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a b s t r a c t 

The aim of the paper is to develop new aggregation operators using Bonferroni means, OWA operators 

and some distance measure. We introduce the BON-OWAAC and BON-OWAIMAM operators. We are able 

to include coefficient adequacy and the maximum and minimum levels in the same formulation with 

Bonferroni means and an OWA operator. The main advantages of using these operators are that they al- 

low consideration of continuous aggregations, multiple comparisons between each argument and distance 

measures in the same formulation. An application is developed using these new algorithms in combina- 

tion with Moore’s families and Galois lattices to solve group decision-making problems. The professional 

and personal interests of the entrepreneurs who share co-working spaces are taken as an example for es- 

tablishing relationships and groups. According to the professional and personal profile affinities for each 

entrepreneur, the results show dissimilarity and fuzzy relationships and the maximum similarity sub- 

relations to establish relationships and groups using Moore’s families and Galois lattice. Finally, this new 

type of distance family can be used for applications in areas such as sports teams, strategy marketing 

and teamwork. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Entrepreneurial activity requires several conditions to foster

reative and innovative environments. According to Lee et al. [28] ,

ntrepreneurial activity requires a scenario in which creativity, di-

ersity and innovation are encouraged and valued. One of the main

trategies for creating such entrepreneurial environments is co-

orking space. Co-working spaces are creative and energetic places

hat provide support (moral, emotional, professional, and finan-

ial) and facilities (infrastructure) to enable entrepreneurs to start

nd grow their businesses for small firms, freelancers and start-ups

4,9] . In addition, these spaces use scale economies, promote mem-

ers through social media, share knowledge and—given the chance

o collaborate—provide opportunities to develop systemic solutions

nd grant the ability to identify opportunities among their mem-

ers [40,42,43] . Likewise, these workplaces are characterized by

heir purpose and model, which are categorized into co-working

pace, incubators, accelerators, and service offices and are classi-

ed by target audience, operating mode, relation to other organi-
∗ Corresponding author. 
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ations and size [9] . Hence, for entrepreneurs to take advantage of

heir working spaces, they should be able to choose the place that

est suits their professional needs, personal interests, skills, capa-

ilities and knowledge. Because the members who belong to these

orkplaces have profiles and varied interests, which are linked by

elationship, similarities and affinities, this promotes faster collab-

ration, knowledge transfer and the detection of entrepreneurial

pportunities. Typically, these processes take considerable time be-

ore the members of co-working spaces can meet and share expe-

iences, information, and knowledge depending on personality and

ttitude. 

The literature shows that there are a wide range of methods

hat allow aggregating information [23,24,36] ; these models create

reat types of relationships and obtain representative values of the

ggregated information. One of the most popular models is the or-

ered weighted averaging OWA operator [55] , which has been de-

eloped largely from an extension in combination with the math-

matical models of others. One of these types of models includes

election indexes [37] . These are known as ordered weighted av-

raging distance (OWAD) [12,37] , ordered weighted averaging ade-

uacy coefficient (OWAAC) operator and ordered weighted averag-

ng index of maximum and minimum level (OWAIMAM) operator

38] , which allow the aggregation of information through compar-
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ison between two elements to reach a representative value. Like-

wise, a new aggregation operator is proposed by using Bonferroni

means (BM) [6] , which allow multiple comparisons between in-

put arguments and the capture of their interrelationships. Yager

[57] combined the OWA operator with BM, proposing a new aggre-

gation operator called BON-OWA, and suggested a generalization

of this operator. This new aggregation operator incited the curios-

ity of the scientific community, driving multiple authors to begin

studying and developing new models based on this [2,18,22,50,58] .

The aim of this paper is to develop a new mathematical ap-

plication based on Bonferroni means, the OWA operator and some

distance measurement. This application consists of BM in combi-

nation with OWAIMAN and OWAAC operators. The main advan-

tage of this proposition is that it allows the use of continuous

aggregations, multiple comparisons between each argument and

distance measures in the same formulation. Likewise, these new

methods are combined with Moore’s families and Galois Lattice to

solve group decision-making problems. These methods are used as

a previous step to apply Moore’s families and Galois Lattice al-

gorithm to obtain different distances between a set of elements

and to gather each element according to relationship similarities

and affinities. A numerical example is developed to demonstrate

the usefulness of the new proposition. This application is focused

on the establishment of relationships and the groups of affinities

between an entrepreneur who wishes to belong to a co-working

space according to professional needs, personal interests, skills, ca-

pabilities and knowledge in comparison to each individual who al-

ready belongs to a co-working space. These algorithms allow the

aggregation of information obtained in a single value representa-

tive of the information according to the personal parameters of

each entrepreneur. 

The structure of this paper is as follows. In Section 2 , basic con-

cepts of Bonferroni means, OWA operators and distance measures

are briefly reviewed, and a new proposal is presented. In Section

3 , the decision-making approach is explained. In Section 4 , the nu-

merical application processes for gathering affinities using BON-

OWAD, BON-OWAAC, Moore’s families and Galois Lattice are dis-

played. In Section 5 , a numerical example of the new method is

given, focusing on co-working in entrepreneurship. In Section 6 , a

summary and the main conclusion are presented. 

2. Preliminaries 

In this section, we briefly review Bonferroni means, OWA op-

erators, BON-OWA, distance measures and OWAD to develop new

tools based on distance measures in combination with Bonferroni

means and OWA operators. 

2.1. Bonferroni means 

The Bonferroni mean [6] is another type of mean that can be

used in the aggregation process to present information. Recently

several authors have used the Bonferroni mean with OWA oper-

ators [2,57] , uncertain data [51] , linguistic variables [29,48] , intu-

itionistic information [7,49,54] and hesitant representation [65,66] .

It can be defined by using the following expression: 

B ( a 1 , a 2 , ..., a n ) = 

⎛ 

⎜ ⎝ 

1 

n 

1 

1 − n 

n ∑ 

j=1 
j � = i 

a q 
j 

⎞ 

⎟ ⎠ 

1 
r+ q 

, (1)

where r and q are parameters, such that r, q ≥ 0 and the arguments

a ≥ 0. By rearranging the terms [57] , it can also be formulated in
he following way: 

 ( a 1 , a 2 , ..., a n ) = 

⎛ 

⎜ ⎝ 

n ∑ 

i =1 

a r i 

⎛ 

⎜ ⎝ 

1 

1 − n 

n ∑ 

j=1 
j � = i 

a q 
j 

⎞ 

⎟ ⎠ 

⎞ 

⎟ ⎠ 

1 
r+ q 

. (2)

.2. OWA operators 

.2.1. OWA operator 

The OWA operator [55] provides a parameterized class of mean

ype of aggregation operators. It can be defined as follows. 

efinition 1. An OWA operator of dimension n is a mapping OWA :

 

n → R that has an associated weighting vector W of dimension n

ith w j ∈ [0, 1] and 

∑ n 
j=1 w j = 1 , such that: 

WA ( a 1 , a 2 , ..., a n ) = 

n ∑ 

j=1 

w j b j , (3)

here b j is the j th largest of the a j . 

.2.2. Bonferroni OWA 

The Bonferroni OWA [57] is a mean type aggregation operator.

t can be defined by using the following expression: 

ON − OWA ( a 1 , ..., a n ) = 

( 

1 

n 

n ∑ 

i =1 

a r i O W A W 

(
V 

i 
)) 

1 
r+ q 

, (4)

here OW A W 

( V i ) = ( 1 
n −1 

∑ n 
j = 1 
j � = i 

a 
q 
j 
) , with ( V 

i ) being the vector of

ll a j , except a i , and w being an n − 1 vector W i associated with

 i , whose components w ij are the OWA weights. Let W be an

WA weighting vector of dimension n − 1 with components w i 

 [0, 1] when 

∑ 

i w i = 1 . We can then define this aggregation as

W A W 

( V i ) = ( 
∑ n −1 

j=1 w i a πi ( j) ) , where a πi ( j) is the largest element in

he tuple V 

i and w i = 

1 
n −1 for all i . Thus, we have observed that

his aggregation is equal at the original case. Furthermore, accord-

ng to Yager [57] , the weight vector w i can be stipulated by differ-

nt methods. One approach is to directly specify the vector W. An-

ther is using O’Hagan’s [41] approach for maximizing the entropy∑ n −1 
j=1 w j ln ( w j ) subject to a degree of orness 

∑ n −1 
j=1 w j 

n − j 
n −1 = α,

 n −1 
j=1 w j = 1 , 0 ≤ w j ≤ 1. Another approach is via BUM function f ,

n which we obtain w j = f ( j 
n −1 ) − f ( j−1 

n −1 ) . Based on this method,

nother approach is developed, which starts with a parameterized

amily of BUM functions and defines the desired aggregation by

pecifying the value-associated parameter [57] . Another parameter

unction is f (x ) = x r for r > 0, where from r we obtain a particular

unction. The attitudinal character is such that α = 

1 
r+1 , and if we

pecify α, we can obtain r = 

1 −α
α [57] . 

