
A
U

TO
N

O
M

IC
 C

LO
U

D
S

30	 I EEE CLO U D CO M P U T I N G P U B L I S H ED BY T H E I EEE CO M P U T ER S O CI E T Y � 2 3 2 5 - 6 0 9 5/ 16/$ 3 3 . 0 0 © 2 0 16 I EEE

Reconfigurable
Applications Using
GCMScript

Matías Ibáñez, Universidad de Chile
Cristian Ruz, Pontificia Universidad Católica de Chile
Ludovic Henrio, French National Centre for Scientific Research
Javier Bustos-Jiménez, Universidad de Chile

A component-based framework for building

reconfigurable and distributed applications facilitates

the programming of autonomic behavior. A

distributed master-slave application that self-adjusts

its load demonstrates the approach.

oday’s applications are usually deployed in distributed environments such
as grid or cloud infrastructures, where it’s easy to acquire elastic compu-
tational resources over which different application components can be
deployed and run in parallel. Developers of these distributed architec-
tures must consider concerns such as network traffic, request rate, cost,
and security requirements, which can vary for different cloud provid-

ers and affect the application at deployment or even runtime, sometimes unexpectedly.
Cloud-based applications must be dynamically reconfigured to quickly adapt to new con-
ditions to meet the required quality of service (QoS) and avoid lengthy downtimes. The
need for rapid reaction and the complex management requirements governing cloud ser-
vices reach a level that goes beyond the capabilities of human administrators. Autonomic
behavior allows applications to manage themselves.

M AY/J U N E 2 0 16 	 I EEE CLO U D CO M P U T I N G� 3 1

Cloud-based applications’ distributed nature
makes the existence of a centralized knowledge of
the whole application architecture impractical. In
this context, component-based software develop-
ment appears to be a suitable model to build appli-
cations through the composition of loosely coupled
entities that can be deployed and run on different
virtual resources. Component-based applications
are also designed to be reconfigurable and adaptable
through simple binding modifications, and several
component models have been proposed. Component-
based systems, such as those built using Fractal1 or
the Grid Component Model (GCM),2 aim to facili-
tate reusability and naturally adapt to their execution
context. Adaptation, however, isn’t always easy to
achieve, even less so to program, and some develop-
ments (such as FScript3) are specifically designed for
a less error-prone reconfiguration.

Here, we show how we program autonomic re-
configurations of distributed component-based appli-
cations using the GCMScript language. GCMScript
is an extension of FScript that allows distributed
execution of reconfiguration actions through the
collaboration of several GCMScript interpreters em-
bedded in GCM applications running in one or more
cloud environments. Using GCMScript actions and

autonomic control loops inside GCM applications,
we can build effective autonomic behavior into an
application. We can then program this autonomic
behavior to dynamically modify the application’s ar-
chitecture, deploy or remove components using the
infrastructure’s elastic nature, or modify runtime pa-
rameters to scale and improve QoS management. We
also present an example GCM application in which
self-optimization is triggered either through an auto-
nomic control loop that continually evaluates the ap-
plication’s performance and modifies its parameters
to improve itself or through the autonomic adapta-
tion triggered by a modification in the environment.

Model and Language
We present our work in the context of the GCM and
the GCMScript language for programming distrib-
uted reconfigurations.

Grid Component Model
GCM is a hierarchical component model,2 adapted
from Fractal,1 for large-scale distributed comput-
ing. Figure 1 shows the GCM assembly structure
and terminology. Services are offered through serv-
er interfaces, with required services bound to cli-
ent interfaces. GCM components provide collective

Content

Membrane

Nonfunctional component

Internals

InternalExternals

External

External

Composite component

Primitive component

Nonfunctional component

Object controller

Functional server interface

Functional client interface

Nonfunctional server interface

Nonfunctional client interface

Functional component

Cost

B
NF

C
NF

D
NF

D

C

A

B

Cost

Cost

FIGURE 1. Grid Component Model (GCM) notation. The membrane of a composite component A contains two

components, BNF and CNF; and the membrane of primitive component D contains one component, DNF. (NF:

nonfunctional, F: functional)

