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1. Introduction

Consider the cone K generated by the set of symmetric inverse M -matrices and 
the cone KP generated by potentials, that is, inverses of symmetric diagonally domi-
nant M -matrices. We study these cones to understand the difference between inverse 
M -matrices and potentials. To our surprise, KP has only a finite number of extremal 
rays, that is, KP is a polyhedral cone, while K has infinitely many extremal rays.

The extremal rays of K are generated by the rank one matrices uu′ where u is a 
nonnegative nonzero vector. This is shown in Theorem 2.1. On the other hand, the 
extremal rays of KP are the rank one matrices uu′, where u is a {0, 1}-valued nonzero 
vector. This is shown in Theorem 3.2. While the first result is simple to show, the 
second one is more involved and its proof relies on some properties of the adjoint of the 
symmetric polynomial matrix

M(n, (Y,Z)) =

⎛⎜⎜⎜⎜⎝
y1 + S1 −z12 −z13 · · · −z1n
−z21 y2 + S2 −z23 · · · −z2n

...
...

. . . · · ·
...

−zn−1,1 −zn−1,2 · · · yn−1 + Sn−1 −zn−1,n
−zn,1 −zn,2 · · · −zn,n−1 yn + Sn

⎞⎟⎟⎟⎟⎠ , (1.1)

where: Y = (y1, · · · , yn), Z = (zij : i, j = 1, · · ·n, i �= j) with zij = zji and Si = Si(Z) =∑
j �=i

zij . Sometimes we write X = (Y, Z) and M(n, X) = M(n, (Y, Z)).

The important property of V = adj(M) is the minimality of it, which simply says that 
Vij , for i �= j, is the intersection of the two polynomials Vii and Vjj (see Definition 3.4). 
We also use results of Wang’s algebra, which simplifies some of our computations.

In Appendix B, we include some historical remarks about the principal minors of 
M(n, X) and its determinant.

2. Representation for inverse M -matrices

We fix I = {1, · · · , n}. An M -matrix is a nonsingular matrix, whose off-diagonal 
elements are nonpositive and its inverse is a nonnegative matrix (every entry is nonneg-
ative). Given a nonnegative matrix U , an important problem is to characterize (in terms 
of U) when it is the inverse of an M -matrix. In this direction, in the next result we study 
the cone generated by inverses of symmetric M -matrices.

Theorem 2.1. Assume that U is the inverse of a symmetric M -matrix of order n. Then, 
there exist n nonnegative and linearly independent vectors v1, · · · , vn ∈ R

n, such that

U =
n∑

k=1

vkv
′
k. (2.1)
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Proof. According to Theorem 11 and its Corollary 4 in [12], every symmetric inverse 
M -matrix U has a square root V , which is an inverse M -matrix. In particular V is a 
nonnegative matrix. V is also symmetric, because V −1 is a power series in U−1. Hence 
U = V V = V V ′ =

∑n
k=1 vk v

′
k, where V = [v1 · · · vn]. �

Remark 2.1. The proof given above was suggested to us by the referee. Our original 
proof was much longer, but it supplies the following recursive algorithm to get (2.1). 
Decompose U , of order n + 1, by blocks as

U =
(
a v′

v T

)
where a > 0, v ≥ 0 ∈ R

n and T is a symmetric matrix of order n. It is well known that T
is also a symmetric inverse M -matrix. On the other hand, U−1, which is an M -matrix, 
is decomposed as

U−1 =
(

θ −γ′

−γ Γ

)
,

where Γ−1 = T − 1
avv

′ is also a symmetric inverse M -matrix, v = 1
θTγ ≥ 0 and θ =

(a − v′T−1v)−1 > 0. Other useful relations are 1
θγ

′v = v′T−1v = a − 1
θ .

A straightforward computation shows that U = A 
(

1 0
0 T

)
A′, where

A =
(

1√
θ

1
θγ

′

0 I

)

Now, suppose that T has a decomposition T =
n∑

i=1
ziz

′
i, where z1, · · · , zn are linearly 

independent nonnegative vectors in Rn. We extend these vectors to Rn+1 by adding 0 as 
a first coordinate, that is, wi = (0, z′i)′. We also add a new vector wn+1 = (1, 0)′ ∈ R

n+1. 
The vectors Awi i = 1, · · · , n +1 are nonnegative, linearly independent and they provide 
a decomposition as in (2.1)

U =
n∑

i=1
Awi(Awi)′ + Awn+1(Awn+1)′.

In the next result we consider Hadamard products and Hadamard functions of matri-
ces. As usual, given two matrices A, B of the same size n ×m, their Hadamard product 
(A �B) is given by (A �B)ij = AijBij , 1 ≤ i ≤ n, 1 ≤ j ≤ m. On the other hand, given 
a function ψ : D ⊆ R → R and a matrix A with entries in D , we denote by ψ(A) the 
matrix given by (ψ(A))ij = ψ(Aij), 1 ≤ i ≤ n, 1 ≤ j ≤ m. We call ψ(A) the Hadamard 
function of A.
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Recall that a nonnegative function ψ : R+ → R+ is an absolutely monotone function 
if all its derivatives (ψ(k) : k ≥ 1) are nonnegative functions. Any absolutely monotone 

function defined in R+ has a power series expansion ψ(x) =
∑∞

k=0
ψ(k)(0)

k! xk (see [21]
Theorem 3a). A subset of nonnegative matrices B, is said to be closed under Hadamard 
absolutely monotone functions if ψ(A) ∈ B for every absolutely monotone function ψ
and every A ∈ B (see [6,7] for some results on Hadamard products and functions of 
inverse M -matrices).

Corollary 2.2. The closed convex cone K generated by the set of symmetric inverse 
M -matrices of order n satisfies

(i) K is closed under Hadamard products and Hadamard absolutely monotone functions;
(ii) the extremal rays are generated by the rank one matrices of the form uu′ where u is 

a nonnegative nonzero vector in Rn.

Proof. (i) K is closed under Hadamard products because uu′ � vv′ = (u � v)(u � v)′. 
Hence, K is closed under Hadamard powers and therefore, it is also closed under 
Hadamard absolutely monotone functions.

Let us prove (ii). Assume u is a nonnegative nonzero vector and consider the matrix 
Uε = uu′ + εI, where ε > 0. Its inverse (uu′ + εI)−1 = 1

ε I −
1

ε2+u′uuu
′ is an M -matrix, 

proving that uu′ ∈ K.
From Theorem 2.1, we obtain that every extremal ray of K is generated by a rank 

one matrix uu′, for some nonnegative nonzero vector u. To finish the result it is enough 
to show that every matrix uu′, where u is a nonnegative nonzero vector, generates an 
extremal ray. Since every symmetric inverse M -matrix is positive semidefinite, we con-
clude that K is contained in the cone of semidefinite matrices, whose extremal rays are 
generated by the rank one matrices vv′, v ∈ Rn (see [11], page 464). In particular, uu′

generates an extremal ray in a larger cone and a fortiori it generates an extremal ray 
in K. �
Remark 2.2. We slightly modify representation (2.1) to get

U =
n∑

k=1

ck uku
′
k,

where ck = ‖vk‖2
∞ and uk = vk/‖vk‖∞. We use the normalization to compare this 

representation with the one for potentials in the next section.

3. Representation for potentials

In this section we study the extremal rays for the closed convex cone generated by 
the set of symmetric potentials. For the sake of completeness we recall the notion of a 
potential matrix.
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Definition 3.1. A nonnegative matrix U is said to be a potential if it is nonsingular and 
its inverse U−1 is a row diagonally dominant M -matrix, that is,

(i) ∀i �= j (U−1)ij ≤ 0,
(ii) ∀i 

∑
j(U−1)ij ≥ 0.