.3. Distance measures 

.3.1. Hamming distance 

The Hamming distance [17] is a useful technique for calculat-

ng the differences between two elements, two sets, etc. In fuzzy

et theory, it can be useful, for example, for the calculation of dis-

ances between fuzzy sets, interval-valued fuzzy sets, intuitionis-

ic fuzzy sets and interval-valued intuitionistic fuzzy sets. For two

ets A and B, the weighted Hamming distance can be defined as

ollows. 

efinition 2. A weighted Hamming distance of dimension n is a

apping d : R n xR n → R that has an associated weighting vector
WH 
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 of dimension n with the sum of the weights being 1 and w j ∈
0, 1], such that 

 W H ( 〈 x 1 , y 1 〉 , . . . , 〈 x n , y n 〉 ) = 

n ∑ 

i =1 

w i | x i − y i | , (5) 

here x i and y i are the i th elements of sets X and Y. 

.3.2. Adequacy coefficient 

The adequacy coefficient [26,27] is an index used for calculat-

ng the differences between two elements, two sets, etc. Although

imilar to the Hamming distance, it differs because the adequacy

oefficient neutralizes the result when the comparison shows that

he real element is higher than that of the ideal one. For two sets

 and B, the weighted adequacy coefficient can be defined as fol-

ows. 

efinition 3. A weighted adequacy coefficient of dimension n is a

apping K : [0, 1] n x [0, 1] n → [0, 1] that has an associated weighting

ector W of dimension n with the sum of the weights 1 and w j ∈
0, 1], such that 

( 〈 x 1 , y 1 〉 , . . . , 〈 x n , y n 〉 ) = 

n ∑ 

i =1 

w i [ 1 ∧ ( 1 − x i + y i ) ] , (6) 

here x i and y i are the i th elements of sets X and Y. 

.3.3. Maximum and minimum level index 

The index of maximum and minimum level is an index that

nifies Hamming distance and adequacy coefficient in the same

ormulation [14,15] . For two sets A and B , the weighted index of

aximum and minimum level can be defined as follows. 

efinition 4. An AWIMAM of dimension n is a mapping K : [0,

] n x [0, 1] n → [0, 1] that has an associated weighting vector W of

imension n with the sum of the weights 1 and w j ∈ [0, 1], such

hat 

( 〈 x 1 , y 1 〉 , ..., 〈 x n , y n 〉 ) = 

∑ 

u 

w i ( u ) ∗ | x i ( u ) − y i ( u ) | 

+ 

∑ 

v 
w i ( v ) ∗ [ 0 ∨ x i ( v ) − y i ( v ) ] , (7) 

here x i and y i are the i th arguments of sets X and Y, u and v

re the numbers of arguments to be treated with the Hamming

istance and the adequacy coefficient, respectively, and u + v = n . 

.4. OWA operator and distance measures 

The OWAD operator [12,37,52] is an aggregation operator that

ses OWA operators and distance measures in the same formula-

ion. It can be defined as follows for two sets X and Y. 

efinition 4. An OWAD operator of dimension n is a mapping

WAD : R n xR n → R that has an associated weighting vector W ,
 n 
j=1 w j = 1 and w j ∈ [0, 1], such that: 

WAD ( 〈 x 1 , y 1 〉 , ..., 〈 x n , y n 〉 ) = 

n ∑ 

j=1 

w j D j , (8) 

here D j represents the j th largest of | x j − y j | . 
The OWAAC operator [13,37] is an aggregation operator that

ses the adequacy coefficient and the OWA operator in the same

ormula. It can be defined as follows for two sets X and Y. 

efinition 5. An OWAAC operator of dimension n is a mapping

WAAC : [0, 1] n x [0, 1] n → [0, 1] that has an associated weighting

ector W , with w j ∈ [0, 1] and 

∑ n 
j=1 w j = 1 , such that 

WAAC ( 〈 x 1 , y 1 〉 , ..., 〈 x n , y n 〉 ) = 

n ∑ 

j=1 

w j K j , (9) 
here K j represents the j th largest of [ 1 ∧ ( 1 − x i + y i ) ] . 

The OWAIMAM operator [38] is an aggregation operator that

ses the Hamming distance, the adequacy coefficient and the OWA

perator in the same formulation. It can be defined as follows. 

efinition 7. An OWAIMAM operator of dimension n , is a mapping

WAIMAM : [0, 1] n x [0, 1] n → [0, 1] that has an associated weighting

ector W , with w j ∈ [0, 1] and the sum of the weights is equal to

, such that 

WAIM AM ( 〈 x 1 , y 1 〉 , 〈 x 2 , y 2 〉 , ..., 〈 x n , y n 〉 ) = 

n ∑ 

j=1 

w j K j , (10) 

here K j represents the j th largest of all | x i − y i | and [ 0 ∨ ( x i − y i ) ]

nd is formed when comparing sets X and Y . Note that for each

air of arguments { x i , y i }, we should define which of them will be

nalyzed with the individual distance | x i − y i | and which ones with

he norm [ 0 ∨ ( x i − y i ) ] . 

.5. Bonferroni distances 

In this section, we briefly review Bonferroni means and distance

easures. For working with distance measures using Bonferroni

eans, arguments a i and a j are two sets of variables instead of

ne, but the methodology remains the same. For this study, we fo-

us on BD and BON-OWAD concepts, which are defined as follows.

efinition 6. The Bonferroni distance for two sets X =
 x 1 , x 2 , . . . , x n } and Y = { y 1 , y 2 , . . . , y n } is given by 

D ( 〈 x 1 , y 1 〉 , ..., 〈 x n , y n 〉 ) = 

⎛ 

⎜ ⎝ 

1 

n 

n ∑ 

i =1 

d r i 

⎛ 

⎜ ⎝ 

1 

1 − n 

n ∑ 

j=1 
j � = i 

d q 
j 

⎞ 

⎟ ⎠ 

⎞ 

⎟ ⎠ 

1 
r+ q 

, (11) 

here d i and d j are individuals, such that d i = | x i − y i | and d j =
 x j − y j | . 
efinition 7. A BON-OWAD distance for two sets X =
 x 1 , x 2 , . . . , x n } and Y = { y 1 , y 2 , . . . , y n } is given by 

ON − OWAD ( 〈 x 1 , y 1 〉 , ..., 〈 x n , y n 〉 ) = 

⎛ 

⎜ ⎝ 

1 

n 

n ∑ 

k =1 
j � = i 

D 

r 
i O WA D w i 

(
V 

i 
)
⎞ 

⎟ ⎠ 

1 
r+ q 

,

(12) 

here OWA D w i 
( V i ) = ( 1 

n −1 

∑ n 
j = 1 
j � = i 

D 

q 
j 
) with ( V 

i ) being the vector of

ll | x j − y j | except | x i − y i | , and w i being an n − 1 vector W i asso-

iated with A i whose components w ij are the OWA weights. Like-

ise, D i is the ith smallest of the individual distances | x i − y i | . 

. Bonferroni means with the adequacy coefficient and the 

ndex of maximum and minimum levels 

The adequacy coefficient was proposed by Kaufmann & Gil-

luja [26,27] , and the OWAAC operator was proposed by Gil-

afuente & Merigó [13] and Merigó & Gil-Lafuente [37] ; the com-

ination of both allow the aggregation of information through the

omparison of two elements with the feature that it neutralizes

he result when the comparison gives a real element that is higher

han the ideal one. 
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Proposition 1. The Bonferroni adequacy coefficient for two sets X =
{ x 1 , x 2 , . . . , x n } and Y = { y 1 , y 2 , . . . , y n } is given by 

BAC ( 〈 x 1 , y 1 〉 , ..., 〈 x n , y n 〉 ) = 

⎛ 

⎜ ⎝ 

n ∑ 

i =1 

d r i 

⎛ 

⎜ ⎝ 

1 

1 − n 

n ∑ 

j=1 
j � = i 

d q 
j 

⎞ 

⎟ ⎠ 

⎞ 

⎟ ⎠ 

1 
r+ q 

, (13)

where d i and d j are the individual differences such that d i =
[ 1 ∧ ( 1 − x i + y i ) ] and d j = [ 1 ∧ ( 1 − x j + y j ) ] . 

Proposition 2. A BON-OWAAC distance for two sets X =
{ x 1 , x 2 , . . . , x n } and Y = { y 1 , y 2 , . . . , y n } is given by 

BON − OWAAC ( 〈 x 1 , y 1 〉 , ..., 〈 x n , y n 〉 ) = 

⎛ 

⎜ ⎝ 

1 

n 

n ∑ 

i =1 
j � = i 

D 

r 
i O WAA C w i 

(
V 

i 
)
⎞ 

⎟ ⎠ 

1
r+

(14)

where OWAA C w i 
( V i ) = ( 1 

1 −n 

∑ n 
j = 1 
j � = i 

D 

q 
j 
) , with ( V 

i ) being the vector of

all 1 ∧ ( 1 − x j + y j ) except 1 ∧ ( 1 − x i + y i ) , and w i being an n − 1

vector W i associated with A i whose components w ij are the OWA

weights. Likewise, D i is the i th smallest of the individual distance

[ 1 ∧ ( 1 − x i + y i ) ] . 