32	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

A
U

TO
N

O
M

IC
 C

LO
U

D
S

interfaces, which can be one to many (multicast),
many to one (gathercast), or many to many (MxN).
One-to-many interfaces transform a single invoca-
tion into many invocations, potentially distributing
the invocation parameters. Many-to-one interfaces
wait for several invocations and transform them into
a single invocation, potentially aggregating the pa-
rameters received. MxN interfaces feature both as-
pects. Another architectural addition in the GCM
is the possibility of structuring the nonfunctional
(NF) part (the membrane) through nonfunctional
components that share the same features as regular
functional (F) components: they can be assembled,
composed, and introspected. The main advantages
of using such a membrane are the separation of non-
functional concerns from the functional part and
the possibility of designing and implementing com-
plex and adaptable nonfunctional behaviors.

GCM/ProActive
GCM/ProActive is the implementation of the GCM
using active objects. In GCM/ProActive, an active
object—that is, an object with a single thread of ex-
ecution and a service queue—implements each com-
ponent. Active objects can have their own execution
policy and implement asynchronous requests using
futures (that is, placeholders for the results of an
invocation). One of the main advantages of using
active objects to implement components is their ad-
aptation to distribution. Active objects provide a nat-
ural way to build loosely coupled components—that
is, components responsible for their own state and
execution—that only communicate via asynchro-
nous messages. Figure 1 shows the GCM/ProActive
implementation of the membrane.

By separating concerns between the functional
and nonfunctional parts, we can design each be-
havior separately and delay integration of the two
aspects until deployment time. Even after the com-
ponent has been instantiated, it’s possible, through
introspection, to analyze and dynamically modify
both the functional and nonfunctional components
without affecting the rest of the architecture. Be-
cause of this decoupling, an expert can design com-
ponent management concerns (such as composition,
bindings, monitoring, reconfiguration, security poli-
cies, load balancing, and general self-management
activities) without knowing about the functional
behavior, and, conversely, the functional part’s
programmer need not focus on the nonfunctional
concerns. At execution time, however, the func-
tional and nonfunctional parts need to interact. In
particular, a nonfunctional concern related to self-
management might need to know the composition or

observe the behavior of the functional part, and it
might need to modify some attribute or carry on an
action that affects that part.

Self-management behaviors might require a
complex implementation, and separating the appli-
cation control into different components becomes
reasonable. By employing a componentized mem-
brane, we can implement complex tasks using com-
ponents that, similarly to the functional part, can be
assembled, composed, and replaced. For example,
in Figure 1, components A (with subcomponents B
and C) and D might run in different cloud providers
with different pricing models. The cloud provider of
A charges a fixed amount per day, while the cloud
provider of D charges depending on incoming traffic
on D. To compute a unified cost metric, A can use a
nonfunctional component, CNF, that tracks the up-
time days of A, while DNF tracks requests received
by D. We can program a component BNF to query
both CNF and DNF (using an intercloud nonfunc-
tional binding) and determine the cost of running
the whole application. This metric is exposed to a
nonfunctional interface for further composition.
Also note that we can modify the pricing model by
changing only the nonfunctional components with-
out modifying the functional components. By insert-
ing nonfunctional components, we can introduce
autonomic behavior in an application.

GCMScript and Reconfiguration Controller
Similarly to Fractal components, GCM components
expose control interfaces that let us modify, at run-
time, the application structure. Using these inter-
faces, we can add or remove components or bindings
at runtime to implement dynamic reconfigurations.