In this article we only consider symmetric potentials. A main results of this article is 
the following.

Theorem 3.2. Let U be a symmetric potential of order n. Then, there exists a finite set 
of {0, 1}-valued vectors u1, · · · , ut ∈ R

n and positive constants c1, · · · , ct such that

U =
t∑

s=1
cs usu

′
s. (3.1)

Remark 3.1. To our knowledge Muir (see [17]) is the first in considering generic matrices 
of the form (3.1). He proved that for n = 3 and 4, their determinant is a sum of positive 
monomials on the variables (cs) which appear with degree at most 1 (but the coefficients 
are not necessarily 1).

The way we prove this result requires the study of the inverse of a generic symmetric 
diagonally dominant M -matrix. For that reason, we will need to introduce some basic 
concepts and relations among polynomials in several variables. Given a polynomial p(X)
in the variables X = (x1, · · · , xk) we consider its reduced form

p(X) =
∑

(m1,··· ,mk)∈Nk

p(m1,··· ,mk)

k∏
�=1

xm�

� ,

where only a finite number of coefficients are nonzero. Each term p(m1,··· ,mk)
k∏

�=1
xm�

�

for which p(m1,··· ,mk) �= 0 is called a monomial of p(X) and the number p(m1,··· ,mk) the 
constant coefficient of this monomial. The degree of the monomial is 

∑k
�=1 m�, and m�

is the degree of x� in this monomial.

Definition 3.3. Given two polynomials p(X) and q(X) in the variables X = (x1, · · · , xk), 
we define the intersection of them as the polynomial r(X) in the variables X such that

r(m1,··· ,mk) =
{
p(m1,··· ,mk) if p(m1,··· ,mk) = q(m1,··· ,mk),

0 otherwise
.

We write r = p ∩ q. We shall say that p is smaller than q if p = p ∩ q. We denote this 
relation by p � q. We shall say that a monomial r participates or belongs to a polynomial 
p if r � p.
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To clarify this concept, consider the example (xy + xz + 2x + 3) ∩ (xy + x + 2) = xy.

Remark 3.2. If the polynomials p, q have coefficients in {0, 1} then the intersection of 
them corresponds exactly to the Hadamard product of polynomials, which is the product 
obtained by multiplying the coefficients term by term, that is, p ∩ q = p � q.

The following definition will play an important role.

Definition 3.4. Assume that W = W (X) is a symmetric matrix whose entries are poly-
nomials in X.

(i) We say that W is minimal if for all i �= j it holds that

Wij(X) = Wii(X) ∩Wjj(X).

(ii) Let p[W ](X) =
⋂
i,j

Wij(X) be the polynomial intersection over all the entries of the 

matrix. We call this polynomial the minimum polynomial of W . If W is minimal 
then p[W ](X) =

⋂
i

Wii(X) is the polynomial intersection over the diagonal of W .

The following theorem summarizes the known results about the inverse of M(n, X). 
We write this theorem in terms of V (n, X), the adjoint of M(n, X). Its proof, as well as 
some extra properties, is contained in Section 4.

Theorem 3.5. The determinant of M(n, X) and the elements of V (n, X) = adj(M(n, X))
are polynomials in X such that

(i) det(M(n, X)) (respectively, the diagonal elements of V ) is a sum of monomials of 
degree n (respectively, n − 1) whose nonzero constant coefficients are equal to 1 and 
the degree of each variable appearing in each monomial is 1;

(ii) for all i �= j, we have Vij(n, X) = Vii(n, X) ∩Vjj(n, X), that is, V (n, X) is minimal. 
In particular, Vij is also a sum of monomials of degree n −1, whose nonzero constant 
coefficients are equal to 1 and the degree of each variable appearing in each monomial 
is 1.

Remark 3.3. Part (i) is a variant of a well-known theorem in graph theory and electrical 
networks theory, cf. [1,2,15,19]; a proof using Wang algebra appears in [3] and [10]. 
Part (ii) is less known; it is cited without a real proof in [10] and can be deduced 
from theorems on trees proved in [3] and [19] (see also Appendix B). We will provide 
a self-contained proof of both properties that uses some basic facts of finite potential 
theory for Markov processes (see Section 4.1).
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Proof of Theorem 3.2. Take N = U−1 and consider the polynomial matrix valued 
M(n, X). We assign the values x to the variables X, given by

zij = −Nij ≥ 0, for i �= j

and for i = 1, · · · , n

yi = Nii −
∑
j �=i

Nij ≥ 0.

In this way, N = M(n, x).
We shall prove that the literal V = V (n, X) = adj(M(n, X)) has the desired decom-

position and so U will also have the desired decomposition. The proof is based on a 
backward algorithm that starts from the matrix V and decreases towards the 0 matrix. 
At every step the corresponding matrix is minimal. In what follows, we use the pair (k, �)
where k = n, · · · , 1 and � = 1, · · · , 

(
n
k

)
: k represents the size of subsets of I = {1, · · · , n}

and � represents a subset of size k.
We start with V (n+1) = V . From Theorem 3.5 this matrix is minimal. We subtract 

from V its minimum polynomial p[V ](X), that is, V (n) = V (n+1) − p[V ](X) 11′. It is 
clear that 0 � V (n) � V (n+1) and V (n) is a minimal matrix. Notice that V (n+1)−V (n) =
p[V ](X) 11′, so if V (n) is the zero matrix we stop and the result is proven (actually this 
can happens only if n = 1). Otherwise we continue.

One important observation is that the minimum polynomial of V (n) is p[V (n)](X) = 0. 
For k = n − 1 consider the 

(
n
k

)
= n subsets of I of size k. We note these sets by (

Ik,� : � ∈ {1, · · · ,
(
n
k

)
}
)
. For each one of these subsets consider the principal submatrix 

of order k given by V (k+1)|Ik,�
. Then, each of them is a minimal matrix (of order k) and 

for any � �= �′

p[V (k+1)|Ik,�
](X) ∩ p[V (k+1)|Ik,�′ ](X) = 0.

This follows from the fact that Ik,� ∪ Ik,�′ = I and that p[V (k+1)](X) = 0. Thus, we 
consider

V (k) = V (k+1) −

(n
k

)∑
�=1

p[V (k+1)|Ik,�
](X) 1Ik,�

1′
Ik,�

. (3.2)

Here 1Ik,�
is the {0, 1}-valued vector, with ones at the coordinates in Ik,�. The main 

properties to continue with the induction are

(i) 0 � V (k) � V (k+1);
(ii) V (k) is a minimal matrix;
(iii) 0 is the minimum polynomial for any principal submatrix of V (k) of order m ≥ k.
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So, assume the algorithm works for n, n − 1, · · · , k + 1. We will show it also works 
for k (while k ≥ 1). As before we take Ik,1, · · · , Ik,(nk) the subsets of I, of size k, and 

the corresponding principal submatrices of order k, given by V (k+1)|Ik,�
: � = 1, · · · , 

(
n
k

)
. 

