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ABSTRACT 

 

This paper analyzes the association between climate change variables and 

the incidence of intense hydro meteorological disasters within a framework 

that include global and local climate variables as well as socio-economic 

factors that aggravate disasters. We have shown that atmospheric carbon 

dioxide accumulation significantly increases hydro meteorological disasters 

and that the losses of human capital caused by such disasters induce 

significant negative effects on the rate of economic growth. A distinctive 

feature of this research is that the statistical-econometric analysis used 

considers all reported significant climate-related disasters during the 

period 1970-2013 in 184 countries, instead of focusing merely on selected 

disasters, periods or countries as most previous research has done.  
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1. Introduction 

Intense climate-related disasters, comprising hydro meteorological events (floods and 

storms) and climatological ones (droughts and heat waves), have been rising in recent 

decades worldwide. This paper examines the link between climate change and the 

increase of hydro meteorological incidents and their impact on economic growth.   

 

Most previous studies on the climate-disaster link have simulated the likelihood of 

disasters in particular geographic areas using climate change models (Easterling et al 

2000; Pall et al. 2011; Schreider, Smith and Jakeman 2000; Cornwall 2016). Others have 

analyzed particular disasters in specific regions (Stott et al. 2004; Hoerling et al. 2012). 

While analyzing particular disasters may have the advantage of gaining greater depth on 

understanding them the results using this approach are likely to be affected by selection 

biases (Heckman et al. 1998) as it is difficult to ascertain their general validity. Similarly, 

most studies on the effects of climate-related disasters on economic growth have focused 

on particular events or on subsets of disasters in particular regions and times which 

obviously raises the question of whether these studies are also affected by selection 

biases (Albala-Bertrand, 1993; Otero & Marti, 2005). 

 

In contrast, the present statistical-econometric analysis considers all reported intense 

climate-related disasters worldwide during the period 1970-2013 in 184 countries. Having 

established correlations between climate change indicators and hydro meteorological 

disasters, the paper applies co-integration tests to see if the correlations represent 

meaningful or non-spurious correlations concluding that a meaningful association 

between the number of such disasters and the accumulation of carbon dioxide in the 

atmosphere does exist. Subsequently we examine how climate-related disasters and 
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hence how atmospheric carbon accumulation have affected the potential for economic 

growth using a panel country data for the full sample of disasters available for most 

countries in the world.  

 

Two previous studies have also used multi-country statistical analyses. Thomas et al. 

(2014) used a sample of 25 Asian countries, but only traced country-specific climatic 

conditions rather than global climatic trends. Moreover, while the authors found a 

significant statistical relationship between disasters and local climatic conditions, they did 

not check for potential biases in their results from the omission of certain variables 

affecting the likelihood of disasters and local climatic conditions.  

 

López et.al (2016) relied on cross-country, time-series statistical analyses to connect 

disasters and climate change using annual panel data for 153 countries. This study 

showed a positive impact of global climate change indicators and local ones on hydro 

meteorological disasters. It also probed if this connection was meaningful using co-

integration analysis. However, since the sample covered only 43 time observations, the 

time series analysis underlying co-integration was likely weak. Also, this study does not 

consider the economic impact of disasters. Neither of these two studies considers the 

effects of disasters on economic growth.   

 

The present study is a more solid basis for the conclusions than the above papers in two 

ways. First, it uses the broadest sample available of 184 countries across five continents 

for 43 years. Second, it uses quarterly data instead of annual data, lengthening the 

longitudinal component of the series to nearly 180 observations and making the co-

integration analysis more robust. Most authors recognize that using appropriate methods, 

a time series analysis with more than 100 time observations is adequate.  
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More broadly, this paper integrates three major factors affecting natural disasters. One is 

global climatic factors, viz., atmospheric Co2 accumulation and global temperature, a 

second is local climatic variables, viz., local precipitation and temperature, and the third is 

socio-economic variables, viz., per capita GDP, population density. The use of socio-

economic variables is designed to capture vulnerability and exposure of populations to 

disasters. The fact that we focus on intense disasters—defined as disasters that have 

caused a certain minimum number of deaths and/or people affected—justifies considering 

vulnerability and exposure that help turn hazards into disasters. Also, we postulate that 

global climatic changes are likely to affect intense climate-related disasters in addition to 

the local weather events. Global climatic factors may increase the vulnerability of countries 

to local weather events. For example, as atmospheric carbon dioxide accumulates sea 

levels tend to increase making coastal areas much more affected by storms.     

 

Finally, the present study differs from previous ones in providing estimates of the impact 

of intense hydro meteorological disasters on economic growth using all available data 

worldwide instead of focusing only on particular events or regions. It shows that losses of 

human capital, but not the material losses, caused by disasters are the most important 

factor explaining the estimated negative impact of disasters on economic growth.           

 

2. Data and econometric methods 

We use quarterly data on disasters for a sample covering most countries in the world. The 

list of countries is shown on Table A1 in Appendix.  The model considers count data of 

disasters by country   and quarter   for 1970–2013 from EM-DAT (Guha-Sapir et al 2015). 

We focus on intense disasters, i.e, disasters that cause at least 100 deaths and/or directly 

affect at least 1,000 people.  
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We use two alternative approaches to estimate the impact of global climate change on 

disasters:   

 

In approach I, using the number of natural disasters per country and quarter as the 

dependent variable, we estimate the effect of global climate indicators as a separate 

variable directly in the regression analysis, controlling for country-specific effects. The 

global indicators used are the global average temperature and the atmospheric carbon 

dioxide (CO2) accumulation. A hypothesis is that global climate variables exert an 

independent effect on disasters over and above local country conditions. A problem with 

using Approach I is that the global temperature and the atmospheric CO2 level may 

correlate with omitted variables affecting natural disasters, thus biasing the estimates. 

 

In approach II, we estimate two-way fixed effects. In a first stage we control for both 

country-specific fixed effects and common-to-all-country global effects which vary over 

time (represented by the coefficients of the time dummy variables). In a second stage, we 

perform a co-integration analysis between global temperature and atmospheric CO2 

accumulation and the estimated global time effects obtained from the first stage to test 

whether these changing global time effects are meaningfully associated with hydro 

meteorological disasters. 

