ. Based on the judgment, e is free to perform any of

the effectful operations denoted by the privileges in Ξ. If the consistent privilege

set contains the unknown privileges ¿, then e might also try any other effectful

operation, but at runtime a check for the necessary privileges is performed.

Each type rule extends the standard formulation with operations to account for

effects. All notions of gradual checking are encapsulated in consistent effect sets Ξ

and operations on them. The [T-Fn] rule associates some sufficient set of privileges

with the body of the function. In practice, we can deduce a minimal set to avoid

spurious checks.

The [T-App] rule illustrates the structure of the non-value typing rules. It enhances

the M&M typing rule for function application (similar to [T-Asgn] in Section 2.5)

to support gradual effects. In particular, each privilege check from the original rule

is replaced with a consistent counterpart: Consistent predicates succeed as long

as the consistent privilege sets represent some plausible concrete privilege set, and

consistent functions represent information about what is possible in their resulting

consistent set. The Aadjust and Acheck operations are defined in Section 3, and we

use the same techniques introduced there to lift effect subtyping to a notion of

consistent subtyping. First, we lift traditional privilege set membership to consistent

membership:
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Definition 8 (Consistent membership)

φ is a consistent member of Ξ, notation φ e∈ Ξ, if and only if φ ∈ Φ for some

Φ ∈ γ(Ξ).

We use consistent membership to lift set containment Φ1 ⊆ Φ2 (defined as

∀φ ∈ Priv . φ ∈ Φ1 ⇒ φ ∈ Φ2), to consistent containment:

Definition 9 (Consistent containment)

Ξ1 is consistently contained in Ξ2, notation Ξ1 �∼ Ξ2, if and only if ∀φ ∈ Priv, φ e∈
Ξ1 ⇒ φ e∈ Ξ2.

8

Consistent containment means that in at least one plausible situation, privilege

set containment could hold at runtime. Of course, this claim must sometimes be

protected with a runtime check in the internal language, as discussed further in the

next section. Consistent subtyping � is defined by replacing the privilege subset

premise of traditional effect subtyping with consistent containment.

T � T
π1 ⊆ π2

π1ρ � π2ρ

T3 � T1 T2 � T4

π1 ⊆ π2 Ξ1 �∼ Ξ2

π1T1
Ξ1−→T2 � π2T3

Ξ2−→T4

.

Both relations express plausible substitutability. Consistent containment is not

transitive, like the consistency relation for types in Siek & Taha (2006). As a result,

consistent subtyping is also not transitive. Our definition of consistent subtyping is

directly analogous to consistent subtyping for gradual object systems (Siek & Taha,

2007).

All other rules in the type system can be characterized as consistent liftings of the

corresponding M&M rules. Each uses adjustA to type subexpressions, and checkC to

check privileges.

Finally, [T-Eff] reflects the consistent counterpart of static effect ascriptions, which

do not appear in the M&M system. The rule requires that the ascribed consistent

privileges be consistently contained in the current consistent privileges. Ascribing ¿

delays some privilege checks to runtime, as discussed next.

4.2 The internal language

The semantics of the source language is given by a type-directed translation to

an internal language that makes runtime checks explicit. This section presents the

internal language. The translation is presented in Section 4.3.

Figure 3 presents the syntax of the internal language. It extends the source

language with explicit features for managing runtime effect checks. The Error

construct indicates that a runtime effect check failed, and aborts the rest of the

computation. Casts 〈T ⇐ T 〉e express type coercions between consistent types.

The has operation checks for the availability of particular effect privileges at

8 This definition is equivalent to the definition in Bañados Schwerter et al. (2014), which states that
Φ1 ⊆ Φ2 for some Φ1 ∈ γ(Ξ1) and Φ2 ∈ γ(Ξ2). It is updated here to better reflect the relationship
between consistent containment and strict containment.
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Fig. 3. Syntax of the internal language for gradual effect checking.

Fig. 4. Typing rules for the internal language for gradual effect checking.

runtime. The restrict operation restricts the privileges available while evaluating

its subexpression.

Frames represent evaluation contexts in our small-step semantics. By using frames,

we present a system with structural semantics like the M&M framework while

defining fewer evaluation rules as in a reduction semantics.

Static semantics. The type system of the internal language (Figure 4) mostly extends

the surface language type system, with a few critical differences. First, recall that

type rules for source language operators, like function application [T-App], verify

effects based on consistent checking: so long as some representative privilege set is

checkable, the expression is accepted. In contrast, the internal language introduces

new typing rules for these operators, like [IT-App] (changes highlighted in gray).

In the internal language, effectful operations must have enough privileges to be

performed: plausibility is not sufficient anymore. As we see in the next section,

consistent checks from source programs are either resolved statically or rely on

runtime privilege checks to guarantee satisfaction before reaching an effectful

operation. For this reason, uses of Acheck are replaced with strict-check (Section 3.3,

Definition 5). Consistent subtyping � is replaced with a notion of subtyping <: that
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is based on ordinary set containment for consistent privilege sets and tags:

T < : T
π1 ⊆ π2

π1ρ < : π2ρ

T3 < : T1 T2 < : T4

π1 ⊆ π2 Ξ1 ⊆ Ξ2

π1T1
Ξ1−→T2 < : π2T3

Ξ2−→T4

.

The intuition is that an expression that can be typed with a given set of consistent

permissions should still be typable if additional permissions become available. We

formalize this intuition below.

In addition to ordinary set containment, the internal language depends on a strict

notion of set membership that focuses on statically known permissions. A consistent

privilege set represents some number of concrete privilege sets, each containing some

different privileges, but most consistent privilege sets have some reliable information.

For instance, any set represented by Ξ = {read, ¿} may have a variety of privileges,

but any such set will surely contain the read privilege. We formalize this idea in

terms of strict membership:

Definition 10 (Strict membership)

A privilege φ is a strict member of Ξ, denoted φ b∈ Ξ, if and only if φ ∈ Φ for all

Φ ∈ γ(Ξ).

Using strict membership, we define the static part of a consistent privilege set as

the collection of its strict members.

Definition 11 (Static part)

The static part of a consistent privilege set, |·| : CPrivSet → PrivSet is defined as

|Ξ| =
{
φ ∈ Priv | φ b∈ Ξ

}
.

The definition directly embodies the intuition of “all reliable information”, but this

operation also has a simple direct characterization: |Ξ| = Ξ \ {¿}.
Using the notion of static membership, we define the concept of static containment

for consistent privilege sets.

Definition 12 (Static containment)

Ξ1 is statically contained in Ξ2, notation Ξ1 � Ξ2, if and only if ∀φ ∈ Priv . φ b∈
Ξ1 ⇒ φ b∈ Ξ2.

9

The intuition behind static containment is that an expression can be safely used

in any context that is guaranteed to provide at least its statically known privilege

requirements.

We need static containment to help us characterize effect subsumption in the

internal language. Privilege subsumption says that if Φ is sufficient to type e, then so

can any larger set Φ′ (Tang & Jouvelot, 1995). To establish this, we must consider

properties of both strict-check and Aadjust. Conveniently, strict-check is monotonic

with respect to consistent privilege set containment.

9 An equivalent definition, in terms of static part, is |Ξ1| ⊆ |Ξ2|.
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Lemma 3

If strict-checkC (Ξ1) and Ξ1 ⊆ Ξ2, then strict-checkC(Ξ2).

On the contrary, though, Aadjust is not monotonic with respect to set containment on

consistent privilege sets. However, it is monotonic with respect to static containment.

Lemma 4

If Ξ1 � Ξ2, then AadjustC (Ξ1) � AadjustC(Ξ2).

We exploit this to establish effect subsumption.

Proposition 5 (Strong effect subsumption)

If Ξ1; Γ; Σ � e : T and Ξ1 � Ξ2, then Ξ2; Γ; Σ � e : T .

Proof

By induction over the typing derivations Ξ1; Γ; Σ � e : T . �

Corollary 6 (Effect subsumption)

If Ξ1; Γ; Σ � e : T and Ξ1 ⊆ Ξ2, then Ξ2; Γ; Σ � e : T .

Proof

Set containment implies static containment. �

We now turn to the new syntactic forms of the internal language. Casts represent

explicit dynamic checks for consistent subtyping relationships. The has operator

checks dynamically if the privileges in Φ are currently available. Its subexpression e

is typed using the consistent set that is extended statically with Φ.10

The restrict operator constrains its subexpression to be typable in a consistent

privilege set that is statically contained in the current set. Since ¿ does not play a

role in static containment, the set Ξ1 can introduce dynamism that was not present

in Ξ. As we show when translating source programs, this is key to how ascription

can introduce more dynamism into a program.

As it happens, we can use notions from this section to simply characterize notions

that we, for reasons of conceptual clarity, defined using the concretization function

and collections of plausible privilege sets. The concretization-based definitions clearly

formalize our intentions, but these new extensionally equivalent characterizations

are well suited to efficient implementation.

First, we can characterize consistent containment as an extension of static

containment, and strict checking as simply checking the statically known part of a

consistent privilege set.

Proposition 7

1. Ξ1 �∼ Ξ2 if and only if Ξ1 ⊆ Ξ2 or ¿ ∈ Ξ2.

2. strict-checkC(Ξ) if and only if checkC

(
|Ξ|

)
.

10 Note that Φ ∪ Ξ is the same as lifting the function f(Φ′) = Φ ∪ Φ′, and Φ �∼ Ξ is the same as lifting
the predicate P (Φ′) = Φ ⊆ Φ′.
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Fig. 5. Small-step semantics of the internal language for gradual effect checking.

Furthermore, we can characterize consistent checking based on whether the

consistent privilege set in question contains unknown privileges.