Given two different � �= �′, the set J = Ik,� ∪ Ik,�′ has at least k + 1 elements and then, 
by the induction hypothesis, the minimum polynomial associated to the submatrix of 
V (k+1) with index set J is 0. Equivalently, p[V (k+1)|Ik,�

](X) ∩ p[V (k+1)
Ik,�′

](X) = 0. Define 

V (k) as in (3.2). It is straightforward to check that (i), (ii), (iii) are satisfied for V (k).
In this way we reach k = 1, and V (1) satisfies the main restrictions (i), (ii), (iii). In 

particular it is a minimal matrix whose diagonal elements are 0. Thus, V (1) = 0, proving 
that

V =
n∑

k=1

(n
k

)∑
�=1

p[V (k+1)|Ik,�
](X) 1Ik,�

1′Ik,�
. (3.3)

We notice that U has the representation

U = det(U)
n∑

k=1

(n
k

)∑
�=1

p[V (k+1)|Ik,�
](x) 1Ik,�

1′Ik,�
. �

A symmetric nonnegative matrix U is said to be ultrametric, if it satisfies the set of 
inequalities

∀i, j, k Uij ≥ min{Uik, Ukj}

A nonsingular ultrametric matrix is a potential (see for example [4,5,9,14,18]) and there-
fore the sum of ultrametric matrices belongs to KP.

Corollary 3.6. The closed convex cone KP generated by the potentials of order n, satisfies

(i) KP is closed under Hadamard products and Hadamard absolutely monotone func-
tions;

(ii) the extremal rays of KP are generated by the rank one matrices of the form uu′

where u is a {0, 1}-valued vector;
(iii) every matrix V ∈ KP is a finite sum of ultrametric matrices.

Proof. If u is a {0, 1}-valued vector, then V = uu′ is an ultrametric matrix. Indeed, if 
Vik = Vkj = 1 then ui = uj = uk = 1 and so Vij = 1. The perturbed matrix Vε = uu′+εI

is nonsingular and ultrametric, for every positive ε. Therefore, Vε is a potential, showing 
that uu′ ∈ KP. This also shows (iii).

On the other hand, (i) and (ii) are shown as in Corollary 2.2. �
In Appendix A we discuss in more details a relation between ultrametric matrices and 

KP.
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Since the cone KP is polyhedral, in principle, it is possible to determine in finite time 
if a matrix U is in KP. The naive way to do this is to use 2n − 1 variables to describe 
this problem, which consists in

min 1′U1 − 1′

⎡⎣ ∑
a∈P(I), a�=∅

wa1a1′
a

⎤⎦1

s.t.

{
0 ≤ wa ≤ C∑

a∈P(I), a�=∅ wa1a1′
a ≤ U

We have taken C = max{U} and P(I) is the power set of I. The minimum is 0 if and 
only if U is the sum of potentials. We have been unable to find an efficient algorithm to 
check if U is in KP .

The arguments below will require to fix some of the variables in X to 0. To do it in 
a precise way, we shall make explicit the variables that are free and as a consequence 
which are the variables that are fixed to be 0. Since we have distinguished between the 
diagonal variables Y and the off-diagonal variables Z, we do the same with the free 
variables. The set of free variables will be indexed by two sets F1 ⊆ I and a symmetric 
set F2 ⊆ I × I \ {(i, i) : i ∈ I}. That is, for i ∈ F1, (k, l) ∈ F2 the variables yi, zkl are 
assumed free, and for i /∈ F1, (k, l) /∈ F2 we assume that yi, zkl are 0. By abuse of notation 
we shall denote yi ∈ F (or zkl ∈ F) to mean that yi is a free variable (respectively, zkl is 
free). The complete set of free variables is denoted by (Y, Z)F.

For example take n = 3, Y = (a, b, c) and Z given by z12 = z21 = x, z13 = z31 = y, 
z23 = z32 = z. The matrix

N =
(
a + x −x 0
−x x + z −z
0 −z z

)
(3.4)

is given by N = M(3, (Y, Z)F) were F1 = {1} and F2 = {(1, 2), (2, 1), (2, 3), (3, 2)}. Of 
course there is an abuse of notation in M(3, (Y, Z)F), because (Y, Z)F is a reduced set 
of variables.

If L ⊆ I we denote by FL the set of free variables where F1 = L and F2 = (L × L ∪
Lc × Lc) \ {(i, i) : i ∈ I}, that is, we fix yk = zkl = zlk = 0 for l ∈ L, k ∈ Lc.

The following proposition gives a relation between the minimum polynomial p[V ] and 
the diagonal elements of V . It also gives the minimum polynomials that appear in the 
additive representation given in (3.3). Its proof is given in Section 5.

Proposition 3.7. For all i, we have p[V ](X) = Vii(n, (0, Z)). Moreover, for all k =
1, · · · , n, J ⊆ I of size k, and all i ∈ J it holds that

p[V (k+1)|J ]((Y,Z)) = Vii(n, (Y,Z)FJc )
= V11(k, (0,Z|J )) det(M(n− k, (YJc ,Z|Jc))),

(3.5)

where (Y, Z)FJc means that yh = 0, for h ∈ J , and zh� = z�h = 0 for h ∈ J , � ∈ Jc.
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Remark 3.4. Notice that, after a suitable permutation, M(n, (Y, Z)FJc ) has the block 
form (

M(k, (0,Z|J )) 0
0 M(n− k, (YJc ,Z|Jc))

)
.

Hence, the last expression on (3.5) is simply the formula for the determinant of a matrix 
with block structure.

The next result is a consequence of Proposition 3.7, representation (3.3) for V and 
the fact that for all i, j we have Vij = Vii ∩ Vjj (see Theorem 3.5).

Theorem 3.8. The following representation holds for V . For i ∈ I

Vii(n, (Y,Z)) =
n∑

k=1

∑
J : i ∈ J
#J = k

Vii(n, (Y,Z)FJc ). (3.6)

Moreover, different terms have no common monomials. Also we have the representation 
for the off-diagonal elements of V , for i �= j

Vij(n, (Y,Z)) =
n∑

k=2

∑
J : i, j ∈ J
#J = k

Vii(n, (Y,Z)FJc ).

The main advantage of representation (3.6) over the one in (3.3), is that each term 
in the former can be computed directly without passing through the recurrence defining 
the sequence (V (s) : s = n + 1, · · · , 1).

It is straightforward to see that Vii(n, (Y, Z)FJc ) = 0 when i /∈ J , because the block 
J × J of M(n, (Y, Z)FJc ) is singular (the row sums of this block are 0). Hence we have 
the following alternative expression of Theorem 3.8.

Corollary 3.9. V has the following representation

V (n, (Y,Z)) = adj(M(n, (Y,Z)) =
∑

J⊆I,J �=∅
adj(M(n, (Y,Z)FJc )).

4. Some basic properties of V (n, X), det(M(n, X)) and p[V ](X)

In this section we derive properties for the polynomials qn(X) = det(M(n, X)) and 
V (n, X), as well as the proof of Theorem 3.5. According to Theorem 7.1 in [19], qn is a 
polynomial obtained as the sum of monomials of degree n, whose constant coefficients 
are 1 and all of them are constituted by the product of n different variables. That is, 
each variable participates in each monomial with degree at most 1.
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Example 4.1. Consider the matrix of order 3

M(3,X) =
(
a + x + y −x −y

−x b + x + z −z
−y −z c + y + z

)
, (4.1)

where X = (Y, Z) and Y = (a, b, c), Z = (x, y, z). Then, the determinant of M(3, X) is 
the polynomial that consists of 16 monomials given by

q3(X) = abc + aby + abz + acx + acz + axy + axz + ayz

+ bcx + bcy + bxy + bxz + byz + cxy + cxz + cyz.

We notice that in this example, all the monomials are of degree 3, and all of them contain 
at least one of the variables a, b, c. This last observation follows from the fact that if 
a = b = c = 0 then the matrix is singular and then its determinant is 0. We also notice 
that there are 20 =

(6
3
)

monomials of degree 3 and not all of them participate in the 
determinant. The ones that are excluded are xyz, abx, acy, bcz, which correspond to 
monomials given by certain cycles that we will explain later on (see Appendix B).