Furthermore, BON-OWAAC has the following prop-

erties: 1) BON − OWAA C 

r,q ( 0 , 0 , . . . , 0 ) = 0 ; 2) BON −
OWAA C 

r,q ( a c 1 , a c 2 , . . . , a c n ) = ac , if a c k = ac , for all i ; 3) BON −
OWAA C 

r,q ( a c 1 , a c 2 , . . . , a c n ) ≥ BON − OWAA C 

r,q ( a d 1 , . . . , a d n ) , i . e

BON − OWAA C 

r,q is monotonic , if a c i ≥ a d i , for all i ; 4)

min { a c i } ≤ BON − OWAA C 

r,q ( a c 1 , . . . , a c n ) ≤ max { ac i }. In addition,

if q = 0 , then BON − OWAA C 

r, 0 ( a c 1 , a c 2 , . . . , a c n ) = ( 1 n 

∑ n 
i =1 D 

r 
i 
) 1 /r .

If r = 2 and q = 0 , then BON-OWAAC reduces to the square mean

distance: BON − OWAA C 

r, 0 ( a c 1 , a c 2 , . . . , a c n ) = ( 1 n 

∑ n 
i =1 D 

2 
i 
) 1 / 2 .

If r = 1 and q = 0 , then BON-OWAAC reduces to the average

distance: BON − OWAA C 

r, 0 ( a c 1 , a c 2 , . . . , a c n ) = 

1 
n 

∑ n 
i =1 D i . If

r → + ∞ and q = 0 , then BON-OWAAC reduces to the max op-

erator: lim r → + ∞ 

BON − OWAA C 

r, 0 ( a c 1 , a c 2 , . . . , a c n ) = max { D i } ; if

r → 0 and q = 0 , then BON-OWAAC reduces to the geometric mean

distance: lim r → 0 BON − OWAA C 

r, 0 ( a c 1 , a c 2 , . . . , a c n ) = ( 
∏ n 

i =1 D i ) 
1 /n .

If r = q = 1 , then BON-OWAAC reduces to the following expres-

sion: BON − OWAA C 

1 , 1 ( a c 1 , a c 2 , . . . , a c n ) = ( 1 
n ( n −1 ) 

) 
∑ n 

i, j = 1 
i � = j 

D i D j . 

To understand the BON-OWAAC numerically, let us present a

simple example. 

Example 1. Let X = ( 0 . 2 , 0 . 5 , 0 . 4 ) and Y = ( 0 . 5 , 0 . 1 , 0 . 7 ) be

two sets of arguments. w i is the weighting vector of the argu-

ment | x i − y i | associated with A i with components v ij . Here, we

shall let α1 = 0 . 4 , α2 = 0 . 3 and α3 = 0 . 5 . We take r = q = 0 . 5 . In

addition, V 1 = ( 1 ∧ ( 1 − 0 . 5 + 0 . 1 ) ) and ( 1 ∧ ( 1 − 0 . 4 + 0 . 7 ) ) ,

 

2 = ( 1 ∧ ( 1 − 0 . 2 + 0 . 5 ) ) and ( 1 ∧ ( 1 − 0 . 4 + 0 . 7 ) ) and

 

3 = ( 1 ∧ ( 1 − 0 . 2 + 0 . 5 ) ) and ( 1 ∧ ( 1 − 0 . 5 + 0 . 1 ) ) . Using this,

we obtain: 

OWAA C v 1 
(
V 

1 
)

= 0 . 4 × ( ( 1 ∧ ( 1 − 0 . 5 + 0 . 1 ) ) 

+ ( 1 ∧ ( 1 − 0 . 4 + 0 . 7 ) ) ) = 0 . 64 

OWAA C v 2 
(
V 

2 
)

= 0 . 3 × ( ( 1 ∧ ( 1 − 0 . 2 + 0 . 5 ) ) 

+ ( 1 ∧ ( 1 − 0 . 4 + 0 . 7 ) ) ) = 0 . 60 

OWAA C v 3 
(
V 

3 
)

= 0 . 5 × ( ( 1 ∧ ( 1 − 0 . 2 + 0 . 5 ) ) 

+ ( 1 ∧ ( 1 − 0 . 5 + 0 . 1 ) ) ) = 0 . 95 
ON − OWAAC = 

( 

1 

3 

×
( 

( ( 1 ∧ ( 1 − 0 . 2 + 0 . 5 ) ) × 0 . 64 ) 
+ ( ( 1 ∧ ( 1 − 0 . 5 + 0 . 1 ) ) × 0 . 60 ) 
+ ( ( 1 ∧ ( 1 − 0 . 4 + 0 . 7 ) ) × 0 . 95 ) 

) ) 

1 
0 . 5+0 . 5

= 0 . 806 

The maximum and minimum level index was proposed by

14,15] , and OWAIMAN was proposed by [38] . These operators al-

ow aggregating information through the comparison between the

lements of two sets. Moreover, the IMAM index unifies the Ham-

ing distance and the adequacy coefficient in the same formula-

ion. 

roposition 3. The Bonferroni index of maximum and minimum level

or two sets X = { x 1 , x 2 , . . . , x n } and Y = { y 1 , y 2 , . . . , y n } is given by 

IMAM ( 〈 x 1 , y 1 〉 , ..., 〈 x n , y n 〉 ) = 

⎛ 

⎜ ⎝ 

n ∑ 

i =1 

d r i 

⎛ 

⎜ ⎝ 

1 

1 − n 

n ∑ 

j=1 
j � = i 

d q 
j 

⎞ 

⎟ ⎠ 

⎞ 

⎟ ⎠ 

1 
r+ q 

, 

(15)

here d i and d j are the individuals such that d i = | x i − y i | and [0 ∨ ( x i ,

 i )], and d j = [ | x j − y j | and [0 ∨ ( x j , y j )]. 

roposition 4. A BON-OWAIMAM distance for two sets X =
 x 1 , x 2 , . . . , x n } and Y = { y 1 , y 2 , . . . , y n } is given by 

BON − OWAIMAM ( 〈 x 1 , y 1 〉 , ..., 〈 x n , y n 〉 ) 

= 

⎛ 

⎜ ⎝ 

1 

n 

n ∑ 

i =1 
j � = i 

D 

r 
i OWAIMA M w i 

(
V 

i 
)
⎞ 

⎟ ⎠ 

1 
r+ q 

, (16)

here OWAIMA M w i 
( V i ) = ( 1 

1 −n 

∑ n 
j = 1 
j � = i 

D 

q 
j 
) , with ( V 

i ) being the vector

f all [ | x j − y j | and [0 ∨ ( x j , y j )] except | x i − y i | and [0 ∨ ( x i , y i )], and

 i being an n − 1 vector W i associated with A i whose components w ij 

re the OWA weights. Likewise, D i is the i th smallest of the individual

istances | x i − y i | and [0 ∨ ( x i , y i )]. Furthermore, BON-OWAIMAM has

he following properties: 1) BON − OWAIMA M 

r,q ( 0 , 0 , . . . , 0 ) =
 ; 2) BON − OWAIMA M 

r,q ( a , a , . . . , a ) = a , if a k =
 , for all i ; 3) BON − OWAIMA M 

r,q ( a 1 , a 2 , . . . , a n ) ≥
ON − OWAIMA M 

r,q ( d 1 , d 2 , . . . , d n ) , i . e ., BON −
WAIMA M 

r,q is monotic , if a i ≥ d i , for all i ; 4) max i { a i } ≤ BON −
WAIMA M 

r,q ( a 1 , a 2 , . . . , a n ) ≤ min { ac i }. In addition, if q = 0 ,

hen BON − OWAIMA M 

r, 0 ( a c 1 , a c 2 , . . . , a c n ) = ( 1 n 

∑ n 
i =1 D 

r 
i 
) 1 /r . If

 = 2 and q = 0 , then BON-OWAIMAM reduces to the square mean

istance: BON − OWAIMA M 

r, 0 ( a c 1 , a c 2 , . . . , a c n ) = ( 1 n 

∑ n 
i =1 D 

2 
i 
) 1 / 2 .

f r = 1 and q = 0 , then BON-OWAIMAM reduces to the average

istance: BON − OWAIMA M 

r, 0 ( a c 1 , a c 2 , . . . , a c n ) = 

1 
n 

∑ n 
i =1 D i . If

 → + ∞ and q = 0 , then BON-OWAIMAM reduces to the max op-

rator: lim r → + ∞ 

BON − OWAIMA M 

r, 0 ( a c 1 , a c 2 , . . . , a c n ) = max { D i } ;
f r → 0 and q = 0 , then BON-OWAIMAM reduces to the geomet-

ic mean distance: lim r → 0 BON − OWAA C 

r, 0 ( a c 1 , a c 2 , . . . , a c n ) =
( 
∏ n 

i =1 D i ) 
1 /n . If r = q = 1 , then BON-OWAIMAM reduces to the

ollowing expression: BON − OWAIMA M 

1 , 1 ( a c 1 , a c 2 , . . . , a c n ) =
( 1 

n ( n −1 ) 
) 
∑ n 

i, j = 1 
i � = j 

D i D j . 