Proposition 8

1. If ¿ ∈ Ξ, then AcheckC(Ξ) if and only if checkC(PrivSet).

2. If ¿ /∈ Ξ, then AcheckC(Ξ) if and only if checkC(Ξ).

Dynamic semantics. Figure 5 presents the evaluation rules of the internal language.

The judgment Φ � e | μ → e′ | μ′ means that under the privilege set Φ and store μ,

the expression e takes a step to e′ and μ′. Effectful constructs consult Φ to determine

whether they have sufficient privileges to proceed.

The has expression checks dynamically for privileges. If the privileges in Φ′ are

available, then execution may proceed: if not, then an Error is thrown. Note that in

a real implementation, has only needs to check for privileges once: The semantics

keeps has around only to support our type safety proof.

The restrict expression restricts the privileges available in the dynamic extent

of the current subexpression. The intuition is as follows. Ξ represents any number of
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privilege sets. At least one of those sets must be contained in Φ or the program gets

stuck: restrict cannot add new privileges. So restrict limits its subexpression to

the largest subset of currently available privileges that Ξ can represent. In practice,

this means that if Ξ is fully static, then Ξ represents only one subset Φ′ of Φ and

the subexpression can only use those privileges. If ¿ ∈ Ξ, then Ξ can represent all

of Φ, so the privilege set is not restricted at all. This property of restrict enables

ascription to support dynamic privileges.

Since function application is controlled under some effect disciplines, the [E-App]

rule is guarded by the checkapp predicate inherited from the M&M framework. If

this check fails, then the program is stuck. More generally, any effectful operation

added to the framework is guarded by such a check. These checks are needed to

give intensional meaning to our type safety theorem: if programs never get stuck,

then any effectful operation that is encountered must have the proper privileges

to run. This implies that either the permissions were statically inferred by the type

checker, or the operation is guarded by a has expression, which throws an Error

if needed privileges are not available. It also means that thanks to type safety, an

actual implementation would not need any of the checkC checks: the has checks

suffice. This supports the pay-as-you-go principle of gradual checking.

Higher order casts incrementally verify at runtime that consistent subtyping really

implies privilege set containment. In particular, they guard function calls. First,

they restrict the set of available privileges to detect privilege inconsistencies in the

function body. Then, they check the resulting privilege set for the minimal privileges

needed to validate the containment relationship. Intuitively, we only need to check

for the statically determined permissions that are not already accounted for.

To illustrate, consider the following example:{read, alloc} �∼ {read, ¿} because

alloc could be in a representative of {read, ¿}, but {read, alloc} �⊆ {read, ¿} since

that is not definitely true. Thus, to be sure at runtime, we must check for

|{read, alloc}| \ |{read, ¿}| = {alloc}. Note that the rule [E-Cast-Fn] uses the

standard approach to higher order casts due to Findler & Felleisen (2002). As a

formalization convenience, the rule uses substitution directly rather than function

application so as to protect the implementation internals from effect checks and

adjustments. In practice, the internal language would simply use function application

without checking or adjusting privileges.

Type safety. We prove type safety in the style of Wright & Felleisen (1994). Program

execution begins with a closed term e as well as an initial privilege set Φ. The

initial program must be well typed and the privilege set must capture the static

information implied by the consistent privilege set Ξ used to type the program.

Under these conditions, the program does not get stuck.11

11 We also proved type safety for a minimal system with neither tags nor state.
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Definition 13 (Satisfaction)

We say that a privilege set Φ satisfies a consistent privilege set Ξ (notation Ξ � Φ)

if a subset of Φ is represented by Ξ. Formally,

Ξ � Φ ⇐⇒ Φ′ ⊆ Φ for some Φ′ ∈ γ(Ξ).

Theorem 9 (Progress)

Suppose Ξ; ∅; Σ � e : T . Then, either e is a value v, an Error, or Φ � e | μ → e′ | μ′

for any privilege set Φ such that Ξ � Φ , and for any store μ such that ∅ | Σ � μ.

Proof

By structural induction over derivations of Ξ; ∅; Σ � e : T . �

Theorem 10 (Preservation)

If Ξ; Γ; Σ � e : T , and

Φ � e | μ → e′ | μ′ for Ξ � Φ and Γ | Σ � μ, then

Γ | Σ′ � μ′ and Ξ; Γ; Σ′ � e′ : T ′ for some T ′ < : T and Σ′ ⊇ Σ.

Proof

By structural induction over the typing derivation. Preservation of types under

substitution for values (required for [E-App]) and for identifiers (required for

[E-Cast-Fn]) follows as a standard proof since neither performs effects. �

Corollary 11 (Progress (with representation, as in Bañados Schwerter et al. (2014)))

Suppose Ξ; ∅; Σ � e : T . Then, either e is a value v, an Error, or Φ � e | μ → e′ | μ′

for any privilege set Φ such that Φ ∈ γ(Ξ) , and for any store μ such that ∅ | Σ � μ.

Proof

Special case of Theorem 9, since Φ ∈ γ(Ξ) ⇒ Ξ � Φ. �

Corollary 12 (Preservation)

If Ξ; Γ; Σ � e : T , and

Φ � e | μ → e′ | μ′ for Φ ∈ γ(Ξ) and Γ | Σ � μ, then

Γ | Σ′ � μ′ and Ξ; Γ; Σ′ � e′ : T ′ for some T ′ < : T and Σ′ ⊇ Σ.

Proof

Special case of Theorem 10, like the previous corollary. �

4.3 Translating source programs to the internal language

Figure 6 presents the type-directed translation of source programs to the internal

language (the interesting parts have been highlighted). The translation uses static

type and effect information from the source program to determine where runtime

checks are needed in the corresponding internal language program. In particular,

any consistent check, containment, or subtyping that is not also a strict check, static

containment, or static subtyping, respectively, must be guarded by a has expression

(for checks and containments) or a cast (for subtypings).

Recall from Section 4.2 that the has expression checks if some particular privileges

are available at runtime. The translation system determines for each program point

https:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0956796816000162
Downloaded from https:/www.cambridge.org/core. Universidad de Chile, on 05 Jan 2017 at 18:21:25, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0956796816000162
https:/www.cambridge.org/core


Gradual type-and-effect systems 23

Fig. 6. Translation of source programs to the internal language for gradual effect

checking.

which privileges (if any) must be checked. Since the generic framework imposes

only privilege and tag monotonicity restrictions on the check and adjust functions,

deducing these checks can be subtle.

Consider a hypothetical check predicate for a mutable state effect discipline:

checkC(Φ) ⇐⇒ read ∈ Φ or write ∈ Φ.

Though strange here, an effect discipline that is satisfied by one of two possible

privileges is generally plausible, and in fact satisfies the monotonicity restrictions.

When, say, the consistent check AcheckC

(
{¿}

)
succeeds in some program, which

privileges should be checked at runtime?

The key insight is that the internal language program must check for all privileges

that can produce a minimal satisfying privilege set. In the case of the above example,
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we must conservatively check for both read and write. However, we do not need

to check for any privileges that are already known to be statically available.

We formalize this general idea as follows. First, since we do not want to require

and check for any more permissions than needed, we only consider all possible

minimal privilege sets that satisfy the check. We isolate the minimal privilege sets

using the mins function:

mins(Υ) = {Φ ∈ Υ | ∀Φ′ ∈ Υ.Φ′ �⊂ Φ}.

Given some consistent privilege set Ξ, we identify all of its plausible privilege sets

that satisfy a particular check, and select only the minimal ones. In many cases, there

is a unique minimal set, but as above, there may not.12 To finish, we coalesce this

collection of minimal privileges, and remove any that are already statically known

to be available based on Ξ. These steps are combined in the following function.

Definition 14 (Minimal privilege check )

Let C be some checking context. Then define ΔC : CPrivSet → PrivSet as follows:

ΔC(Ξ) =
(⋃

mins({Φ ∈ γ(Ξ) | checkC (Φ)})
)

\ |Ξ|.

The ΔC function transforms a given consistent privilege set into the minimal

conservative set of additional privileges needed to safely pass the checkC function.13

For instance, the [C-App] translation rule uses it to guard a function application,

if need be, with a runtime privilege check. These checks are introduced by the

insert-has? metafunction.

insert-has?(Φ, e) =

{
e if Φ = ∅
has Φ e otherwise.

Note that the metafunction only inserts a check if needed. This supports the

pay-as-you-go principle of gradual checking.

Since [C-App] also appeals to consistent subtyping, a cast may be introduced in

the translation as well. For this, we appeal to a cast insertion metafunction:

〈〈T2 ⇐ T1〉〉e =

{
e if T1 < : T2

〈T2 ⇐ T1〉e otherwise.

Once again, casts are only inserted when static subtyping does not already hold.

The [C-Eff] rule translates effect ascription in the source language to the restrict

form in the internal language. If more privileges are needed to ensure static

containment between Ξ1 and Ξ, then translation inserts a runtime has check to

bridge the gap.14

12 One could retain precision by extending our abstraction to support disjunctions of consistent effect
sets, at the cost of increased complexity in the translation and type system.

13 In principle, an infinite domain of effects could induce an uncomputable ΔC function. In practice, this
has not been an issue. For instance, Toro & Tanter (2015) extended this approach to polymorphic
effects while retaining computability.

14 The formula for Φ is analogous to the ΔC operation for checkC .
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An important property of our translation system is that it preserves typing.

Theorem 13 (Translation preserves typing)

If Ξ; Γ; Σ � e ⇒ e′ : T in the source language, then Ξ; Γ; Σ � e′ : T in the internal

language.

