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La fricción interna corresponde a la capacidad de los materiales de disipar la energía de
ondas de sonido. Esta capacidad depende del tipo de material así como del tipo y cantidad de
defectos que contenga. Durante muchos años se ha utilizado la espectrocopía mecánica para
obtener información del material a través de distintos experimentos, midiendo por ejemplo
la fricción interna de un material específico.

A pesar de la capacidad para medir fricción interna, hasta ahora es difícil conocer con
precisión cuales son los mecanismos microscópicos que dan origen a la disipación de energía
al interior del material. De particular interés es un pico en la curva de disipación interna
versus temperatura llamado pico de Bordoni. La evidencia sugiere que la generación de este
pico se debe a propiedades de las dislocaciones. Modelos teóricos que usan mecánica del
continuo permiten una descripción cualitativa, pero no cuantitativa, del efecto.

Hasta ahora se ha estudiado el pico de Bordoni desde el punto de vista experimental y
desde la mecánica del contínuo. En este trabajo se propone estudiar este efecto desde las
simulaciones atomísticas a través de dinámica molecular. Para ello se generó una muestra
de cobre de 892 800 átomos con dos dislocaciones ancladas y se generaron ondas de corte
en el material. Se midió la tensión generada en la muestra y se encontraron las curvas de
tensión-deformación. Luego se estudió la disipación de energía generada por la interacción
de las ondas con las dislocaciones a través de una posible histéresis en las curvas de tensión-
deformación. Estas simulaciones se realizaron a las temperaturas de 0, 50, 100, 150, 200 y
250 K, con períodos de 125 ps y 38 ps y un máximo de deformación de 0.0008 y 0.008. Para
estimar el orden de magnitud esperado para la respuesta del sistema se usó un modelo de
cuerda sobreamortiguada, lo que también permitió estimar el período de forzamiento para el
cual las pérdidas deberían ser máximas. Todo esto llevó a una estimación del cuociente entre
energía disipada por ciclo y energía acumulada máxima llamado Q−1 del orden de 10−4 lo
cual se ajusta a los resultados experimentales. Para estimar el valor de los parámetros que
aparecen en el modelo analítico se realizaron simulaciones con las dislocaciones desancladas.

Dentro de la precisión numérica utilizada, no se encontró histéresis. Se deduce que la
barrera de Peierls es muy pequeña para permitir detección de la histéresis. Se establece una
cota para la precisión en las mediciones para cuantificar la fricción interna en el futuro.

Posibles direcciones de trabajo futuro incluyen la disminución de las fluctuaciones en las
mediciones de la tensión, lo que se podría lograr con un mayor número de ciclos generados
en las ondas de corte y promediando sobre muchas realizaciones. Otra opción es realizar
las simulaciones en otros materiales, con mayores coeficientes de fricción, para aumentar la
energía disipada.
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ATOMIC SCALE STUDY OF MECHANICAL SPECTROSCOPY IN FCC METALS

Internal friction is the capacity of materials to dissipate the energy of sound waves inside
of them. This capacity is dependant on the kind of material and also on the kind and amount
of defects present. For many years a technique called mechanical spectroscopy has been used
to obtain information of materials, measuring for example the internal friction.

Despite the capacity to measure internal friction, until now it has been hard to know with
precision which are the microscopic origins of the dissipation of energy in different materials.
Of particular interest is a peak in the curve of internal friction versus temperature called
Bordoni peak. The evidence suggests that the generation of this peak is due to properties
of dislocations. Theoretical models based on continuum mechanics permit a qualitative
description, but not a quantitative one.

Until now the Bordoni peak has been studied from an experimental point of view and
from a continuum mechanics approach. In this work it is proposed to study this effect
from molecular dynamics simulations. For this, a copper sample with 892000 atoms and
two anchored dislocations was generated. Shear waves were also generated in the sample.
The average shear stress was measured and the stress-strain curves were found. Then, the
dissipation of energy generated by the interactio between the dislocations and the shear
waves was studied through the hysteresis in the stress-strain curves. These simulations were
done at temperatures 0, 50, 100, 150, 200 y 250 K, with periods of 125 ps and 38 ps and a
maximum of strain 0.0008 and 0.008. To estimate the order of magnitude expected in the
simulations, a model of an overdamped string was used, which also permitted to estimate
the period required to make the dissipation maximum. The estimated dissipated energy per
cycle was 10−4 which is a similar result to reported experiments.

Within the numerical precision used, there was no hysteresis found. It is deduced that the
Peierls barrier is too small to permit the detection of the hysteresis. A minimum of precision
is established in the measurements to quantify the internal friction in the future.

Possible directions of future work include diminishing the of the fluctuations in the mea-
surements of stress, which could be done by increasing the cycles and averaging over many
realizations. Another option is to make simulations in other materials with greater friction
coefficients, to increase the dissipated energy.
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La ciencia siempre está equivocada, no puede resolver un problema sin crear diez más.
Fiódor Dostoyevski
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Introduction

Mechanical spectroscopy is a technique used to study the mechanical properties of materials
by the application of time dependent mechanical stresses on the sample and measuring the
response generated by it. This technique has been used since the half of the last century, but
the meaning of the measurements are still being debated in many cases [1].

One of these cases is the so called Bordoni peak. In 1946 Bordoni found that FCC metals
subject to work hardening generated a peak in the internal friction versus temperature curve
in the range of the 50 K to the 100 K. After the experimental characterization of this peak
many speculations were made about the possible origin of this effect (see for example [2], [3]).
But the specific microscopic processes involved are still unknown. Qualitatively, however,
there is a strong evidence that points to dislocations as the origin for this effect [4].

Simulating the effect of dislocations on the internal friction of a metal is thus an interesting
problem, which could shed light on the microscopic mechanism which generates the Bordoni
peak. Understanding this mechanisms may give information on the defects in the materials,
and thus on their mechanical properties [5], [6].

In this work we have performed numerical simulations of a FCC crystal system, more
specifically copper, with dislocations in its interior, for the study of internal friction gener-
ation. The generation of internal friction in the sample was studied by applying oscillatory
shear strains and measuring the resulting stress. The signature of internal friction is hys-
teresis in the stress-strain plot. The numerical simulations performed aimed at finding this
hysteresis effect. To find the frequency at which the energy losses are maximum, an analytical
model of the dislocation considered as an overdamped string was used. Once this frequency
was found an oscillatory shear strain was applied at temperatures from 0 K to 250 K (range
in which it would be expected to find the Bordoni peak). The area of the hysteresis loops
was calculated and compared to the fluctuations of the measured stresses. The fluctuations
of the measured stress were quantified, the size of the area produced by these fluctuations
was found to be higher than the area of the expected hysteresis loop.

This thesis is organized as follows: chapter 1 reviews the concepts of elasticity and anelas-
ticity in solids that provide a conceptual framework. Chapter 2 reviews current knowledge
on the influence of lattice periodicity on dislocation dynamics. It is expected that this is
a significant ingredient in the anelastic response of solids to dynamical loading. Chapter 3
reviews the data available on the Bordoni peak and the theoretical attempts at their com-
prehension. Chapter 4 describes the numerical simulations that have been performed in the
search for hysteretic behaviour of the stress-strain curve of solids. This chapter is the main
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original contribution of this thesis. A final chapter has concluding remarks. Some technical
information about the simulations is gathered in the appendix.
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Chapter 1

Introduction to some concepts in
Mechanical Spectroscopy

In this chapter the technique of mechanical spectroscopy is introduced. The work of this
thesis is to simulate through dynamical simulations a mechanical spectroscopy experiment.
The objective of this chapter will be to introduce some concepts to understand the problem
addressed in this thesis.

As mentioned in the introduction, mechanical spectroscopy is a technique used in material
science to understand the mechanical properties in solids. In this technique, time dependent
stresses are applied on the sample and the strain is measured (or viceversa). Generally in this
measurements the temperature and the frequency of the time dependant stresses are varied
to see how the mechanical properties vary with these quantities. An important property
that can be measured is called the internal friction Q−1, which quantifies the fraction of
dissipated energy in a cycle. The mathematical definition in the context of a particular
model (Maxwell-Voigt model) will be given in the next chapter and will be relevant for this
thesis.

1.1 Internal friction

Internal friction is related to the dissipation of energy in a sample when mechanical stresses
or strains are applied. Rather than give a precise mathematical definition in this section an
account of the experiments to measure it will be given.

There are various techniques to measure internal friction, such as torsion pendulum or
resonant ultrasound spectroscopy (RUS). To give some phenomenology of internal friction
the torsion pendulum technique will be shown.

The torsion pendulum technique consists of taking a filament of a solid in which the
internal friction will be measured and joining it to a pendulum at the bottom. An schematic
image of this configuration is shown in figure 1.1. At an initial time, an amplitude θ0 is given
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to the pendulum, then the pendulum oscillates freely. The amplitude is then measured in
time, an schematic graph that is obtained from this measurements is shown in figure 1.2.
From the decay in the oscillation amplitude it is possible to calculate the internal friction by
measuring how much the amplitude diminishes in a cycle. This can be done by calculating
the coefficient of the exponential that fits the oscillation amplitudes.

If the amplitude of the oscillations is fitted by an exponential function as in figure 1.2,
then this exponential will have the form

θ(t) = θ0e−tδeiωt

where θ(t) and θ0 are the amplitude at time t and at the initial time, δ is the decay coefficient
and ω is the frequency of the oscillation. The decay coefficient can be related to the phase
difference bewteen strain and stress φ by [4]

δ = πφ

This phase difference φ will be shown to be related to the internal friction Q−1 in the next
chapter. The definition for internal friction is given in literature as [4]

Q−1 =
∆W

2πW

where ∆W is the energy dissipated in each cycle andW is the maximum energy accumulated
in the sample.

Figure 1.1: Torsion pendulum configuration. This configuration measures the internal friction
in the filament shown in the figure.

An example of the measurements obtained are shown in 1.3. In the figure it is possible to
see different measurements of internal friction Q−1 for different temperatures and different
doses of neutron radiation (measured in dpa or displacements per atom). Through this
measurements it is possible to deduce mechanical properties of the solid under study. The
measurements of 1.3 were made on pure Fe, and in Fe-Cu alloys. Each of these samples
were subject to different doses of neutron radiation, measured in dpa (displacements per
atom) which measures the amount of radiation damage in neutron-irradiated materials, 1
dpa means for example that each atom in the material has been displaced from its site
within the structural lattice of the material an average of 1 time. In the measurements it
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Figure 1.2: Amplitude of the oscillation in a torsion pendulum. From the decay in the
amplitude it is possible to calculate the dissipation of energy in a cycle. Image modified from
[4].

is observerd the appearance of several bumps in the internal friction curves as the radiation
dose increases, this measurements can be related with mechanical properties such as the
embrittlement of the material. In the article were these measurements are presented [5], only
phenomenological explanations for the appearance of this bumps are given.