 

The dependent variable is the number of intense natural disasters, consisting of non- 

negative count values.  So count regression models such as the Poisson (P) or Negative 

Binomial (NB) need to be used. We use the NB model (equation 1 below), which unlike 

the P model, allows for over dispersion between the mean and the variance of the 

distribution (Johnson et al 1992, Lambert 1992). We estimate equation (1) below using 



6 
 

quarterly data for 184 countries during 1970-2013, a total of 25,876 observations. (Table 

A2  in the appendix shows the descriptive statistics of the data used). In equation (1) the 

dependent variable is the annual frequency of intense hydro meteorological disasters, 

)( itH . The independent variables are: itW , the average local precipitation deviation in the 

country, measured as departures from the average for its 30-year base 1961–1990 

(Schneider et al 2015) and itZ , the average local temperature deviation in the country, itV

, per capita gross domestic product as a proxy for vulnerability to disasters; itU
 

, 

population per country as an indicator of exposure to disasters; tG  , global effects varying 

at each point of time.1 We estimate the parameters 0 , 1 , 2 , 3 ,
 4  and 5  of the 

following regression equation .  

  )1()exp(exp],,,,,|[ 543210, ittitititititttiitititit GZWVUGZWVUHE    

Where it is the stochastic error term. The count of intense disasters—the dependent 

variable—is characterized by excess zeros. In particular, a high proportion of the quarterly 

country observations for hydro meteorological disasters have zero counts. Failing to 

account for the prevalence of zeros in the dependent variable would likely result in 

inconsistent estimators. For this reason, we use the Zero-inflated (ZI) count model 

(Johnson et al 1992, Lambert 1992). The ZI model allows elucidating whether the zero-

observed dependent variable may either mean a zero probability of having a disaster or a 

positive probability but no disaster because of random factors (Vuong 1989). (See 

Appendix, method 1) 

 

                                                           
1
 Considering only intense disasters (those that cause at least 100 deaths and/or affect at least 1,000 people) 

implies that vulnerability and exposure variables need to be considered as explanatory variables. 
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Thus we estimate the determinants of hydro meteorological disasters using a Zero-Inflated 

Negative Binomial (NBZI) regression model. Vuong tests revealed significant positive test 

statistics favoring the zero-inflated models over the NB count regression models.  

 

Co-integration   

 

Two problems that affect common regression analysis particularly concern us:  (a) The 

series may change together over time on a similar upward trend basis which, as is well-

known, implies that any regression analysis between them would yield a positive and 

significant coefficient without necessarily meaning that they are in fact related (Granger 

and Newbold, 1974). This is the case when the series are not co-variance stationary. That 

is, when the series do not have finite means and auto covariance change over time; (b) the 

relationship between the series may be affected by other variables (often impossible to 

observe) that are not controlled for in the regression analysis. This is the so-called omitted 

variable biases.  

Co-integration allows us to deal with these two problems by permitting us to test whether 

particular transformations of the series do yield co-variance stationary processes and 

hence can be used to obtain meaningful econometric estimates of the key parameters, 

and whether or not the existence of omitted variables is still consistent with obtaining non-

spurious correlations over the long run.     

To implement the analysis of co integration we proceed as follows. The estimated 

coefficients of the quarterly time dummies obtained from the two-way fixed effects model 

(first stage of the Approach II) are subjected to a co-integration analysis (Engle & Granger 

1991) with the quarterly data on atmospheric CO2. We can think of co-integration as 

describing a particular kind of long-run equilibrium relationship. In particular, we seek to 
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understand whether the estimated coefficients of the time dummies and the global climate 

variable are positively correlated in a non-spurious way. We use co-integration analysis 

not as a tool to determine causality but merely as an instrument to confirm the existence of 

a meaningful or non-spurious correlation between the carbon accumulation in the 

atmosphere and hydro meteorological disasters. We thus first regress the coefficients of 

the time dummies )( ty   on the series of atmospheric CO2 )( tx ,  

)2(10 ttt xy    

 

Where 0  is a fixed coefficient, 
1̂ is the predicted value of the co-integrating coefficient 

obtained from the ordinary least squares (OLS) estimation and t is the predicted error 

series. The OLS estimation of equation (2) gives us an unbiased estimation of
1̂ . 

However, its standard error estimate is inconsistent and is not normally distributed. Hence, 

the usual inferential procedures do not apply. 

 

With respect to the significance of 1 —the co-integrating coefficient—it has been shown 

that both the dependent and independent variables co-integrate if and only if there is an 

error correction model (ECM) for either ty  and tx or both (Engle & Granger 1991; 

Johansen 1988-1995). ECM involves a particular transformation of equation (2) to allow 

for a consistent estimation of the co-integrating coefficient (see Appendix, Methods 2, for 

derivation of the ECM).    

 

The ECM requires the specification of a time process for the stochastic error, t . If t is a 

stationary of mean zero variable, there exist a stationary autoregressive moving average 

(ARMA) model for t . We assume an autoregressive model AR(2) for t  as follows, 
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 )3(2211 tttt     

 

In appendix, Methods 2, we show that (2) and (3) imply an autoregressive distributed lag 

model, ARDL  
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It can be transformed into the following ECM model (Appendix, Method 2), 
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Where  0k , 1k , 1 , 1  and 2 are parameters. From (5) the estimator of the co-integrating 

coefficient is given by the long-run solution: 

)6(ˆ

1

2
1




 


  

Thus, using the estimated coefficients 1̂ , and 2̂  and their respective standard errors we 

can obtain a consistent measure for
*

1̂ and its correct standard error to analyze its 

significance.2 

 

With respect to the problem of omitted variables, it has been shown that if the tests of co-

integration are passed it means that regardless of the possible existence of omitted 

variables the estimated co-integrating coefficient from (6) is unbiased and consistent 

(Pashourtidou 2003). While the adjustment coefficients (short run estimates) may be 

biased our focus is on the long run correlation between the variables of interest. In fact, 

                                                           
2
 Another test used to verify co integration is maximum likelihood method developed by Johansen (Johansen 

1988-1995) of vector error correction modeling (VECM) (See Appendix, Method 3, for details). 
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what we seek to discover is precisely how a continuous accumulation of CO2 in the 

atmosphere (a long run effect) may be associated with the increase of natural disasters 

over the long run.     

3. Estimating impacts of climate indicators on country disasters 

The first column in Table 1 shows the estimates using one way fixed effects (Approach I), 

using CO2 accumulation as an indicator of global climate effect. The second column shows 

the estimates of the two-way fixed effects (first stage of Approach II) using quarterly time 

dummies in addition to country effects. Voung test rejects the hypothesis that NBZI 

estimators are equal to the NB estimators at 1% level of significance. Therefore, there is 

evidence that the ZINB model is needed to avoid inconsistent estimators. 