Proof

By structural induction over the translation derivation rules. The proof relies on the

fact that ΔC (Ξ) introduces enough runtime checks (via insert-has?) that any related

strict-checkC(Ξ) predicate is sure to succeed at runtime, so those rules do not get

stuck. The instance of insert-has? in the [C-Eff] rule plays the same role there. �

5 Example: Gradual effects for exceptions

In this section, we show how to use our framework to define systems with richer

language features. We extend the language with exception handling and introduce an

effect discipline that verifies that every raised exception is caught by some handler.

We introduce new syntax; privilege and tag domains; adjust and check operations

and contexts; and typing, translation, and evaluation rules. Note that the example

system is general enough to allow different effect disciplines for exceptions.

We introduce the syntax for exceptions in Figure 7. The language introduces

an infinite set of exception constructors sT , which are indexed on the type T of

argument that they carry as a payload. An exception is triggered by the raise sT (e)

expression, which indicates that the expression e should be evaluated to a value of

type T , wrapped in the exception constructor, and raised. An exception handler,

try e1 handle sT (x).e2, attempts to evaluate the expression e1. If successful, its result

is returned; if e1 raises an sT exception, it binds the payload to x and evaluates e2.

We also introduce new adjust and check contexts. These contexts are used to

parameterize different effect disciplines over the same constructs. They are used by

the adjust and check functions in the operational semantics, by the type system and

the translation algorithm. Following M&M, we define a new check context for each

new redex and a new adjust context for each new evaluation frame.

Figure 8 presents the semantics for exceptions in our system. Exceptions propagate

out of evaluation frames by rule [E-Raise-Frame] until they are caught by a matching

handler. Since handlers are also evaluation frames, we must distinguish the rest of

the evaluation frames from handlers. As presented in Figure 7, we call non-handler

frames “Propagating Frames”.

A try handler first reduces the guarded expression. If it is a value, the exception

handler is discarded through rule [E-Try-V]. If the guarded expression reduces to

an exception whose constructor matches the handler, rule [E-Try-T] substitutes the

payload value in the handling expression. If the constructor does not match the

handler, the exception is propagated by rule [E-Try-F], and the handler discarded.

Rule [E-Try-T] uses ∅ in the check context instead of a tagset because the

guarded expression produced an exception instead of a value. The type system does

not relate the type of the exception payload to the type of the guarded expression,

so when check is evaluated it cannot access tag information related to the guarded
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Fig. 7. Syntax for a gradual effect system with exceptions.

Fig. 8. Evaluation rules added to the operational semantics for a system with

exceptions.

expression. We followed the most conservative strategy for this case. Thanks to the

tag monotonicity property, we know that check holds with ∅ if it holds for any

particular π because

try ∅ handle sT ↑ � try π handle sT ↑.

The new source language typing rules are presented in Figure 9. The corresponding

typing rules for the internal language follow the same pattern as for rules in the

general framework: Acheck is replaced by strict-check and � is replaced by < : . In

the translation system, the rules introduce ΔC and insert-has?.

As presented so far, our gradual effect system with exceptions does not enforce

any particular effect discipline. To do so, we define both a domain for privileges

and concrete check and adjust functions. We instantiate privileges Priv to be the

exception constructors (of the form sT ), and provide the following definitions for

Fig. 9. Source language typing rules for exceptions.
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check and adjust, which capture the standard effect discipline for exceptions:

checkraise sT (π)(Φ) ⇐⇒ sT ∈ Φ

checkC (Φ) holds for all other C

adjusttry ↓ handle sT ↑(Φ) = Φ ∪ {sT }
adjustA(Φ) = Φ otherwise.

Note that this effect discipline does not require tags, so technically we use a

singleton set for the universe of tags (ε ∈ {•}). In practice, the tags can be removed

altogether.

Type safety also holds for this extended language. Since we extended the frame-

work core language with new features, and also extended the structure of the typing

judgment and the evaluation semantics, we technically require a new proof of type

safety. However, we observe that we can preserve the statements of Theorems 9, 10,

and 13. Furthermore, the proof of type safety conservatively extends the proof for

our base system, as each case of the original proof holds for the extended language

in essentially the same way. Where necessary, appeals to the induction hypotheses

account for any differences introduced by the new language features.

As intended by Marino & Millstein (2009), the framework can often be extended

in this generic way to account for common language extensions. Suitable language

features introduce new cases to the proofs, but otherwise do not interfere with

the structure of the proof. If some candidate language extension changes the

structure of the theorems or the individual proof cases, then more explicit work is

needed to establish soundness. Delaware et al. (2013) study approaches to formally

modularizing such proofs of type safety in the context of mechanized metatheory.

Implementation. With a concrete effect discipline, an instance of the general effect

system can be specialized to produce concrete operational semantics, type system,

and translation algorithm rules, inlining the calls to check and adjust. Figure 10

presents specialized translation rules for the concrete discipline we have chosen.

These rules directly incorporate the semantics of the insert-has? function, separating

its two cases across two separate translation rules. Since the only non-trivial check

context in the effect discipline is raise sT (π), we provide separate rules only for

raise using the feasible values for Δraise sT (π) in each case (∅ or {sT }).

Illustration. By making the exception checking discipline gradual, we achieve a more

expressive language. Consider the following function, which also uses conditionals

and arithmetic expressions:

let squared = λf : Int
Ξ−→Int . (λx : Int . (f(x ∗ x)) :: ∅)

positive = λx : Int . if x � 0 then x else raise sInt(x)

in (squared positive)

A key property of the positive function is that it never raises an exception when

applied to a non-negative argument. On the other hand, function squared always

calls f with x ∗ x as an argument, which is never negative. We therefore know that
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Fig. 10. Implementation version of the translation rules for a system with exceptions.

the function produced by evaluating (squared positive) never raises an exception, so

we would like to type it as Int
∅−→Int. A static effect system is too restrictive to do

so, but a gradual effect system provides the flexibility to assign the desired type to

the function.

The squared function’s parameter is declared to have type Int
Ξ−→Int , for some Ξ.

Without gradual effects, the only options for Ξ are either Ξ = ∅, in which case the

type system rejects the application(squared positive) because the argument requires

too many privileges, or {sInt} ⊆ Ξ, which means the returned function cannot be

typed as Int
∅−→Int.

In the gradual exception system, we can annotate function positive to hide its

side effects, delaying privilege checking to runtime, and annotate function squared

to allow functions that may throw exceptions, as in the following:

letsquared = λf : Int
{¿}
−→Int . (λx : Int . (f(x ∗ x)) :: ∅)

positive = λx : Int . (if x � 0 then x else raise sInt(x)) :: {¿}
in (squared positive)

The translation algorithm then produces the following program in the internal
language:

let squared = λ f : Int
{¿}
−→Int.

λ x : Int.

restrict ∅
((〈Int ∅−→Int ⇐ Int

{¿}
−→Int〉f)(x ∗ x))

positive = λ x : Int.

restrict {¿}
if x � 0

then x

else has {sInt} raise sInt(x)

in (squared positive)

In this program, application (squared positive) can be typed as Int
∅−→Int, as desired.

Given the properties of integer numbers, the else branch in the body of positive

is never executed. The higher order cast for f in the body of squared never fails

because rule [E-Cast-Fn] only introduces restrict ∅ has ∅ checks.
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Effect errors are not exceptions. Gradual effects for exceptions is more expressive

than simply raising uncaught exceptions. Triggering an Error instead of propagating

the exception prevents the system from following implicit exceptional control flows,

where an outer handler catches an exception that was locally forbidden. The follow-

ing example demonstrates how this behavior can affect evaluation of a program:

let positive = λx : Int . (if x � 0 then x else raise sInt(x)) ::{¿}
nonzero = λx : Int . if x = 0 raise sInt (x) else x

in try

nonzero ((positive (−1)) :: ∅)

handle sInt(x)

print “0 is an invalid argument”

The handler in the let body is designed to catch the exceptions thrown by the

body of nonzero. To this end, the code uses an effect ascription to ensure that the

argument to nonzero does not throw any exception.

At the same time, the program reuses the positive function introduced in the

previous example, but applies the function to a negative number. Given this incorrect

argument, positive attempts to raise an exception. An effect ascription to the ∅
privilege set forces the application to not raise any exception at all. This inconsistent

behavior is caught at runtime by the gradual effect discipline.

We purposely used the same label for exceptions in positive and in nonzero. If

the system simply threw the uncaught exception in positive, the handler would take

control even though it was not designed for that exception. Instead, since positive

has no exception raising privileges, the system triggers an Error just before it would

have thrown the exception. Evaluation thus terminates without control ever reaching

the exception handler, which was designed for failures of nonzero only.

6 A conservative operational semantics

The operational semantics of Marino & Millstein (2009) embeds check predicates

that confirm the safety of effectful operations. A powerful property of that system is

that a type safety proof, which states that no terms get stuck, implies type soundness:

All effectful operations at runtime are performed in an effect context with sufficient

permissions. Since every runtime check of the effect discipline will succeed, a real

implementation can skip them.

By making our system gradual, we have compromised this property: While the

built-in runtime checks may still be skipped, we must keep the privilege contexts

for gradual effect checking to work. Privilege contexts depend on adjust operations,

which in turn depend on the tags that are associated to runtime values. Thus, for

gradual effect checking to work at runtime, we require the book-keeping information

in the operational semantics that is used to update the context. In this section,

we provide an alternative operational semantics that requires a smaller amount of

mandatory runtime information: We make tag annotations on values redundant, at

the cost of precision: Our alternative semantic conservatively produces runtime errors

for some programs that reduce to a value in our previously introduced semantics.
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6.1 Safety and soundness

Marino and Millstein’s operational semantics of the language includes check pred-

icates as a premise for every step performing an effectful operation, and adjust

functions as a context for every step reducing subexpressions. By introducing

these predicates, their type safety theorem ensures that the operational semantics

is sound with respect to the effect discipline being enforced by the type system.