To understand the BON-OWAIMAM numerically, let us present

 simple example. 

xample 2. Let X = ( 0 . 2 , 0 . 5 , 0 . 4 ) and Y = ( 0 . 5 , 0 . 1 , 0 . 7 ) be

wo sets of arguments. w i is the weighting vector of the argu-

ent | x i − y i | associated with A i with components v ij . Here, we

hall let α = 0 . 4 , α = 0 . 3 and α = 0 . 5 . We take r = q = 0 . 5 .
1 2 3 
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n addition: V 1 = ( | 0 . 5 − 0 . 1 | ) and ( 1 ∧ ( 1 − 0 . 4 + 0 . 7 ) ) ,

 

2 = ( | 0 . 2 − 0 . 5 | ) and ( 1 ∧ ( 1 − 0 . 4 + 0 . 7 ) ) and V 3 =
( | 0 . 2 − 0 . 5 | ) and ( 1 ∧ ( 1 − 0 . 5 + 0 . 1 ) ) . Using this, we obtain 

WAIMA M v 1 
(
V 

1 
)

= 0 . 4 × ( ( | 0 . 5 − 0 . 1 | ) 
+ ( 1 ∧ ( 1 − 0 . 4 + 0 . 7 ) ) ) = 0 . 56 

WAIMA M v 2 
(
V 

2 
)

= 0 . 3 × ( ( | 0 . 2 − 0 . 5 | ) 
+ ( 1 ∧ ( 1 − 0 . 4 + 0 . 7 ) ) ) = 0 . 39 

WAIMA M v 3 
(
V 

3 
)

= 0 . 5 × ( ( | 0 . 2 − 0 . 5 | ) 
+ ( 1 ∧ ( 1 − 0 . 5 + 0 . 1 ) ) ) = 0 . 45 

BON − OWAIMAM 

= 

( 

1 

3 

×
( 

( ( | 0 . 2 − 0 . 5 | ) × 0 . 56 ) 
+ ( ( 1 ∧ ( 1 − 0 . 5 + 0 . 1 ) ) × 0 . 39 ) 
+ ( ( | 0 . 4 − 0 . 7 | ) × 0 . 45 ) 

) ) 

1 
0 . 5+0 . 5 

= 0 . 423 

These OWA operators are commutative, monotonic, non-

egative and reflexive. They are commutative from the OWA per-

pective because f ( 〈 x 1 , y 1 〉 , …, 〈 x n , y n 〉 ) = f ( 〈 c 1 , d 1 〉 , …, 〈 c n , d n 〉 ),
here ( 〈 x 1 , y 1 〉 , …, 〈 x n , y n 〉 ) is any permutation of the arguments

 〈 c 1 , d 1 〉 , …, 〈 c n , d n 〉 ). They are also commutative from the distance

easure perspective because f ( 〈 x 1 , y 1 〉 , …, 〈 x n , y n 〉 ) = f ( 〈 y 1 , x 1 〉 ,
, 〈 y n , x n 〉 ). They are monotonic because if |x i −y i | ≥ | c i −d i | for

ll i, then f ( 〈 x 1 , y 1 〉 , …, 〈 x n , y n 〉 ) ≥ f ( 〈 c 1 , d 1 〉 , …, 〈 c n , d n 〉 ). Non-

egativity is also always accomplished—that is, f ( 〈 x 1 , y 1 〉 , …, 〈 x n ,
 n 〉 ) ≥ 0. Finally, they are also reflexive because f ( 〈 x 1 , x 1 〉 , …, 〈 x n ,
 n 〉 ) = 0. 

Another issue to consider is the different measures used in

he OWA literature for characterizing the weighting vector [34] .

s mentioned above, the weighting vector can be stipulated by a

umber of methods. We consider the entropy of dispersion, the

alance operator, the divergence of W and the degree of orness

34,55] . The entropy of dispersion is defined as follows: 

 ( W ) = −

⎛ 

⎜ ⎝ 

1 

n 

∑ 

i 

ln ( w i ) 

⎛ 

⎜ ⎝ 

n ∑ 

j=1 
j � = i 

w i ln ( w i ) 

⎞ 

⎟ ⎠ 

⎞ 

⎟ ⎠ 

1 
r+ q 

. (17) 

For the balance operator, we obtain 

al ( W ) = 

⎛ 

⎜ ⎝ 

1 

n 

n ∑ 

i =1 

(
n + 1 − 2 i 

n − 1 

)⎛ 

⎜ ⎝ 

n ∑ 

j=1 
j � = i 

(
n + 1 − 2 j 

n − 1 

)
w i 

⎞ 

⎟ ⎠ 

⎞ 

⎟ ⎠ 

1 
r+ q 

. 

(18) 

For the divergence of W, we obtain 

i v (W ) = 

( 

1 

n 

n ∑ 

i =1 

(
n − i 

n − 1 

− α( W ) 

)2 

×

⎛ 

⎜ ⎝ 

n ∑ 

j=1 
j � = i 

w i 

(
n − j 

n − 1 

− α( w ) 

)2 

⎞ 

⎟ ⎠ 

⎞ 

⎟ ⎠ 

1 
r+ q 

. (19) 
For the degree of orness, we obtain 

( W ) = 

⎛ 

⎜ ⎝ 

1 

n 

n ∑ 

i =1 

(
n − i 

n − 1 

)⎛ 

⎜ ⎝ 

n ∑ 

j=1 
j � = i 

w i 

(
n − j 

n − 1 

)⎞ 

⎟ ⎠ 

⎞ 

⎟ ⎠ 

1 
r+ q 

. (20) 

Further extensions to the BON-OWAAC and BON-OWAIMAM

ould be developed following the current developments on ag-

regation operators [1,59,62] . For example, we could introduce

pproaches that work with a unified framework between the

WA operator and the weighted average [32,44,53] . Thus, we

ould obtain the Bonferroni weighted OWA adequacy coefficient

BON-WOWAAC) and the Bonferroni weighted OWAIMAM (BON-

 OWAIMAM) operator. The main advantage of this approach is

hat it can consider the classical Bonferroni aggregation and the at-

itudinal character characteristic of the decision maker at the same

ime. In addition, it can be reduced to any of them if needed. They

re formulated as follows. Observe that we proceed using the for-

ulas of Merigó [32] . 

roposition 5. A BON-WOWAAC operator for two sets X =
 x 1 , x 2 , . . . , x n } and Y = { y 1 , y 2 , . . . , y n } is given by 

BON − W OWAAC ( 〈 x 1 , y 1 〉 , ..., 〈 x n , y n 〉 ) 

= β + 

⎛ 

⎜ ⎝ 

n ∑ 

i =1 

d r i 

⎛ 

⎜ ⎝ 

1 

1 − n 

n ∑ 

j=1 
j � = i 

d q 
j 

⎞ 

⎟ ⎠ 

⎞ 

⎟ ⎠ 

1 
r+ q 

+ ( 1 − β) ×

⎛ 

⎜ ⎝ 

1 

n 

n ∑ 

i =1 
j � = i 

D 

r 
i OWAA C w i 

(
V 

i 
)
⎞ 

⎟ ⎠ 

1 
r+ q 

, (21) 

here β ∈ [0, 1], the first part of the equation represents the BAC

perator, and the second part is the BON-OWAAAC operator . 

Observe that if β = 1, we obtain the BAC operator, and if β = 0,

e obtain the BON-OWAAC operator. The more the weight of β
s located at the top, the more we use the BAC operator, and vice

ersa. 

roposition 6. A BON-WOWAIMAM operator for two sets X =
 x 1 , x 2 , . . . , x n } and Y = { y 1 , y 2 , . . . , y n } is given by 

BON − W OWAIM AM ( 〈 x 1 , y 1 〉 , ..., 〈 x n , y n 〉 ) 

= β + 

⎛ 

⎜ ⎝ 

n ∑ 

i =1 

d r i 

⎛ 

⎜ ⎝ 

1 

1 − n 

n ∑ 

j=1 
j � = i 

d q 
j 

⎞ 

⎟ ⎠ 

⎞ 

⎟ ⎠ 

1 
r+ q 

+ ( 1 − β) ×

⎛ 

⎜ ⎝ 

1 

n 

n ∑ 

i =1 
j � = i 

D 

r 
i OWAIMA M w i 

(
V 

i 
)
⎞ 

⎟ ⎠ 

1 
r+ q 

, (22) 

here β ∈ [0, 1], the first part of the equation represents the BIMAM

perator, and the second part the BON-OWAIMAM operator . 