 

Precipitation deviation, the key feature of floods and storms, has a positive and significant 

association with the incidence of local hydro meteorological disasters.  Local temperature 

deviation is negative and significant. Atmospheric CO2 concentration lagged by 1 year 

shows a positive and highly significant relation showing an additional impact on hydro 

meteorological disasters. Thus, the global effects associated with the atmospheric 

accumulation of carbon dioxide appears to exert an independent effect over and above 

local climatic events. This makes sense as global climatic factors may increase the 

vulnerability of countries to local weather events. For example, as atmospheric carbon 

dioxide accumulates sea levels tend to increase making coastal areas much more affected 

by storms.      
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Table 1. Determinants of intense hydro meteorological disasters 

 (1) (2) 
 NBZI 

(One way fixed 
effects) 

NBZI 
(Two way 

fixed effects) 

   
Ln Population Density 0.151*** 0.112*** 
 [0.0361] [0.033] 
   
Ln GDP pc 0.148** 0.183*** 
 [0.0751] [0.070] 
   
Squared Ln GDP pc -0.00678** -0.0085*** 
 [0.00314] [0.0029] 
   
Precipitation Deviation 0.000497 0.0050*** 
 [0.000587] [0.00116] 
   
Temperature Deviation -0.682*** -0.4941*** 
 [0.0817] [0.0798] 
   
Population (million) 0.00155*** 0.0015*** 
 [0.0000953] [0.00008] 
   
Co2 atmospheric Level (1 Year lag) 0.0175***  
 [0.00109]  
   
Time dummy variables  Table A3 
  in Appendix   

Observations 25,876 25,876 
Akaike Information Criterion (AIC) 17833.27 17603.71 
Bayesian Information Criterion (BIC) 18135.23 19325.7 
LR Test 56.85*** 77.26*** 
Vuong Test 15.69*** 14.98*** 

Notes: * significant at 10%, ** significant at 5%, *** significant at 1%. Standard errors are in brackets.  
Column 2 includes time dummy coefficients which are shown Table A3 in appendix   
Source: Authors’ calculations.  

 

It is possible that global climate variables used in Approach I (first two columns in Table 1)   

are correlated with other global variables unrelated to climate change impacting the 

likelihood of disasters in the same direction. This would then imply that the coefficients of 

global temperature and the CO2 variables may be inconsistent. That is why we use 

Approach II which in its second stage uses co-integration to test for specific effects of the 

global climate variables.  
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The second column of Table 1 reports the first stage of the Approach II. The common-to-

all countries time effect represented by the coefficients of the quarterly time dummy 

variables captures any global effects. The time dummy coefficients (not reported in Table 1 

but available in Table A3 of the Appendix) are highly significant and become larger over 

the time period. In the second stage we implement co-integration analysis between the 

estimated time dummy coefficients and the average global temperature and atmospheric 

CO2.  

 

The first column of Table 2 provides the OLS estimates of regressing the coefficients of 

the time dummy variables with CO2 atmospheric concentration. The coefficients are not 

distributed asymptotically normal due to the lack of stationarity of the series, so that the 

usual t-statics do not apply. But we can use the estimated coefficients to test if the 

predicted errors are stationary. Even if all individual series are non-stationary, the linear 

combination of non-stationary series could be stationary.  

 

Table 2 shows the results of the tests for stationarity or co-integration using the series of 

predicted errors. Since the time series is quite short, we use an unrestricted 

autoregressive distributed lag (ARDL) model which has shown to be appropriate for time 

series between 100 and 500 observations (Box and Tiao, 1975 and Simonton, 1977)). 

Both Dickey-Fuller (DF) and Dickey-Fuller generalized least squares (DF-GLS) test 

whether a unit root is present in the series of the predicted errors. Tabulated critical values 

at 1% and 5% are more exigent than usual Test T (MacKinnon 1994-2010, Elliott et al 

1996).The DF and DF-GLS statistics allow rejection of the null hypothesis that the series 

have a unit root. The time dummy coefficients and the global variables are integrated of 

order one—that is, the predicted error is stationary—suggesting that the series co-

integrate. 
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In addition to the tests reported in the first column of Table 2, we also implemented a more 

powerful co-integration test developed by Johansen (Johansen 1995) presented in 

Appendix, Table A4. This test estimates a vector error correction models (VECM) between 

hydro meteorological disasters and the CO2 concentrations in the atmosphere. Johansen 

test also shows clear evidence of co-integration between the series. 

 

All the above-mentioned tests conclude that the two series do co-integrate. However, 

these tests are not in general considered to have sufficient power when the sample size 

for each series is relatively small. When samples are small the literature recommends the 

use of autoregressive distributed lags (ARDL) to obtain a more reliable test for co-

integration (Pesaran et al. 2001). Thus we corroborate the existence of stationarity and co-

integration using an ECM as shown in equation (5) implemented using an ARDL. The 

second column in Table 2 shows the estimates of the ECM using an ARDL for the series. 

The coefficient of CO2(t-1) )( 2


is  positive and significant, and the error correction 

coefficient, associated with the time dummy coefficients (t-1) )( 1


, is negative and 

significant. Statistical significance of these two coefficients implies that there may exist a 

non-spurious correlation between the series. Moreover, the adjustment process is stable 

due to the fact that 11 


.  

The estimates of the 1  and 2  coefficients allow us to obtain a measure of the key 

coefficient 
*

1̂ by using equation (6). Most importantly, this estimate of 
*

1̂  is unbiased and 

distributes according to a normal distribution; this allows us to obtain consistent statistical 

inference. From the standard errors and co variances of 1  and 2 coefficients we derive 

the standard error of 
*

1̂ using the Delta method (Oehlert 1992). Table A5 in appendix 
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shows the estimated value of  0.0180ˆ *

1  with its standard error thus estimated equal to 

0.0042. That is, the co-integrating coefficient is in fact positive and statistically significant 

at a 1% level of significance.  

 

Table 2. Co-integration estimates of Disasters-CO2 Series  

  

Hydro meteorological  

Level  
(Equation 2) 

First Diff. (D.1) 
(ECM) 

(Equation 5) 

CO2(t) 0.0184   

  [0.0021]   

D.1 Time Dummy Coefficients (t-1) )ˆ( 1   -0.232*** 

  [0.0789] 

D.1 CO2 (t-1) )ˆ( 0    -0.0654*** 

    [0.0109] 

D.2 CO2 (t-1) )ˆ( 1   0.0464*** 

  [0.0114] 

Time Dummy Coefficients (t-1) )( 1


 
  

-0.348*** 

  [0.0852] 

CO2 (t-1) )( 2


   0.00628*** 

    [0.00216] 

Constant -5.424*** -1.827** 

  [0.746] [0.703] 

Observations 175 173 

Akaike Information Criterion (AIC) 242.8 151.3 

Bayesian Information Criterion (BIC) 249.1 170.2 

Tests for Stationarity   

 Dickey-Fuller (DF) -2.662* 

 Dickey-Fuller Generalized Least 
Squares (DF-GLS) 

-2.071**   

 Notes: * = significant at 10%, *** = significant at 1%. Standard errors in brackets. 
 Source: Authors’ calculations.  
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Table A5 in appendix shows the short and long run estimates of 
1


for hydro 

meteorological disasters. The long run coefficient is statistically significant at 1% and is 

quite similar to the short run coefficient. Using the 
1


 reported in Table A5 in appendix we 

calculate the elasticity of time dummy coefficients with respect to the CO2 level (Table A6 

in appendix). 