The adjoint of M(3, X) is

V (3,X) = (xy + xz + zy)11′

+
(
bc + by + bz + xc + zc xc by

xc ac + ay + az + xc + yc az
by az ab + ax + az + xb + by

)
.

The minimum polynomial of V (3, X) is p[V ](X) = xy + xz + zy, which is obtained 
by evaluating V (0, Z) and it corresponds to the sum of all the monomials of degree 2 in 
the variables x, y, z, which appear with degree at most 1.

The following lemma is the basis to prove these facts about qn and V (n, X). As usual, 
given 1 ≤ i ≤ n, we denote by Y(i) and Z(i) the set of variables obtained by removing 
all variables with index i, that is, Y(i) = (y1, · · · , yi−1, yi+1, · · · , yn) and Z(i) is what 
in matrix analysis is denoted by Z(i,i), which is the principal submatrix of order n − 1
obtained by removing the ith row and column from Z.

Lemma 4.1. Assume that n ≥ 1. Then,

(i) the sequence qn satisfies the recursion

qn((Y,Z)) = y1qn−1(Y(1) + (z12, · · · , z1n),Z(1)) + qn((0, y2, · · · , yn),Z), (4.2)

where q0 = 1;
(ii) qn((Y, Z)) is a sum of monomials of degree n, all of which contain at least one 

variable in Y;
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(iii) Vii(n, (Y, Z)) = qn−1(Y(i) + (z1,i, · · · , zi−1,i, zi,i+1, · · · , zi,n), Z(i)). In particular,

qn((Y,Z)) = y1V11(n, (Y,Z)) + qn((0, y2, · · · , yn),Z). (4.3)

On the other hand, Vii(n, (Y, Z)) does not depend on yi.
(iv) qn((Y, Z)) is the sum of monomials of degree n, with constant coefficient 1. In each 

monomial, each variable appearing on it has degree 1.

Proof. Parts (i), (ii), (iii) follow from standard formulae for the determinant of a matrix. 
The fact that qn is a sum of monomials of degree n also follows from these formulae. 
So, the only thing left to prove is that each monomial contains at least one diagonal 
element. This follows from the fact that when y1 = · · · = yn = 0 this determinant is 0. 
Alternatively, by iterating (4.2) we obtain

qn(X) = y1V11(n, ((0, y2, · · · , yn),Z)) + y2V22(n, ((0, 0, y3, · · · , yn),Z))
+ qn((0, 0, y3, · · · , yn),Z)

=
n∑

i=1
yiVii(n, ((0, · · · , 0, yi+1, · · · , yn),Z)) + qn((0,Z)).

Notice that qn((0, Z)) = 0 because it is the determinant of a matrix whose row sums 
are 0. Then, we get

qn(X) =
n∑

i=1
yiVii(n, (0, · · · , 0, yi+1, · · · , yn),Z). (4.4)

Part (iv) follows from formula (4.4) and induction. Indeed, for example

Vii((n, (Y,Z)) = qn−1(Y(i) + (z1,i, · · · , zi−1,i, zi,i+1, · · · , zi,n),Z(i))

is a sum of monomials of degree n − 1 in which each variable has degree 1 and each 
monomial has constant factor 1. Since the variable yi appears in no monomial, we con-
clude that yiVii(n, ((0, · · · , 0, yi+1, · · · , yn), Z)) is a sum of monomials of degree n with 
constant coefficient 1. On each monomial each variable that appears on it, has degree 1.

Observe that all the monomials in the expansion of y1V11(n, ((0, y2, · · · , yn), Z)) con-
tain the variable y1, but no monomial in y2V22(n, ((0, 0, y3, · · · , yn), Z)) contains y1. This 
shows that both expansions do not contain a common monomial. The result is shown. �

We end this section with one of the most beautiful properties of qn(X). This deter-
minant can be computed from the diagonal elements of M(n, X) by using the algebra of 
Wang (see [10]). This is a commutative algebra on the sum of finite words with symbols 
in X, with the restrictions

∀x ∈ X : x
⊕

x = 0 and x
⊙

x = 0.
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Obviously, every element of this algebra is a polynomial on X, obtained as sum of 
monomials of degree at most the size of X, where each variable has degree at most 1 
and the constant coefficients of these monomials are 1.

A formula for the determinant is the following

det(M(n,X)) =
n⊙

i=1
Mii(n,X). (4.5)

This is the Wang product of the diagonal elements of M(n, X). Let see how this works 
for n = 3. Consider

A =
(
a + x + y −x −y

−x b + x + z −z
−y −z c + y + z

)
.

It is straightforward to show that det(A) contains exactly the same 16 monomials as the 
expansion of (

a
⊕

x
⊕

y
)⊙(

b
⊕

x
⊕

z
)⊙(

c
⊕

y
⊕

z
)

This is an important ingredient to show Theorem 3.8 in Section 5.

4.1. Proof of Theorem 3.5

Part (i) of Theorem 3.5 is proven in Lemma 4.1. Now we turn to the proof of part 
(ii). In the next lemma we shall prove one of the inequalities of this claim.

Lemma 4.2. For all i �= j we have Vij � Vii ∩ Vjj and Vij is a sum of monomials of 
degree n − 1 with constant coefficients 1, where each variable has degree at most 1 in 
each monomial.

Proof. We claim that 0 ≤ Vij(X) ≤ Vii(X) as real functions. Indeed, consider any eval-
uation x̄ ≥ 0 of X. By using a perturbation argument we can assume that M = M(n, ̄x)
is nonsingular and irreducible. On the other hand, M is a row diagonally dominant 
M -matrix and therefore its inverse U = M−1 is a nonnegative matrix. Moreover, det(M)
is positive, which shows that V (x̄) = adj(M) is a nonnegative matrix, thus 0 ≤ Vij(x̄).

The matrix M can be decomposed as M = k(I − P ), where P is an irreducible 
substochastic matrix. The Markov chain (Ξm : m ∈ N), taking values in {1, · · · , n} with 
transition kernel P , is a transient Markov chain with potential W = kU = (I − P )−1. 
Therefore,

Wij = Ei

⎛⎝∑
m≥0

1{j}(Ξm)

⎞⎠
is the expected number of visits to j, when the chain starts at i, until absorption.
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If we denote by τj = inf{m ≥ 0 : Ξm = j} as the first time the chain visits j, then 
the strong Markov property shows

Wij = Pi(τj < ∞)Wjj .

This property and the symmetry of M show that Vij(x̄) ≤ Vii(x̄), Vij(x̄) ≤ Vjj(x̄), 
proving the claim.

Now, we shall prove that 0 � Vij � Vii ∩ Vjj . It is clear that Vij is an algebraic 
cofactor of M(n, X) and therefore is a sum of monomials of degree n − 1, with integer 
coefficients. It is also clear that the diagonal variables Y have degree at most 1 on each 
of these monomials and each off-diagonal variable in Z has degree at most 2.

If one monomial r contains a variable zkl of degree 2 then, the coefficient of this 
monomial has to be 0. Indeed, it is enough to consider an evaluation x̄ for which all the 
variables outside r are 0, all the variables in r, except zkl are 1 and z̄kl is a large value. 
Then, the inequality

0 ≤ Vij(x̄) ≤ Vii(x̄),

is only possible if the coefficient of this monomial is 0 (recall that zkl has at most degree 1 
in every monomial in Vii).