Note again that if β = 1, we obtain the BIMAM, and if β = 0, we

btain the BON-OWAIMAM. 

. Bonferroni distances with the ordered weighted moving 

verage 

The moving average (MA) is a useful technique that allows

he representation of dynamic information because the average

oves towards some part of the whole sample. The introduction
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of MA in aggregation theory has allowed aggregating information

that moves towards a set of imprecise arguments. Yager [56] and

Merigó & Yager [39] have proposed the use of moving average with

OWA operators. Recently, new concepts about moving average and

OWA operators have been introduced, such as moving average with

probabilistic weighted average [33] , generalized moving average,

distance measures and OWA operators [39] , and linguistic moving

aggregation operators [35] . Thus, the moving average and ordered

weighted moving average are defined as follows: 

Definition 8. Moving average permits the consideration of the re-

sults of some part of the sample and the ability to make compar-

isons when modifying the partial sample selected. 

MA ( a 1+ t , a 2+ t , ..., a m + t ) = 

1 

m 

m + t ∑ 

i =1+ t 
a i , (23)

where t indicates the movement conducted in the average from

the initial analysis. 

Definition 9. OWMA of dimension m is a mapping OWMA: R m →
R that has an associated weighting vector W of dimension m, with

 = 

∑ m + t 
j=1+ t w j = 1 and w j ∈ [0, 1], such that 

OW MA ( a 1+ t , a 2+ t , ..., a m + t ) = 

m + t ∑ 

j=1+ t 
w j b j , (24)

where b j is the jth largest argument of the a i , m is the total number

of arguments considered from the whole sample, and t indicates

the movement in the average from the initial analysis. 

With the approach used in Definitions 8 and 9 , we can extend

the operators presented in Section 3 with moving averages forming

the moving Bonferroni distance, moving BON-OWA, moving Bon-

ferroni adequacy coefficient, moving BON-OWAAC, moving Bonfer-

roni IMAM and moving BON-OWAIMAM operators. Following Eqs.

(11) and ( 23 ), we can formulate the moving Bonferroni distance

(MBD) as follows: 

MBD ( 〈 x 1 , y 1 〉 , ..., 〈 x n , y n 〉 ) = 

⎛ 

⎜ ⎝ 

1 

n 

n + t ∑ 

i =1+ t 
d r i 

⎛ 

⎜ ⎝ 

1 

1 − n 

n + t ∑ 

j=1+ t 
j � = i 

d q 
j 

⎞ 

⎟ ⎠ 

⎞ 

⎟ ⎠ 

1 
r+ q 

, 

(25)

By using Eqs. (12) and (24) , we can formulate the moving BON-

OWAD (BON-OWMAD) operator in the following way: 

BON − OW MAD ( 〈 x 1 , y 1 〉 , ..., 〈 x n , y n 〉 ) 

= 

⎛ 

⎜ ⎝ 

1 

n 

n + t ∑ 

i =1+ t 
j � = i 

D 

r 
i OWA D w i 

(
V 

i 
)⎞ 

⎟ ⎠ 

1 
r+ q 

, (26)

The moving Bonferroni adequacy coefficient (MBAC) is formu-

lated as follows by using Eqs. (13) and (23) : 

MBAC ( 〈 x 1 , y 1 〉 , ..., 〈 x n , y n 〉 ) = 

⎛ 

⎜ ⎝ 

n + t ∑ 

i =1+ t 
d r i 

⎛ 

⎜ ⎝ 

1 

1 − n 

n + t ∑ 

j=1+ t 
j � = i 

d q 
j 

⎞ 

⎟ ⎠ 

⎞ 

⎟ ⎠ 

1 
r+ q 

, 

(27)

Using Eqs. (14) and ( 24 ), we can construct the moving BON-

OWAAC (BON-OWMAAC) operator as: 

BON − OW MAAC ( 〈 x 1 , y 1 〉 , ..., 〈 x n , y n 〉 ) 
= 

⎛ 

⎜ ⎝ 

1 

n 

n + t ∑ 

i =1+ t 
j � = i 

D 

r 
i OWAA C w i 

(
V 

i 
)
⎞ 

⎟ ⎠ 

1 
r+ q 

, (28)

By using Eqs. (15) and ( 23 ), we can formulate the moving Bon-

erroni IMAM (MBIMAM) operator in the following way: 

 BIM AM ( 〈 x 1 , y 1 〉 , ..., 〈 x n , y n 〉 ) = 

⎛ 

⎜ ⎝ 

n + t ∑ 

i =1+ t 
d r i 

⎛ 

⎜ ⎝ 

1 

1 − n 

n + t ∑ 

j=1+ t 
j � = i 

d q 
j 

⎞ 

⎟ ⎠ 

⎞ 

⎟ ⎠ 

1 
r+ q 

(29)

The moving BON-OWAIMAM (BON-OWMAIMAM) operator fol-

ows Eqs. (16) and ( 24 ) and is constructed as follows: 

BON − OW M AIM AM ( 〈 x 1 , y 1 〉 , ..., 〈 x n , y n 〉 ) 

= 

⎛ 

⎜ ⎝ 

1 

n 

n + t ∑ 

i =1+ t 
j � = i 

D 

r 
i OWAIMA M w i 

(
V 

i 
)
⎞ 

⎟ ⎠ 

1 
r+ q 

, (30)

Similarly, we could construct many other moving Bonfer-

oni means following the current aggregation operator literature

1,35,59] . 

. Group decision-making problems with Galois lattices and 

onferroni means 

Moore’s families and Galois lattices [5,10,11,45] are used in com-

ination with BON-OWAAC and BON-OWAIMAM operators in the

stablishment of relationships and affinities according to the com-

arison of personal interests, skills, capabilities and knowledge of

ach individual. These algorithms allow the aggregation of infor-

ation obtained in a single representative value of the information

ccording to the personality parameters and the attitude parame-

ers of each individual. Furthermore, Moore’s families and Galois

attices allow relating and grouping of these characteristics accord-

ng to relationship similarities and affinities. 

The introduction of Bonferroni means and BON-OWAAC and

ON-OWAIMAM can reflect the degree of different skills, capabil-

ties, knowledge and personal interest necessary to define possi-

le groups within co-working spaces according to personality and

ttitude using Moore’s families and Galois Lattices. Several mod-

ls that use Bonferroni means have been developed and applied to

ultiple attribute decision-making (MADM), multicriteria decision-

aking (MCDM) and multiple attribute grouping decision-making

MAGDM), including linguistic variables [25,30,31] , intuitionistic

uzzy information [8,20,46,63,64] , geometric operators [16,50] , At-

anassov orthopairs [3,21,60] and hesitant representation [19,47,61] .

o show how this tool works with Moore’s families and Galois Lat-

ices and how its algorithms can be applied, we describe the deci-

ion making process as follows. 

Step 1. Analyze and determine the personal interests, skills, ca-

pabilities and knowledge of each entrepreneur Theoretically,

this would be represented as: C = { C 1 , C 2 , C i , . . . , C n } ,
where C i is the ith characteristic of the members belonging

to the co-working space to be considered. 

Step 2. Establishment of professional needs, personal interests,

skills, capabilities and knowledge for an entrepreneur who

wants to belong to a co-working space, where P is the ideal

creative characteristics expressed by a fuzzy subset. 

Step 3. Establishment of professional needs, personal inter-

ests, skills, capabilities and knowledge for each entrepreneur

who already belongs to a co-working space with K =
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1 , 2 , . . . , m ; where P k is the kth entrepreneur expressed

by a fuzzy subset; C i is the ith set of personal interests,

skills, capabilities and knowledge to be considered; and

l (k) 
i 

∈ [ 0 , 1 ] ; i = 1 , 2 , . . . , n is the value between 0 and 1

for the ith set of personal interests, skills, capabilities and

knowledge of the kth entrepreneur. 

Step 4. A comparison of the professional needs, personal inter-

ests, skills, capabilities and knowledge of each member is

considered through the use of the BON-OWAAC, BAC, BON-

OWAIMAM and BIMAM operators. In this step, we express

numerically the distance between professional needs, per-

sonal interests, skills, capabilities and knowledge of an en-

trepreneur who wishes to belong to a co-working space with

those of each entrepreneur who already belongs to one. In

this sense, we use the new proposition based on BON-OWA

and OWAAC and OWAIMAM operators. 

Step 5. Group entrepreneurs according to the maximum sim-

ilarity and sub-relations of their professional needs, per-

sonal interests, skills, capabilities and knowledge levels us-

ing Moore’s families and Galois lattice. These algorithms are

used by Gil-Aluja [11] and are composed of five steps, which

will be explained in the following steps. 

Step 5.1. From the similarity relation [ ̃  S ] obtained by the com-

parison explained in the step 4, we found a dissimilar-

ity fuzzy relation [ ̃  D ] through its complement, where [ ̃  D ] =
| 1 − [ ̃  S ] | . From [ ̃  D ] we found a Boolean relation through the

determined α level, where α = n . Thus, we obtain a sym-

metric and reflexive matrix. 