Through measurements of internal friction, several bumps in the internal friction can be
identified. One particular bump is the Bordoni Peak, which appears in FCC metals. This
peak is thought to be related to the inherent properties of dislocations, so measuring this
peak can give valuable information about mechanical properties [4]. One such property is
the Peierls barrier discussed in chapter 3. Although it is possible to determine this quantity
through measurements of internal friction, this measurements seem to differ by at least 2
orders of magnitude from other experimental techniques such as mechanical deformation
tests.

The difference in the measurement of the Peierls barrier has its source in the difficulty
to interpret the Peierls barrier value from the Bordoni peak measurements [4], the micro-
scopic meachanisms of this peak are not known in detail.In the next chapter, the behaviour
of anelastic materials will be introduced in order to understand the internal friction measure-
ments, then in chapter 3, the effects of the lattice periodicity on dislocations will be presented.
Undestanding this will be important to introduce the concept of the Peierls barrier which
generates the anelastic effects due to dislocations. Then in chapter 4 we finally introduce the
phenomenology of the Bordoni peak. The final chapter corresponds to the actual work done
in this thesis, where molecular dynamics simulations were done in copper to find the Bordoni
peak in order to shed light on the microscopic causes of this effect.
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Figure 1.3: Measure of internal friction vs temperature of Cu and Fe alloy in different con-
centrations and different neutron radiation levels. From this measurements it is possible
to deduce mechanical properties of materials such as the presence of defects in the crystal
structure. Image taken from [5].
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Chapter 2

Elasticity and anelasticity in solids

In this chapter we will make a small revision of the elastic regime in solids to then introduce
the anelastic regime and how it deviates from ideal elasticity which will be relevant to this
work. This chapter follows closely reference [4]. This introduction is done with the objective
of presenting the dissipation of energy in anelastic solids, which are relevant to understand
for the molecular dynamics simulations done in this thesis

2.1 Ideal Elasticity

In an elastic solid it is known that Hooke’s law is verified between the stress σ and the strain
ε:

σ = Mε (2.1)

ε = Jσ (2.2)

The constantM is called the elastic modulus, for arbitrary stresses and strains both variables
are expressed as tensors of rank 2 where the components of these two tensors are related by
lineal equations. For the purpose of introducing anelasticity we will just consider equation as
a simple linear relation rather than tensors. This implies that we are considering pure shear
stresses, uniaxial deformations o hydrostatic deformation.

There are three main assumptions in equations (2.1) and (2.2):

1. There is a unique equilibrium relation between stress and strain.

2. The equilibrium response is achieved instantaneously. When a sound wave is present,
the response can be considered instantaneous in an infinitesimally small region.

3. The response is linear.

7



Unique equilibrium relation Instantaneous response Lineal
Ideal elasticity Yes Yes Yes
Non lineal elasticity Yes Yes No
Instantaneous plasticity No Yes No
Anelasticity Yes No Yes
Viscoelasticity No No Yes

Table 2.1: Summary of the classification of the different elastic regimes in solids. Unique
equilibrium relation means that there is a unique equilibrium relation between stress and
strain. Instantaneous response means that the equilibrium relation between stress and strain
is achieved instantaneously. Lineal means that there is a lineal relation between stress and
strain.

2.2 Anelasticity

If we relax any of the three conditions mentioned in the previous section, we will obtain
different regimes whose characteristics are summarized in table 2.1. From the table we can
see that anelasticity is defined by relaxing the condition of instantaneous response. In the
next section we will see that when a strain or a stress is applied, anelastic relaxation can
appear. This relaxation when it is present, is due to other internal variables in the sample,
coupled to the strain and stress of the material. A simple system where this kind of relaxation
occurs is in a spring with a complex spring constant k, another analogous system is a dielectric
subject to an alternating external electric field. In this last example the permittivity will
be a complex number and the response of it will lag behind the forcing of the oscillatory
electrical field.

2.2.1 Anelastic relaxation

Anelastic relaxation can be illustrated through a simple example. Suppose at time t = 0 a
constant stress σ0 is applied to a solid and is kept constant from then on:

σ =

{
σ0 if t ≥ 0

0 if t < 0
(2.3)

If subsequently, the strain is measured in the sample, then the strain response will be a
function of time ε(t). From linearity we know that ε(t)/σ0 is independent of σ0, so we can
define a response function

J(t) = ε(t)/σ0

Note that for the elastic case J(t) becomes the constant J defined in equation 2.2. The initial
value J(0) = JU is called the unrelaxed compliance and it corresponds to the instantaneous
part of the response. We also define the relaxed compliance J(∞) = JR and the relaxation
of the compliance as their difference δJ = JR − JU .

We compare qualitatively the behaviour of ideal elasticity, anelasticity and viscoelasticity
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under the applied stress as defined above, in figure 2.1 (taken from [4]). From the figure we
can also see what happens when the constant stress is removed. Anelasticity is characterized
by an instantaneous response related to the elastic properties of the material and an anelastic
relaxation response related to anelasticity. In the case of viscoelasticity it is seen that there
is no a unique equilibrium relation. This can be noted in the so called creep which is the
tendency to deform permanently under the influence of stress, this effect can be seen in figure
2.1.

Figure 2.1: Qualitative response of the strain when a constant stress is applied to a solid,
in the cases of elastic, anelastic and viscoelastic solids. Notice that anelastic solids have
an elastic instantaneous response and also a retarded response. This behaviour is further
explained in the text. (Figure modified from [4]).

2.2.2 Anelastic dynamic response

Suppose now that instead of applying a constant stress, an stress oscillatory in time with
angular frequency ω is imposed on the anelastic sample. We can describe the stress as

σ(t) = σ0eiωt (2.4)

where σ0 is the stress amplitude and ω the angular frequency. The condition of linearity im-
plies that the strain response is periodic with the same frequency but with a phase difference

ε(t) = ε0ei(ωt−φ) (2.5)

where ε0 is the strain amplitude and φ is the phase by which the strain lags behind the
stress. In general they are both functions of ω. Note that linearity also implies that ε0/σ0 is
independent of σ0.

9



Next we define a function called the complex compliance,

J = ε/σ =| J | (ω)e−iφ(ω),

where | J |= ε0/σ0. From the two response functions just defined, J and φ, we can define
two other functions. To this end we write equation (2.5) in an alternative form

ε = (ε1 − iε2)eiωt

where ε1 is the strain amplitude of the in-phase with stress component and ε2 is the 90◦ out
of phase amplitude. Dividing by σ we obtain

J(ω) = J1(ω)− iJ2(ω)

where J1 = ε1/σ y J2 = ε2/σ. J1 is then the real part of J and J2 is the imaginary part.
Note that

| J |= J2
1 + J2

2

tanφ = J2/J1.

J1 is called the storage compliance and J2 the loss compliance. To understand the origin of
this name we calculate the energy dissipated in a full cycle per unit volume. Since σ and ε are
out of phase there will be a hysteresis loop in the stress-strain plot, its surface is interpreted
as the energy lost in a cycle, and it’s given by

∆W =

∮
σdε = πJ2σ

2
0

where the integral is performed over one period. This shows that J2 is proportional to the
energy lost in one cycle. In an analogous way we can calculate the maximum stored energy
W per unit volume, integrating over one quarter of a period:

W =

∫ π/2

ωt=0

σdε =
1

2
J1σ

2
0

If we calculate the ratio of both quantities defined above we obtain

∆W

W
= 2πJ2/J1 = 2π tanφ (2.6)

The ratio of the dissipated energy in one cycle and the maximum energy stored is called the
fractional energy loss per cycle due to the anelastic behaviour. From this ratio we define the
internal friction Q−1

Q−1 =
∆W

2πW
= tanφ (2.7)
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(a) Maxwell Model (b) Voigt Model

Figure 2.2: An schematic figure of Maxwell and Voigt model

2.2.3 Mechanical models of anelasticity

In this section a simple mechanical model capable of demonstrating anelastic behaviour will
be shown and in this way a simple relation between stress and strain in the anelastic regime
will be found.

From the assumption of linearity and time dependence (non instantaneous) the most
general relation between stress and strain is

a0σ + a1σ̇ + a2σ̈ + ... = b0ε+ b1ε̇+ b2ε̈+ ... (2.8)

In order to describe anelasticity we first review some simple mechanical models. If all the
coefficients except a0 and b0 are zero we recover Hooke’s law. Another mechanical model
that can be described is the dashpot with a viscous response, whose equation is σ = νε̇ (all
coefficients are 0 except a0and b1). We can also form mechanical models by combining the
ideal spring and the dashpot. To do this, notice that when combining in series two elements
the stresses σ1 and σ2 are equal while the strains ε1 and ε2 are additive.

ε = ε1 + ε2

σ = σ1 = σ2

Whereas for combinations in parallel we have

ε = ε1 = ε2

σ = σ1 + σ2

One known model is the Voigt model which is composed of a spring and a dashpot in parallel,
another one is called the Maxwell model, composed of an spring and a dashpot in series, see
figure 2.2. If a stress σ0 is applied at t = 0, the dashpot won’t yield instantaneously but it
will start to flow after some time. At t = ∞ the stress will become entirely sustained by
the spring. When the stress applied is taken away the dashpot will begin creeping back to
its position because of the force generated by the extended spring. Figure 2.3 represents the
situation.

The equation of the situation presented above is obtained considering that ε1 = Jσ1 for
the spring and ε2 = Jσ2/τ for the dashpot. Following the rules of elements in parallel we get
the equation

Jσ = ε+ τ ε̇

11



Figure 2.3: Qualitative behaviour of the strain response in the Voigt model for a constant
applied stress during a finite time interval. When the applied stress is taken away the dashpot
will begin creeping back to its position because of the force generated by the extended spring.
When the stress is turned off there is a relaxation time needed to get back to equilibrium.

This equation is equivalent to equation (2.8) with a0, b0 and b1 different from 0. Solving this
equation we get the behaviour shown in the figure 2.3.