Using the same idea, we prove that all the monomials in Vij have coefficients at least 1. 
Finally, if a monomial r is present in Vij then its coefficient is 1 and r is present in Vii. 
This finishes the proof. �
Definition 4.3. Given the set of variables X and the set of free variables F we say that 
a monomial r(X) = c 

∏k
�=1 xi� is positive if c > 0 and it contains only free variables. 

By extension, a polynomial p which is the sum of monomials with positive constant 
coefficients, is said to be positive if one of these monomials is positive.

A monomial with positive constant coefficient is positive if and only if takes positive 
values when the free variables are replaced by positive values. In particular the determi-
nant of M(n, (Y, Z)F) is positive if and only if it contains at least one positive monomial 
and this happens if and only if this determinant is positive (number) for some (any) 
particular positive value assigned to (Y, Z)F.

Remark 4.1. The relation � and evaluation are not compatible in general. Take the 
example p(x, y, z) = xy + yz and q(x, y, z) = xy + yz − x. Clearly p � q but if we 
take y = 1 then p(x, 1, z) = x + z is not dominated by q(x, 1, z) = z. Nevertheless, the 
relation � and evaluation by 0 are compatible, that is, if p(X) � q(X) and F is a set 
of free variables (the other variables are fixed to be 0), then p(XF) � q(XF). Moreover, 
if q has only positive monomials then p(XF) � q(XF) implies that p(XF) ≤ q(XF) as 
functions on R#F

+ .
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We shall also need some basic results from potential theory for finite Markov chains, 
that we translate in the language of this article.

Definition 4.4. Given the set of free variables F, two different points i, j are said to be 
F-connected (or simply connected if the set of free variables is clear from the context) if 
there exists a finite path i0 = i, i1, · · · , ip, ip+1 = j of different points in I such that for 
all � = 0, · · · , p it holds that zi�i�+1 ∈ F2.

Given L ⊆ I, the principal submatrix A = M(n, (Y, Z)F)|L is said to be F-irreducible
if any couple i �= j ∈ L are F-connected by a path that remains in L.

Notice that i, j are F-connected if and only if the monomial 
∏p

�=0 zi�i�+1 is positive 
for some path that joins i, j.

Example 4.2. The matrices N , N |{1,2} given in (3.4) are F-irreducible, but the submatrix 
A = N |{1,3} is not.

Lemma 4.5. Let F be a set of free variables.

(i) If M(n, (Y, Z)F) is F-irreducible, then qn((Y, Z)F) = det(M(n, (Y, Z)F)) is a pos-
itive polynomial if and only if F1 is not empty, that is there is at least one free 
diagonal variable;

(ii) If i �= j are not connected then Vij(n, (Y, Z)F) = 0. Conversely, if qn((Y, Z)F) is 
positive then Vij(n, (Y, Z)F) = 0 is a sufficient condition for i, j to be not connected.

Proof. (i). Assume first that F1 is not empty. Assign any particular positive value to 
(Y, Z)F (recall that the variables outside F are 0). We denote this selection by (ȳ, ̄z)
and by M the numerical matrix thus obtained. This matrix is a Z-matrix, which is row 
diagonally dominant and irreducible in the standard sense of matrices. The condition 
that F1 is not empty implies that it is strictly diagonally dominant at least at one row. 
This implies that M is a nonsingular M -matrix, so its determinant is a positive number. 
We conclude qn((ȳ, ̄z)) > 0 and therefore qn((Y, Z)F) is a positive polynomial.

Conversely, if F1 is empty then the row sums of M are 0, which implies that 
qn((ȳ, ̄z)) = 0 and therefore qn((Y, Z)F) = 0.

(ii). Notice that the property of being connected or not does not depend on the 
diagonal variables. Hence, if we enlarge the set of free variables to F̃ by setting F̃1 = I

and F̃2 = F2 we will still have that i and j are not F̃-connected. Assign positive values to 
the free variables in F̃ and 0 to the others. As before we denote by (ȳ, ̄z) this selection. 
The matrix N = M(n, (ȳ, ̄z)) is a strictly row diagonally dominant M -matrix, and −N

is the generator of a Markov process on I. The fact that i, j are not F̃-connected means 
that they belong to different irreducible classes for this Markov process and therefore 
we have adj(N)ij = 0, showing that the polynomial adj(M(n, (Y, Z)

F̃
))ij = 0. On the 

other hand, Vij = adj(M(n, (Y, Z)F))ij � adj(M(n, (Y, Z)
F̃
))ij , because in the former 
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there are fewer monomials than in the latter (exactly the ones that contain a variable in 
I \ F1). We have shown Vij = 0.

Conversely, assume that qn((Y, Z)F) is positive and Vij = 0. As before, we assign 
positive values to (Y, Z)F, 0 to other variables, and we denote by (ȳ, ̄z) this selection. 
Recall that M−1(n, (ȳ, ̄z))ij is the potential between i, j, which in this case is 0. This 
shows that i, j cannot be connected in the Markov process whose infinitesimal generator 
is −M(n, (ȳ, ̄z)) implying that i, j are not F-connected. �
Example 4.3. Let us see that we cannot remove the condition on the determinant in the 
second part of (ii) in the previous lemma. Take the 4 × 4 matrix

N =

⎛⎜⎝ x −x 0 0
−x x + z −z 0
0 −z z 0
0 0 0 0

⎞⎟⎠ .

Clearly nodes 1 and 2 are connected but V12 = 0. Notice that in this example det(N) = 0.

Proof of Vij = Vii ∩ Vjj . This property is true for n = 2 and n = 3 so, in what follows, 
we assume that n ≥ 4 and i = 1, j = 2. Since we will use different assignments to the 
variables (Y, Z) we fix M = M(n, (Y, Z)) and V = V (n, (Y, Z)).

Assume that r = r((Y, Z)) is a common monomial between V11 and V22, which is 
not present in V12. This monomial has degree n − 1 and all its variables have degree 1. 
For the moment we take F1 = {1} ∪ {i : yi ∈ r} and F2 the symmetric set obtained 
from {(i, j) : zij ∈ r}. We recall that y1 /∈ V11, which implies that y1 /∈ r and therefore 
V11(n, (Y, Z)F) = r � V22(n, (Y, Z)F). The same argument shows that y2 /∈ r and so 
2 /∈ F1. We set N = M(n, (Y, Z)F) and W = adj(N). Notice that Wij = Vij(n, (Y, Z)F). 
According to (4.3) we have y1V11 � det(M) and then y1r � det(N), proving that det(N)
is positive.

Since V12 � V11 ∩ V22, we conclude that W12 � W11 ∩W22 = r. On the other hand, 
W12 � V12, which implies that W12 = 0. Thus, according to Lemma 4.5 the nodes 1, 2
are not F-connected. Consider the set L of nodes that are F-connected to 1, that is, 
L = {j �= 1 ∈ I : 1 and j are F-connected} ∪ {1}. Denote by K = I \ L. Since being 
F-connected is a transitive and a symmetric relation we obtain that

∀i ∈ L, j ∈ K zij = 0.

A suitable permutation of rows and columns of N has the block structure

P =
(
NL 0
0 NK

)
.

Now, we take y1 = 0, which means that the set of free variables will be reduced to F̃, 
where F̃1 = F1 \ {1} and F̃2 = F2. Since the property of being connected does not 
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depend on the set of diagonal variables, we will still have that 1 is F̃-connected to L. In 
particular, if we denote by Ñ = M(n, (Y, Z)

F̃
), we have

P̃ =
(
ÑL 0
0 ÑK

)
.