 

Next we calculate the simulated variation in disasters due to current observed rates of 

increase of CO2 concentration level using the period 2010-2013 as baseline (Table A7). 

Thus, if the atmospheric CO2 levels continue increasing at the same rate as in the period 

2010-13, the number of intense hydro meteorological disasters per quarter per country 

would increase by 0.035 events, that is, the number of disasters would double in 7 years.  

Causality 

 

Co-integration may show the existence of meaningful correlations but not necessarily of 

causality. If a meaningful correlation between the series exists then our approach to 

ascertaining causality relies on the observation that if two variables exhibit a non-spurious 

correlation there must be at least one direction of causality between them (Asteriou et al. 

2011; Granger 1988). The next step, therefore, is to establish whether prior reasoning and 

scientific knowledge may allow us to discard one of the directions of causality. If so, we 

can conclude without further statistical test which is the causal relation associated with the 

existence of a non-spurious correlation between the two series. This is the approach that 

we use here. This observation leads us to the following conclusion: It is highly implausible 

that hydro meteorological disasters cause the accumulation of carbon in the atmosphere 

(of course in the case of other disasters such as volcanic eruptions this may not be true). 
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Hence, it must be the case that the causal direction is from atmospheric carbon 

accumulation to hydro meteorological disasters. 

         

 

4. Disasters and economic growth  

 

Finding an effect of disasters on economic growth has been difficult. World Bank (2010) 

did a literature review of natural disasters and their growth effects but did not find a 

consistent conclusion.  The main reason is the potential effect of omitted variables that 

may affect both GDP growth and natural disasters. No matter how many control variables 

are used, one is never sure that there might not be other relevant unobserved omitted 

variables.  

 

Several studies do find a negative effect on GDP growth (Otero & Marti (2005), Benson 

(1997), Benson & Clay (1998), Murlidharan & Sha (2001), Hochrainer (2006), Cuaresma et 

al (2008)). They show that the impact depends on the size of the disasters, the size of the 

economy and the economic conditions. However, Albala-Bertrand (1993) found no 

significant long-term effect in developed countries, and in developing countries they report 

a negative effect that tends to disappear after 2 years while Caselli and Malhotra (2004) 

argue that disasters do not reduce GDP growth.   

 

Loayza, et al (2009) estimate the medium-term effects on economic growth of different 

natural hazards using a model with three main sectors (agriculture, industry and services) 

and the whole economy. Their main conclusion is that economic growth is generally lower 

after a disaster; however, the effect depends on the type of natural hazard and it is not 
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always statistically significant. Fomby, et al (2009) found that moderate and severe 

disasters affect growth more in poor countries than in rich countries.  

 

There are differential impacts of disasters on various assets. Disasters affect human 

capital mainly through their effects on deaths and injuries of people, and non-human 

capital including losses of infrastructure, animals and productive capital. We hypothesize 

that these two types of assets affected by disasters entail fundamentally different effects 

on economic growth. While the losses of human capital hurt economic growth in a 

fundamental way, the losses of non-human capital can be recovered quite rapidly. 

 

The process of rebuilding physical capital often entails greater demand for domestic 

industries. If there is excess industrial capacity, this increased demand may allow for a 

greater use of the production capacity.3 Thus, paradoxically rebuilding physical capital 

losses may induce greater industrial production and a faster rate of economic growth. 

Regressing growth on disasters without separating their effects on these two types of 

assets would likely give weak and ambiguous correlations. However, if we focus on the 

human capital consequences, we are likely to obtain stronger linkages. Below we show 

this by first using the standard approach of estimating the effects of disasters without 

separating the effects finding no statistically significant effects of disasters on growth, but 

focusing on the human losses caused by disasters gives negative and statistically 

significant effects.  

 

                                                           
3
 In most cases natural disasters affect only part of the country´s territory, rarely the whole of it. This means 

that in most cases the industries located in unaffected areas may expand production quite rapidly to satisfy the 
demands for material goods from the affected areas. Moreover, if the marginal costs of production do not 
increase too rapidly with production levels (as may be expected when there is unused capacity) one may 
expect that the increased supply of goods will attain with little price increases.    
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An additional contribution to the literature of our analysis is the use of a new model that 

controls for both fixed country and unobserved time-varying country-specific effects 

(TVCE) as developed and first applied by López and Palacios (2014). The idea is that 

many potentially omitted factors affecting the impact of disasters may be captured by the 

TVCE. That is, while previous studies do control for country fixed effects and common-to-

all countries time effects, they fail to control for time-varying country-specific effects. We 

hope that the use of TVCE considerable mitigates the potential biases due to omitted 

variables that may affect each country over time in a changing manner.     

 

We estimate a model where growth of GDP per capita is the dependent variable and our 

main variable is an approximation of disaster’s impact. We control for lags of GDP Growth 

as well as for fixed effect per country and time-varying country effects. The TVCE method 

is a parsimonious approach directed to control for country-specific variables that are either 

unobserved or difficult to measure which may change over time and are specific to each 

country. The TVCE approach is a generalization of both the standard fixed effects model 

(FCE) and the country-specific time trends approach. 

 

Taking into consideration the length of our data base we control for 5 year country-specific 

variable effects. In other words, we have a different dummy variable for each country for 

every 5 year period. Equation (7) shows the estimating equation. In this case ji ,

represents how previous per capita GDP growth affects the current level while *,ti
 is the 

parameter which estimates the time variable country-specific effect (TVCE). jti , is our 

parameter of interest relating disasters to per capita GDP growth. Moreover, i  is the fixed 

country effect and ti,  is the error of the estimation. 
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We use two different definitions of the variable “Disaster”. Firstly, we use directly the 

proportion of the total country population that died due to hydro meteorological disasters. 

This variable is named “proportion of deaths”. Secondly, we generate a dummy variable 

for the disasters which killed more than 100 people o affected at least 1,000 people. We 

called this variable hydro meteorological disaster. 

 

5. Measuring the economic effects of disasters  

We estimate the model using annual data (as no quarterly data for GDP is available). This 

sample contains the same countries that we used to determine the variables which affect 

intense hydro meteorological disasters (Table A1 in appendix). Table A9 in Appendix 

shows the main statistics for the 184 countries included in the analysis.   