This property also has the useful corollary that check predicates at runtime are

made redundant by type safety, thus an implementation can safely remove not

only the predicates themselves, but all the machinery that was in place sim-

ply to support those predicates: tag annotations on values and the context of

privileges.

To make our system gradual, we have introduced runtime checks that ensure

soundness in the form of has language constructs, which verify that a set of

privileges assumed when type checking the program is actually available at runtime.

The has language construct introduced in Section 4.2 queries the set of available

privileges, so an implementation cannot erase this information nor tag annotations

on values, which are needed by adjust to generate the set of available privileges.

At the same time, since the system encapsulates all runtime checking in the has

construct, all check predicates can still be safely removed in an implementation, just

like in Marino & Millstein (2009).

To calculate the available privileges, the semantics introduced in Figure 5 follows

the M&M approach and depends on adjust functions, which in turn may depend

on runtime tag information. For example, to reduce a function application vε e,

the privileges available to reduce e may depend on the tag ε of the function.15 As

presented so far, an implementation can remove neither the privilege context Φ nor

the tags in values.

In this section, we introduce an alternative semantics that uses statically approxi-

mated adjust contexts for adjust functions, reducing privilege precision to make tag

annotations for values redundant at runtime.

We call this semantics “conservative”: Some programs that reduce to a value in

the original semantics reduce to an Error instead. If a program reduces to a value in

both operational semantics, the results are equivalent (modulo tag annotations). We

provide this second semantics as a different option in the design spectrum, where

the dynamic annotation overhead can be traded off against precision in the dynamic

enforcement of the effect discipline.

6.2 Making tags redundant at runtime

In the generic operational semantics introduced in Figure 5, tag information is

used only to compute adjust functions and check predicates. We first clarify why

check predicates are redundant, and we later focus on how adjust functions are

15 In Section 6.2.2, we show an example adjust function that is dependent on runtime tag information,
as well as a program whose result thus depends on the tag of the function.
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not redundant, as well as studying the runtime dependence of adjust on tag

information.

The check predicates in the operational semantics are made redundant by the

type system. In the operational semantics for the internal language presented in

Figure 5, every check predicate uses a check context limited to the tags of the

values in the expression to be reduced. For example, to reduce a (ref unitε1 )ε2
expression under a privilege context Φ, rule [CE-Ref] verifies that checkref {ε1}(Φ)

holds. At the same time, typing an expression that reduces to (ref unitε1 )ε2 requires

a matching strict-checkref π(Ξ) predicate to hold, with ε1 ∈ π. A strict-checkref π(Ξ)

predicate ensures that for every privilege set Φ ∈ γ(Ξ), checkref π(Φ) holds. By the

tag monotonicity property (Property 2), checkC (Φ) implies checkC ′ (Φ) for any C ′ that

contains less tags than C (C ′ � C). Thus, by statically requiring a strict-checkref π(Ξ)

predicate in the type system, type safety ensures that the check predicate in

rule [CE-Ref] always holds, and therefore checking checkref {ε1}(Φ) at runtime is

redundant. This monotonicity argument applies to every check predicate in the

operational semantics, making them also redundant. Therefore, an implementation

does not need to evaluate check predicates since they always succeed for well-typed

programs, a property that also holds in Marino & Millstein (2009).

Things are not so clear for adjust. Since tags affect precisely which privileges

are available at runtime, we must focus on where adjust require tag information

at runtime. The only interesting case is rule [CE-Frame], which alters the set of

available privileges by using adjust functions. The adjust functions depend on tag

information through adjust contexts. This dependency arises only for two forms

of adjust contexts in our semantics: π ↓ and π :=↓ (both in rule [CE-Frame]),

corresponding to expressions typed with rules [IT-App] and [IT-Asgn], but applies

in general to any language construct in which evaluation of a subexpression could

affect the privileges available for the computation of other subexpressions. The type

system introduced in Section 4.2 uses an approximated tagset π obtained when typing

e1 in expressions of the form e1 e2 and e1 := e2 to generate the respective adjust

contexts π ↓ and π :=↓, used by the Aadjust function to generate the context used

to type e2 in rules [IT-App] and [IT-Asgn]. The operational semantics introduced

in Figure 5, on the other hand, uses the exact tag annotations of values. A corollary

of type safety both in our system as in Marino & Millstein (2009) is the fact

that the exact tag ε in the operational semantics is guaranteed to be a member

of the set π used in the type derivation. With this restriction, the tag monotonicity

lemmas of the generic framework ensure that the privilege information available at

runtime is always equal or greater than the privilege information used by the type

system.

In Section 6.2.1, we propose an alternative semantics that removes the need for

tags on value, as well as a type-directed translation from our previous operational

semantics. Instead of requiring runtime tags, the new language uses only static

information, which is added statically during translation to the relevant redexes.

Therefore, runtime tag annotations may be safely erased in the conservative se-

mantics, so that the runtime system can use standard representations of values,

while still supporting effect disciplines that make non-trivial uses of tag information.
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Fig. 11. Conservative language syntax.

Fig. 12. Type-directed tag addition (extract). Rules introduce the tag approximation

of the generic language explicitly, to be used on adjust contexts for evaluation.

Complete system in Figure A 1.

Removing runtime tags comes at the price of error precision: Some programs with

gradual effect annotations trigger an error even though the generic semantics in

Figure 5 reduces them to a value. An example of a program whose observable

behavior changes across both semantics is shown in Section 6.2.2.

6.2.1 The conservative internal language

To define the conservative semantics, we modify the syntax of redexes. The

syntax of the conservative language is introduced in Figure 11, which highlights the

interesting changes from the language of Figure 3. At a high level, there is only

one difference: redexes that use tag information to adjust privileges are annotated

with a static approximation of the tags that could arise at runtime. We translate

well-typed programs from the original internal syntax to the conservative language

syntax using the translation algorithm introduced in Figure 12. The translation
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Fig. 13. The conservative semantics, with special frame translation function A′, that

maps annotated evaluation frames to adjust contexts (extract). Complete semantics

in Figure A 2.

Fig. 14. New frame translation function A′, mapping annotated evaluation frames

to adjust contexts.

algorithm annotates redexes by extracting tag approximations from the typing

derivation. The only interesting rules are [CT-App] and [CT-Asgn], which contain

subexpressions depending on adjust contexts π ↓ and π :=↓, respectively. We

extend function applications (e1 e2) and assignments ((e1 := e2)ε) with a statically

approximated tagset π, which is used by the conservative semantics instead of the

tag obtained from values in the original semantics. In Section 6.3, we prove that

value tag annotations in the conservative language can be safely erased in an

implementation.

A new operational semantics is introduced in Figure 13. Only three rules differ

from the semantics in Figure 5: rules [CE-App], [CE-Asgn], and [CE-Frame]. Rules

[CE-App] and [CE-Asgn] do not change their semantics, but they now operate on

expressions with extra syntactic information. Upon reduction, this extra information

is discarded.

Rule [CE-Frame] differs from the original semantics in how the adjust context

for a particular frame is obtained. In the system introduced in Figure 5, rule

[CE-Frame] uses function A to infer the proper adjust context for an evaluation

frame. In the case for frames wε � and (wε := �)ε′ , it used the tag ε in wε to

create a singleton tagset and produce the corresponding {ε} ↓ or {ε} :=↓ context.

In the conservative semantics, we instead use function A′ as defined in Figure 14.

A′ uses the extended evaluation frames of the conservative language, which includes

frames of the form (v �)π and (v := �)(ε,π) that carry an extra tagset π, used
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to produce the corresponding π ↓ or π :=↓ adjust context. No tag information

from values is used to infer adjust contexts, making tag information redundant at

runtime.

6.2.2 Example of a program with observable differences

Do the changes proposed affect the result of evaluating a program? In this section,

we construct an example program that produces different results when evaluated in

each semantics:

((λf : {ε1, ε2}T1
∅−→T2 . f has {read}!lε)ε (λx : T1 . x)ε1 ){ε}. (1)

In particular, we find that this program runs to completion in the standard

semantics but produces a runtime error in the conservative semantics. As Section 6.3

shows, this is the only possible difference.

We first focus on the difference between both semantics that might cause

different behavior. The differences only affect programs that perform runtime

checks.

Tag monotonicity ensures that when tags are removed from a set π, adjust

can only increase the privileges of the resulting set. Therefore, for programs to

have different behavior between both semantics, the adjust functions must make

strict use of this condition, and by the same argument, depend on the adjust

context.

adjustπ↓(Φ) ⊂ adjust{ε}↓(Φ) .

In our language, this only happens for adjust contexts that use the tagsets,

π ↓ and π :=↓. We therefore propose, as an example, the following definition for

adjustπ↓:

adjustπ↓(Φ) =

{
Φ ∪ {read} if Φ ⊆ {ε}
Φ otherwise.

For any other kind of adjust context, we use the identity function. We also define

predicate check!π(Φ) ⇐⇒ read ∈ Φ, and checkC(Φ) to always hold for any other

check context.

Let us build an example program in a language using this effect discipline and

produces different results in both semantics. Since the only language construct

that changes behavior with different Φ’s is has Φ e, and we require an adjust

context of a form π ↓ or π :=↓ to appear to observe differences, we introduce

a has construct in the argument position of an application: a program of the

form
(
e1 has Φ′e2

)
{ε1 ,ε2} in the conservative semantics. We introduce an annotation

{ε1, ε2} as minimal set that exhibits different behavior based only on tags. To have

a {ε1, ε2} frame annotation, expression e1 needs to be typed as {ε1, ε2}T1
Ξ−→T2,

and therefore can only reduce to an abstraction, which may have either tag

ε1 or ε2.