The determinant of this matrix is 0, because det(P̃ ) = det(M(n, (Y, Z)
F̃
)) is formed by 

monomials of degree n, with the variables in each monomial having degree 1 and the 
only possible free variables are the ones in r, which is a monomial of degree n − 1, that 
is, there are n − 1 free variables. Hence det(P̃ ) = 0.

Letting W̃ = adj(Ñ) we get that r � W̃11 = adj(ÑL)11 det(ÑK), which implies that 
W̃11 is not zero. In particular, det(ÑK) is not 0. Similarly, det(ÑL) is not 0, which is a 
contradiction and the result is shown. �
5. Proof of Proposition 3.7

Recall that FJc is the set of free variables given by FJc

1 = Jc and FJc

2 = (J ×J ∪Jc ×
Jc) \ {(i, i) : i ∈ I}. Also recall that the intersection of two sets of free variables F, G is 
just the set of free variables given by (F ∩G)1 = F1 ∩G1 and (F ∩G)2 = F2 ∩G2. The 
following lemma is quite useful.

Lemma 5.1. Assume that F, G are two sets of free variables, then for all i

Vii(n, (Y,Z)F∩G) = Vii(n, (Y,Z)F) ∩ Vii(n, (Y,Z)G).

In particular, if J , K are two different subsets of I, such that 1 ∈ J ∩K, then

V11(n, (Y,Z)FJc∩FKc ) = V11(n, (Y,Z)FJc ) ∩ V11(n, (Y,Z)FKc ) = 0.

Proof. It is clear that

Vii(n, (Y,Z)F∩G) � Vii(n, (Y,Z)F).

So, to prove the equality we need to show that any monomial r present in Vii(n, (Y, Z)F) ∩
Vii(n, (Y, Z)G) is also present in Vii(n, (Y, Z)F∩G). This monomial r contains only vari-
ables in the intersection F ∩G and therefore, it is clearly present in Vii(n, (Y, Z)F∩G).

For the second part of the lemma, we note that, after a permutation of rows and 
columns, the matrix M(n, (Y, Z)FJc∩FKc ) has the block structure

⎛⎜⎝A 0 0 0
0 B 0 0
0 0 C 0

⎞⎟⎠ ,
0 0 0 D
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where A is the matrix associated to the nonempty set of indexes J ∩K, which contains 
at least the index 1. The matrices B, C, D are associated to the sets J \ K, K \ J , 
I \ (J ∪ K), respectively. The hypothesis that J , K are different implies that at least 
one of the sets J \K, K \ J is not empty. Without loss of generality we assume that the 
first one is not empty. Since the free variables are FJc ∩ F

Kc we conclude the diagonal 
variables Y associated to B are all 0. Thus, the row sums of B are 0. This implies that 
det(B) = 0 and then V11(n, (Y, Z)FJc∩FKc ) = 0. �
Lemma 5.2. Let r be a monomial present in V11(n, (Y, Z)). Define K = {i : r is present
in Vii(n, (Y, Z))} and J = I \K. Then, r is present in V11(n, (Y, Z)FJc ).

Proof. We need to show that any of the variables zkj, for k ∈ K, j ∈ J , is not present 
in r.

Assume for simplicity that K = {1, · · · , �}, J = {� + 1, · · · , n}. We shall prove that 
z1�+1 does not participate in r.

On the one hand, since r participates in V11, · · · , V�� then r does not depend on 
y1, · · · , y� and so r must appear in the expansion of the determinant

�⊙
k=2

⎛⎝⊕
t�=k

zkt

⎞⎠ n⊙
j=�+1

⎛⎝yj⊕
s �=j

zjs

⎞⎠ .

The only way z1�+1 appears in r, is that r is present in the expansion of

�⊙
k=2

⎛⎝⊕
t�=k

zkt

⎞⎠⊙ z1�+1

n⊙
j=�+2

⎛⎝yj⊕
s �=j

zjs

⎞⎠
= z1�+1

⊙ �⊙
k=2

⎛⎝⊕
t�=k

zkt

⎞⎠ n⊙
j=�+2

⎛⎝yj⊕
s �=j

zjs

⎞⎠ .

Since the variable z1�+1 does not appear in 
�⊙

k=2

(⊕
t�=k

zkt

)
n⊙

j=�+2

(
yj
⊕
s �=j

zjs

)
, we conclude 

r appears in the expansion of

�⊙
k=1

⎛⎝⊕
t�=k

zkt

⎞⎠ n⊙
j=�+2

⎛⎝yj⊕
s �=j

zjs

⎞⎠ � V�+1,�+1(n, (Y,Z)).

This contradicts the maximally of K and the claim is shown. Therefore, r contains 
no variable zkj for k ∈ K, j ∈ J and no variable yi for i ∈ K. So, r appears in 
V11(n, (Y, Z)FJc ) and the result is shown. �

Notice that V11(n, (Y, Z)F∅) = V11(n, (0, Z)) is the sum of monomials that do not 
depend on Y and we will show it is the minimum polynomial of V .
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Proof of Proposition 3.7. Let us start with the representation of the minimum polyno-
mial p = p[V ](X). This is the common polynomial in V11, · · · , Vnn. Since, for all i, the 
variable yi is not present in Vii it is clear that p � Vii(n, (0, Z)). In order to show the 
desired representation we prove that

V11(n, (0,Z)) = V22(n, (0,Z)),

or equivalently V11(n, (0, Z)) 
⊕

V22(n, (0, Z)) = 0 in the Wang’s algebra. This expression 
is given by

V11(n, (0,Z))
⊕

V22(n, (0,Z)) =

⎛⎝⊕
��=1

z1�
⊕
k �=2

z2k

⎞⎠ n⊙
i=3

⎡⎣⊕
j �=i

zij

⎤⎦ .
Using that z12

⊕
z12 = 0 and collecting some terms we get

V11(n, (0,Z))
⊕

V22(n, (0,Z)) =
(

n⊕
�=3

(z1�
⊕

z2�)
)

n⊙
i=3

⎡⎣⊕
j �=i

zij

⎤⎦ .
This last expression corresponds to the expansion of the determinant of the matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
j=3

z1j + z2j −(z13 + z23) −(z14 + z24) · · · −(z1n + z2n)

−(z13 + z23)
n∑

k=1,k �=3
z3k −z34 · · · −z3n

−(z14 + z24) −z34
n∑

k=1,k �=4
z4k · · · −z4n

...
...

...
. . .

...
−(z1n + z2n) −z3,n −z4,n · · ·

n∑
k=1,k �=n

zkn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is zero because the row sums of this matrix are all 0.
Hence, V11(n, (0, Z)) = V22(n, (0, Z)) and similarly V11(n, (0, Z)) = Vii(n, (0, Z)) for 

all i, showing the desired representation for the minimum polynomial:

p[V ]((Y,Z)) = V11(n, (Y,Z)F∅).

Let us compute the minimum polynomial for V11 − p, · · · , Vn−1n−1 − p, where p =
p[V ](X). For that purpose consider the submatrix N = M |J where J = {1, · · · , n − 1}
and the Schur’s complement

B = N − 1∑n−1 (z1n, · · · , zn−1,n)′(z1n, · · · , zn−1,n).

yn + �=1 z�n
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Recall that B = B((R, T)) = M(n − 1, (R, T)) where

ri = yi + ynzin
yn+
∑n−1

�=1 z�n
, for i ∈ J,

tij = zij + zinzjn
yn+
∑n−1

�=1 z�n
, for i �= j ∈ J.