To simplify the programming of reconfiguration
procedures, GCMScript is dedicated to reconfigu-
ration of distributed components—in particular,
the reconfiguration of GCM components.2 GCM
Script is based on an extension of FScript, the re-
configuration scripting language used by Fractal
components.3 FScript is executed by a centralized
interpreter located in a global component that has
knowledge of all the architecture. GCM applica-
tions, however, don’t have that restriction, and
GCMScript can interpret reconfiguration scripts in
a distributed manner. In this way, composite com-
ponents can be responsible for reconfiguring their
inner components independently, allowing recon-
figuration to take place in parallel and facilitating
their execution in large-scale infrastructures. Ac-
cess to GCMScript engines is achieved through a
controller interface—the reconfiguration control-
ler—shown in Figure 2.

M AY/J U N E 2 0 16 	 I EEE CLO U D CO M P U T I N G� 3 3

The reconfiguration controller embeds an in-
stance of an FScript interpreter and provides methods
load and execute for loading and triggering recon-
figuration scripts and actions. To ensure consistency
and avoid unpredictable interplay between a compo-
nent system’s execution and reconfiguration actions,
we must ensure that a component’s functional be-
havior is stopped while reconfiguration takes place.
Because we’re dealing with an asynchronous setting,
we rely on a protocol to be able to safely stop an asyn-
chronous composite component together with all its
subcomponents.4 The protocol’s objective is to sim-
plify the design of safe adaptation procedures: when
a subsystem is entirely stopped, it can go through a
reconfiguration phase before being restarted.

Autonomic Component System
Our autonomic component system (ACS) relies on
nonfunctional components and GCMScript to fa-
cilitate the creation of GCM applications that con-
tain autonomic behavior and can be deployed and
applied over GCM applications running in cloud
environments. The design relies on a set of nonfunc-
tional components based on the stages of the moni-
tor/analyze/plan/execute (MAPE) control loop, and
a set of GCMScript actions that let the ACS acti-
vate or modify these components’ behavior at run-
time. For this purpose, one GCMScript interpreter
is located in each GCM component and accessed
through a reconfiguration controller.

Configuration Elements
Following the MAPE autonomic control loop, we de-
fine four components: monitor, analyze, planner, and

execute. In previous work, we developed GCM/Pro-
Active autonomic applications following this scheme
(see the sidebar for a discussion of this and related
work). However, the insertion and configuration of
nonfunctional components is quite cumbersome and
error prone as it requires several calls to the com-
ponent API, and we must take additional precau-
tions to stop and start membranes and components
in the appropriate order. Here, we provide a set of
GCMScript actions that simplifies the construction
of the self-adaptive behavior.

ACS aims to make the application compliant
with certain high-level objectives. These objectives
are defined by three configuration elements:

•	 metric in the monitor component,
•	 rule in the analyze component, and
•	 plan in the planner component.

In our implementation, each of these elements is a
Java class, defined by the user as an extension of a
provided parent class. Their instances operate to-
gether to define the self-adaptive behavior. ACS
provides actions to configure the monitor, analyze,
and planner components using these elements. The
execute component has a fixed configuration embed-
ding the GCMScript interpreter.

Metric. The metric element performs measurements
over the application at runtime. The GCM/ProActive
implementation generates a set of general-purpose
events at runtime, which are caught and stored by
the monitor component. A metric that’s loaded into
the monitor component can use the stored data to

Reconfiguration controller

A

B

C

GCMscript interpreter

Reconfiguration
controller

GCMscript
interpreter

1
2

1. action main() {
2. add($A,$C);
3. remote_execute($A/child::B, action_b);
4. }

action action_b {
...
}

FIGURE 2. GCMScript interpreter delegation. The GCMScript interpreter of A executes a local action (adding

component C to A), and a remote action that is delegated to the GCMScript interpreter of B, which is a child of

A. Component B is located using FPath axes.

34	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

A
U

TO
N

O
M

IC
 C

LO
U

D
S

measure nonfunctional aspects, such as how many
times a component receives requests from other com-
ponents through a server interface or the average re-
sponse time for a particular interface. Measurement
can be done either manually by calling a method of the
monitor component that gets or computes the value for
the metric or automatically by using event subscrip-
tion, so whenever a GCM/ProActive event is caught,
the metric value is updated and sent to all subscribers.