To define a concrete program that follows these restrictions, we just write e1 as a

variable f with the appropriate type, bound in a λ-abstraction. We use the familiar
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read privilege as the singleton element of set Φ′, and build an e2 whose meaning in

the source language could eventually require a has check: !lε for some location l.

While a simpler expression like unit would suffice as e2, it would make the example

unrealistic.

e3 = (λf : {ε1, ε2}T1
∅−→T2 . f has {read}!lε)ε.

Given our definition of adjust, the example in Program (1) will present observable

differences.

This program can be typed with Ξ = {¿} and evaluates to different results

in each semantics. To focus on the interesting step of evaluation, we first ap-

ply substitution of the argument in the body of the function. Then, we get

the following cases for evaluation with Φ = ∅. In the conservative semantics

(Figure 13),

adjust{ε1 ,ε2}↓(Φ) � has {read}!l | μ� Error | μ
Φ �

(
(λx : T1 . x)ε1 has {read}!l

)
{ε1 ,ε2} | μ�∗ Error | μ

and in the original semantics (Figure 5),

adjust{ε1 ,ε2}↓(Φ) � has {read}!l | μ →!l | μ
Φ � (λx : T1 . x)ε1 has {read}!l | μ →∗ (λx : T1 . x)ε1 !l | μ

.

This example shows that some programs which reduce to a value in the original

semantics trigger errors instead in the conservative semantics. In the next section,

we prove that this is the only difference between both semantics.

6.3 Conservative semantics is a conservative approximation

When we label the semantics in Figure 13 as conservative, we mean it is a conservative

approximation of the original semantics: If a program reduces to a value and a store

in the modified semantics, it reduces to the same value and store in the original

language (modulo tag annotations). If a program reduces to a runtime error in the

conservative semantics, the program either reduces to an error or to a value in the

original semantics.

We establish the relation between both semantics formally in the Conservative

Approximation Theorem (Theorem 16). To introduce the theorem, we first de-

fine two auxiliary notions: A tagset erasure function (EC) that maps programs

from the conservative language syntax to the original syntax by removing tag

annotations, and a simulation relation that captures the relation between both

languages. Theorem 16 establishes that evaluation preserves the simulation relation

throughout.
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Definition 15 (Tagset erasure function EC)

We define function EC : ExprConservative → ExprGeneric as follows:

EC (unitε) = unitε
EC (lε) = lε

EC ((λx : T . e)ε) = (λx : T . EC (e))ε

EC ((e1 e2)π) = EC (e1) EC (e2)

EC

(
〈T1 ⇐ T0〉e

)
= 〈T1 ⇐ T0〉EC (e)

EC (has Φ e) = has Φ EC (e)

EC (restrict Ξ e) = restrict Ξ EC (e)

EC (Error) = Error

EC ((ref e)ε) = (ref EC (e))ε
EC (!e) = !EC (e)

EC

(
(e1 := e2)(ε,π)

)
= (EC (e1) := EC (e2))ε

This tagset erasure function inverts the tag addition function� introduced in Fig-

ure 12. The only interesting cases are for application and assignment (highlighted).

In both cases, we remove the extra π annotations that were introduced by the

translation defined in Figure 12. Other cases simply apply the function recursively

to subexpressions.

Simulation relation. The simulation relation characterizes how we relate programs

from the conservative semantics with programs in the original semantics. To avoid

confusion, we underscore with a C relations that should hold in the conservative

semantics, and with an O relations that should hold in the original semantics

introduced in Section 4.2.

Definition 16 (Simulation relation)

Ξ; Γ; Σ �C e2 : T2

e1 = EC (e2)
Γ; Σ 	O μ1 Γ; Σ 	C μ2

μ1 = EC ◦ μ2

Ξ; Γ; Σ 
 (e1, μ1) ∼ (e2, μ2)
.

A pair (e1, μ1) from the original language is related to a pair (e2, μ2) in the

conservative language with a context Ξ; Γ; Σ by the simulation relation ∼ if

1. e2 can be typed in the conservative type system using the context (There exists

a type T such that Ξ; Γ; Σ �C e2 : T ),

2. e1 and e2 correspond to the same expression modulo tag information (e1 =

EC (e2)),

3. both stores μ1 and μ2 are consistent with the context, and μ1 is equivalent to

μ2 without the extra tagset information (∀x, μ1(x) = EC (μ2(x))).

Theorem 14 (Strong conservative approximation)

Let Ξ; Γ; Σ 
 (e1, μ1) ∼ (e2, μ2) and Ξ � Φ. If Φ � e2 | μ2 � e′
2 | μ′

2, then for any

Ξ � Φ′, either
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• Φ′ � e′
2 | μ′

2 �
∗ Error | μ′

2

• ∃e′
1 and μ′

1 such that Φ′ � e1 | μ1 → e′
1 | μ′

1 and ∃Σ′ ⊇ Σ such that

Ξ; Γ; Σ′ 
 (e′
1, μ

′
1) ∼ (e′

2, μ
′
2).

Proof

By structural induction over �. Since both semantics are mostly equivalent modulo

differences in rules [CE-Frame] in each semantics, that rule is the only interesting

case for the proof.

The key step in the proof is that to use the induction hypothesis with rule

[CE-Frame], we must ensure that the Φ used in the premise of original seman-

tics’ [E-Frame] rule (adjustA(fO)(Φ)) simulates the Ξ of the simulation relation

(AadjustA′(fC)(Ξ) � adjustA(fO)(Φ)), which is non-trivial since there are different adjust

contexts used in each semantics. To do so, we first establish a principle of well-

formedness for frames (Definition 17). We then prove that well-formed frames is

admissible from typing in the conservative language, and thus admissible from the

simulation relation (Lemma 15). We then prove that simulation ensures well-formed

frames, and that there is a partial ordering between the adjust contexts used in the

conservative semantics and those in the original semantics (A(fO) � A′(fC)).

This partial ordering ensures that if Φ is a valid simulation privilege set for Ξ

(Ξ � Φ), then also AadjustA′(fC)(Ξ) � adjustA(fO)(Φ). This relation enables usage of the

induction hypothesis. �

Definition 17 (Well-formed conservative frames)

We say that a frame fC is well-formed if either

• fC is syntactically equivalent to a frame in the original semantics fO (for

example, !�)

• fC is equivalent to a frame in the original semantics fO plus extra tagset

information that conservatively approximates the required tag information for

value subexpressions. i.e., frame (wε �)π is well-formed only if ε ∈ π, and frame

(wε1 := �)(ε,π) is well-formed only if ε1 ∈ π.

Lemma 15 (Typing in the conservative semantics ensures well-formed frames)

If Ξ; Γ; Σ � e : T , and e = fC [e′], then fC is a well-formed frame.

Proof

By cases on the final rule of the type derivation. �

Theorem 16 (Conservative approximation)

Let Ξ; Γ; Σ � e1 � e2 : T , μ1, and μ2 such that Ξ; Γ; Σ 
 (e1, μ1) ∼ (e2, μ2), and

Ξ � Φ. If Φ � e2 | μ2 �∗ v2 | μ′
2, then ∃v1 and μ′

1 such that Φ � e1 | μ1 →∗ v1 | μ′
1 and

∃Σ′ ⊇ Σ such that Ξ; Γ; Σ′ 
 (v1, μ
′
1) ∼ (v2, μ

′
2).

Proof

To prove this theorem, we establish an intermediate strong conservative approxi-

mation lemma (Theorem 14). Then, this theorem reduces to the reflexive–transitive

closure of Theorem 14. �
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Fig. 15. Type system for the conservative language (extract). Complete system

in Figure A 3.

6.4 Type safety of the conservative semantics

In this section, we prove type safety for the conservative language. We introduce its

type system in Figure 15. The key difference with the type system in Figure 4 is that

it uses tagsets from the extra annotations in redexes instead of the tagsets from the

typing of e1 in rules [CIT-App] and [CIT-Asgn] (which is highlighted in boxes in

Figure 15). This change also requires explicit subsumption of tagsets to relate the

tagset in the redex annotation back to the tagset in the type of e1.

Theorem 17 (Progress)

Suppose Ξ; ∅; Σ � e : T . Then, either e is a value v, an Error, or Φ � e | μ� e′ | μ′

for all privilege sets Φ ∈ γ(Ξ) and for any store μ such that ∅ | Σ � μ.

Proof

By structural induction on type derivations. Most cases are analogous to the original

language’s proof of progress, since most typing rules are the same. However, this

theorem does not depend on effect satisfaction: representation is sufficient. This

happens because rules [CIT-App] and [CIT-Asgn] use the same adjust contexts at

runtime and statically, so now the representation condition (Φ ∈ γ(Ξ)) is sufficient

and, unlike in the original language, we do not need to appeal to privilege set

satisfaction. �

Theorem 18 (Preservation)

If Ξ; Γ; Σ � e : T , and Φ � e | μ� e′ | μ′ for Φ ∈ γ(Ξ) with Γ | Σ � μ, then ∃Σ′ ⊇ Σ

such that Γ | Σ′ � μ′ and Ξ; Γ; Σ′ � e′ : T ′ with T ′ < : T .

Proof

By structural induction on type derivations and the applicable evaluation rules.