From the analysis of the Voigt model we see that we can explain the relaxation which is
characteristic in anelasticity, but notice that in figure 2.1 there is an elastic component in
the response, we still need to explain the elastic part of the response. To add the elasticity
we can just add in series a spring to the Voigt model. In this way we obtain a behaviour
similar to the anelastic case in figure 2.1. The mechanical model is shown in figure 2.4

Since the system of figure 2.4 has the characteristics of an anelastic material, the solution
will be relevant to this work. Using the notation in the figure and considering εa = JUσa,
εb = δJσb and ε̇c = δJσc/τσ we can obtain the stress-strain relation:

JRσ + τσJU σ̇ = ε+ τσε̇ (2.9)

where JU + δJ = JR. Now we consider an oscillatory stress on the model σ = σ0eiωt and a
strain response as in the anelastic case ε = (ε1 − iε2)eiωt. Substituting the strain and stress
in equation 2.9 we arrive to the equations

JR = J1 + ωτσJ2

ωτσJU = ωτσJ1 − J2
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Figure 2.4: Mechanical model of the Voigt model. The model consists of a spring and a
dashpot in parallel and one spring in series with the first two. JU , δJ and η are defined in
the text.

and solving for J1 and J2 we obtain

J1(ω) = JU +
δJ

(1 + ω2τ 2
σ)
, (2.10)

J2(ω) = δJ
ωτσ

(1 + ω2τ 2
σ)
. (2.11)

A plot of equations (2.10) and (2.11) is shown in figures 2.5 and 2.6. When ωτσ = 1 there is

Figure 2.5: Function J1 with JU = 0 and δJ = 1 from equation 2.10.

a peak in the J2 function. This means, according to equation (2.6) that there is a maximum
in the dissipated energy when the system is forced at the frequency ω = 1/τσ, this will be
relevant in chapter 4. This last remark is evident if we notice that the internal friction can
be written as

tanφ =
J2

J1

= δJ
ωτσ

JR + JUω2τ 2
σ

. (2.12)

The expression for the internal friction has the same dependence on ω and τσ as J2.
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Figure 2.6: Function J2 with JU = 0 and δJ = 1 from equation 2.11. Notice that the
maximum occurs when ω = τ−1

σ .

2.2.4 Origin of anelastic behaviour

In the last subsections time dependent behaviour has been included in Hooke’s law in order
to understand anelastic response, but the origin of this behaviour in solids has not been
mentioned yet. In this subsection the origin of such behaviour will be studied.

The reason for the delay between stress and strain can be understood as the coupling of
an internal variable to the stress and strain in the sample. An example of an internal variable
can be the displacements of dislocations, this will be seen in detail in section 4.

In general, let us suppose there is a single variable ξ, the internal variable, coupled to the
stress σ and strain ε according to equation

ε(σ, ξ) = JUσ + χξ (2.13)

where χ is a coupling between ξ and ε. In this way the total strain is expressed as the sum of
two terms, the first one is the known Hookes law, and the second is defined as the anelastic
strain εane = χξ. Now the state of the system will be described by ε, σ and ξ. Equation
(2.13) assumes that the relation between this variables is linear. A second assumption is that
there is an equilibrium value of ξ for each σ which we will call ξ̄, and they are also linearly
related.

ξ̄ = µσ. (2.14)

In general µ depends on the temperature. The final assumption is that ξ approaches its
equilibrium value over a period of time, in the case of dislocations mentioned above this
delay may be caused by their interaction with impurities in the crystal or the roughness of
the potential the dislocation is subject to.

Only a first order approximation is needed to see the effects of the new internal variable
on the anelastic response: A first order equation for dξ

dt
is

dξ

dt
= −1

τ
(ξ − ξ̄). (2.15)
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where τ is the coefficient of the first order approximation, which has units of time. If this
equation is solved for ξ then τ will represent a relaxation time. Substituting equation (2.14)
in (2.13) and comparing with the equation 2.9 we obtain

δJ = ε̄ane/σ = χξ̄/σ = χµ

Thus we connect the mechanical models with parameters related to the internal variable. For
more conections with the mechanical model and equation (2.9) see [4].

2.2.5 Properties of the anelastic solid as function of temperature

In the previous subsection properties such as J1 and J2 were plotted against logωτ . Properties
like these or like tanφ take particular forms when plotted this way. In experiments where the
sample is subject to oscillatory stress or strain, for example sound waves, the frequency ω is
a parameter that is varied while the relaxation time τ is constant. The problem is that the
peaks obtained imply that the frequency needs to vary over two decades. In torsio pendulum
experiments varying the frequency is impractical [4], so another alternative must be sought
if these peaks want to be studied.

Another option is naturally to vary τ while keeping ω constant. This method is the one
usually used and it will be discussed in this subsection.

In most of the cases the relaxation rate τ−1 has an Arrhenius type dependence on the
temperature, that is to say

τ−1 = ν0e−
A
kT (2.16)

where T is the absolute temperature, ν0 is a frequency factor, A is an activation energy and k
is Boltzmann’s constant. This equation for τ−1 is valid when the relaxation process involves
the movement over an energy barrier. Alternatively, 2.16 can be written as

τ = τ0e
A
kT , (2.17)

with τ0 = ν−1
0 . From the last relation we see that τ may be changed in a wide range by

varying T because of the exponential relation. Therefore by substituting equation (2.17) in
the equations (2.10) and (2.11) it is possible to obtain the dependence of the variables in an
anelastic solid with temperature. From 2.17 we see also that

lnωτ = lnωτ0 +
A

kT

and there is a linear relation between lnωτ and the inverse of the temperature. This implies
that a graph that dependends on A

kT
has the same form as one that depends on lnωτ , but

with a shift in the horizontal axis. In many experiments of internal friction the graphs are
expressed in terms of 1/T for this reason.
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Chapter 3

Influence of lattice periodicity on
dislocations

In this chapter the effects of the discreetness of the lattice on the dislocation will be shown.
This, with the objective of introducing the Peierls barrier which has been the source of many
discussions because of the discrepancies of its measurement in experiments, this discrepancy
will be commented in the next chapter.

Dislocations are line defects in periodic crystals. In continuous mechanics, dislocations are
typically described as lines in a homogeneous solid [7]. This is of course a macroscopic scale
description. In real crystals however, we have lattice periodicity which affects the behaviour
of these defects. For instance in the Frenkel treatment of the shear strength of a perfect
crystal a periodic potential energy of displacement is considered (see chapter 1 of [2]). We
can expect then that a similar periodic potential will affect the movement of dislocations.

A simple model, initially applied to the movement of dislocations in periodic potentials, is
the Frenkel-Korontova model (see chapter 8 of [2]) which consists of a one dimensional array
of masses connected by springs lying on a periodic potential. Subsequent developments of this
phenomenological model allowed qualitative descriptions of the slip process in dislocations.

A more realistic solution was first made by Peierls [8] and later refined by Nabarro [9].
Their model is useful for the calculation of the dislocation width and for estimating the core
energy of a dislocation. It is also used to calculate the lattice displacement potential that
resists dislocation motion and the associated stress as will be explained later, although there
are still problems to connect this predictions with experiments. In the next subsection we
present the model known as Peierls-Nabarro dislocation model.

3.1 Peierls-Nabarro dislocation model

In continuous mechanics dislocations are considered as strings embedded in an elastic medium.
It is possible to calculate the stress field generated by edge or screw dislocations in the con-
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tinous approximation [2], [10]. In the case of the edge dislocation we have for example the
shear stress field, with the dislocation line pointing in the z direction:

σxy(x, y) =
µb

2π(1− ν)

x(x2 − y2)

(x2 + y2)2
.

where ν is Poisson’s ratio, µ is the shear modulus and b is the Burgers vector. Notice that at
the origin x, y = 0 the stress field has an artificial divergence. This is due to the continuous
approximation that doesn’t take into account the discrete nature of the crystal lattice. In
the following subsection the stress and displacements generated at the core of the dislocation
will be obtained, and afterwards the potential "seen" by the dislocation will be calculated
from this model to define the Peierls stress, a quantity related to the mechanical properties
of materials.

3.1.1 Stress and displacement in the core

We will present this model in a simple cubic lattice of lattice constant b as was originally
done by Peierls and Nabarro. Consider first two simple cubic half-infinite lattices, with their
cubic axes parallel, separated by a distance d as shown in figure 3.1.

Figure 3.1: Schematic illustration of two semi-infinite simple cubic crystals with a displace-
ment of b/2. The vertical lines represent columns of atoms. The disregistry in this case is
b/2 where b is the Burgers vector. This is because the difference in distance between one row
in the upper plane and the lower one is b/2. This disregistry defines a dislocation (Figure
taken from [2]).

We can define the disregistry φ0
x of the upper lattice with respect to the bottom one as

φ0
x =

{
b/2 if x ≥ 0

−b/2 if x < 0
(3.1)

where b is the Burgers vector and the line of the edge dislocation points inside the page (see
figure 3.2). If the upper and lower part of the crystal are joined, we obtain figure 3.2. An
edge dislocation will form in the crystal. In this second case the disregistry will be

φ0
x =

{
2ux(x) + b/2 if x ≥ 0

2ux(x)− b/2 if x < 0
(3.2)
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Figure 3.2: Cubic crystal with a disregistry of b/2. In the origin there is a dislocation due
to the displaced atoms. The continous lines represent the rows of atoms, notice that when
the upper and lower plane come together there is a strain on the atoms near the dislocation
(Figure taken from [2])

The atoms in the upper crystal are subject to two forces [9]: first due to the interaction with
the atoms in the same upper crystal, and a second force due to the interaction with atoms
in the bottom crystal. The first force tends to spread the compression dut to the strains
caused by the disregistry and the second force tends to bring the atoms in the upper part in
alignment with the lower atoms. If we define a dislocation width in this sample (it will be
defined quantitatively later), the first force will tend to increase the width and the second
will shorten it. The competition between both forces will create a characteristic size of the
dislocation width [10].

We assume here that the dislocation size is large compared to the interatomic distance, the
vertical and horizontal displacements vary slowly from atom to atom. From this assumption
Peierls and Nabarro treat both half crystals as isotropic elastic media.

These forces associated to the distorted bonds imply a local stress in the plane y = 0. If
we assume that horizontal forces are only due to difference in displacements in the x axis
and consider the periodic nature of the crystal, then the stress generated by these forces can
be expressed as

σxy(x, 0) = K sin(
2πφx
b

)

= −K sin(
4πux
b

)

(3.3)

The second equality is obtained by substitution with the definition of φx. The constant K is
obtained by imposing that Hooke’s law is verified by the stress.