(5.1)

Using that (yn+
∑n−1

�=1 z�n)adj(B) = (adj(M))|J , we conclude the minimal polynomial 
for V |J should be the minimum polynomial of adj(B) multiplied by yn +

∑n−1
�=1 z�n. So, 

the diagonal variables r1, · · · , rn−1 are 0. This condition on the Y, Z variables is that 
y1 = · · · = yn−1 = 0 together with one of the following two cases

(I) yn is free and z1n = · · · = zn−1,n = 0, or
(II ) yn = 0 and z1n, · · · , zn−1,n are free.

The main problem is that under these conditions the determinant of M is zero and then 
the relation (yn +

∑n−1
�=1 z�n)adj(B) = (adj(M))|J may not hold. Under condition (II )

we obtain the minimum polynomial of V and not the minimum polynomial of V |J . So, 
condition (I) should give the right answer. Indeed, if we let V (n) = V − p[V ]((Y, Z)) we 
claim that

p[V (n)|J ]((Y,Z)) = V11(n, (Y,Z)FJc ), (5.2)

where F = F
Jc are the free variables obtained when y1 = · · · = yn−1 = 0 and z1n =

· · · = zn−1,n = 0.
Let us prove (5.2). As before, let us show that V11(n, (Y, Z)F) 

⊕
V22(n, (Y, Z)F) is 0. 

This polynomial is computed from

V11(n, (Y,Z)F)
⊕

V22(n, (Y,Z)F) =
(

n−1⊕
�=3

(z1�
⊕

z2�)
)

n−1⊙
i=3

⎡⎣ ⊕
j �=i,j≤n−1

zij

⎤⎦⊙ yn.

This expression is the determinant of the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n−1∑
j=3

z1j + z2j −(z13 + z23) −(z14 + z24) · · · −(z1,n−1 + z2,n−1) 0

−(z13 + z23)
n−1∑

k=1,k �=3
z3k −z34 · · · −z3,n−1 0

...
...

...
. . .

...
...

−(z1,n−1 + z2,n−1) −z3,n−1 −z4,n−1 · · ·
n−1∑

k=1,k �=n−1
zk,n−1 0

0 0 0 · · · 0 yn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is 0 because the submatrix given by the n − 1 first rows and columns has 0
determinant (the corresponding row sum of this submatrix is 0).
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Notice that V11(n, (Y, Z)F) and V11(n, (0, Z)) cannot have common monomials be-
cause in the former all the terms contain the variable yn and in the latter this variable 
is 0. This shows that for all i ≤ n − 1

Vii(n, (Y,Z)F) = V11(n, (Y,Z)F) �
n−1⋂
j=1

(Vjj(n, (Y,Z)) − Vjj(n, (0,Z))) .

A monomial r that appears in the right hand side contains no variable from y1, · · · , yn−1. 
Hence r appears in

n−1⋂
j=1

(Vjj(n, (0, yn),Z)) − Vjj(n, (0,Z))) ,

and therefore it must contain yn. The only thing to show is r cannot contain z1n, · · · ,
zn−1,n. This monomial r has to appear in the expansion of⎛⎝n−1⊙

i=2

n⊕
j=1,j �=i

zij

⎞⎠⊙ yn.

Hence, it does not contains z1n and the representation (5.2) is shown.
Now, we prove by induction on k = n, · · · , 1 the following equality

∀J ⊆ I, #J = k, 1 ∈ J p[V (k+1)|J ]((Y,Z)) = V11(n, (Y,Z)FJc ). (5.3)

This has been proved for k = n, n −1 and now we show the inductive step. So, we assume 
the property holds for n, n − 1, · · · , k + 1 and we show it holds for k. Thus, we take J
of size k, such that 1 ∈ J . As in the case k = n, n − 1 it is straightforward to show that 
for all i ∈ J

Vii(n, (Y,Z)FJc ) = V11(n, (Y,Z)FJc ).

Take now a monomial r present in V11(n, (Y, Z)FJc ). From the induction hypothesis, 
iteration (3.2) and Lemma 5.1 we conclude that r is present in

V
(k+1)
11 = V11(n, (Y,Z)) −

n+1∑
m=k+2

∑
L : 1 ∈ L
#L = m − 1

p[(Vm)|L]((Y,Z))

= V11(n, (Y,Z)) −
n+1∑

m=k+2

∑
L : 1 ∈ L
#L = m − 1

V11(n, (Y,Z)FLc ).

This fact allows us to conclude that r is present in p[V (k+1)|J ]((Y, Z)) and therefore

V11(n, (Y,Z)FJc ) � p[V (k+1)|J ]((Y,Z)).
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To show the equality, consider a monomial r present in p[V (k+1)|J ]((Y, Z)). In par-
ticular r is present in 

⋂
i∈J

Vii(n, (Y, Z)) and therefore r does not depend on (yi : i ∈ J).

If r is not present in V11(n, (Y, Z)FJc ) we deduce that r must contain a variable zj�, 
for some j ∈ J , � ∈ Jc. As in the proof of Lemma 5.2, r must appear in V��(n, (Y, Z)). 
Consider now the set L = {i ∈ I : r appears in Vii(n, (Y, Z))}. Clearly J ∪{�} ⊆ L and 
thus m = #L ≥ k + 1. The maximality of L implies that r is not present in any of the 
minimum polynomials of V |K for any set K of cardinality larger than m.

The way the sequence (Vs : s = n + 1, · · · , 1) is constructed allows us to deduce that 
r is present on (Vs)|L for s = n + 1, · · · , m + 1. The conclusion is that r is present in 
p[(Vm+1)|L]((Y, Z)) and a fortiori it is not present in the entries of the matrix Vm (see 
formula (3.2)). Given that (Vk+1)11 � (Vm)11 we arrive to a contradiction and therefore 
we have the equality

V11(n, (Y,Z)FJc ) = p[V (k+1)|J ]((Y,Z)).

This finishes the proof of Proposition 3.7. �
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Appendix A. Representation of KP using ultrametric matrices

Let us start with an example

Example A.1. (Continuation of Example 4.1.) Let us examine the representation of a 
potential given in Theorem 3.8 for n = 3. We have

M(3,X) =
(
a + x + y −x −y

−x b + x + z −z
−y −z c + y + z

)
.

The adjoint of M(3, X) is again

V (3,X) = (xy + xz + zy)11′

+
(
bc + by + bz + xc + zc xc by

xc ac + ay + az + xc + yc az
by az ab + ax + az + xb + by

)
.

This matrix can be expressed as a linear combination of the 7 matrices
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E0 =
(1 1 1

1 1 1
1 1 1

)
, E1 =

(1 1 0
1 1 0
0 0 0

)
, E2 =

(1 0 1
0 0 0
1 0 1

)
, E3 =

(0 0 0
0 1 1
0 1 1

)
,

E4 =
(1 0 0

0 0 0
0 0 0

)
, E5 =

(0 0 0
0 1 0
0 0 0

)
, E6 =

(0 0 0
0 0 0
0 0 1

)
.

The decomposition is

V = (xy + xz + zy)E0 + xcE1 + byE2 + azE3 + (bc + bz + zc)E4

+ (ac + ay + yc)E5 + (ab + ax + xb)E6.

The term (ac +ay+yc)E5 coincides with adj(M(3, (Y, Z)F), where F = F
{2}c , as predicted 

by Corollary 3.9. Also, V can be expressed as a sum of 3 ultrametric matrices U1, U2, 
U3 given by

U1 = xy+xz+zy
3 11′ +

(
xc xc 0
xc xc 0
0 0 ab + ax + xb

)
,

U2 = xy+xz+zy
3 11′ +

(
by 0 by
0 ac + ay + yc 0
by 0 by

)
,

U3 = xy+xz+zy
3 11′ +

(
bc + bz + zc 0 0

0 az az
0 az az

)
.