 

Table A10 in the appendix shows the TVCE estimates of the effects of the number of 

intense hydro-meteorological on per capita GDP growth without distinguishing human 

capital versus physical capital losses. As can be seen in Table A10 there are no significant 

parameters. One interpretation is that the likely positive effects of disasters due to the 

rebuilding of physical capital losses on economic activity when excess productive capacity 

exists may be offset by the negative effects of the loss of human capital.     

 

That is why here we focus exclusively on the human capital losses caused by disasters 

(Table 4). In particular we use the number of deaths induced by disasters as a proportion 

of the total population in the country, instead of merely number of disasters as the key 
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explanatory variable. In sharp contrast with the results reported in Table A10, using the 

proportion of deaths over the total population caused by disasters, the effect of the first, 

second and third lags of this variable on per capita GDP growth are all negative and 

almost all of them are statistically significant. The net effect of the three lags is also 

negative and significant. 

 

However, the relationship between economic growth and deaths may be affected by 

reverse causality as it is plausible to assume that economic growth reduces the rate of 

population death. To mitigate this problem we also control for the proportion of deaths 

(over the total population) not due to disasters finding a negative relationship as expected. 

The key issue is that even controlling for deaths not due to disasters the coefficient of the 

variable proportion of deaths caused by disasters is still negative and highly significant. 

Moreover, there is an extremely low correlation of deaths caused by disasters and deaths 

due to other factors (correlation coefficient, 0.002), which reinforces our hypotheses that 

causality goes from proportion of disaster-induced deaths to economic growth and not the 

other way around. In addition, the regression reported in table 4 also controls for country 

per capita income to reflect the fact that per capita income and economic growth may be 

(negatively) correlated.  
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Table 4: Per capita GDP growth and proportion deaths due to disasters 

 (1) (2) (3) 

 TVCE TVCE TVCE 

    
L. Per capita GDP growth 0.0639*** 0.0634*** 0.0632*** 
 [0.0135] [0.0135] [0.0135] 
    
L2. Per capita GDP growth -0.0000917 0.000219 0.000202 
 [0.0129] [0.0129] [0.0129] 
    
L. Ln GDP pc -28.03*** -28.07*** -28.06*** 
 [1.023] [1.023] [1.023] 
    
L. Proportion of deaths due to disaster -0.195 -0.226* -0.248* 
 [0.135] [0.136] [0.136] 
    
L2. Proportion of deaths due to disaster  -0.238* -0.273** 
  [0.131] [0.132] 
    
L3. Proportion of deaths due to disaster   -0.189** 
   [0.0932] 
    
L. Proportion of deaths unrelated to disaster -0.0651*** -0.0686*** -0.0681*** 
 [0.0170] [0.0171] [0.0171] 
    

Net effect of disaster-induced deaths -0.195 -0.464*** -0.709*** 
 [0.135] [0.200] [0.233] 

Observations 6669 6669 6668 
AIC 41164.53 41162.36 41154.34 
BIC 49378.44 49383.07 49381.67 

Notes: * = significant at 10%, ** = significant at 5%, *** = significant at 1%. Standard errors in brackets. L: Lag operators.   

In TVCE controls for 5 years variable country-specific effects.  

Source: Authors’ calculations.  

 

An important implication of the results obtained is that the effect of deaths due to disasters 

on economic growth is much larger than the effects of normal mortality. This may reflect 

the fact that disaster-induced deaths are more traumatic especially because they often 

involve a greater proportion of younger people at their peak productive age. Also, the 

disaster-induced deaths tend to be more economically disruptive as they are often more 

unexpected than normal deaths.      
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Using the coefficient equal to -0.709 obtained when we use three lagged effects as 

reported in the last column of Table 4, we obtain that a 1% increase of disaster-induced 

deaths is likely to cause the growth rate of the representative country to decline by 

0.0064% over the first three years after the disaster. Also, it appears that the negative 

effect of disasters’ death on economic growth tends to persist over time for at least three 

years.  

 

The final end of this analysis if to measure the impact of the accumulation of carbon 

dioxide in the atmosphere on economic growth. We proceed first using the elasticity of 

disasters with respect to CO2 accumulation as reported earlier. Next, we estimate the 

impact of disasters on deaths as a proportion of the total country population and using this 

measure and the elasticity of disasters we can estimate the effect of CO2 accumulation on 

the proportion of disaster-induced deaths. Finally, we combine this last effect with the 

elasticity of economic growth with respect to disaster-induced deaths to measure the net 

elasticity of growth with respect to the atmospheric CO2 accumulation. That is, we use the 

following expression to estimate the net effect of CO2 accumulation on economic growth, 

 

)8(
22 ,,PrPr,, CoDisastersDisastersdeathsofoportiondeathsofoportionGrowthGdpCoGrowthGdp    

 

Where 
2,CoGrowthGdp , deathsofoportionGrowthGdp Pr, , Disastersdeathsofoportion ,Pr  and 

2,CoDisasters represent 

the elasticities of growth with respect to CO2 accumulation, growth with respect to 

proportion of deaths, proportion of deaths with respect to number of disasters and number 

of disasters with respect to CO2 accumulation, respectively. 
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We report details of this exercise in the appendix (Table A12). As shown there we find that 

a 1% increase in the level of CO2 accumulated in the atmosphere causes a reduction of 

the rate of GDP growth for the average or representative country by 0.13%. This figure 

may seem small given that atmospheric CO2 is increasing by only 0.5% per annum. 

However, we note that this effect applies to the average of all countries whether they are 

affected by a disaster or not. Moreover, if the rate of carbon accumulation in the 

atmosphere continues at the current rate one may expect that the average rate of 

economic growth for all countries may be reduced by 1.5% in 20 years due to the 

increased climate-related disasters.   

 

6. Conclusion 

This paper analyzed the association between climate change variables and the incidence 

of intense hydro meteorological disasters within a framework that included global and local 

climate variables as well as socio-economic factors that aggravate disasters. A key feature 

of the work is the focus on ascertaining the meaningfulness of the correlations between 

climate change indicators and disasters. The empirical analysis has shown that there are 

clear non-spurious connections between climate change indicators and the frequency of 

intense hydro meteorological disasters. Since a causal relationship going from disasters to 

carbon accumulation in the atmosphere is highly implausible, the finding of a meaningful 

positive correlation between atmospheric carbon accumulation and natural disasters must 

suggest a causal relationship going from CO2 accumulation in the atmosphere to the 

frequency of disasters. 