σxy(x, 0) = 2µεxy

=
µφx
a

(3.4)

where a is the interatomic distance. Using equations (3.3) and (3.4) we obtain

σxy(x, 0) = − µb

2πa
sin(

4πux
b

) (3.5)
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Now we wish to calculate the energy related to the presence of the dislocation. As was
mentioned in section 3.1 we want to obtain the energy that the dislocation is subject to, for
this we compute the energy related to the presence of the dislocation so, thus, the stress and
displacements generated by the dislocations must be calculated. We have obtained the stress,
we still need to calculare the deformation ux. Following Eshelby [11], the dislocation defined
with a Burgers vector b is described as a continuous distribution of infinitesimal Burgers
vectors that lie in the x axis line. This fact will be used in the following calculations.

It is known that dislocations are related to displacements in the crystals through [7]∮
dui =

∮
∂ui

∂xk
dxk

= −bi

(3.6)

In fact this equation is used to define the Burgers vector of a dislocation. When a dislocation
is circled around, the displacement from the initial point to the finishing point of the circuit
is defined as the Burgers vector. The displacement generated by the infinitesimal Burgers
vectors is identified as b′(x′) = −2dux

dx
dx′[11] and since we know that the Burgers vector of

the dislocation is b then we impose

b =

∫ ∞
−∞

b′(x′)dx′

= −2

∫ ∞
−∞

(
dux
dx

)x=x′dx
′

(3.7)

where b′ is the infinitesimal vector Burgers distribution. Since the shear stress field generated
by a dislocation is [2]

σx,y(x, y) =
µb

2π(1− ν)

x(x2 − y2)

(x2 + y2)2

where ν is Poisson’s ratio, we can derive a similar result for the infinitesimal dislocation
distribution

σxy(x, 0) = − µ

2π(1− ν)

∫ ∞
−∞

b′dx′

x− x′

=
µ

π(1− ν)

∫ ∞
−∞

(dux/dx)x=x′dx
′

x− x′

(3.8)

Notice that the stress in equation 3.5 is the stress due to the deformation of the bonds and
stress in equation 3.8 is due to the stress field generated by the edge dislocation in the crystal.
In equilibrium, both stresses should be equal and in opposite directions. Thus, equating both
we have

µ

π(1− ν)

∫ ∞
−∞

(dux/dx)x=x′dx
′

x− x′
=

µb

2πa
sin(

4πux
b

) (3.9)

This equation can be solved for ux ([11], [12]), the solution is

ux = − b

2π
tan−1 x

ξ
(3.10)

where ξ = a
2(1−ν)

(recall the d is the interatomic distance). The width of the dislocation is
defined as 2ξ. The function obtained can be seen in figure 3.3 Substituting equation (3.10)
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Figure 3.3: Schematic plot of displacement function u and diresgistry φ. Notice that from
the behaviour of this functions it is possible to define a width for the dislocation since there
is a characteristic length in the function u (Figure taken from [2]).

in equation (3.8) we obtain the result

σxy(x, 0) = − µb

2πa

x

x2 + ξ2
(3.11)

If we had not considered the core effects of the lattice periodicity, the obtained stress would
have diverged in the origin, but with Peierls and Nabarro calculation it is possible to estimate
the value of the stress in the core. The stresses obtained though are large and it is questionable
whether Hooke’s law applies.

3.1.2 Elastic energy in Peierls Nabarro model

Now that the stress and displacements in the core of the dislocation have been obtained, it
is possible to calculate the effective potential that the dislocation is subject to. To do this
the elastic energy stored because of the dislocation will be obtained.

Two energies, associated with the dislocation can be defined. One is related to the stress
field generated by the dislocation and stored in both half crystals (the energy related to the
dislocation treated as a line), and another one related to the distorted bonds in the y = 0
half-plane (the energy related to the core of the dislocation). The latter usually called the
misfit energy. Since the Peierls Nabarro model treats the displacements as continuous, this
division is artificial but consistent with the calculations of the last subsection.

The elastic strain energy in both half crystals is equal to the work done by the stress to
generate the displacements ux. In an element of area (δx) times (unit length in z direction)
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the work is
δW =

∫ ux

0

σxy(x, y) δx du = σxy(x, 0) δx ux.

Substituting ux and σxy by equations (3.10) and (3.11) and integrating from x = −r to x = r
we have

W =

∫ r

−r
σxyux =

µb2

4π2(1− ν)

∫ r

−r

x tan−1(x
ξ
)

x2 + ξ2
dx = [

1

2
ln(1+z2) tan−1 z]

r/ξ
−r/ξ−

1

2

∫ r/ξ

−r/ξ

ln(1 + z2)dz

1 + z2

where the last equality is obtained with the change of variable z = x/ξ and integration by
parts. In the limit r >> ξ the first term reduces to π ln(r/ξ) and the second term can be
evaluated by complex integration obtaining −π ln 2. Thus,

W =
µb2

4π(1− ν)
ln(r/2ξ). (3.12)

Now the misfit energy is calculated. The shear strain on the slip surface y = 0 is

εxy(x, 0) = −φx
2a

= −2ux + (b/2)

2a
.

The strain energy is calculated considering σxydεxy + σxydεyx = 2σdεxy. In an element of
height a, width δx and unit length depth, the energy is

δW = −2

∫
a δx σxy dεxy = 2

∫ ux

b/4

δx σxydux.

The negative sign in the second equality is due to the sign of the stress to generate such strain.
The stress in the last equation is in fact the stress defined in equation (3.3). Remember that
this stress is the one generated by the distorted angles, so this explains the negative sign.
The integration starts from b/4 because this is the disregistry in the y = 0 plane when there
are no forces on the half planes. Substituting the definition of σxy from equation 3.5 in the
last equation we obtain

δW = −µbδx
πa

∫ ux

b/4

sin
4πux
b

dux

=
µb2δx

4π2a
(1 + cos

4πux
b

)

(3.13)

and the total misfit energy is

Wm =
µb2

4π2a

∫ ∞
−∞

(1 + cos
4πux
b

)dx =
µb2

4π(1− ν)
. (3.14)

Notice that until now the calculation of the energy has been done using only continuous
mechanics. In particular it is obtained that the misfit energy is a constant in the slip plane
of the dislocation. If we were to consider the lattice periodicity, then the expected result
would be an oscillating energy on which the dislocation would glide. The reason for this
discrepancy between the constant energy result and the expected oscillatory result is due to
the smearing out of the discrete atoms in the lattice.
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Instead of the misfit energy calculation above, a sum will be made of the misfit energy
per row of atoms on one side of the crystal, this sum will be over all rows on both surfaces.
In this way we are taking into account the discrete nature of the lattice. Consider the misfit
energy calculated in (3.13), this energy divided by 2 is the misfit energy per row in one half
of the crystal and δx = b because of the discrete lattice

W (x) =
µb3

8π2a
(1 + cos

4πux
b

)

=
µb3

4π2a

ξ2

ξ2 + x2
.

(3.15)

In the last equality the trigonometric identity cos(2θ) = 1−tan2 θ
1+tan2 θ

and result (3.10) were used.
If we calculate the total energy, integrating over all the real line, we obtain:

W =
µb3

4π2a
πξ

This result implies that if we consider the atoms of the crystal as a continuous distribution,
then the energy related to the position of the dislocation smears out since the result is just a
constant. If instead in equation (3.15) the variable x is a discrete variable which designates
the position of the rows in the surface between the half crystals, that is to say, x = b

2
n with

n an integer. Notice that the bottom half crystal rows correspond to n even and the top half
crystal rows corresponds to n odd. Then we have

W =
µb3

4π2a

∞∑
n=∞

ξ2

ξ2 + ( b
2
n)2

.

When the dislocation is translated a distance bα, where α is an arbitrary real number, every
row gets translated by the same distance. So, if we consider the translation of the dislocation
by bα the energy is

W =
µb3ξ2

π2ab2

∞∑
n=∞

1

(2ξ2/b)2 + (2α + n)2
.

It can be shown that this sum is finite and that the result is [13]

W (α) =
µb2

4π(1− ν)
+

µb2

2π(1− ν)
exp(−4πξ

b
) cos(4πα) =

µb2

4π(1− ν)
+
Wp

2
cos(4πα). (3.16)

Wp is called the Peierls energy. Notice that as α changes (the dislocations translates) the
energy oscillates as expected. This can be interpreted as an energy potential on which the
dislocation moves, thus it is possible to calculate the stress to surmount the energy barrier
into the next minimum with

τp =
1

b2
(
∂W

∂α
)max =

2πWp

b2
=

2µ

1− ν
exp(−4πξ

b
) (3.17)

This quantity is called the Peierls stress. The first equality is obtained by considering the
work needed to get to the maximum of the barrier. Eventhough the Peierls model fails to
predict quantitavely the Peierls stress (see references mentioned in section 4). The qualitative
features of the model are correct. Notice that wider and more planar core structure of the
dislocation implies lower Peierls stress. Peierls energy can be very anisotropic in a crystal,
dislocations will tend to align along the most closely-packed directions [14], for which τp is
maximum. For instance this direction in the FCC crystal is the 〈111〉 direction.
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3.1.3 Criticism to Peierls Nabarro Model

The first thing to be noted is that the model only considers planar cores in simple cubic
lattices, there are cases when non collinear dissociation can exist. This can happen for
example in FCC crystals with partial dislocations, where the Burgers vector of the Shockley
partials is non collinear with the 〈111〉 direction. Other assumptions that are criticized are
the use of continuous mechanics considering the presence of the discrete lattice and that the
model only applies at 0 K .

There have been subsequent modifications to this model, for example phenomenological
force laws have been included to approximate the lattice nature of the crystal [2]. The role
of temperature has been considered in other models (see page 238 of [2]).
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Chapter 4

The Bordoni peak

In this chapter the phenomenology of the Bordoni Peak is presented. The theory about
the production of this peak is also presented and finally comments will be made on the
discrepancy of the Peierls barrier in different experiments.

A dislocation always produces a strain field inside a crystal and when a stress is applied
in the crystal the dislocation is displaced, in this way the dislocation displacement is coupled
to the strain and the stress in the sample. It is because of this coupling that dislocation
displacement can be considered an internal variable in the sense of section (2.2.4).

To observe anelastic behaviour an internal variable is needed, and this variable must lag
behind the applied strain as in equation (2.15). In this equation it was assumed the existence
of an internal variable ξ coupled to the stress on the sample, and whenever a stress was
applied, the variable ξ didn’t take the equilibrium value ξ̄ but instead varied as in equation
(2.15). Such lagging can be caused by impurities, or by potential energy barriers as those
described by the Peierls Nabarro Model (see section 3.1.2).