Most cases follow analogously to the original language, except for

• typing rule [CIT-App] with evaluation rule [CE-Frame] using f = (v�)π ,

• typing rule [CIT-Asgn] with evaluation rule [CE-Frame] using f = (v :=

�)(ε,π).
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Both cases are simpler in the sense that they do not require the tag monotonicity

restrictions from Property 2 that were used in the original language to account

for the difference between the tagset used at evaluation and the one used for

typing. �

6.5 Redundancy of tags in the conservative semantics

We introduced the conservative semantics to avoid carrying tag information at

runtime. To formalize the claim that tag information is redundant and thus it may

be discarded at runtime, we introduce a simulation argument. We can easily define

an operational semantics ↪→ based on the � conservative semantics defined in

Figure 13, except that we remove every check predicate (so that they don’t have to

be checked at runtime), and also define a tag-removal function EV () as follows:

EV (unitε) = unit

EV (lε) = l

EV ((λx : T . e)ε) = (λx : T . EV (e))

EV ((e1 e2)π) = (EV (e1) EV (e2))π
EV

(
〈T1 ⇐ T0〉e

)
= 〈T1 ⇐ T0〉EV (e)

EV (has Φ e) = has Φ EV (e)

EV (restrict Ξ e) = restrict Ξ EV (e)

EV (Error) = Error

EV ((ref e)ε) = ref EV (e)

EV (!e) = !EV (e)

EV

(
(e1 := e2)(ε,π)

)
= (EV (e1) := EV (e2))π

We can then state the following theorem relating both semantics:

Theorem 19 (check and tags are redundant in �)

If Ξ; Γ; Σ � e : T and Φ � e | μ� e′ | μ′ for Φ ∈ γ(Ξ) and Γ | Σ 	 μ, then also

Φ � EV (e) | EV (μ) ↪→ EV

(
e′) | EV

(
μ′).

Proof

The check predicates in the operational semantics always hold due to the typing

hypothesis, since we know by Definition 5 that strict-checkA(Ξ) implies checkA(Φ)

∀Φ ∈ γ(Ξ). We can thus remove the check predicates from the conservative semantics

and ensure that reduction behaves identically. After removing check predicates, ε

tag annotations do not affect reduction, so if ↪→ is defined for programs both

with and without value tag annotations, we can prove that Φ � e | μ ↪→ e′ | μ′ ⇐⇒
Φ � EV (e) | EV (μ) ↪→ EV

(
e′) | EV

(
μ′). �

7 Gradual typing and gradual effects: Gradual type-and-effect systems

The gradual effects framework empowers the programmer to decide when and

where to introduce effect annotations, automatically adding required checks to

ensure safety. However, this flexibility does not yet apply to types: we require fully

statically checked types (except for effect annotations). In this section, we introduce
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Fig. 16. Syntax of the source language for gradual typing with tags.

gradual typing in our framework, giving the programmer full flexibility over both

effect and type annotations.

Marino and Millstein’s framework for generic type-and-effect systems accepts

values with tag annotations. Static reasoning about tags is achieved by annotating

types with sets of tags. For example, the type (π Unit) only denotes values unitε
with ε ∈ π. However, since the unknown type ? in gradual typing is not tagged,

some tag set must be assumed for ?. To introduce complete gradual annotations for

types and effects in the M&M framework, we take a two-step approach: We first

introduce gradual typing for a simple language with tags, where we assume that all

tags are available for ?, corresponding to the universe set of tags (Tags). Then, we

move on to introduce gradual typing, observing that gradual typing and gradual

effects are almost orthogonal: The same assumption that all tags are available for

? applies to our generic gradual effects framework as the final link to achieve a

completely gradual type-and-effect system.

7.1 Extending gradual typing for tag annotations

We first focus on the interactions between tags and gradual typing. To do so, we

introduce tags to the gradually typed lambda calculus introduced by Siek & Taha

(2006).

The syntax of the language is introduced in Figure 16; it adds tags to the gradually

typed lambda calculus with references. To do so, we redefine types to consist of both

a tag set π and a pretype ρ.

? is still a type. When adding tags, we face a design choice: to consider ? as a

pretype (ρ) or as a type (T ). Type ? was introduced in gradual typing to permit

programs missing type information, which leads us to consider ? as a type. If ? were

a pretype instead, every program would require type tag annotations, forcing static

checking. This requirement defeats the purpose of gradual typing.

Since tags change our definition of types, we must update the definitions of other

notions based on types. In particular, we must update both type consistency and

consistent subtyping.
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Definition 18 (Type consistency)

We define type consistency as the reflexive and symmetric relation introduced by

Siek & Taha (2006), extending rule [C-Fun] to be reflexive on the set of tags.

C-Fun
T ′

1 ∼ T1 T ′
2 ∼ T2(

π
(
T ′

1−→T ′
2

))
∼

(
π

(
T1−→T2

)) .

7.1.1 Consistent subtyping

Tag annotations in types are sets, leading to a natural notion of subtyping. Siek

& Taha (2007) combined gradual typing and subtyping in the context of object

oriented languages, and we follow their strategy to combine the notion of subtyping

induced by tags with type consistency:

Definition 19 (Consistent subtyping)

Following the work of Siek & Taha (2007), we define consistent subtyping (�) as

follows:

a � b � ∃α ∼ a . α < : b.

In our gradually typed lambda calculus with tags and references, the subtyping

relation is defined as follows:

Definition 20 (Subtyping relation)

T < : T ST-Id
π1 ⊆ π2

π1 ρ < : π2 ρ
ST-Dyn

? < : ?

ST-Abs
T3 < : T1 T2 < : T4 π1 ⊆ π2

π1 T1−→T2 < : π2 T3−→T4

.

The language in Siek & Taha (2007) defined consistent subtyping by equivalently

using consistency on either side of the subtyping relation (but not both). With our

definitions of type consistency ∼ and subtyping, we prove this very property as the

following corollary:

Corollary 20 (Consistent subtyping equivalence)

∃α ∼ a . α < : b ⇐⇒ ∃β ∼ b . a < : β.

Proof

By structural induction over the type consistency definition (∼). �

Using consistent subtyping, we define a type system for the source language in

Figure 17.
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Fig. 17. Typing rules for the source language for gradual typing with tags. Complete

definition in Figure B 1.

Fig. 18. Syntax of the internal language for gradual typing with tags.

7.1.2 Internal language

The syntactic extensions required for the internal language are introduced in

Figure 18. A type system for the internal language is introduced in Figure 19, which

differs from the source language only in depending directly on subtyping instead

of consistent subtyping. The operational semantics introduced in Figure 20 is the

semantics of the gradually typed lambda-calculus with references plus tags. Standard

rules [GE-Ref], [GE-Asgn], [GE-Deref], and [GE-App] are augmented to consider

tag-annotated values. Rule [GE-Cast-Id] handles casts for tagged types, verifying

that the subtyping condition for π1 and π2 holds. A separate rule [GE-Cast-Dyn]

handles identity casts for ?.

7.1.3 Tags interact with the translation algorithm

The translation algorithm presented in Figure 21 introduces the runtime checks

necessary to ensure that a program is safe, making the optimistic assumptions of

the original language explicit by inserting type casts. But what tags are valid when

we do not statically know the type of an expression (i.e., the case of type ?)?

To define a safe system, we make the conservative assumption that an expression

with a type ? may at runtime have any tag annotation. Therefore, we assume

that an expression with type ? must provide the universe set of tag annotations

(denoted Tags). This assumption is consistent with the tag monotonicity restrictions

of gradual effect checking, inherited from the generic M&M framework, so no extra

assumptions are required to combine tagged gradual typing with gradual effect

checking: If we use the set Tags, these monotonicity restrictions ensure that the

required restrictions for strict-check predicates and Aadjust functions always hold,

hence ensuring type safety.

Of course, using Tags as assumption is very conservative. A different approach is

to introduce a notion of graduality among tags. We plan to explore this approach
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Fig. 19. Typing rules of interest for the internal language for gradual typing with

tags. Complete definition in Figure B 2.

Fig. 20. Interesting rules for small-step semantics of the internal language for gradual

typing with tags. Complete definition in Figure B 3.

in future work, but since tags are not fundamental to effects, we consider this

approximation sufficient as it makes definitions simpler.

7.1.4 Type safety

Theorem 21 (Progress)

Suppose ∅; Σ � e : T . Then, either e is a value or for any store μ such that ∅ | Σ 	 μ,

e | μ → e; | μ′.

Proof

By structural induction over derivations of ∅; Σ � e : T . The only interesting cases

arise for rule [GT-Cast]. For rule [GT-Cast], the proof proceeds by cases over the

presence (or lack) of consistent subtyping between T1 and T2. �

Theorem 22 (Preservation)

If Γ; Σ � e : T , and e | μ → e′ | μ′ for Γ | Σ 	 μ, then Γ | Σ′ 	 μ′ and Γ; Σ′ � e′ : T ′

for some T ′ < : T and ∃Σ′ ⊇ Σ.

Proof

By structural induction over the typing derivation and the applicable evaluation

rules. All the new evaluation rules apply to casts, so the only interesting case again

is for typing with [GT-Cast], where for most cases the conclusion follows directly

from the typing derivation of the premise, since the rules do not modify terms but

extract a subexpression instead. �
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Fig. 21. Extract of translation of source programs to the internal language for

gradual typing with tags. Complete rules in Figure B 4 and Figure B 5.

Fig. 22. Syntax addition to the source language for gradual type-and-effect systems

from Figure 1. A complete syntax is available in Figure B 6.

Theorem 23 (Translation preserves typing)

If Γ; Σ � e ⇒ e′ : T in the source language, then Γ; Σ � e′ : T in the internal

language.

Proof

By structural induction over the translation rules. �

7.2 Combining gradual typing and gradual effect checking

Once we have extended gradual typing with tag annotations, we can easily combine

gradual typing and gradual effect checking to deliver a system that provides static

and dynamic type-and-effect checking. The syntax for this language is provided

in Figure 22. It combines the typing, translation, and evaluation rules from gradual

typing with tags and gradual effect checking. In this section, we focus on the modifi-

cations required to combine both systems: We build a notion of “effect consistency”

from our definition of consistent containment, our definition of subtyping changes to

encompass both tag annotations and effects, and we reuse the assumptions required

to introduce tags into gradual typing to define a new translation relation.