Moreover, we have found that the quantitative effect of climate change indicators on the 

number of intense disasters is large. About one additional major annual disaster in the 

world can be attributed to the observed annual increases of carbon dioxide accumulations. 
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This implies that in a business-as-usual scenario where the global climatic indicators 

continue to deteriorate at recent rates, there would be a 4% annual increase in the number 

of intense hydro meteorological disasters worldwide attributed to climate change. 

Finally, there is evidence of a negative impact of intense hydro meteorological disasters on 

per capita GDP growth. We found a negative and significant impact of the disaster-induced 

human capital losses on per capita GDP growth. We showed that a 1% increase of 

atmospheric carbon accumulation is associated with a 0.13% fall in the rate of growth of 

the representative country. Moreover, in a business-as-usual scenario where the global 

climatic indicators continue to deteriorate at recent rates, in 20 years the average rate of 

per capita economic growth would be reduced by 1.5% just as a consequence of the 

increased climate-related disasters. This estimate exclude other factors associated with 

atmospheric carbon accumulation which may impinge upon economic growth.    
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Appendix  
 

Table A1.  Countries considered in the Analysis, 1970–2013 

1 Afghanistan 38 Congo, Rep. 75 Indonesia 112 Montenegro 149 South Sudan 

2 Albania 39 Costa Rica 76 Iran, Islamic Rep. 113 Morocco 150 Spain 

3 Algeria 40 Cote d'Ivoire 77 Iraq 114 Mozambique 151 Sri Lanka 

4 Angola 41 Croatia 78 Ireland 115 Myanmar 152 St. Kitts and Nevis 

5 Antigua and Barbuda 42 Cuba 79 Israel 116 Namibia 153 St. Lucia 

6 Argentina 43 Cyprus 80 Italy 117 Nepal 154 
St. Vincent and the 
Grenadines 

7 Armenia 44 Czech Republic 81 Jamaica 118 Netherlands 155 Sudan 

8 Australia 45 Denmark 82 Japan 119 New Caledonia 156 Suriname 

9 Austria 46 Djibouti 83 Jordan 120 New Zealand 157 Swaziland 

10 Azerbaijan 47 Dominica 84 Kazakhstan 121 Nicaragua 158 Sweden 

11 Bahamas, The 48 Dominican Republic 85 Kenya 122 Niger 159 Switzerland 

12 Bangladesh 49 Ecuador 86 Kiribati 123 Nigeria 160 Syrian Arab Republic 

13 Barbados 50 Egypt, Arab Rep. 87 Korea, Rep. 124 Norway 161 Tajikistan 

14 Belarus 51 El Salvador 88 Kuwait 125 Oman 162 Tanzania 

15 Belgium 52 Eritrea 89 Kyrgyz Republic 126 Pakistan 163 Thailand 

16 Belize 53 Estonia 90 Lao PDR 127 Palau 164 Timor-Leste 

17 Benin 54 Ethiopia 91 Latvia 128 Panama 165 Togo 

18 Bermuda 55 Fiji 92 Lebanon 129 Papua New Guinea 166 Tonga 

19 Bhutan 56 Finland 93 Lesotho 130 Paraguay 167 Trinidad and Tobago 

20 Bolivia 57 France 94 Liberia 131 Peru 168 Tunisia 

21 
Bosnia and 
Herzegovina 58 Gabon 95 Libya 132 Philippines 169 Turkey 

22 Botswana 59 Gambia, The 96 Lithuania 133 Poland 170 Turkmenistan 

23 Brazil 60 Georgia 97 Luxembourg 134 Portugal 171 Tuvalu 

24 Bulgaria 61 Germany 98 Macao SAR, China 135 Puerto Rico 172 Uganda 

25 Burkina Faso 62 Ghana 99 Macedonia, FYR 136 Romania 173 Ukraine 

26 Cabo Verde 63 Greece 100 Madagascar 137 Russian Federation 174 United Kingdom 

27 Cambodia 64 Grenada 101 Malawi 138 Samoa 175 United States 

28 Cameroon 65 Guatemala 102 Malaysia 139 Saudi Arabia 176 Uruguay 

29 Canada 66 Guinea 103 Maldives 140 Senegal 177 Uzbekistan 

30 Cayman Islands 67 Guinea-Bissau 104 Mali 141 Serbia 178 Vanuatu 

31 
Central African 
Republic 68 Guyana 105 Marshall Islands 142 Seychelles 179 Venezuela, RB 

32 Chad 69 Haiti 106 Mauritania 143 Sierra Leone 180 Vietnam 

33 Chile 70 Honduras 107 Mauritius 144 Slovak Republic 181 Virgin Islands (U.S.) 

34 China 71 
Hong Kong SAR, 
China 108 Mexico 145 Slovenia 182 Yemen, Rep. 

35 Colombia 72 Hungary 109 Micronesia, Fed. Sts. 146 Solomon Islands 183 Zambia 

36 Comoros 73 Iceland 110 Moldova 147 Somalia 184 Zimbabwe 

37 Congo, Dem. Rep. 74 India 111 Mongolia 148 South Africa 
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Table A2.  Descriptive Statistics of the data used, 1970–2013 

 
Variables Obs. Mean Std. Dev. Min. Max. 

Dependent Variable:  Frequency of intense 
hydro meteorological disasters 25876 0.154 0.569 0 15 
      
Ln (population density) 25876 3.808 1.477 0.103 9.980 
Ln GDP per capita (constant 2005 US$) 25876 10.650 2.360 3.988 17.439 
Square of Ln GDP per capita 25876 118.997 53.083 15.904 304.114 
Average precipitation deviation 25876 39.045 37.327 0.073 646.941 
Average temperatura  deviation 25876 0.743 0.496 0.009 6.539 
Population (million) 25876 34.588 124.261 0.010 1357.380 
Co2 level 25876 360.4 20.526 324.090 398.897 

Source: Authors’ calculations.  

 
 
 
Method 1. Derivation of the ZI estimator 
 
For each country in i and year t , there are two possible data generation processes for 

tiH ,
 —the selection of which is a result of a Bernoulli trial. The first process, which 

generates only zero counts, is chosen with probability i . The second process )|( itit RHg

with probability i1
 
generates positive counts from a NB distribution. Where  itR  is a 

vector of explanatory variables (in our case tititit GWVU ,,, ) In general, we have: 
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Then the probability of  ititit RhH |
 
where 

tih ,
 is a particular value of the variable

tiH ,
can 

be expressed as (Johnson et al. 1992; Lambert 1992): 
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The probability i depends on the characteristics (a subset of the explanatory variables) of 

country i and year t .  Hence,  it is written as a function of itI'  where itI is the vector of 

zero-inflated covariates and   is the vector of zero-inflated coefficients to be estimated.  