The presence of barriers to the movement of dislocations produces relaxation effects, such
as those studied in section 2.2.3. These relaxation effects create peaks in the internal friction
versus temperature graphs (recall that in section 2.2.5 the temperature was connected to
the natural frequency of the system). Of the many internal friction peaks that have been
observed in solids, one that has attracted the most attention is the Bordoni peak. This peak
was found for the first time by Bordoni [15], [16] in 1949, and in the subsequent years this
relaxation process was characterized experimentally. Most of the evidence indicates that the
relaxation process of the Bordoni peak involves dislocations, although the exact mechanism
has not been found yet. In other types of crystals similar type of peaks appear which are
analogous to the Bordoni peak [5], [6] but the exact mechanism is not known either.

In this chapter we will first review the characteristics of the Bordoni peak and then the
theory to explain this phenomenon that has been advanced so far, will be studied.
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4.1 Characteristics of the Bordoni Peak

In the original work of Bordoni [15], he found that in Cu, Ag, Pb and Al a peak in the
internal friction appeared around 10 KHz in the range of 50 K to 100 K (about one third of
the Debye temperature). It was later found that the peak was essentially independent of the
strain amplitud for small values of the strain [17], [4].

The main features of the peak taken mainly from [4], [16] and [3] are as follows:

1. The peak occurs in both single crystals and polycrystals. It appears in all FCC crystals.
2. The height of the peak increases with the amount of cold working and the maximum

of the peak shifts to higher temperatures with more plastic deformation. The effects
saturate at 2% to 3% of plastic strain.

3. The peak disappears after annealing at high temperatures.
4. Impurities reduce the height of the peak, neutron radiation causes the same effect.
5. In addition to the main peak there is a subsidiary peak observed at lower temperature.

This peak is usually called the Niblett and Wilks peak and its size is always proportional
to the Bordoni Peak. [17]

6. The temperature of the peak, that is, the temperature at which Q−1 has a maximum
depends on the frequency of the wave: If the frequency grows the temperature at which
the peak is found also grows.

7. The peaks show an Arrhenius dependence in temperature as in equation (2.16) but
they cannot be described by a single relaxation process.

Many of the characteristics listed suggest that the peak is due to dislocations. The fact
that the height of the peak increases with increasing cold working is one of these. Cold
working corresponds to applying deformations on a sample to produce more dislocations in
the sample, the dislocation density in the sample increases when the crystal is subject to
more cold working. Impurities and neutron radiation may lower the peak height because
they pin the dislocation down which restricts their movement and thus lowers the amplitude
of the peak. Experimental curves for copper are shown in figure 4.1.

4.2 Seeger’s theory of the Bordoni Peak

Seeger published a theory explaining the observations of Bordoni and of Niblett and Wilks
in 1956 [18]. From the characteristics of the peak he concluded that the peak was related
to the intrinsic properties of dislocations. He considers a crystal with a periodic potential
similar to the potential calculated int he Peierls Nabarro model. In figure 4.2 the potential is
depicted schematically with a period a, This period will naturally be related to the Burgers
vector. The minimum shear stress τp necessary to take the dislocation from one minimum to
the other is the Peierls stress.

As has been noted by Mott and Nabarro [19], dislocations at non zero temperature form
kinks, see 4.3. Both the energy and entropy of the system increase in the presence of a kink.
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Figure 4.1: Internal friction vs temperature in three different copper samples. (a) Sample
after a deformation of 8.4%. (b) Sample annealed for an hour at 180◦C. (c) Sample annealed
for an hour at 340◦C.

If we call Wk the kink energy which is the energy needed to move a piece of the dislocation
from one minimum to the other then, in thermal equilibrium, the number of kinks per unit
length will be proportional to e−

Wk
kT . If a shear stress tends to move the dislocation in the

y direction, then the distribution of kinks will change, new kinks will appear because of
thermally activated processes and a relaxation phenomenon will appear if the shear stress
is oscillatory. Seeger concluded that a peak will appear when the frequency of the applied
stress f is equal to the frequency of formation of kink-antikink pairs ν. The kink-antikink
pairs can be seen in figure 4.3.

Seeger described the dynamics of a dislocation considering it as a continuous function
y(x), which represents the relative displacement of atoms facing each other on opposite sides
of the glide plane (dislocation line), see figure 4.3. The quantitative theory of Seeger starts
by treating the dislocation line as a string parallel to the x axis with mass m per unit length
and subject to an effective potential E(y):

E(y)
d2y

dx2
=

dE

dy
− bτ +m

∂2y

∂t2
(4.1)

The term on the left corresponds to the force related to the curvature of the string, the first
term on the right is the force on the dislocation due to the periodic potential and the second
term on the right is the force on the dislocation due to the shear stress. E(y) is considered
as a periodic function of period a, and can be approximated expressing the function as the
first two terms of a Fourier series:

E(y) = E0 − α1 cos
2πy

a
− α2 cos

4πy

a
(4.2)

Notice that this expression is very similar to the Peierls Nabarro potential in equation (3.16),
this similarity will be relevant later. Seeger assumes furthermore that E0 is bigger than α1 or
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Figure 4.2: Illustration of the potential energy to which the dislocation is subject to. The
periodicity of the potential a is the lattice constant. The difference between the maximum
and the minimum is the Peierls stress (Figure modified from [10]).

α2, then E(y) on the left side of equation (4.1) can be replaced by E0. For a time independent
treatment of the problem the ordinary differential equation (ODE) obtained becomes

E0
d2y

dx2
=

2πα1

a
(sin

2πy

a
+ 2γ sin

4πy

a
)− bτ (4.3)

where γ = α2

α1
. One solution of this ODE is a single kink, whose analytic form is [18]

y(x) =
a

π
tan−1

(
(1 + 4γ)

1
2

sinh[2πx
a

Ω]

)
(4.4)

with Ω = (α1(1+4γ)
E0

)
1
2 . If we consider γ = 0, which implies α2 = 0, then equation (4.2) has

the form of the energy obtained in the Peierls Nabarro model, for example compare with
equation (3.16). In this case the kink becomes

y(x) =
2a

π
tan−1

[
exp

2πx

a

(
α1

E0

) 1
2

]
. (4.5)

The kink width is defined as w = 1
2
a
(
E0

α1

)1/2

. Inserting (4.5) in

Epot =

∫ ∞
−∞

1

2
E0

(
dy

dx

)2

+ α1 (1− cos(2πy/a))

and identifying the potential energy of the kink configuration as Wk, we obtain

Wk =
2a

π

(
2E0abτp

π

)1/2

, (4.6)

with
τp =

2πα1

ab
. (4.7)
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Figure 4.3: A dislocation line y(x) in a periodic potential as imagined by Seeger. w is the
width of the kinks and a the lattice constant (Figure modified from [10]).

Equation (4.7) comes from comparing equation (4.9) with (3.16) and (3.17), and considering
α2 = 0.

There is one last modification that Seeger did to the calculation of Wk in his original
article. Once the two kinks are created they will interact. Consider for example figure 4.3,
in this configuration a pair of kinks will attract each other because of the direction of the
Burgers vectors. If there is no applied shear stress it is then expected that these kinks will
move towards each other and annihilate. If on the other hand there is a shear stress τ applied,
there will exist a critical distance dcr in which if d < dcr where d is the distance between the
kinks, then the kinks will annihilate. Otherwise they will separate further until they don’t
interact. This critical distance will depend on the applied shear stress. Because of the critical
distance explained above, the activation energy of the kink Wk will also depend on dcr. The
effect of the critical distance will manifest as a logarithmic dependence of Wk on τ . This
dependence is very small for experimental detection and aside from this effect the Bordoni
Peak is independent of the amplitude. The detail of the calculation is in Seeger’s article [18],
here we cite the result to show the logarithmic dependence of W on τ :

W = Wk

[
1 +

1

4
log

(
16τp
πτ

)]
(4.8)
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4.2.1 Connection of Seeger’s theory with experiment

At the time of Seeger’s work, the experiments of internal friction were done using a torsion
pendulum at a fixed frequency and varying the temperature, the curves obtained are shown
in 4.1. Since the frequency of the oscillations was fixed, the parameter varied was the relax-
ation time τ which depends on temperature according to equation 2.17. Recall that in the
equation that relates τ and temperature there is the parameter Q, the activation energy of
the relaxation process which coincides with W calculated in this section. In this way it is
possible to fit this Lorentzian function to the experiment and obtain an experimental value
of the activation energy. Seeger assumed that the frequency of kink formation has the simple
form

ν = ν0e−W/kT (4.9)

where ν0 is a frequency independent of temperature and W is the activation energy of the
process. In equation (2.17) there is also a τ0 that is related to ν0 in equation (4.9). To relate
the experimental value with the parameters of the model it is assumed that ν0 is the natural
frequency of rigid dislocation line in the minimum of the potential, then

ν0 =
vt
a

[
(1 + 4γ)α1

E0

] 1
2

(4.10)

where vt is the velocity of shear waves; also, in the article [18] it is considered that E0 = 1
5
Gb2.

As was mentioned at the beginning of this section, along with the Bordoni Peak there is a
smaller peak at lower temperatures called the Niblet-Wilks peak. Seeger ascribed this smaller
peak observed originally in copper to the different directions of dislocation in the sample. In
FCC crystals the typical dislocation has a Burgers vector in the directions 〈110〉, this is the
close packing direction in this type of crystal. The direction of these dislocations lie in the
{111} glide plane, and they can be parallel or form an angle of ±60◦ thus the different peaks
are due to these two types of dislocations. Seeger’s explanation for the appearance of the two
peaks is that since the activation energy of the two types of dislocation differ by two orders of
magnitude, then these difference in activation energies cause two different relaxation peaks.

4.3 Bordoni Peak and experiments

Interpreting measurements in FCC crystals of the Peierls stress σp has been hard because of
the different methods used: One way for estimating σp is by resolving the critical resolved
shear stress measured by mechanical deformation test [20],[1] which consists in measuring the
shear stress required to initiate plastic deformation. Other way is through the Bordoni peak
relaxation. It is possible to calculate as explained in the last section σp from the relaxation
measurements. Mechanical deformation tests give a Peierls stress in the range of 10−4G to
10−5G and Bordoni peak relaxations give an estimation from 10−2G to 10−3G, where G is
the shear modulus of the material. This discrepancy of two orders of magnitude has been
the origin of the questioning of the kink pair formation origin of the Bordoni peak [21]. This
thesis attempts to shed light on these issues through direct numerical simulations. Such is
the subject of the next chapter.
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Chapter 5

Molecular Dynamics simulation

Now that the context of this thesis has been laid, the new numerical work that has been
performed will be described. As was mentioned in section 4.3 there is confusion on the
interpretation of the experimental data obtained through the Bordoni peak: it is not clear
yet what is the microscopic mechanism responsible for this effect and the objective of this
simulations are to shed light on this mechanism.