Additionally, if a component A depends on the
services of a component B (that is, A has a func-
tional binding to B), the monitor of component A

has access (through a nonfunctional binding) to the
metrics of component B. This property is transitive
and lets us build more complex and varied metrics
into the application.

Rule. The rule element represents a service-level ob-
jective that must be enforced during runtime. A rule
relies on the value of a subset of metrics that must be
available in the monitor to verify the state of the ex-
ecution and determine the state of the rule compli-
ance. If the rule isn’t in compliance, the rule object
automatically triggers an alarm.

BACKGROUND AND RELATED WORK IN
COMPONENT MODELS FOR AUTONOMIC
COMPUTING

n 2009, at the “Grids Meet Autonomic Computing”
workshop, researchers focused on the key chal-

lenges in grid and cloud computing that autonomic
computing techniques support.1 In the workshop
panel, researchers and practitioners observed that
“existing cloud computing infrastructure already sup-
ports some autonomic concepts, such as determin-
ing the number of virtual machines (VMs) to support,
providing dynamically expandable storage, and mi-
grating workloads across computational platforms.”
In this scenario, the convergence of cloud computing
with autonomic components seems to be natural and
highly synergic.

One of our first attempts in autonomic comput-
ing for grid/cloud computing was the use of coupling
contracts for ProActive’s active objects (the base of the
GCM). Using these contracts, we achieved autonomic
behaviors such as dynamic load balancing.2

Component models aim to increase code reus-
ability and software adaptability by introducing
well-delimited software entities with clearly defined
interfaces corresponding to either the offered services
or those explicitly required to fulfill them.3 Component-
based applications differ from other kind of ap-
plications in that they make the resulting software
architecture explicit. As in the ProActive contracts, we
describe the component architecture using an assem-
bly language (ADL). Associated to an ADL, a factory

instantiates all the components that constitute the
application using a parser and component generators.
This step deploys base components from their source
implementation and binds component instances ac-
cording to the dependencies defined in the ADL.

Hierarchical composition simplifies the creation
of large applications. Gluing together components
to form another component that can be used in the
composition makes it easier to design larger applica-
tions and also to use different deployment concerns
over them. For example, a cloud provider could
deploy groups of components by using a single com-
posite component that contains them all.

In addition to using an API directly, modifica-
tions over the application can be expressed through
scripting languages associated with the ADL, as in
ArchJava,4 or built on an API as in FScript for Fractal
components.5 Allowed modifications can also be the
result of some component-associated constraints6 or
reconfiguration rules (such as event condition action
rules). As in our case, most of these approaches rely
on the monitor/analyze/plan/execute (MAPE) model
for autonomic computing7; however, our framework
allows reconfiguration to take place in a distributed
manner instead of relying on a centralized control.
To enable the dynamic reconfiguration of the control
layer itself, this layer should be programmed yield-
ing a componentized membrane concept.8 Other

M AY/J U N E 2 0 16 	 I EEE CLO U D CO M P U T I N G� 3 5

After a rule has been added to the analysis com-
ponent, we can verify its state either manually by call-
ing a method on the analysis component or setting
an update period or automatically by subscribing to
metric elements, so the rule is checked whenever the
metric value changes.

Plan. The plan element handles one or more rule
alarms and determines the necessary changes
that must be applied to the application to restore
the breached rule. In our implementation, a plan
has access to the reconfiguration controller and,

through it, can execute any necessary GCMScript
commands.

Plans are inserted into the planner component.
Execution of the plan can be requested either manu-
ally by invoking a method on the planner or auto-
matically by subscribing to rules, so that whenever
the rule triggers its alarm, the plan is executed.

GCMScript Extension
To facilitate the building of reconfiguration actions,
we explicitly incorporate the elements described
in the GCMScript model. These extensions let us

approaches include the SOFA component model,
whose control part is composed of microcompo-
nents,9 and Dynaco, which uses full-fledged compo-
nents.10 The GCM achieves such flexibility because
the control level is also made of components.