Step 5.2. Based on a Boolean matrix, we consider it as a start-

ing point for Moore’s families. We obtain right connection

B 

+ and left connection B 

− to establish more families. The

“connection to the right” B + , the subset elements of E 1 ,

such that for every A ∈ �( E 1 ), B + are the successors of

all elements belonging to A , which is given by: ∀ x ∈ A :

B + A = { y ∈ E 1 / ( y, x ) ∈ [ B ] } , where B + ∅ = E 1 . From its defi-

nition the following expression is given: ∀ x ∈ A ∈ �( E 1 ) :

B 

+ A = 

⋂ 

x ∈ A B 

+ { x } . The connection to the left, B −, the sub-

set elements of E 1 , such that for every A ∈ � ( E 1 ), B 
− is the

successor of all elements belonging to A , which is given by:

∀ x ∈ A : B 

−A = { y ∈ E 1 / ( y , x ) ∈ [B] } , where B 

−∅ = . By def-

inition, the following expression is given: ∀ x ∈ A ∈ �( E 1 ) :

B 

−A = 

⋂ 

x ∈ A B 

−{ x } . Because B + and B − come from the fuzzy

relationship 

˜ R , the closures of Moore �( E 1 ) are given by

M 

(1) = B 

− ◦ B 

+ , M 

(2) = B 

+ ◦ B 

−, where ◦ is the max–min

composition. However, if the matrix is a square, B 

+ = B 

− =
B 

∗; i.e., we must find only a unique connection. 

Step 5.3. Based on Moore closing, we establish the clo-

sure subsets �( E 1 ) coming from closure M 

(1) and

M 

(2) , which are given by �( E , M 

(1) ) = 

⋃ 

A ⊂�( E 1 ) 
B 

+ A
and �( E , M 

(2) ) = 

⋃ 

A ⊂�( E 1 ) 
B 

−A . Thus, 
⋃ 

A ⊂�( E 1 ) 
B 

+ A =
{ A , B , C , . . . , M , AB , AC , BC , . . . , MM , E 1 } and 

⋃ 

A ⊂�( E 1 ) 
B 

−A = 

{ ∅ , a , b , c , . . . , m , ab , ac , bc , . . . , mm , E 1 } . Thus, the families

of closed elements � ( E 2 , M 

(1) ) and �( E 1 , M 

(2) ) are associ-

ated by the same cardinal: car . �( E 2 , M 

(1) ) = car . �( E 1 , M 

(2) ) .

Note that these families constitute an isomorphic lattice. 

Step 5.4. Based on the Moore’s families obtained, we build

a Galois lattice. A Galois lattice is an algebraic structure

that allows making clusters based on affinities. �( E 1 ) and

�( E 2 ), the power sets of E 1 and E 2 , have established the or-

dered relationship [10] given by two steps. First, ∀ X, X 
′ ∈

�( E 1 ) , ∀ Y, Y ′ �( E 2 ) , i.e., ((X, Y) ≤ (X 

′ , Y 

′ )) ⇔ (X ⊃X 

′ , Y ⊂Y 

′ ).
Second, ∀ X, X 

′ ∈ �( E 1 ) , ∀ Y, Y ′ �( E 2 ) , i.e., ((X, Y) ≥ (X 

′ ,
Y 

′ )) ⇔ (X ⊃X 

′ , Y ⊂Y 

′ ). Thus, we obtain a graph where it is pos-

sible to identify affinities between each entrepreneur within

co-working spaces. 

 

Step 6. Decisions are adopted according to the results found

in the previous steps and should guide the decision about

which types of creative groups are required. Noticeably, the

decision is based on choosing the group of entrepreneurs

that best fits the decision-makers’ interests. 

. Application of decision-making in the formation of creative 

roups 

In this section, we present an application to understand the

ew approach suggested above. The methodology uses the BON-

WAAC and BON-OWAIMAM operators’ in-group decision-making

roblems with Moore’s families and Galois Lattice. The main ad-

antages of using this operator are that it allows the considering

ontinuous aggregations, multiple comparisons between each argu-

ent and distance measures in the same formulation according to

he ordered position of each argument. In addition, using Moore’s

amilies and Galois lattice, we can collect parameters according to

ts affinities. The application is focused on comparing professional

eeds, personal interests, skills, capabilities and knowledge of an

ndividual who wishes to belong to a co-working space with those

f an individual already belonging to one. The new method pro-

osed allows a continuous comparison and grouping among its al-

ernatives. The approach design comprises six steps, which are pre-

ented as follows: 

.1. Decision making approach 

Step 1. It has been assumed that the decision-maker wishes

to link professional needs, personal interests, skills, capa-

bilities and knowledge similarities between entrepreneurs

who belong to a co-working space with a new member

and to gather information according to affinities. The man-

ager chooses five entrepreneurs who belong to a co-working

space E 1 , E 2 , E 3 , E 4 and E 5 , with different levels of pro-

fessional needs, personal interests, skills, capabilities and

knowledge (see Table 1 ). Each characteristic of the group of

individuals is considered a property. 

Step 2. It has been assumed that the decision-maker has estab-

lished the professional needs, personal interests, skills, capa-

bilities and knowledge characteristics of each entrepreneur

in a professional and personal profile (PPP) (see Table 2 ).

These characteristics are inherent for each individual accord-

ing to their own intellectual, personality and motivational

traits, which are shaped by education and social and pro-

fessional environments. 

Step 3. It has been assumed that the decision-maker has fixed

the level of each professional and personal characteristics for

each entrepreneur who belongs to each co-working space

(E 1 to E 5 ) and the new member (E 0 ). Here, each level could

be composed by objective or subjective information accord-

ing to prior evaluation. It shows the level of professional and

personal interests for each entrepreneur, creating a profes-

sional and personal profile composed of 36 characteristics

(see Table 3 ). 

Step 4. To make a technical comparison between each level

of professional and personal interests for each entrepreneur,

the BON-OWAAC and BON-OWAIMAM operators are used

as a starting point. Furthermore, we also consider HD, AC,

IMAM, OWAD, OWAAC, OWAIMAM, BD, BAC, BIMAM and

BON-OWAD. The main idea is to make continuous compar-

isons to create groups with Moore’s families and the Galois

lattice algorithm. The weighting vector w = 0.8, 0.8, 0.5, 0.9,

0.5, 0.9, 0.7, 0.8, 0.6, 0.8, 0.5, 0.7, 0.2, 0.2, 0.4, 0.7, 0.1, 1.0,

1.0, 0.9, 0.6, 0.4, 0.7, 0.8, 0.7, 0.1, 0.8, 0.7, 1.0, 0.5, 0.8, 0.9,
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Table 1 

Group of creative individuals. 

E 1 Entrepreneur who works in the development of mobile applications 

E 2 Entrepreneur who works in the design of web pages 

E 3 Entrepreneur who works in arts, images and illustrations 

E 4 Entrepreneur who works in accounting and financial advice for small businesses 

E 5 Entrepreneur who works in marketing and branding advice for small businesses 

Table 2 

Professional and personal profile (PPP). 

Professional needs Personal interests Skills Capabilities Knowledge 

C 1 Accounting C 8 New business C 15 Programing C 22 Creative C 29 Accounting 

C 2 Programing C 9 Arts C 16 Informatics C 23 Drawing C 30 Finance 

C 3 Finance C 10 Internet C 17 Designing C 24 Rhetoric C 31 Marketing 

C 4 Branding C 11 Mobile applications C 18 Writing C 25 Negotiation C 32 Arts and illustration 

C 5 Relationships C 12 Sports C 19 Analysis C 26 Leadership C 33 Informatics 

C 6 Marketing C 13 Music C 20 Software C 27 Persuasion C 34 Branding 

C 7 Design C 14 Lecture C 21 Social networks C 28 Teamwork C 35 Programing 

C 36 Strategy 

Table 3 

Level of professional and personal interests of each entrepreneur. 