Nowadays the main experimental tool used to probe the microscopic properties of disloca-
tions is the transmission electron microscopy (TEM). On the other hand, the main theoretical
tool for studying dislocations is continuum mechanics. There is then the need to connect the
atomic scale measurements of dislocations (and in particular measurements of the Bordoni
peak) and continuum mechanics predictions which correspond to the scale of the hundreds
of atoms and higher.

Recent advances in the study of dislocation dynamics [22], [23], [24] and the study of
dislocations through ultrasound measurements increase the need to connect measurements
and theory, and the most natural candidate is numerical simulations. The origin of the
Bordoni peak seems to be connected to the intrinsic properties of dislocations, as has been
mentioned before, thus simulations of this phenomenon is interesting for these purposes.

Recent simulations are relevant for the work done in this thesis. In a work done by
Marian and Caro [25], the dynamics of dislocations was studied using molecular dynamics
(MD) simulations of Ni-Au alloys. The mobility of dislocations in Ni with different Au
concentrations was measured. A measurement of interest was the velocity of the dislocation
as a function of the stress applied on the sample, similar measurements were made in this
thesis in Cu and Ni. Also the work of Skirlo and Demkowitz [26] is relevant, they found
viscoelastic effects in super-lattices of Cu-Nb. This viscoelastic effect is found by applying
oscillatory shear stresses on the sample in a similar way done in this thesis. They found a
hysteresis loop similar to the one that may be expected from the anelastic relaxation of the
Bordoni Peak.

For the reasons exposed before it is interesting to go beyond the analytical models and
understand through simulations the microscopic dynamics of an FCC metal (in these type
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of crystals is where the Bordoni peak is found) that is forced with an oscillatory shear strain
mimicking the experiments done in the last century.

In this chapter it is proposed to study the Bordoni peak through molecular dynamics
simulations in FCC crystals. For this purpose the LAMMPS molecular dynamics simulator
[27] was used and for visualization of the samples the OVITO software [28] will be used.

In order to obtain the Bordoni peak through simulations, first samples of FCC crystals were
created with two edge dislocations which formed four partial dislocations in total. The reason
for the two dislocations instead of one was that simulations with one dislocation resulted in
image effects, which caused stresses over the single dislocation. Two edge dislocations on
the other hand achieved an equilibrium position, with the dislocations at 45◦. Analytical
calculations of the internal friction were made considering the dislocation as an overdamped
string. This calculations were done in order to interpret the measurements of internal friction
and also to have an estimation of the orders in magnitude involved in the simulations. Once
the internal friction was estimated the samples were subject to oscillatory shear strains at
different temperatures and the stress and the strain in the sample were measured. By plotting
stress vs strain, it is expected to obtain a hysteresis loop corresponding to the anelastic
relaxation

The samples used were copper and nickel crystals with 892 800 atoms. EAM (Embedded
atom model) potentials ([29], [30]) were used for the simulations. The potential for copper
can be found in [31] and the nickel potential can be found in [32], both of which can be
downloaded from the Interatomic potentials repository [33]. Only results for copper are
reported here. The Ni results are not reported since there were some problems with the
calculation of the line tension of the dislocations in Ni.

5.1 Preparation of samples

Two FCC crystal samples of copper and nickel were prepared, each crystal type is composed of
892 800 atoms. Both crystals have approximate x,y and z dimensions 240 Å×200 Å×200 Å
respectively (see figure 5.1). The boundaries in the x direction are free; later, velocities will
be imposed to them. In the y and z direction the boundary conditions are periodic. First
the copper crystal was created and then the positions of the atoms were scaled considering
the lattice distance of nickel in order to create this type of crystal.

To create in the sample an edge dislocation, three contiguous half planes parallel to the
normal of the {111} plane were erased. This procedure was done two times to give two
edge dislocations with the corresponding slip plane {111}. After erasing the half planes, the
sample was thermalized at T = 0 K with the NVT ensemble, the partial dislocations and the
stacking fault appear spontanously. Each dislocation is composed of two partial dislocations
joined by a stacking fault whose size is determined by the interaction between the partial
dislocations. This partial dislocations in FCC crystals are called Shockley partials [10]. See
appendix B. The Burgers vector of the original dislocations is in the direction 〈110〉, the
x direction in the sample. Note that the sample used has dislocations with Burgers vector
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in very specific directions, in a real sample it will be true that dislocations will have many
different directions, which may or may not separate into partials. This will be mean that
when comparing results of internal friction in our simulations and experiments, it must be
considered that the dislocations present in experimental set ups with different directions
will increase the internal friction. Finally, note that the sample has a dislocation density of
approximately 10−4 Å−2, this is a very high dislocation density compared to metals used in
everyday applications [10] but as explained later, it is a density achievable experimentally.

The reason for creating two dislocations is that when the samples contained one disloca-
tion, image stresses appeared because of the free faces in the x direction. The disposition of
the dislocations in the samples is shown in figure 5.1, with the x,y and z axes defined. The
system with the atom positions was prepared by Enrique Martinez from Los Alamos National
Laboratory. A velocity distribution was given to the atoms with the velocity command of
LAMMPS. The samples were initially prepared at T = 0.0001 K with this command.

Figure 5.1: Sample of Cu created with 2 dislocations. The blue atoms are in BCC order, the
red atoms are HCP and gray is unknown (not BCC, FCC or HCP), FCC atoms have been
removed for visualization. Red atoms correspond to the stacking fault between the partial
dislocations. The figure corresponds to 892800 atoms, and approximate x, y and z dimensions
240 Å×200 Å×200 Å, respectively. Notice that the dislocations have dissociated into partial
dislocations. The distance between these partial dislocation is 12 atomic distances.

5.2 Finding hysteresis in Cu

To look for hysteresis in Cu, the samples described in section 5.1 were heated to 50 K,
100 K, 150 K, 200 K and 250 K. Also simulations at 0 K temperature were done where it
was observed the kink-antikink pair formation applying a constant shear rate to the pinned
dislocation, see figure 5.2 for an image. This heating was done in 300 000 time steps with
∆t = 0.002 ps. The temperature was changed by using the temperature rescaling algorithm of
LAMMPS which rescales the particle velocities until the desired temperature was obtained.
After heating, each sample was thermalized for 50 000 steps with the NVT integrator of
LAMMPS and using the fix temp/rescale command in LAMMPS. We note that the long
time of thermalization was necesary so that the dislocations and the free boundaries of the
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(a) (b) (c)

Figure 5.2: Kink pair formation at 0 K. The simulation was run with the dislocation pinned
and a constant shear rate. It is possible to see the formation of the kink pairs and also the
dislocation jumping from one minimum of the potential to the adjacent minimum. Shown
in red are the HCP atoms, in blue the BCC atoms, and in white atoms in unknown order
(FCC atoms have been erased for visualization).

surface stopped their oscillations caused by the change of temperature. To determine that the
samples were thermalized, total energy of the system, the potential energy and the pressure
were measured. In the thermalized state the total energy fluctuations and the potential
energy fluctuations ∆E/E were of order 10−4, in the case of pressure the fluctuations ∆P/P
were of order 1/40. The size of pressure fluctuations in MD simulations is normally bigger
than other variables and has been reported in the LAMMPS manual. In the visualization
of the sample the dislocations oscillate during the thermalization and when the criteria are
fulfilled the oscillations cease.

Once the samples at different temperatures were at thermal equilibrium, the dislocations
were pinned at the top and the bottom. Two methods were used to pin the dislocations: one
was to take spheres with a radius of 15 Å in the extremes of the dislocations and imposing
that any external force imparted to the atoms inside the sphere be zero. Note that the atoms
outside the sphere would still feel the potential from the atoms inside the sphere. A second
method was to erase the atoms inside the spheres within a radius of 15 Å. The empty spheres
form vacancies in the system that pin the dislocations. The first method was chosen over the
second because the vacancies introduce unknown interactions with the dislocation that may
affect the measurements of internal friction.

After thermalizing and pinning the dislocations, the thermostat in the sample was turned
off so that the dissipated energy could be measured and they were subject to oscillatory shear
strains. This shear strains were applied by imposing the trajectory x(t) = x0 + A sin(2π

T
t)

on all the atoms in the free walls of the crystal, where x0 is the initial position of the atom
in the free wall, T is the period and A the amplitude. The amplitude used for copper and
nickel was 1 Å. The period used initially was 125 ps. This period was chosen after a trial
and error test so that the length of one cycle in the simulation took a reasonable time (see
the Appendix for the simulation times). The amplitude was chosen such that dx/dt was not
greater than one half the speed of sound in Cu. The stress on the sample was measured using
the LAMMPS command that computes the stress per atom in the sample and then it was
averaged over all the atoms. The stress and strain plots are show in figure 5.3.
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(a) Temperature = 50 K, Period = 125 ps (b) Temperature = 100 K, Period = 125 ps

(c) Temperature = 150 K, Period = 125 ps (d) Temperature = 200 K, Period = 125 ps

(e) Temperature = 250 K, Period = 125 ps

Figure 5.3: Stress σxy v/s Strain εxy plot. The graph were produced by applying an oscillatory
strain on the sample with a period of 125 ps and amplitude 0.008. An oscillatory trajectory
is given to the atoms in the free wall to impose an oscillatory shear strain. The amplitude
of the oscillation is 1 Å. The plot was created by running the simulation by 5 cycles and
averaging over the last three cycles the σxy component of the stress tensor. The points where
sampled every 1000 timesteps giving 64 points for each plot.
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5.3 Estimation of internal friction

After the initial simulation carried out with a period determined by trial and error, an
analytical calculation was performed to determine the ideal period. In order to estimate the
internal friction we must remember the formula (2.7). This formula relates the dissipated
energy in a cycle and the maximum stored energy with the internal friction. In this formula
the internal friction is defined as Q−1 = tanφ where φ is the phase lag of the strain with
respect to the stress. To estimate this quantity we need to calculate the dissipated energy in
the sample in one cycle, called ∆W , and the maximum stored energy W .