To provide autonomic behavior to cloud ap-
plications, some approaches use MAPE loops in the
application architecture and organize managers
hierarchically.11,12 Although they effectively collect
the required metrics, our scheme lets us introduce
the autonomic behavior as part of the application
itself, instead of a separate architecture. Plus, our
componentized membrane model together with the
scripting language lets us program the autonomic
behavior in a more generic and less error-prone
manner.

References

1.	 C. Germain-Renaud and O.F. Rana, “The Conver-

gence of Clouds, Grids, and Autonomics,” IEEE Inter-

net Computing, vol. 13, no. 6, 2009, p. 9.

2.	 J. Bustos-Jiménez et al., “Coupling Contracts for

Deployment on Alien Grids,” Proc. CoreGRID 2006,

UNICORE Summit 2006, Petascale Computational

Biology and Bioinformatics Conf. on Parallel Pro-

cessing (Euro-Par’06), LNCS 4375, Springer, 2007, pp.

61–73.

3.	 C. Szyperski, Component Software: Beyond Object-

Oriented Programming, Addison-Wesley Longman

Publishing Co., 2002.

4.	 	J. Aldrich, C. Chambers, and D. Notkin, “ArchJava:

Connecting Software Architecture to Implementa-

tion,” Proc. 24th Int’ l Conf. Software Eng. (ICSE 02),

2002, pp. 187–197.

5.	 P.-C. David et al., “FPath and Fscript: Language Sup-

port for Navigation and Reliable Reconfiguration of

Fractal Architectures,” Annals Telecomm., vol. 64,

no. 1, 2009, pp. 45–63.

6.	 C. Tibermacine, D. Hoareau, and R. Kadri, “Enforc-

ing Architecture and Deployment Constraints of

Distributed Component-Based Software,” Funda-

mental Approaches to Software Eng., LNCS 4422,

Springer, 2007, pp. 140–154.

7.	 IBM, An Architectural Blueprint for Autonomic Com-

puting, white paper, June 2006; www-03.ibm.com/

autonomic/pdfs/AC%20Blueprint%20White%20

Paper%20V7.pdf.

8.	 L. Seinturier et al., “A Component-Based Middle-

ware Platform for Reconfigurable Service-Oriented

Architectures,” Software: Practice and Experience,

vol. 42, no. 5, 2012, pp. 559–583.

9.	 T. Bures, P. Hnetynka, and F. Plasil, “SOFA 2.0: Balanc-

ing Advanced Features in a Hierarchical Component

Model,” Proc. 4th Int’l Conf. Software Eng. Research,

Management and Applications, 2006, pp. 40–48.

10.	 J. Buisson, F. André, and J.-L. Pazat, “A Framework

for Dynamic Adaptation of Parallel Components,”

Proc. Int’ l Conf. Parallel Computing: Current & Fu-

ture Issues of High-End Computing (ParCo), vol. 33,

2005, pp. 65.

11.	 	P. Martin et al., “Autonomic Management of Elastic

Services in the Cloud,” IEEE Symp. Computers and

Comm. (ISCC 11), 2011, pp. 135–140.

12.	 	F. de Oliveira, T. Ledoux, and R. Sharrock, “A Frame-

work for the Coordination of Multiple Autonomic

Managers in Cloud Environments,” Proc. IEEE 7th

Int’l Conf. Self-Adaptive and Self-Organizing Sys-

tems (SASO 13), 2013, pp. 179–188.

36	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

A
U

TO
N

O
M

IC
 C

LO
U

D
S

browse, using FPath queries, the elements that are
part of the reconfiguration architecture, and to in-
trospect the subscription relationships between re-
configuration elements.