We shall discuss the relation between KP and ultrametric matrices. As we have shown 
in Corollary 3.6 every matrix in KP is the sum of ultrametric matrices. Here we study 
in more details this relation and we construct another representation. For that purpose, 
it is important to use the following characterization of ultrametric matrices.

A conditional expectation E is a nonnegative symmetric matrix that satisfies E2 = E, 
E1 = 1, that is a nonnegative projection that preserves the constants. Every condi-
tional expectation can be described in the following way. Consider a partition R of 
I = {1, · · · , n} given by its atoms R = {A1, · · · , Ap} and the corresponding cardinals 
#A� for � = 1, · · · , p. Then, the associated conditional expectation is

E =
p∑

�=1

1
#A�

1A�
1′
A�

. (A.1)

Given a conditional expectation E, the partition that generates can be computed from 
the partition obtained from the invariant sets {A ⊆ I : E1A = 1A}. We denote by J ∈ E

to mean that J is an atom of E.
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While E is singular (the only exception is when E is the identity), for any positive 
number a > 0 the matrix E + aI is a potential. Moreover, (A.1) is a particular case of 
the representation (3.1).

To describe ultrametric matrices using conditional expectations, we need the notion 
of filtration, which is simply a chain of comparable conditional expectations: F = E1 <

E2 < · · · < EN . The fact that they are comparable is the commutation relation ErEs =
EsEr = Es∧r for s, r = 1, · · · , N .

We shall assume without loss of generality that F is maximal as a chain of projections. 
This implies that the projection Es+1−Es, for all s, projects over a space of dimension 1. 
The obvious conclusions are N = n = #I, E1 = 1

n11′ is the projection over the constants 
and En = I. To every subset J ⊆ I we associate the number

C(J) = #{(E,F) : J ∈ E ∈ F},

that is, the number of times the atom J appears in all conditional expectations of all 
maximal filtrations. Clearly C(J) ≥ 1. These numbers are not easy to compute and will 
be part of the decomposition we are searching.

The last ingredient we need is the following representation for every ultrametric ma-
trix. The proof of this result can be found in [8]. To describe it for every vector z we 
denote by Dz the diagonal matrix associated to z.

Lemma A.1. A nonnegative matrix U is ultrametric if and only if there exists a maximal 
filtration F = E1 < E2 < · · · < En, a collection of nonnegative vectors z1, · · · , zn such 
that Ek(zk) = zk for all k = 1, · · · , n and

U =
n∑

k=1

DzkEk.

Remark A.1. The condition Ek(zk) = zk is exactly the condition that zk ∈ Im(Ek), 
which is equivalent to the fact that zk is constant on the atoms of Ek. In the language 
of probability theory it is said that z1, · · · , zn is adapted to F .

Now, we are in a position to construct a richer representation of a potential as a sum 
of ultrametric matrices. Consider a potential U with a representation like (3.1)

U =
t∑

i=1
ci uiu

′
i,

where ci ≥ 0 are constants and ui = 1Hi
is the {0, 1}-valued vector with support on 

Hi ⊆ I.
The index set for this decomposition is given by (E, F), where F is a maximal filtration 

and E ∈ F . Notice that



C. Dellacherie et al. / Advances in Applied Mathematics 81 (2016) 13–39 37
uiu
′
i = #Hi

C(Hi)
∑

(E,F):Hi∈E

DHi
E.

Therefore, we have

U =
t∑

i=1
ci

#Hi

C(Hi)
∑

(E,F):Hi∈E

DHi
E =
∑
F

∑
E∈F

Dz(E,F)E, (A.2)

where the vectors z(E, F) are obtained as

z(E,F) =
∑

i: Hi∈E

ci
#Hi

C(Hi)
1Hi

.

It is straightforward to show that E(z(E, F)) = z(E, F) and therefore (A.2) is a decom-
position of U as a sum of ultrametric matrices.

Appendix B. Interpretation of M(n, X) and V (n, X) in graph theory

Let us start with the generic (or symbolic) laplacian symmetric matrix L = (�ij) of the 
complete graph K with n +1 vertices. Each edge (i, j) is labelled by zij , a “free variable”, 
with zij = zji; by definition we have �ij = −zij for i �= j and �ii =

∑
k �=i zik. Of course 

L has zero row and column sums. In particular, it is not invertible and so it cannot be 
a generic M -matrix. Any principal submatrix of order n is like our M(n, (Y, Z)) except 
for the names of the variables. On the other hand, taking some free variables zij equal 
to 0, one gets the generic laplacian of any graph G with n +1 vertices and, furthermore, 
taking the remaining variables equal to 1, one gets the classical laplacian of the graph. 
Similar remarks hold for the results given below.

The laplacian L, or one of its principal submatrices of order n, is often called a Kirch-
hoff matrix, and a node-admittance (or conductance) matrix in circuit theory. Kirchhoff 
proved, at least implicitly, that all the cofactors (not only the principal ones) of L are 
equal. This result is quite surprising, but not difficult to prove directly. Nevertheless, the 
elucidation of the common value of these determinants is more involved.

We arrive to the very often called matrix-tree theorem, which can be found in the 
literature devoted to graph theory or circuit theory. This result is also called the Kirch-
hoff’s theorem, or the Maxwell’s rule. To explain it, let T be the set of spanning trees of 
the graph K and for each T ∈ T denote by m(T ) the product of the zij where (i, j) goes 
over the edges of T . Then, the matrix-tree theorem says that the common value of the 
preceding determinants (and so our det(M(n, X)) is equal to 

∑
T∈T m(T ). Hence, there 

exists a natural bijection between the set of spanning trees and the set of monomials in 
the determinant.

Let us make some historical comments freely adapted from Moon (see [16] page 42). 
Actually Kirchhoff in 1847 (see [13]) gave, with proof, “only” an analogous of the matrix-
tree theorem, since he was considering principally meshes and not nodes in circuit theory. 
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Sylvester in 1857 (see [20]), not aware of Kirchhoff’s work, gave only the result without 
a proof as a rule to calculate the determinant. Borchardt, following [16], gave a proof 
in 1889. The third edition of the Maxwell’s treatise [15] gave in the appendix of the 
chapter VI of part II (introduced by the editor J.J. Thomson) as a rule without proof 
and reference, looking at nodes and not at meshes like Kirchhoff. Finally, statements and 
proofs abounded in the XXth century.

The matrix-tree theorem gives a graphic interpretation of the cofactors of L. We are 
going now to give such an interpretation for the cofactors of the principal submatrices 
of L. So, to fix the ideas, we note M the matrix obtained by deleting the last row and 
last column of L, and V = (Vij) its adjoint (or adjugate) so that, except for some change 
of names of variables, we find again our original matrix V . On the other hand let us say 
that a subgraph of K is a 2-tree if it is a forest consisting of exactly two trees. Denote by 
S the set of all 2-trees spanning K and for each S ∈ S note m(S) as before. Finally, for 
all i, j fixed, let Sij be the subset of S whose elements contain vertices i and j in one of 
their components and the vertex n +1 in the other one. One has Vij =

∑
S∈Sij

m(S). As 
an evident corollary, we have Vij = Vii ∩ Vjj as in Theorem 3.5 in Section 3, a formula 
we learned from [10] without a proof. This result is more recent and much less cited than 
the matrix-tree theorem. A proof can be found in [19] (attributed to Mayeda (1955)) or 
in [3].
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