C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 18 

E 0 0 .5 0 .4 0 .5 1 .0 1 .0 0 .8 0 .4 0 .6 0 .1 0 .4 0 .1 1 .0 0 .5 0 .5 0 .2 0 .4 0 .4 1 .0 

E 1 0 .7 0 .5 0 .5 0 .5 0 .7 0 .6 0 .8 0 .1 0 .5 1 .0 1 .0 0 .5 0 .2 0 .5 1 .0 1 .0 0 .9 0 .6 

E 2 0 .3 0 .2 0 .8 1 .0 0 .5 0 .6 1 .0 0 .3 0 .8 1 .0 0 .7 0 .5 0 .5 0 .5 1 .0 1 .0 0 .6 0 .6 

E 3 0 .3 0 .2 0 .8 1 .0 0 .5 0 .6 1 .0 0 .3 0 .8 1 .0 0 .7 0 .5 0 .5 0 .5 1 .0 1 .0 0 .6 0 .6 

E 4 0 .5 0 .8 0 .2 0 .3 1 .0 0 .6 1 .0 1 .0 1 .0 0 .6 0 .7 0 .5 0 .8 0 .5 0 .3 0 .5 1 .0 1 .0 

E 5 1 .0 0 .5 1 .0 0 .5 0 .7 0 .9 0 .1 0 .2 0 .5 0 .8 0 .5 0 .5 0 .6 0 .5 0 .3 0 .5 0 .7 0 .5 

C 19 C 20 C 21 C 22 C 23 C 24 C 25 C 26 C 27 C 28 C 29 C 30 C 31 C 32 C 33 C 34 C 35 C 36 

E 0 0 .6 0 .4 1 .0 0 .9 0 .2 0 .5 0 .8 0 .8 0 .7 1 .0 0 .5 0 .5 0 .8 0 .4 0 .4 1 .0 0 .2 0 .8 

E 1 0 .6 1 .0 1 .0 1 .0 0 .3 0 .6 0 .5 0 .8 0 .4 0 .5 0 .4 0 .5 1 .0 0 .4 1 .0 0 .2 1 .0 0 .4 

E 2 0 .5 1 .0 1 .0 0 .5 0 .3 0 .9 0 .5 0 .8 1 .0 0 .8 0 .4 0 .6 0 .7 1 .0 1 .0 0 .8 1 .0 0 .4 

E 3 0 .5 0 .4 0 .8 1 .0 1 .0 0 .5 0 .5 0 .8 0 .4 0 .9 0 .4 0 .5 0 .4 1 .0 0 .5 0 .4 0 .2 0 .3 

E 4 1 .0 0 .3 0 .1 0 .5 0 .2 0 .6 1 .0 0 .8 0 .5 0 .6 1 .0 1 .0 0 .6 0 .4 0 .5 0 .5 0 .2 0 .7 

E 5 1 .0 0 .4 1 .0 0 .5 0 .2 1 .0 1 .0 0 .8 1 .0 0 .7 0 .5 0 .6 1 .0 0 .3 0 .5 1 .0 0 .3 0 .8 
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1.0, 0.3, 0.8, 0.2 is used in OWAD, OWAAC, OWAIMAM, BON-

OWAD, BON-OWAAC and BON-OWAIMAM. Likewise, we con-

sider that r = q = 0 . 5 for all Bonferroni operators. 

Step 5. Entrepreneurs are related and grouped according to

the similarity of relations and affinities of their professional

needs, personal interests, skills, capabilities and knowledge

levels using Moore’s families and the Galois lattice algo-

rithm . 

Step 6. Decisions are adopted according to the results found in

the previous steps. 

6.2. Results 

The following section shows the main results of the applica-

tion. These results are structured as it follows: The new methods

of BON-OWAAC and BON-OWAIMAM were implemented to obtain

the similarity of relationships to use Moore’s families and the Ga-

lois lattice for establishing groups of affinities. Likewise, we im-

plemented other methods such as HD, AC, IMAM, OWAD, OWAAC,

OWAIMAM, BD, BAC, BIMAM and BON-OWAD to show the versatil-

ity of these methods for establishing these types of relationships.

Moreover, it is important to mention that the proposed method

has specific characteristics. For BON-OWAAC, the differences be-

tween two sets are established by a threshold in the compari-

son process when one set is higher than the other, so the re-

sults are equal from this point. For BON-OWAIMAM, the differ-

ence between two sets is established by comparison by unifying

the Hamming distance and the adequacy coefficient in the same

formulation. These methods allow establishing a continuous com-
arison and interrelationship between the professional needs, per-

onal interests, skills, capabilities and knowledge of an individual

ho wishes to belong a to co-working space with those of each

ndividual who already belongs to one. Based on the comparison

esults, we found dissimilarity fuzzy relationships (see Table 4 ),

rom which a Boolean relationship is found through a determined

level. 

Thus, we carried out the sum of the products in minimum

erms to obtain the complement for each term and to establish

he similarity relations and Moore’s families (see Table 5 ). Finally,

e built a Galois lattice using Moore’s families as a starting point

see Fig. 1 ). We have used 12 different distance techniques in

hich dissimilarity fuzzy relations are expressed in max terms

uch as HD, OWAD, BD, and BON-OWAD and min terms such as AC,

WAAC, BAC, and BON-OWAAC. It is possible that some methods

how similar results, although the existing differences are defined

y each characteristic. Likewise, it is noted that the results ob-

ained by BON-OWA operators allowed us to make multiple com-

arisons between input arguments and to capture the interrela-

ionships. 

In Table 5 , we display Boolean matrices only for BON-OWAD,

ON-OWAAC and BON-OWAIMAM based on similarity relations.

he maximum similarity sub-relations for each group can be ex-

ressed in max ( ≥) or min ( ≤) terms; i.e., in some cases, the best

esults are near 1, and in other cases, the best results are near

. Thus, BON-OWAD is considered in max terms ( α≥ 0,76), and

ON-OWAAC and BON-OWAIMAM are considered in min terms

 α≤ 0,10 and α≤ 0,28). This situation is given by the specific char-
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Table 4 

Dissimilarity fuzzy relations based on several technical comparisons. 

HD OWAD BD BON-OWAD 

E 1 E 2 E 3 E 4 E 5 E 6 E 1 E 2 E 3 E 4 E 5 E 6 E 1 E 2 E 3 E 4 E 5 E 6 E 1 E 2 E 3 E 4 E 5 E 6 

E 1 1 .00 0 .66 0 .67 0 .72 0 .72 0 .78 E 1 1 .00 0 .78 0 .77 0 .83 0 .81 0 .85 E 1 1 .00 0 .67 0 .75 0 .70 0 .70 0 .76 E 1 1 .00 0 .67 0 .76 0 .70 0 .69 0 .76 

E 2 0 .66 1 .00 0 .81 0 .70 0 .69 0 .66 E 2 0 .78 1 .00 0 .88 0 .79 0 .80 0 .78 E 2 0 .67 1 .00 0 .82 0 .69 0 .68 0 .71 E 2 0 .67 1 .00 0 .82 0 .69 0 .67 0 .70 

E 3 0 .67 0 .81 1 .00 0 .68 0 .65 0 .72 E 3 0 .77 0 .88 1 .00 0 .79 0 .74 0 .79 E 3 0 .75 0 .82 1 .00 0 .68 0 .66 0 .73 E 3 0 .76 0 .82 1 .00 0 .68 0 .65 0 .73 

E 4 0 .72 0 .70 0 .68 1 .00 0 .67 0 .70 E 4 0 .83 0 .79 0 .79 1 .00 0 .77 0 .80 E 4 0 .70 0 .69 0 .68 1 .00 0 .67 0 .72 E 4 0 .70 0 .69 0 .68 1 .00 0 .67 0 .72 

E 5 0 .72 0 .69 0 .65 0 .67 1 .00 0 .74 E 5 0 .81 0 .80 0 .74 0 .77 1 .00 0 .82 E 5 0 .70 0 .68 0 .66 0 .67 1 .00 0 .75 E 5 0 .69 0 .67 0 .65 0 .67 1 .00 0 .74 

E 6 0 .78 0 .66 0 .72 0 .70 0 .74 1 .00 E 6 0 .85 0 .78 0 .79 0 .80 0 .82 1 .00 E 6 0 .76 0 .71 0 .73 0 .72 0 .75 1 .00 E 6 0 .76 0 .70 0 .73 0 .72 0 .74 1 .00 

AC OWAAC BAC BON-OWAAC 

E 1 E 2 E 3 E 4 E 5 E 6 E 1 E 2 E 3 E 4 E 5 E 6 E 1 E 2 E 3 E 4 E 5 E 6 E 1 E 2 E 3 E 4 E 5 E 6 

E 1 1 0 .14 0 .11 0 .12 0 .15 0 .07 E 1 1 .00 0 .44 0 .43 0 .43 0 .45 0 .40 E 1 1 .00 0 .14 0 .09 0 .16 0 .17 0 .08 E 1 1 .00 0 .15 0 .10 0 .18 0 .19 0 .09 

E 2 0 .14 1 .00 0 .07 0 .16 0 .19 0 .15 E 2 0 .44 1 .00 0 .39 0 .47 0 .48 0 .46 E 2 0 .14 1 .00 0 .07 0 .17 0 .19 0 .12 E 2 0 .15 1 .00 0 .08 0 .19 0 .21 0 .13 

E 3 0 .11 0 .07 1 .00 0 .19 0 .24 0 .15 E 3 0 .43 0 .39 1 .00 0 .49 0 .53 0 .47 E 3 0 .09 0 .07 1 .00 0 .19 0 .22 0 .12 E 3 0 .10 0 .08 1 .00 0 .21 0 .23 0 .13 

E 4 0 .12 0 .16 0 .19 1 .00 0 .19 0 .13 E 4 0 .43 0 .47 0 .49 1 .00 0 .48 0 .44 E 4 0 .16 0 .17 0 .19 1 .00 0 .20 0 .11 E 4 0 .18 0 .19 0 .21 1 .00 0 .21 0 .12 