The goal is to manage the reconfiguration pro-
cess using unique GCMScript commands and,
keeping these concerns detached from the main ap-
plication, facilitate the programming of autonomic
behavior. We added a node for each configuration el-
ement to the model, as Figure 3 shows. Keeping the
nodes separate lets queries easily reach them using
FPath expressions, avoiding explicit API calls.

FPath queries use the model to navigate through
the component architecture, where nodes are ele-
ments that can be queried and edge labels allow
queries to navigate through the nodes. For example,
the expression $c/child::d returns a reference on
component d, which is a subcomponent of c; and
$c/metric::avgResponseTime returns a refer-
ence to the metric called avgResponseTime that’s lo-
cated inside the monitor component of c.

We introduce several procedures to GCMScript.
To add an element to a component, we use

•	 add-metric($hostComponent, “foo
Name”, “cl.example.FooMetric”);

•	 add-rule($ruleNode, “fooRule”, “cl
.examples.rules.MyRule”);

•	 add-plan($planNode, “fooPlan”, “cl.
examples.plans.MyPlan”);

To remove an element from a component, we use

•	 remove-metric($hostComponent/
metric::fooName);

•	 remove-rule($hostComponent/rule::
fooRule);

•	 remove-plan($hostComponent/plan::
fooPlan);

To get property values, we query the element state:

•	 value($myComponent/
metric::myMetricId);

•	 alarm($myComponent/rule::myRuleId);

Finally, for subscription, we use

•	 fooRule = $hostComponent/rule::myRule
Id;

•	 add-subscription($hostComponent/
plan:fooPlanId, $fooRule);

FScript provides a console application that lets
us interactively execute commands over an FScript
interpreter. We extended this console to integrate

Component
component interface

component internal-interface

binding Attribute component attribute

* *

* *

1

1

1 1

parent child *

component

metric

component

component

rule plan

Metric Rule Plan

* * *

* *

1
1

1

Subscription Subscription

FIGURE 3. The GCMScript model with the extension for metric, rule, and planner. In addition to the FScript

model, GCMScript extensions allow the components to include metric, rule, and plan objects. Furthermore,

plans can subscribe to rules, and rules can subscribe to metrics.

M AY/J U N E 2 0 16 	 I EEE CLO U D CO M P U T I N G� 3 7

it with the GCMScript model. Since every compo-
nent embeds its own GCMScript engine inside the
reconfiguration controller, the GCMScript console
consists of a user-component communication, in-
stead of user-system communication. The console
hides the notion of the GCMScript engine and lets
users browse through components until they reach
the desired one and send commands there. Figure 2
illustrates this interaction.

Use Case: Self-Balanced Distributed Brute-
Force Cracker
A use case demonstrates how we can use our pro-
posed ACS to build self-optimizing applications that
can autonomically balance workloads. The applica-
tion is a distributed brute-force cracker that uses a
set of available machine resources, each handled by
a GCM/ProActive component, hosted in different
virtual instances, where each component can be lo-
cated in different clouds.

Figure 4 shows the application, which works
by testing a set of N words and computing its MD5
hash. The manager component distributes the load
by splitting the job into three subsets J1, J2, J3, |J1| +
|J2| + |J3| = N of words, and sends each to a differ-
ent solver. Each solver component is deployed on a
different cloud resource and follows a master-slave
model to provide local multicore parallelism to the

cracking process. Inside, the master component
evenly splits the set of words among the available
slave components.

At the beginning of the execution, no autonomic
behavior is enabled and the manager distributes an
equal amount of work to each solver, so |J1| = |J2| =
|J3|. When the self-optimization capability is acti-
vated, the system evaluates the throughput of each
solver component and tries to balance the load
among them so they take similar amounts of time,
thus avoiding the bottlenecks that occur when the
slowest solver delays the answer (note there is no ex-
propriation of tasks in this experiment).

We can manually change the amount of work
distributed to each solver at any moment using the
manager’s AttributeController. In our experiment,
we use this capability to introduce an autonomic be-
havior that chooses the optimal load distribution.