7.2.1 Type and effect consistency

Gradual typing uses type consistency to statically accept expressions with type ?

(or whose type is partially unknown) whenever expressions with particular type are
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required, like in a function application. Type consistency acts as a relaxed form

of equality: Whenever a certain type T1 is required for a program to be valid, a

program with an unknown type must also be statically accepted, because the type

system is not able to distinguish between them. The definition of type consistency

introduced by Siek & Taha (2006) does not consider effect annotations, so we must

provide a type consistency relation that does.

Our analysis of gradual effect checking did not require a notion of “effect

consistency”. Instead, we based gradual effect checking on consistent containment,

which acted as a relaxed form of set containment. We define effect consistency again

using abstract interpretation:

Definition 21 (Effect consistency)

The consistent privilege sets Ξ1 and Ξ2 are consistent, denoted Ξ1 � Ξ2, if and only

if Φ ∈ γ(Ξ1) and Φ ∈ γ(Ξ2) for some Φ ∈ PrivSet.

Like for consistent containment, we also provide a simple direct characterization.

As with standard sets, we may prove that two sets a and b are equal if a ⊆ b

and b ⊆ a, we prove that two sets are consistent if they are mutually contained

consistently:

Proposition 24

Ξ1 � Ξ2 ⇐⇒ Ξ1 �∼ Ξ2 and Ξ2 �∼ Ξ1.

Proof

(⇐) By cases on the definition of γ. (⇒) direct from Definition 21. �

We use effect consistency to extend type consistency to handle effects. As in Siek

& Taha (2006), reference cell types are only consistent with themselves (since type

consistency is reflexive). We define type consistency as follows:

T ∼ T C-Refl
T ∼ T

C-UnR
T ∼ ?

C-UnL
? ∼ T

C-Fun
T ′

1 ∼ T1 T ′
2 ∼ T2 Ξ′ � Ξ

π

⎛
⎝T ′

1

Ξ′

−−→T ′
2

⎞
⎠ ∼ π

⎛
⎝T1

Ξ
−−→T2

⎞
⎠

.

7.2.2 Static semantics for the source language

In this section, we introduce the type system for the source language, presented in

Figure 23. This type system, as was the case for gradual effect checking, depends

on two relations, subtyping (< : ) and consistent subtyping (�), which we now

define.
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Subtyping. The subtyping relation introduced in Section 7.1 suffices to define gradual

typing (?), but does not consider effects. We build a sufficient definition of subtyping

for gradual typing with gradual effect checking by extending the subtyping definition

introduced in Section 4.2 to account for reflexivity of type ? with the following rule:

? < : ?
.

Consistent Subtyping. We migrate the definition of consistent subtyping from gradual

typing and gradual effect checking, using the new definitions of subtyping and type

consistency we have presented.

Definition 22 (Consistent subtyping)

Consistent subtyping (�) is defined as

a � b if and only if ∃α ∼ a . α < : b (if and only if ∃β ∼ b . a < : β).

We use type consistency and consistent subtyping in the type system for our

language as presented in Figure 23. The internal language syntax is introduced in

Figure 24, and only differs from the syntax from Figure 18 in the usage of effect

annotations from gradual effect checking.

We consider this definition of consistent subtyping an extension of the definition

presented in Section 4. The formal relationship between both definitions is established

by the following theorem:

Theorem 25

Let �GE be the consistent subtyping definition in Section 4 and �GT consistent

subtyping as introduced in Definition 22. If T1 �GE T2, then also T1 �GT T2 (i.e.,

�GE⊆�GT ).

Proof

By structural induction on the definition of subtyping in gradual effect checking

(�GE), using the following lemma:

Lemma 26

Ξ1 �∼ Ξ2 if and only if there exists a Ξ′ such that Ξ1 � Ξ′ and Ξ′ ⊆ Ξ2. �

Type consistency in the type system. The type system in Figure 23 uses type

consistency to retrieve a tag set π for Acheck predicates. Upon translation, we make a

conservative approximation (using the universe set Tags), that ensures safety and is

in line with the assumptions required to combine gradual typing and tag annotations,

as discussed in Section 7.1.

7.2.3 Internal language

For our system with gradual typing, we introduce internal language extensions in

Figure 24, which are similar to the ones in Figure 3.
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Fig. 23. Extract of typing rules for the source language for gradual type-and-effect

systems. Complete judgment in Figure B 7.

Fig. 24. Syntax of the internal language for gradual type-and-effect systems.

Type system. The type system introduced in Figure 25 only differs from the type

system in Figure 4 in rule [GIT-Cast], which must be more flexible to encompass

type cast failures. In gradual effect checking, we could be more restrictive with the

types in the casts and require T1 � T2 because type casts would never fail due

to type inconsistencies, but would instead be reduced to a combination of effect-

related restrict and has constructs that may or may not fail depending on the

available privileges. When we introduce type ?, we require more flexibility to preserve

safety, in particular for type preservation: A program 〈Nat ⇐ ?〉〈? ⇐ Unit〉unit
should reduce to a cast 〈Nat ⇐ Unit〉unit that would fail in a later step, but cast

〈Nat ⇐ Unit〉 cannot be typed if rule [GIT-Cast] includes a consistent subtyping

restriction between Unit and Nat, breaking preservation.16

Operational semantics. We reuse all the rules of the operational semantics in-

troduced in Figure 5 to provide the operational semantics for gradual typing

detailed in Figure 26, which is extended with more rules for cast evaluation.

Unlike gradual effect checking, type casts in this semantics may fail for reasons

other than effect restrictions, since type consistency is not transitive. Consider the

program(λf : ? . (f unit)) unit. After translation and substitution, this program

16 In most of the examples of this section, we elide tags (both in types and terms) for clarity and focus.
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Fig. 25. Typing rules for the internal language for gradual type-and-effect systems.

Fig. 26. Extract of the small-step semantics of the internal language for gradual

type-and-effect systems. These rules extend the semantics in Figure 5 with type casts.

Complete semantics in Figure B 9.

steps to

(〈Unit Ξ−→? ⇐ ?〉〈? ⇐ Unit〉unit) unit.

First, both casts are merged into a 〈Unit Ξ−→? ⇐ Unit〉 cast, by rule

[GTE-Cast-Merge]. This cast then fails because both types are not consistent

subtypes, by rule [GTE-Cast-Bad]. The operational semantics also includes a

reduction rule for identity ? casts, rule [GTE-Cast-Dyn].

7.2.4 Translation algorithm

In this section, we introduce the translation algorithm for gradual type-and-effect

systems proposed in Figure 27. The translation algorithm is where the interesting

connections between gradual typing and gradual effect checking arise, because some

translation rules use the tag set of a type to generate an adjust or a check context.

Following the assumptions introduced when combining gradual typing with tag

annotations, we assume the universe of tags (set Tags) whenever the translation has

to extract a tag set from an expression with an unknown type (?).
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Fig. 27. Extract of translation from source programs to the internal language for

gradual type-and-effect systems. Complete system in Figure B 10 and Figure B 11.
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Whenever possible, we use the tag information available on types instead of

recoursing to the Tags assumption. To do so, we introduce two separate translation

rules for (ref e) and !e constructs (when e has type ? or does not, respectively), and

four separate translation rules for application and assignment expressions (when e1

and e2 have type ? or do not, respectively).

In the case of ref e and !e constructs, rules [C-GT-Ref-1], [C-GT-Ref-2],

[C-GT-Deref-1], and [C-GT-Deref-2] handle type and tag assumptions. In gradual

typing, there was no need to introduce separate rules for ref e constructs. We

introduce separate rules to limit the case where assumptions for the check context

are required. In rule [C-GT-Ref-2], when e has type ?, the translation rule uses

a check context ref Tags for the Acheck predicate and for the Δ function that

collects the missing privileges (if any) to perform allocation. For !e constructs, like

in gradual typing, we have two separate translation rules. Rule [C-GT-Deref-2]

makes explicit the assumption that e should have type πRef T for some π and T

and the assumptions required for the check contexts used in Acheck and Δ as in rule

[C-GT-Ref-2].

There are four translation rules for function applications. Rule [C-GT-App-1]

is exactly the same rule [C-GT-App-1] used in the generic gradual effect system,

and applies when types for both the operator and argument are known. Rule

[C-GT-App-2] applies when the argument type is unknown (?), and inserts a cast

for the argument from ? to the type of the operator domain. It assumes that e′
2 might

hold any set of tags, so the check and Δ functions use the universe of tags available

for the argument. Rule [C-GT-App-2] needs a cast on the operator for gradual effect

checking, which performs an effect coercion ensuring that the privileges required for

the function type (Ξ1) are actually available in the context Ξ.

Rule [C-GT-App-3] applies when the operator has type ?. We assume that the

type of the argument is known, leaving the case of both elements having type ?

for rule [C-GT-App-4]. In rule [C-GT-App-3], we do not have tag information for

the function type, information that is needed to adjust the privileges available to

translate e2. As in rule [C-GT-App-2], we assume the maximum set of tags. The

assumed set is also used for the check and Δ functions, and for the cast that ensures

that e1 is a function at all. By our definition of subtyping, a function which has any

set of tags π1 (and the appropriate privilege set and parameter and return types) is

accepted since in the cast π1 ⊆ Tags always holds.

Rule [C-GT-App-4] makes the assumptions from rule [C-GT-App-3] explicit, but

also assumes that the argument has type ?. We have two separate rules because if

e′
2 has type ?, we must make tag assumptions also for the argument to generate the

check contexts required by check and Δ.