 
A Probit function (using the same explanatory variables as described in equation (1) in the 

paper) is specified as the zero-inflated link function—relating the product  itI'  (which is 

scalar) to the probability it . We thus estimate hydro meteorological disasters using a 

negative binomial zero-inflated (NBZI) regression model. Vuong tests revealed significant 
positive test statistics which favor the zero-inflated models over the standard NB count 
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regression models. This means that the zero-inflated method is necessary given the 
preponderance of zeroes of the dependent variable.  
 
This model allows elucidating whether the zero-observed dependent variable may either 
correspond to countries which in a particular year had a zero probability of having a 
disaster or countries that had a positive probability of a disaster but that, due to random 
conditions in that year, experienced no disaster and consequently also had a zero 
dependent variable (Vuong 1989). 

 

Method 2. Co-integration 

First we have this model with the time dummies )( ty   and the series of atmospheric CO2 )( tx . This 

can be expressed as:  

)2(
10 tt

x
t

y    

Where 0 and 1 are the parameters and    is the stochastic error term. 

 
Assume for simplicity that it is an autoregressive model AR(1) (We also tried with AR(2) but, the 
additional parameters were not significant): 
 

)3(
2211 tttt

 





  

 
In particular, we can estimate equation (3) using OLS, the unrestricted autoregressive distributed 
lag (ARDL) model, where the lag lengths are set to eliminate residual autocorrelation, an ARDL(2,2) 
model. From (2) and (3) we have  

tt
x

t
y  

10
 

And  

11101 





 tt
x

t
y 

 

22102 





 tt
x

t
y   

Using all expressions and equation (3) 
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Rearranging terms 

)4(
221102211 tt

x
t

x
t

x
t

y
t

y
t

y  












 

Where  12110   , 10   , 111    and 122   . Equation )4(  is an 

unrestricted autoregressive distributed lag model, ARDL (2,2). 
 
To obtain the ECM form we used the next two equalities

4
:  
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Where 1 ttt yyy ,  1 ttt xxx  . Using both equalities in equation (4) and rearranging 

terms: 
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4
 Developing right sides of both equalities directly reached the left sides. 
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Where 
21

  00 k , 11 k 1211   , )( 2102   . We estimate equation (5) 

using the OLS method. From (5) the estimator of the co-integrated coefficient is given by the long-
run solution: 
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Method 3. Vector Error Correction Model (VECM) and Johansen Test 

In a bivariate model with ty and tx  variables, there exist a 10 ,  such that ttt xy   10 is 

)0(I even though tx and ty may be non-stationary series.  This mean the two variables are co-

integrated or have a stationary long run relationship even though individually they are non-
stationary series.  
 

A VAR model with l lags can be represented as shown in (A5) 

)5(....
2211

A
ttlt

z
pt

z
t

z
t

z  








  

Where 









t

t

t
x

y
z  is an 12x  vector of )1(I  variables, t is a vector of deterministic variable and 

t is a 12x vector of identically and normally distributed errors with mean zero and non-diagonal 

covariance matrix  . Given that the variables are co-integrated, equation (A5) can be represented 

by an equilibrium correction model shown in (A6) below. 
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Vectors   and   are the key coefficients.   is an xr2  matrix of co-integrating vectors that 

explains the long-run relationship of the variables.  is also an xr2  matrix that explains long –run 

disequilibrium of the variables.   and t  are the deterministic trend component.  It is important to 

note that for co-integration to exist, matrices   and  should have reduced rank r , where 2r . 

The identification of the co-integrating vector uses maximum likelihood method developed by 
Johansen (Johansen 1988-1995).  
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Table A3.  Estimated Coefficients of the Time Dummy Variables 
(Approach 2, Stage I) 

 

Time Coefficient Time Coefficient Time Coefficient Time Coefficient Time Coefficient 

1970q1 

 