To set up the autonomic cracker application, we
follow several steps:

1.	Obtain computational resources for each com-
ponent and deploy a GCM/ProActive compo-
nent in a different resource.

2.	Add a avgRTi metric on each solver. This metric
calculates the average response time for solver
i and will serve as a performance metric for the
solver.

Solver composite component

Cracker composite component

Master

Solver 1

M

M

M

M

Solver 2

Solver 3

Slave 1

Slave 2

Slave N

Manager

M

M A P E

FIGURE 4. The MD5-hash cracker component. The manager splits the job into three subsets, and sends each

to a different solver. Inside each solver, the set of words is evenly split among the slaves.

38	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

A
U

TO
N

O
M

IC
 C

LO
U

D
S

3.	Add a optimalBal metric on the cracker to cal-
culate an appropriate balance for the load given
to the solvers. We compute this metric using the
value of each avgRTi.

4.	Add a balanceStatus rule on the cracker compo-
nent to check that optimalBal doesn’t change by
more than a tolerance d and subscribe the rule
to the “receive a new cracking request” event.

5.	Add a plan on the cracker component that re-
places the current load distribution on the
manager. Subscribe this plan to the rule
balanceStatus.

We deploy the application in a cloud using two slaves
on each solver. The solvers and the manager are de-
ployed on different instances. Solver 1 is deployed
on a machine with 8 × 1.2 GHz cores, solver 2 on a
machine with 8 × 1.6 GHz cores, and solver 3 on an
instance with 8 × 2.2 GHz cores.

The execution consists of three phases:

•	 In phase 1 (first 40 requests), the cracker runs
without any autonomic behavior enabled. The
default load balance |J1| = |J2| = |J3| is used for
every request.

•	 In phase 2 (requests 41 to 80), self-optimization
is activated and self-optimization elements are
enabled.

•	 In phase 3 (requests 81 to last), environmental
change occurs. Before the 81st request, four
additional slaves are added to solver 1 and two
additional slaves are added to solver 2. These

modifications are made manually using the GC-
MScript console.

Figure 5a shows the load assigned to each solver
at each phase of computation. Figure 5b shows the
performance as measured by the metric avgRT for
each solver. In this case, the y-axis represents response
time, noting that the performance of the whole system
as it is seen by a client is max{Si}. In fact, a user of
this application isn’t interested in the individual times
taken by each solver. Even more, the user doesn’t
need to know about the existence of several solvers
or the distributed cloud nature of the application,
even if more than one cloud provider is being used.
The user only perceives the time the application, as
a whole, takes to respond to requests. However, it’s
possible that a modification requiring deployment of
a new instance on multiple clouds will take longer to
adjust than one deployed in a local cloud.

During phase 1, each solver receives equals
amounts of work. Since the machines have different
hardware capabilities, this distribution (same load
for each solver, according to Figure 5a) isn’t optimal,
as evidenced in the first part of Figure 5b, where
solver 1 seems to be the slowest. During phase 2,
the self-balancing system is turned on, and the ap-
plication autonomically determines that the current
balance is far from optimalBal. Consequently, it
computes a new load distribution. After the plan up-
dates the new load distribution on the manager, the
modification takes some iterations to reach a stable
situation, and more work is assigned to solvers 2 and

15

(a) (b)

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140 160 180 200

A
ss

ig
n

e
d

 lo
ad

 (
%

)

Request number

6

8

10

12

14

16

18

20

22

24

0 20 40 60 80 100 120 140 160 180 200

R
e

sp
o

n
se

 t
im

e
 (

se
c

o
n

d
s)

Request number

Solver 1
Solver 2
Solver 3

Solver 1
Solver 2
Solver 3

FIGURE 5. Use case performance results: (a) load distribution among solvers at each phase of computation; (b) solvers’ response

time for the cracking request. After the first 40 requests, self-optimization adjusts the load distributed to each slave. After request

80, a manual configuration change is introduced, and self-optimization behavior reacts to redistributed the load and obtain

similar response times on each slave.