5.3.1 Estimation of ∆W

For the calculation of the dissipated energy in one cycle the dislocation will be approximated
with the equation of the overdamped string that is externally loaded with a periodic forcing.
The equation used comes from the string model used in [22], where the equation given is

mẍ+ γẋ(s, t)− Γx′′(s, t) = FPK . (5.1)

where γ is the damping coefficient, Γ is the line tension and FPK = σb is called the Peach
Koehler force per unit length, σ is the stress on the dislocation and b is the Burgers vector

The first researchers to approximate dislocations as continuous strings and relate this to in-
ternal friction were Granato and Lucke [34], [35]. Here we will follow a similar approximation.
We assume a periodic force on the string which has pinned endpoints x(0, t) = x(L, t) = 0.
The loading frequencies are low enough that inertia terms are negligible. The starting point
is the equation

γẋ(s, t)− Γx′′(s, t) = Fsen(ωt). (5.2)

with F the maximum force per unit length and the mass term is neglected. We assume
x(s, t) = x(t)sin(πs/L) since at low frequencies only the fundamental mode of the string will
be excited. Note that this is not the solution of 5.2, at s = 0, L. This assumption should
instead be regarded as a variational ansatz to equation 5.2 the equation is no satisfied and
then the equation is integrated 1

L

∫ L
0
, it is thus obtained

γẋ+ Γ(
π

L
)2x =

π

2
Fsen(ωt)

The homogeneous solution to this equation is;

x(t) = x0e−
t
τ , (5.3)

where τ−1 = Γ
γ
( π
L

)2 defines a relaxation time. The particular solution to the inhomogeneous
equation is obtained by considering

x(t) = αcos(ωt) + βsin(ωt).

Inserting this in (5.2) we obtain

γτ−1(α2 + β2) =
π

2
Fβ, (5.4)
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−(α2 + β2)γω =
π

2
Fα. (5.5)

If we make the change of variables α = Acos(φ) and β = Asen(φ), and then divide equation
(5.4) by equation (5.5) we obtain

τ−1

ω
= tan(φ).

Maximum hysteresis is obtained when φ = π
4
, the verification of this is mentioned later. Then

ω = τ−1 =
Γ

γ
(
π

L
)2. (5.6)

This defines the applied frequency at which we expect maximum losses. Notice that using
a continuum approximation we have found the optimal frequency of the forcing to get the
maximum dissipation of energy. We must now relate this ω to the parameters L, Γ and γ of
our numerical sample.

In order to determine γ we proceed as follows: we let the dislocation free, i.e. without
pinning at the ends, and apply a constant and uniform stress to the sample. In this case
equation (5.2) indicates that the dislocation will acquire a constant velocity proportional to
the stress, with a constant of proportionality determined by γ. Thus, imposing an external
strain and measuring the velocity imparted to the dislocation permits a determination of γ

These simulations were done for different shear strain rates and at a temperature of
0.0001 K. The obtained stresses are plotted against the corresponding dislocation veloci-
ties in figure 5.5. In this way the damping parameter can be calculated from the slope of the
curve by the relation obtained later in equation (5.9) . To measure the stress in the sample,
the compute stress/atom command from LAMMPS is used. This command calculates an
average stress per atom on the sample when considering the whole sample.

In the simulations what is actually applied is a velocity to the walls as described in section
5.1, so it was necessary to calculate the dislocation velocity from the shear strain rate. This
is possible from Orowan’s law [10] which dictates

dε

dt
= ρvdb. (5.7)

where dε/dt is the strain rate, ρ is the dislocation density, vd is the dislocation velocity and
b is the Burgers vector.

Since in our copper sample there are two dislocations, equation (5.7) will take the form

vd =
dε

dt

1

ρb
=

dx

dt

Ly
2b
. (5.8)

because dε
dt

= dx
dt

1
Lx

and ρ = 2
LxLy

, where Li is the length along the î axis and x is the
displacement of the walls in the x̂ axis. The factor of 2 appears because there are two
dislocations in the sample. Thus the relation between the dislocation velocity vd and the
velocity of the walls v is

vd = v
L

b
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Finally γ is given by γ = FPK/vd, where FPK is the Peach Koehler force per unit length
which is given by FPK = σb and the slope p of the graph σ vs v is p = σ

v
, where v is the

speed of the free walls. In conclusion we have

γ = p
b2

L
=
σb

vd

. (5.9)

This determines γ in terms of slope p, Burgers vector b and dislocation velocity vd.

Figure 5.5 shows the stress of the sample as a function of time for several different, applied
strains to the walls of the sample. After a transient, a regime of constant (on average) shear
stress is established. This measured average stress is plotted against the wall velocity v,
which is given in terms of the applied strain rate by equation (5.7), in figure 5.4 the six red
points were used to infer an average slope. The value for γ obtained is

γ = 1406.25± 35.3 Bars · ps

Figure 5.4: Stress vs dislocation velocity in Cu plot. A constant shear strain rate was applied
to the Cu sample, which gives the dislocation a constant velocity. The stress is measured and
then plotted. The six red points were used to infer an averged slope of p = 45000 Bars ·ps/Å.
The values over 0.2 Å/ps were not considered for the calculation of γ because the speed of
the dislocation is 20 Å/ps, about the speed of sound in Copper.

In order to calculate Γ a simulation with no dislocations and periodic boundary conditions
was run, and then the total energy was calculated. The difference of the total energy with
dislocations and without dislocations divided by the length of the two dislocations gives Γ.
The energy of the sample without dislocations was calculated by multiplying the cohesion
energy given by the potential [31] by the total number of atoms. To check that the given
cohesion energy was correct, a simulation with no dislocations was run and the total energy
was found to be the cohesion energy multiplied by the number of atoms in the sample
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(a) Dislocation velocity 10 Å/ps (b) Dislocation velocity 12 Å/ps

(c) Dislocation velocity 14 Å/ps (d) Dislocation velocity 16 Å/ps

(e) Dislocation velocity 18 Å/ps (f) Dislocation velocity 20 Å/ps

(g) Dislocation velocity 60 Å/ps

Figure 5.5: Stress σxy vs time of the simulation in the Cu sample. Graph was produced by
applying a constant shear strain rate on a sample with unpinned dislocations, after a time
depending on the shear rate the stress takes an average equilibrium value. The sample was at
a temperature of 0.0001 K. Notice the difference in the plots for speeds higher than 16 Å/ps
and those lower than this speed. It is unclear the origin for the difference between these
speeds.
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without dislocations, the cohesion energy given by the potential and the one calculated from
the sample were equal to −3.54 eV/ Å. The temperature of all the simulations mentioned
above was 0.0001 K.

The results for the parameters mentioned in the case of copper were

Γ = 1.225 eV/Å

L = 200 Å

b = 2.2 Å

p = 45000± 1460 Bars · ps/Å

γ = 1406.25± 35.3 Bars · ps

Using these values in equation 5.6 we obtain the period at which we expect maximum
damping between dislocation motion and applied load. Note that the dissipation in the
maximum of hysteresis depends on γ. If we assume the dislocation is a string, then the
equation for the energy dissipated in a cycle are the same as the equation of a damped
oscillator. In the case of the damped oscillator as the damping increases so does the maximum
dissipation; the same is expected for this case.

With γ and Γ it was possible to check if the assumption of disregarding the inertial term
in equation 5.1 was true. For this we compare the terms m4π2A

T 2 , γ 2πA
T

and Γπ2A
L2 where A is

the amplitude of the trajectory and m is the mass per unit length of the dislocation. This
mass per unit length is defined as [22]

m ' ρb2

4π

with ρ the density of copper and b the Burgers vector of the dislocation. Taking the value of
the density as ρ = 8.96g/cm3 and b = 2.2 Å we obtain

mẍ ∼ m
4π2A

T 2
= 1.2× 104 J /m2

γẋ ∼ γ
2πA

T
= 2.3× 108 J /m2

−Γx′′ ∼ Γ
π2A

L2
= 9.6× 109 J /m2

This confirms that the approximation done is consistent. With all these data and the dis-
cussion above we can calculate the frequency at which the hysteresis is maximum and the
corresponding period.

ωmax = 0.165± 0.0004× 1012 rad/s (5.10)

Tmax =
2π

ω
= 38± 0.0002 ps (5.11)

With the values of the parameters obtained, a numerical model of equation (5.2) was set up
in Mathematica. The equation was solved and the functions x(t) and F sin(ωt) were obtained
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(notice that F depends on φ). For the amplitude of the force, the value of the stress in a
sample subject to shear strain was measured, the maximum value of the stress corresponding
to the maximum displacement of the free boundary of the sample was used. The solutions
are plotted in figure 5.6.

In order to calculate ∆W , the area of the resulting ellipse is measured (see figure 5.7).
The result of this area for copper was

∆W = 2.88× 10−2 eV (5.12)

This result was obtained by integrating the function in one cycle.
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Figure 5.6: Force vs time and position vs time plot according to the solutions of equation
5.2. This graph corresponds to the force applied in the string model and to the position of
the corrresponding oscillator. The model assumes the dislocation is an overdamped string.
The parameters used were the ones calculated in section 5.3.1

5.3.2 Estimation of W

To estimate W , an oscillatory shear strain was imposed on the samples with a strain am-
plitude of 1 Å and a period of 38 ps (the period obtained in 5.11). The sample was at a
temperature of 0.0001 K. From these simulations the total potential energy was calculated
using the corresponding compute command of LAMMPS and plotted against time. These
same simulations were done at 50 K and 100 K with very similar results. It is expected
that this plot will indicate first the potential energy starts from a minimum and increases as
the shear strain increases until it reaches a maximum and then decreases. This is expected
because if the crystal is deformed from its equilibrium position, the total potential energy
will increase. This increase in the potential energy is exactly the energy stored in the sample,
thus if we substract the potential energy when there is no stress with the maximum of the
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Figure 5.7: Force vs Position plot from equation 5.2. From the area of the hysteresis loop
obtained it is possible to calculate ∆W .

potential energy in a cycle then we obtain the stored energy. Note that in these simulations
it is needed that the dislocations remain pinned.

For copper we show the result of the simulation in figure 5.8. The values for the maximum
and minimum were obtained by fitting a sine on the graph of figure 5.8. From this fitting,
an error of ±4.3eV was obtained. Subtracting both values gives the result W = 35.2 eV.
LAMMPS computes with at least 12 significant figures so this difference is real.

Figure 5.8: Potential energy of the sample vs the time of simulation in Cu. The sample
was Cu at a temperature of 50 K, subject to an oscillatory strain by imposing an oscillatory
trajectory on the boundary walls. The amplitude was of 1 Å and a period of 38 ps

.
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5.3.3 Estimation of tanφ

With the calculation of W in section 5.3.2 and ∆W in section 5.3.1, the expected internal
friction tanφ = ∆W

2πW
was calculated.

For copper the result is
Q−1 = tanφ = 0.00012

This value is of the same order of magnitude to the one reported on experiments of internal
friction on copper [36]. The low value for the hysteresis might be the reason that it is difficult
to observe the hysteresis in the stress-strain plots, the phase difference between stress and
strain will be approximately φ = 0.00012. In the next section new molecular dynamics
simulations will be done, and the curves will be integrated to compare their values of the
area under the curve with the internal friction obtained in this section.