Analogous assumptions are made for translation of assignment expressions in rules

[C-GT-Asgn-1], [C-GT-Asgn-2], [C-GT-Asgn-3], and [C-GT-Asgn-4].

Choosing the right privilege set in application rules. Rule [C-GT-App-2] introduces

a cast 〈T2
Ξ−→? ⇐ ?〉. In gradual typing, an application where e1 has type ? requires a

cast to ensure that e1 is actually a function. While it seems that for this restriction
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any privilege set would be valid, like {¿}, this set is not sufficient. Using a privilege

set {¿} does not take into account the restriction arising from type-and-effect systems

that a function that is applied cannot generate more side effects than those allowed

in the context of application. To make this assumption explicit, the cast must restrict

the privileges to the context Ξ of available privileges.

The following program demonstrates improper behavior if a cast to {¿} is used

instead of a cast to Ξ:

((λf : ? . (f unit) :: ∅) effectful-argument).

In this program, effectful-argument represents a properly typed function in scope that

generates a write effect (Γ(effectful-argument) = Unit
{write}
−−−−→Unit, for example).

The translation should introduce enough runtime checks to make this program fail,

since the context where f is applied does not allow side effects ((f unit) :: ∅). If

rule [C-GT-App-2] used {¿} instead of Ξ, then this program would not produce the

required runtime error for using effectful-argument.

To enforce this invariant consistently, we use the same privilege set for the casts

inserted by rules [C-GT-App-3] and [C-GT-App-4].

7.2.5 Type safety

In this section, we prove that the combined gradual type-and-effect system is type

safe and that the translation preserves typing.

Theorem 27 (Progress)

Suppose Ξ; ∅; Σ � e : T . Then, either e is a value v, an Error, or Φ � e | μ → e′ | μ′

for all privilege sets Φ such that Ξ � Φ and for any store μ such that ∅ | Σ 	 μ.

Proof

By structural induction over derivations of Ξ; ∅; Σ � e : T . �

Theorem 28 (Preservation)

If Ξ; Γ; Σ � e : T , and Φ � e | μ → e′ | μ′ for Ξ � Φ and Γ | Σ 	 μ, then Γ | Σ′ 	 μ′

and Ξ; Γ; Σ′ � e′ : T ′ for some T ′ < : T and Σ′ ⊇ Σ.

Proof

As in preservation Theorem 22, by structural induction over the typing derivation

and the applicable evaluation rules. �

Theorem 29 (Translation preserves typing)

If Ξ; Γ; Σ � e ⇒ e′ : T in the source language, then Ξ; Γ; Σ � e′ : T in the internal

language.

Proof

By structural induction over the translation rules. The tagset assumptions introduced

ensure that Acheck and check predicates always hold, and that Aadjust and adjust

functions produce minimal privilege sets, which combined with effect subsumption

ensures type preservation. �

https:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0956796816000162
Downloaded from https:/www.cambridge.org/core. Universidad de Chile, on 05 Jan 2017 at 18:21:25, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0956796816000162
https:/www.cambridge.org/core
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8 Related work

In the realm of effect systems, the most closely related work is the generic framework

of Marino & Millstein (2009), which is discussed extensively in this paper, because

we build upon it to formulate gradual effect checking in a generic setting.

Rytz et al. (2012) develop a notion of lightweight effect polymorphism, which

lets functions be polymorphic in the effects of their higher order arguments. The

formulation is also generic like the M&M framework, although there are more

technical differences; most notably, the system is formulated to infer effects instead

of checking privileges. An implementation of the generic polymorphic framework

has been developed for Scala, originally only with IO and exceptions as effects.

More recently, a purity analysis has been integrated in the compiler plugin (Rytz

et al., 2013). The effect system has been applied to a number of Scala libraries.

Interestingly, Rytz et al. report cases where they suffer from the conservativeness

of the effect analysis, similar to the example of Section 2. To address this, Rytz

recently introduced an @unchecked annotation. Although it is called a cast, it is

an “unsafe cast”, since no dynamic checking is associated to it; i.e., it is just a

mechanism to bypass static checking. Recently, Toro & Tanter (2015) extended our

gradual effect checking approach to support lightweight effect polymorphism (Rytz

et al., 2012), combined with a DSL called EffScript to declaratively define and apply

effect disciplines. The resulting system is implemented as a compiler plugin for

Scala.

While there is a long history in the area of combining static and dynamic

checking, the gradual typing approach of Siek & Taha (2006) has been particularly

successful and triggered many developments. Its main contribution was to identify

the notion of consistency as a key to support the full spectrum of static-to-dynamic

checking. Originally developed for functional languages, it has been extended in

several directions, including structural objects (Siek & Taha, 2007) and generics (Ina

& Igarashi, 2011). Most directly related to this work is the application of the gradual

typing principles to other typing disciplines, such as ownership types, typestates, and

information flow typing.

Wolff et al. (2011) develop gradual typestate checking. Typestates reflect the

changing states of objects in their types. To support flexible aliasing in the face of

state change, the language provides access permissions to support rely-guarantee

reasoning about aliases, and state guarantees, which preserve type information for

distinct aliases of shared objects.

Sergey & Clarke (2012) propose gradual ownership types. Like gradual typestates,

gradual ownership expresses and dynamically tracks heap properties. While typestate

focuses on objects changing state, ownership controls the flow of object references.

Disney & Flanagan (2011) explore the idea of gradual security with a gradual

information flow type system. Data can be marked as confidential, and the runtime

system ensures that it is not leaked. This dynamically checked discipline is moved

toward the static end of the spectrum by introducing security labels on types.

Fennell & Thiemann (2013) extend the notion of security labels to state. However,

their notion of gradual security is closer to quasi-static typing than to gradual typing,
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as unknown security information is statically treated as the top of the security lattice,

requiring explicit downcasts in source programs.

Thiemann & Fennell (2014) propose gradual typing for annotated type systems.

Their work is closer to the use of tags than effect annotations in the framework of

Marino & Millstein (2009), as it focuses on annotations on values and on atomic

types instead of function types, with the goal of gradualizing the annotation part of

annotated type systems.

Extensions to contract systems for higher order functions

(Findler & Felleisen, 2002), such as computational contracts (Scholliers et al.,

2015) and temporal contracts (Disney et al., 2011), have the ability to monitor

for the occurrence of specific (sequences of) execution events, in particular effectful

operations. These approaches rely on full runtime monitoring; it is not clear if they

could be reconciled with the pay-as-you-go model of gradual checking.

None of the prior approaches to gradual checking relies on abstract interpretation

to develop an account of uncertainty. Gracia et al. (2016) extends the idea of

using abstract interpretation to systematically derive a dynamic semantics for

gradual programs by proof reduction on gradual typing derivations. We have yet to

investigate how this new framework could be used to derive a dynamic semantics

for gradual effects.

9 Conclusion

The primary contribution of this paper is a framework for developing gradually

checked effect systems for any number of effect systems that can be couched in the

M&M framework. Using our approach, one can systematically transform a static

effect discipline into one that supports full static checking, full dynamic checking,

and any intermediate blend. We believe that gradual effect checking can facilitate the

process of migrating programs toward a statically checked effect discipline, as well

as bringing dynamic effect checks to languages that have no such checks whatsoever,

and leaving wiggle room for programs that can only partially fit an effect discipline.

To empirically evaluate this claim, parallel work by Toro & Tanter (2015), adapts

and implements gradual effects in Scala.

Initially, we relied on the principles of gradual checking and our intuitions

to guide the design, but found it challenging to develop and validate our con-

cepts. We found abstract interpretation to be an effective framework in which

to develop and validate our intuitions. Using it, we were able to generically

define the idea of consistent functions and predicates, as well as explain and

define auxiliary concepts such as strict checking and static containment. We also

extended our system to support full gradual type-and-effect systems, which de-

pend on gradual effects as an initial step, and explored tradeoffs in the op-

erational semantics for gradual effect checking. In future work, we intend to

investigate effects in the framework of Garcia et al. (2016), to identify any novel

approach that may arise in the derivation of a dynamic semantics for gradual effect

checking.
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Toro, M. & Tanter, É. (2015) Customizable gradual polymorphic effects for scala. In

Submission to the 30th ACM SIGPLAN Conference on Object-Oriented Programming

Systems, Languages and Applications (OOPSLA 2015), New York, NY, USA: ACM Press.
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A Detailed Definitions of Section 6

In this appendix, we include complete descriptions of some relations used to describe

the conservative semantics.

Fig. A 1. Complete type-directed tag addition. It introduces the tag approximation

of the generic language explicitly, to be used on adjust contexts for evaluation.
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Fig. A 2. The complete conservative semantics, using special frame translation

function A′, that maps annotated evaluation frames to adjust contexts.
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Fig. A 3. Complete type system for the conservative language.
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B Detailed Definitions of Section 7

Fig. B 1. Complete typing rules for the source language for gradual typing with tags.

Fig. B 2. Complete typing rules for the internal language for gradual typing with

tags.
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Fig. B 3. Complete small-step semantics of the internal language for gradual typing

with tags.

Fig. B 4. Complete translation of source programs to the internal language for

gradual typing with tags, Part I.
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Fig. B 5. Complete translation of source programs to the internal language for

gradual typing with tags, Part II.

Fig. B 6. Complete syntax of the source language for gradual type-and-effect systems.
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Fig. B 7. Complete typing rules for the source language for gradual type-and-effect

systems.
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Fig. B 8. Complete typing rules for the internal language for gradual type-and-effect

systems.
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Fig. B 9. Complete small-step semantics of the internal language for gradual type-

and-effect systems.
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Fig. B 10. Complete translation of source programs to the internal language for

gradual type-and-effect systems, part I.
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Fig. B 11. Complete translation of source programs to the internal language for

gradual type-and-effect systems, part II.
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