M AY/J U N E 2 0 16 	 I EEE CLO U D CO M P U T I N G� 3 9

3, and less to solver 1 (see Figure 5a), reaching a
situation in which all solvers take a similar response
time (Figure 5b).

Finally, after the architectural change in phase
3, solver 1 becomes more powerful than the others.
The self-balancing system detects a deviation from
the last computed optimalBal and recalculates the
optimal distribution, leading again to a situation in
which all solvers receive different amounts of work
such that they all take similar time to execute. No-
tice that through each phase, the application’s per-
formance varies until it reaches a stable situation,
effectively improving the throughput, and the re-
sponse time perceived by the client, which is max(s1,
s2, s3), decreases.

ur model can provide a basis for building
more complex self-adaptation capabilities

and facilitate the construction of autonomic cloud
applications. Future work will consider development
of self-repair capabilities, such as when a slave com-
ponent is randomly taken out of line or deployed in a
cloud that suddenly becomes unreachable. Although
this is also an architectural change in the applica-
tion, additional precautions must be taken to avoid
possible inconsistencies or to perform necessary
rollbacks as part of the recovery process. We plan
to experiment with self-protecting capabilities that
consider a prediction process that lets us anticipate
degradations in the application or environment.

Acknowledgments
This work was partially funded by Communication
and Information Research and Innovation Center
(CIRIC)-INRIA, Chile, and the Safe Compositions
of Autonomic Distributed Applications (SCADA) as-
sociated team.

References
	 1.	E. Bruneton, T. Coupaye, and J.-B. Stefani, The

Fractal Component Model Specification, OW2
Consortium, Feb. 2004; http://fractal.objectweb
.org/specification/index.html.

	 2.	F. Baude, L. Henrio, and C. Ruz, “Program-
ming Distributed and Adaptable Autonomous
Components: The GCM/ProActive Framework,”
Software: Practice and Experience, vol. 45, no. 9,
2015, pp. 1189–1227.

	 3.	P.-C. David et al., “FPath and Fscript: Language
Support for Navigation and Reliable Reconfigu-
ration of Fractal Architectures,” Annals Tele-
comm., vol. 64, no. 1, 2009, pp. 45–63.

	 4.	L. Henrio and M. Rivera, “Stopping Safely Hi-
erarchical Distributed Components,” Proc.
Component-Based High Performance Workshop
(CBHPC 08), 2008, article no. 8.

MATÍAS IBÁÑEZ is a software developer at Post-
Center, and formerly a student in the Computer Sci-
ence Department at NIC Labs, Universidad de Chile.
His research interests include distributed systems and
component models. Ibáñez has a computer engineer-
ing diploma from the Universidad de Chile. Contact
him at mnip91@gmail.com.

CRISTIAN RUZ is an assistant professor in the Com-
puter Science Department at Pontificia Universidad
Católica de Chile. His research interests include dis-
tributed systems, in particular parallel computing and
the use of high-performance computing architectures,
heterogeneous systems, and component-based soft-
ware development. Ruz has PhD in computer science
from the Université de Nice Sophia-Antipolis. Contact
him at cruz@ing.puc.cl.

LUDOVIC HENRIO is the scientific leader of the
SCALE team and a researcher (CR1) in the I3S lab
at the French National Centre for Scientific Research
(CNRS). His research interests include semantics, ob-
ject calculi, components, concurrency and distribu-
tion, confluence and determinacy, and distributed
systems. Henrio has a PhD in computer science from
the Université de Nice Sophia-Antipolis. Contact him
at ludovic.henrio@cnrs.fr.

JAVIER BUSTOS-JIMÉNEZ is the head of NIC
Chile Research Labs, an institution affiliated with the
Universidad de Chile. His research interests include
networking, Internet protocols, and mobile and dis-
tributed computing. Bustos-Jiménez has a PhD in
computer science from the Université de Nice Sophia-
Antipolis, France. Contact him at jbustos@niclabs.cl.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