E 5 0 .15 0 .19 0 .24 0 .19 1 .00 0 .08 E 5 0 .45 0 .48 0 .53 0 .48 1 .00 0 .41 E 5 0 .17 0 .19 0 .22 0 .20 1 .00 0 .08 E 5 0 .19 0 .21 0 .23 0 .21 1 .00 0 .10 

E 6 0 .07 0 .15 0 .15 0 .13 0 .08 1 .00 E 6 0 .40 0 .46 0 .47 0 .44 0 .41 1 .00 E 6 0 .08 0 .12 0 .12 0 .11 0 .08 1 .00 E 6 0 .09 0 .13 0 .13 0 .12 0 .10 1 .00 

IMAM OWAIMAM BIMAM BON-OWAIMAM 

E 1 E 2 E 3 E 4 E 5 E 6 E 1 E 2 E 3 E 4 E 5 E 6 E 1 E 2 E 3 E 4 E 5 E 6 E 1 E 2 E 3 E 4 E 5 E 6 

E 1 1 .00 0 .43 0 .39 0 .40 0 .44 0 .45 E 1 1 .00 0 .64 0 .61 0 .63 0 .64 0 .65 E 1 1 .00 0 .30 0 .25 0 .31 0 .33 0 .29 E 1 1 .00 0 .31 0 .26 0 .33 0 .34 0 .30 

E 2 0 .43 1 .00 0 .43 0 .38 0 .34 0 .42 E 2 0 .64 1 .00 0 .64 0 .61 0 .58 0 .63 E 2 0 .30 1 .00 0 .27 0 .29 0 .27 0 .27 E 2 0 .31 1 .00 0 .28 0 .31 0 .29 0 .28 

E 3 0 .39 0 .43 1 .00 0 .42 0 .38 0 .44 E 3 0 .61 0 .64 1 .00 0 .64 0 .60 0 .64 E 3 0 .25 0 .27 1 .00 0 .32 0 .29 0 .28 E 3 0 .26 0 .28 1 .00 0 .32 0 .29 0 .27 

E 4 0 .40 0 .38 0 .42 1 .00 0 .39 0 .41 E 4 0 .63 0 .61 0 .64 1 .00 0 .61 0 .63 E 4 0 .31 0 .29 0 .32 1 .00 0 .30 0 .26 E 4 0 .33 0 .31 0 .32 1 .00 0 .31 0 .28 

E 5 0 .44 0 .34 0 .38 0 .39 1 .00 0 .38 E 5 0 .64 0 .58 0 .60 0 .61 1 .00 0 .59 E 5 0 .33 0 .27 0 .29 0 .30 1 .00 0 .25 E 5 0 .34 0 .29 0 .29 0 .31 1 .00 0 .26 

E 6 0 .45 0 .42 0 .44 0 .41 0 .38 1 .00 E 6 0 .65 0 .63 0 .64 0 .63 0 .59 1 .00 E 6 0 .29 0 .27 0 .28 0 .26 0 .25 1 .00 E 6 0 .30 0 .28 0 .27 0 .28 0 .26 1 .00 

Table 5 

Maximum similarity sub-relations for conformed creative groups through several α levels. 

BON-OWAD BON-OWAAC BON-OWAIMAM 

α≥ 0.76 E 1 E 2 E 3 E 4 E 5 E 6 α≤ 0.10 E 1 E 2 E 3 E 4 E 5 E 6 α≤ 0.28 P 1 P 2 P 3 P 4 P 5 P 6 

E 1 1 0 1 0 0 1 E 1 1 0 1 0 0 1 E 1 1 0 1 0 0 0 

E 2 0 1 1 0 0 0 E 2 0 1 1 0 0 0 E 2 0 1 1 0 0 1 

E 3 1 1 1 0 0 0 E 3 1 1 1 0 0 0 E 3 1 1 1 0 0 1 

E 4 0 0 0 1 0 0 E 4 0 0 0 1 0 0 E 4 0 0 0 1 0 1 

E 5 0 0 0 0 1 0 E 5 0 0 0 0 1 1 E 5 0 0 0 0 1 1 

E 6 1 0 0 0 0 1 E 6 1 0 0 0 1 1 E 6 0 1 1 1 1 1 

Fig. 1. Moore’s families and Galois lattices for BON-OWAD, BON-OWAAC and BON-OWAIMAM. 
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cteristics of each method. We have analyzed groups formed by

he newly proposed BON-OWA operators. Because we have used

ifferent methods, the number and type of groups are different.

owever, in several cases, the results can coincide between differ-

nt methods depending on the type of decision. In that case, we

ote that the type and number of groups are different, which is
vident in the number of families formed by each BON-OWA op-

rator and their established relationship. Hence, the existence of

nterrelationships between each individual depends on the method

sed. 

Based on the maximum similarity sub-relations, we have ob-

ained Moore’s families for BON-OWAD, BON-OWAAC and BON-
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OWAIMAM. Thus, we have built the Galois lattices for each BON-

OWA proposed to establish the relationship among all of the stud-

ied cases ( Fig. 1 ). Hence, each of these lattices shows a different

interrelationship between each of the entrepreneurs. On the one

hand, we have observed that BON-OWAD and BON-OWAAC lattices

have a similar structure although the shapes in which relations are

established are different. On the other hand, we have also observed

that the BON-OWAIMAM lattice has a different structure, which,

given by this operator, has the characteristics of both HD and AC

in the same formulation. Furthermore, it is important to note that

this operator can apply HD or AC according to preference or needs

of the decision-maker. 

Each of these lattices shares specific characteristics according

to the professional needs, personal interests, skills, capabilities and

knowledge affinities of each entrepreneur. Because these lattices

have been established by these affinities, the potential for estab-

lishing synergies, improving understanding and enhancing their

skills and cooperation would be more effective. In addition, we

can observe and detect the specific relationships, highlighting a

key entrepreneur who shares affinities with a specific group of en-

trepreneurs or small groups of entrepreneurs. However, it is impor-

tant to highlight that groups can change according to the criteria of

the decision-maker, prior needs and importance of characteristics.

Thus, these methods can adapt within the timeline. 

7. Conclusions 

We have studied OWA operators, some distance measures and

Bonferroni means to propose new aggregation operators. We have

introduced new aggregation operators using AC and IMAM in the

same formulation with Bonferroni means and the OWA opera-

tor. The methods introduced are called BON-OWAAC and BON-

OWAIMAM. The main advantages of using these operators are that

they allow considering continuous aggregations, multiple compar-

isons between each argument and distance measures in the same

formulation. In addition, each method has specific advantages. For

BON-OWAAC, the differences between two sets are established by

a threshold in the comparison process when one set is higher

than the other, so the results are equal from this point. For BON-

OWAIMAM, the differences between two sets are established using

characteristics of both HD and AC in the same formulation. Like-

wise, we have obtained other methods such as BAC, BIMAM, BON-

 OWAA C and BON- W OWAIMAM. Thus, we obtain a new group of

distance families, which allows the importance and interrelation-

ship of each distance to be analyzed. Moreover, we have also ex-

tended these operators with moving averages to aggregate time se-

ries and related issues. 

We have developed an application focused on comparing

the professional needs, personal interests, skills, capabilities and

knowledge of an entrepreneur who wishes to belong to a co-

working space with those of an entrepreneur who already be-

longs to one. We have used this new group of distance families

in combination with Moore’s families and Galois lattices to con-

nect co-working entrepreneur members according to their inter-

ests and capabilities. New methods are used as a previous step to

apply Moore’s families and the Galois lattices to obtain different

distances between a set of elements, to gather each entrepreneur

according to the maximum similarity sub-relations and to estab-

lish relationships according to their affinities. First, we have found

dissimilar fuzzy relations to establish a Boolean relation through

a determined α level. Second, we have used 12 different distance

techniques in which similarity relationships are expressed in max

terms and min terms. Finally, we have shown maximum similar-

ity sub-relations for BON-OWA operators only. We have obtained

Moore’s families and built Galois lattices to represent an estab-

lished interrelationship between each entrepreneur. Each of these
attices shares specific characteristics according to the professional

nd personal profile affinities of each entrepreneur. 

The versatility of this algorithm has been highlighted within a

elationship and gathering context, which is focused on the pro-

essional and personal interests of entrepreneurs in co-working

laces. The main implications of using both operators are that they

an help enhance the creation of synergies, improve understanding

nd strengthen the skills and cooperation among individuals. Like-

ise, with better analysis and interpretation of subjective infor-

ation obtained from the personal characteristics of individuals, it

lso helps create more efficient teamwork. Furthermore, these new

lgorithms can be used in different fields. First, they are used in ar-

as such as sports teams, strategy marketing and entrepreneurship.

econd, they allow the aggregation of objective and subjective in-

ormation from different sources. Third, they allow consideration of

ontinuous aggregations and multiple comparisons between each

rgument. 
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