1979q1 0.558 1988q1 0.509 1997q1 0.782 2006q1 1.842 

1970q2 0.174 1979q2 1.000 1988q2 1.112 1997q2 1.139 2006q2 2.093 

1970q3 1.168 1979q3 0.849 1988q3 1.815 1997q3 1.473 2006q3 2.280 

1970q4 1.179 1979q4 1.021 1988q4 1.116 1997q4 1.062 2006q4 1.671 

1971q1 0.233 1980q1 0.770 1989q1 -0.432 1998q1 1.523 2007q1 1.710 

1971q2 0.588 1980q2 0.543 1989q2 1.218 1998q2 1.343 2007q2 1.595 

1971q3 0.443 1980q3 1.360 1989q3 1.314 1998q3 1.927 2007q3 2.474 

1971q4 -0.133 1980q4 0.393 1989q4 0.535 1998q4 1.551 2007q4 2.080 

1972q1 -0.453 1981q1 0.728 1990q1 0.488 1999q1 1.334 2008q1 1.747 

1972q2 0.788 1981q2 0.620 1990q2 1.306 1999q2 1.424 2008q2 1.314 

1972q3 0.200 1981q3 1.202 1990q3 1.236 1999q3 2.169 2008q3 2.312 

1972q4 -0.143 1981q4 1.418 1990q4 0.822 1999q4 1.819 2008q4 2.056 

1973q1 0.411 1982q1 0.949 1991q1 0.758 2000q1 1.434 2009q1 1.716 

1973q2 0.145 1982q2 1.017 1991q2 0.578 2000q2 1.776 2009q2 1.326 

1973q3 0.010 1982q3 1.186 1991q3 1.633 2000q3 2.010 2009q3 2.121 

1973q4 1.079 1982q4 1.018 1991q4 0.528 2000q4 1.654 2009q4 1.906 

1974q1 0.932 1983q1 0.597 1992q1 1.080 2001q1 1.309 2010q1 1.770 

1974q2 0.290 1983q2 0.890 1992q2 1.102 2001q2 1.917 2010q2 1.960 

1974q3 0.997 1983q3 1.362 1992q3 1.410 2001q3 2.263 2010q3 2.118 

1974q4 0.603 1983q4 1.145 1992q4 0.920 2001q4 1.627 2010q4 1.754 

1975q1 0.204 1984q1 0.708 1993q1 1.756 2002q1 1.537 2011q1 0.757 

1975q2 0.234 1984q2 1.027 1993q2 1.614 2002q2 1.731 2011q2 0.886 

1975q3 -0.027 1984q3 0.972 1993q3 1.707 2002q3 2.178 2011q3 1.093 

1975q4 -0.653 1984q4 1.149 1993q4 1.591 2002q4 1.604 2011q4 1.032 

1976q1 -0.528 1985q1 1.236 1994q1 0.896 2003q1 1.690 2012q1 1.041 

1976q2 0.262 1985q2 1.250 1994q2 1.374 2003q2 1.453 2012q2 1.021 

1976q3 0.330 1985q3 1.041 1994q3 1.582 2003q3 1.829 2012q3 1.062 

1976q4 0.802 1985q4 1.356 1994q4 1.361 2003q4 1.470 2012q4 0.897 

1977q1 0.671 1986q1 0.740 1995q1 1.156 2004q1 1.609 2013q1 1.361 

1977q2 0.740 1986q2 1.042 1995q2 1.664 2004q2 1.808 2013q2 0.788 

1977q3 1.528 1986q3 1.339 1995q3 1.984 2004q3 1.983 2013q3 1.172 

1977q4 0.576 1986q4 0.805 1995q4 1.763 2004q4 1.518 2013q4 0.755 

1978q1 0.964 1987q1 0.952 1996q1 1.128 2005q1 1.847 
  1978q2 0.945 1987q2 0.008 1996q2 1.069 2005q2 1.843 
  1978q3 1.383 1987q3 1.328 1996q3 1.838 2005q3 2.380 
  1978q4 1.104 1987q4 1.140 1996q4 1.413 2005q4 1.860     

Notes: * = significant at 10%, ** = significant at 5%, *** = significant at 1%. Standard errors in brackets. 
Source: Authors’ calculations. 
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Table A4.  Johansen Test for Co-integration 
 

Rank 

r  

Johansen 
Test 

Critical 
Value 1% 

0 27,47*** 16,31 

1 5,7 6,51 

2     
Notes: * = significant at 10%, ** = significant at 5%, *** = significant at 1%. 
Source: Authors’ calculations 
 

 
 
 
 
 

Table A5.  Co-integration: Disasters- Co2 level 
 

  

Estimated coefficients of 
the time dummy 
variables 

Short Run Long Run 

Co2 Level 0.0184 0.0180*** 

 
[0.0021] [0.0042] 

          Notes: * = significant at 10%, ** = significant at 5%, *** = significant at 1%.  
          Standard errors in brackets.  
          Source: Authors’ calculations.  

 
 
 

 
 

Table A6. Time dummy coefficients and CO2 level  

 
Co2 Level 

  

Marginal effect  


 0.0180 

 
 

Average sample value of Co2 level  
(1970-2013) 

360.4 

  

Average value of time dummy 
coefficients (1970-2013) 

1.16 

 
 

Elasticity of time dummy coefficients 
with respect to Co2 Level 

5.6 

         Source: Authors’ calculations.  
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Table A7. Co2 concentration and hydro meteorological disasters: Simulated 

variation (2010-2013) 

 

Co2 
Level 

Elasticity of disasters with respect to global variables                                  33.45 

For Simulation:  
 

Co2  Stock (in ppm)  395 

Average disaster occurrence per annum 0.212 

Average value of time dummy coefficients 1.216 

  
 

Current annual increase: 
Co2  Stock (in ppm)  

     2.0 

 
 

Simulated variation in quarterly disasters due to current 
rate of increases in global variables 

0.035 

  
            Source: Authors’ calculations.  

 
 

 
 
 
 
 
 
 

 

Table A8: Descriptive Statistics: 184 Countries with an intense Hydro-
Meteorological Disaster 

 

  Mean Std Dev Min Max Observations 

Hydro Disaster Dummy 0.629 1.626 0 28 6754 
Proportion of Deaths 

 (One per each 10.000 People) 0.0327 0.521 0 26.52 6754 
GDP Percapita  

Growth (%) 3.587 6.116 -64.04 106.2 6754 
Source: Authors’ calculations.  
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Table A9: Per capita GDP growth and number of hydro meteorological disasters 

 (1) (2) (3) 

 TVCE TVCE TVCE 

    
L. Per capita GDP growth 0.0638*** 0.0640*** 0.0640*** 
 [0.0135] [0.0135] [0.0135] 
    
L2. Per capita GDP growth -0.000217 -0.000203 -0.000117 
 [0.0129] [0.0129] [0.0129] 
    
L.Ln GDP pc -28.06*** -28.08*** -28.11*** 
 [1.023] [1.023] [1.024] 
    
L. N° Hydro Disasters -0.0847 -0.0830 -0.0755 
 [0.0814] [0.0814] [0.0819] 
    
L2. N° Hydro Disasters  0.0904 0.0918 
  [0.0816] [0.0816] 
    
L3. N° Hydro Disasters   0.0691 
   [0.0848] 
    
L. Proportion of deaths unrelated to disaster -0.0653*** -0.0647*** -0.0645*** 
 [0.0170] [0.0170] [0.0170] 
    

Net effect -0.0847 0.0073 0.085 
 [0.0814] [0.1163] [0.1506] 

Observations 6669 6669 6668 
AIC 41164.53 41162.36 41154.34 
BIC 49378.44 49383.07 49381.67 

        Notes: * = significant at 10%, ** = significant at 5%, *** = significant at 1%. Standard errors in brackets. L: lag operator 
        In TVCE estimation controls for 5 years variable effects.  
        Source: Authors’ calculations.  
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Table A10: Estimating the proportion deaths due to disasters 

 (1) (2) (3) 

 TVCE TVCE TVCE 

    
Ln GDP pc -0.169 -0.172 -0.190 
 [0.300] [0.300] [0.299] 
    
Squared Ln GDP pc 0.00624 0.00643 0.00705 
 [0.0144] [0.0144] [0.0144] 
    
L. Proportion of deaths unrelated to disaster -0.000343 -0.000376 -0.000363 
 [0.00138] [0.00138] [0.00139] 
    
N° Hydro Disasters 0.0311*** 0.0310*** 0.0296*** 
 [0.00823] [0.00823] [0.00821] 
    
L.N° Hydro Disasters  -0.00716 -0.00701 
  [0.00822] [0.00817] 
    
L2.N° Hydro Disasters   -0.000777 
   [0.00848] 

Net effect 0.0311*** 0.0237** 0.0217 
 [0.00823] [0.0118] [0.0151] 

Observations 7094 7094 6981 
AIC 11346.77 11347.82 11022.34 
BIC 19930.52 19938.44 19599.73 

           Notes: * = significant at 10%, ** = significant at 5%, *** = significant at 1%. Standard errors in brackets.  
           In TVCE estimation controls for 5 years variable effects.  
           Source: Authors’ calculations.  

 

Table A11: Elasticity of per capita GDP growth with respect Co2  
 

 

Representative 
Country 

Countries with at least 
one disaster over the 

last decade 

2
,CoDisasters

  
33.45 33.45 

Disastersdeathsofoportion ,Pr
  

0.6 0.6 

deathsofoportionGrowthGdp Pr,
  

-0.0066 -0.0073 

   
2

,CoGrowthGdp
  

-0.13 -0.15 

 

 

 