5.3.4 Limitations of estimation

One of the approximations for ∆W was to consider the dislocation as an overdamped string,
this of course doesn’t consider the discrete nature of the dislocation, it doesn’t account for
the partial dislocations and the stacking fault.

5.4 Simulation of internal friction

After the estimation through the analytical model, a fully atomistic calculation was per-
formed. To this end an oscillatory stress was applied to the Cu and Ni samples. The samples
used are the same as the ones described at the beginning of section 5.2. The period used for
Cu in the oscillatory shear strain is the one shown in section 5.3.1, i.e. 38 ps. The stress-
strain plots for Cu at temperatures 0 K, 50 K, 100 K, 150 K, 200 K and 250 K are shown in
figure 5.9. These curves were obtained by performing 5 cycles and averaging over the last 3
cycles.

From the stress-strain plots, the area of the hysteresis loop was calculated. Note that
these plots show stress v/s strain, if we want to compare with the area of hysteresis obtained
in (5.12) we need to transform the units of the stress from bars to eV/ Å3. The values of
∆W calculated for the simulation are summarized in table 5.1.

From the stress-strain plots it is possible to calculate the shear modulus. A line was fitted
for each temperature and the error for the slope corresponds to the error in the calculated
shear modulus. The results are shown in 5.10. The shear modulus of the copper sample
without dislocations was also measured, the results are plotted in figure 5.11 and compared
to experimental results from [37] where single copper crystals were used. The shear modulus
as a function of temperature for samples with dislocation density similar to the sample in
the simulations was not found in the literature. The dislocation density of the sample with
dislocations is 5 × 1011 cm−2. Nonetheless, the sample with dislocations was compared to
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(a) Temperature = 0.0001 K, Period =
38 ps

(b) Temperature = 50 K, Period = 38 ps

(c) Temperature = 100 K, Period = 38 ps (d) Temperature = 150 K, Period = 38 ps

(e) Temperature = 200 K, Period = 38 ps (f) Temperature = 250 K, Period = 38 ps

Figure 5.9: Stress σxy v/s Strain εxy plot. The graph was produced by applying an oscillatory
strain on the sample with the period given by (5.11). An oscillatory trajectory is given to the
atoms in the free wall to impose an oscillatory shear strain. The amplitude of the oscillation
is 1 Å. The plot was created by running the simulation by 5 cycles and averaging over the
last three cycles. The points where sampled every 1000 timesteps giving 64 points for each
plot.
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Temperature (K) ∆W (eV) Shear Modulus (GPa)
0 1.112 30.5
50 0.979 30.2
100 1.497 29.8
150 1.276 29.2
200 2.496 28.8
250 1.611 28.4

Table 5.1: Table with the results of the oscillatory stress simulations. ∆W was obtained by
calculating the area of the hysteresis loop and the shear modulus by calculating the slope of a
line fitted to the corresponding stress-strain plot. Compare with (5.12) which was calculated
from the analytical model.

Temperature (K) ∆W (eV)
0 −5.41× 10−2

50 1.3× 10−2

100 −1.2× 10−2

150 4.6× 10−2

200 −3.8× 10−2

250 4.8v × 10−2

Table 5.2: Table with the results of the oscillatory stress simulations for an amplitude of
0.1 Å. ∆W was obtained by calculating the area of the hysteresis loop.

copper samples from [38]. The fractional change in shear modulus G1−G2

G2
was calculated from

the simulation between the sample with dislocations and the one with no dislocations, the
result is approximately 1

2
. In the case of the samples used in [38], the fractional change in

shear modulus gives 1
15
. Note that the sample Cu-Lam of the same reference has dislocation

density 1.1 × 1012 cm−2, similar to the one in the simulation. The samples in [38] have
dislocations with Burgers vector in many different directions and has dislocations of screw
and edge type. Although there is a difference in the fractional change of shear modulus, this
is probably related to the differences just mentioned between the samples. The simulation
contains dislocations with vector Burgers in the 〈110〉 which is the closest packed plane, that
is, the direction in which the direction is the easiest [10]. This direction is the same as the
one in which the loading is applied in the simuations.

From the results of the shear modulus we check that the simulations are describing cor-
rectly the mechanical properties of copper, and that the stress-strain plots are correct.

Oscillatory shear strain simulations were also done for a lower amplitude of 0.1 Å and
temperatures of 0 K, 50 K, 100 K, 1500 K, 200 K and 250 K. The stress-strain plots are
shown in figure 5.12. The value of ∆W was calculated for these plots, the results can be
found in table 5.2.
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Figure 5.10: Plot of the shear modulus obtained from the stress-strain plots for the sample
with dislocations for different temperatures. Compare with plot from [37]. In figure 2 of
this reference the shear modulus vs temperature is shown in a copper single crystal, the
measured shear modulus for the sample with dislocations is approximately 2.5 times lower
because dislocations tend to lower the shear modulus. The slope of the curve in reference [37]
is approximately 0.02 Gpa/K, the slope of the curve measured in the samples of this work is
approximately 0.01 Gpa/K

5.4.1 Limitations of simulation

Since the simulations were done with molecular dynamics, quantum mechanical effects won’t
appear in the simulations. One important limitation is the fluctuations of stress, these
fluctuations are a limitation to the measurement of the internal friction of the sample. In the
previous subsection we calculated the area under the curves ∆W of the stress-strain plots
(see table 5.1), but one possibility is that this areas are such because of the fluctuations
in the stress. To determine this, the root mean square deviation (RMSD) is calculated in
the stress-strain plots. Notice that there are no fluctuations in the strain because this is
imposed, and that if there were no fluctuations in the stress and some hysteresis, then the
RMSD would be different than zero. Thus, if the fluctuations on the stress-strain plot from
a linear function and the fluctuations in the stress as a function of time are of similar size,
then the area ∆W comes mainly from the fluctuations, and is not a good measurement of
internal friction

The RMSD of the stress as a function of time was measured sampling 64 points of the
cycle averaged over 3 cycles, compared to a sine function fitted to the measured stress. The
result of these measurements are summarized in table 5.3. Computing RMSD with only 64
points is a limitation when it is considered that the whole cycle has 64000 steps. The root
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Figure 5.11: Plot of the shear modulus for a copper sample with 1 200 000 atoms and
without dislocations for different temperatures. Compare with plot from [37]. In figure 2
of this reference the experimentally measured shear modulus vs temperature is shown in a
copper single crystal, the measured shear modulus for the sample without dislocations is
very similar for all temperatures. The slope of the curve in reference [37] is approximately
0.02 Gpa/K, the slope of the curve measured in the samples of this work is approximately
the same.

mean square deviation for the plots in figure 5.9 were also measured. A straight line was
fitted to these graphs, and the RMSD was calculated. The results are summarized in table
5.4. From these two tables we learn that the fluctuations of the stress are the source for the
∆W measured in table 5.1, this is because the size of the stress fluctuations are the same
in the stress vs time and stress vs strain plots. Notice that in table 5.3 the fluctuations are
similar, either of the same order or bigger than the fluctuations of the stress-strain plots
in table 5.4. This means that any possible hysteresis is not being observed because of the
fluctuations in the measured stress.

The root mean square deviations for simulations of smaller amplitude were also calculated.
Simulations with an amplitude of 0.1 Å were done, in table 5.5 it is shown the RMSD for the
stress-time curves obtained, and in 5.6 the RMSD for the stress-strain curve

Finally, the upper bound for uncertainty in stress measurements needed to detect an
internal friction of order Q−1 = 10−4 was calculated. To calculate this we use the result of
section 5.3.1 where we obtained through the analytical model that ∆W ∼ 10−2 eV. With
this result and approximating the hysteresis loop as a parallelogram, it is calculated that the
error in the measurement of stress needs to be at most of the order of 10−7 eV/ Å3 or 0.1 Bar.
This value was obtained for simulations with a strain amplitude of 0.008. Also we note that
these fluctuations come from the presence of the dislocations in the sample. It should be
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(a) Temperature = 0.0001 K, Amplitude = 0.1 Å (b) Temperature = 50 K, Amplitude = 0.1 Å

(c) Temperature = 100 K, Amplitude = 0.1 Å (d) Temperature = 150 K, Amplitude = 0.1 Å

(e) Temperature = 200 K, Amplitude = 0.1 Å (f) Temperature = 250 K, Amplitude = 0.1 Å

Figure 5.12: Stress vs strain plot. The graph was produced by applying an oscillatory strain
on the sample with the period given by (5.11). The amplitude used corresponds to 0.1 Å

Temperature (K) RMSD Stress (Bar) RMSD Stress (eV/ Å3)
0 5.36 3.35× 10−6

50 60.16 3.76× 10−5

100 30.08 1.88× 10−5

150 38.72 2.42× 10−5

200 61.12 3.82× 10−5

250 46.4 2.9× 10−5

Table 5.3: Table with the root mean square deviation (RMSD) of the stress compared to a
sine function adjusted to the measured stress in time. The stress is shown in units of Bar
and eV/ Å3. Amplitude of free wall displacement 1 Å and 38 ps.
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Temperature (K) RMSD Stress Bar RMSD Stress eV/ Å3

0 5.34 3.34× 10−6

50 17.6 1.1× 10−5

100 103.84 6.49× 10−5

150 20.64 1.29× 10−5

200 27.68 1.73× 10−5

250 24 1.5× 10−5

Table 5.4: Table with the root mean square deviation (RMSD) of the stress compared to a
linear function adjusted to the measured stress vs strain. The stress is shown in units of Bar
and eV/ Å3. Amplitude of free wall displacement 1 Å and 38 ps.

Temperature (K) RMSD Stress (eV/ Å3)
0 4.28× 10−6

50 3.65× 10−6

100 4.5× 10−6

150 3.5× 10−6

200 1.9× 10−5

250 2.8× 10−5

Table 5.5: Table with the root mean square deviation (RMSD) of the stress compared to a
sine function adjusted to the measured stress in time. The stress is shown in units of eV/ Å3.
Amplitude of free wall displacement 0.1 Å and 38 ps.

Temperature (K) RMSD Stress eV/ Å3

0 4.27× 10−6

50 5.67× 10−6

100 7.2× 10−6

150 9.42× 10−6

200 1.1× 10−5

250 1.6× 10−5

Table 5.6: Table with the root mean square deviation (RMSD) of the stress compared to
a linear function adjusted to the measured stress vs strain. The stress is shown in units of
eV/ Å3. Amplitude of free wall displacement 0.1 Å and 38 ps.
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also noted that in simulations for the sample without dislocations, the fluctuations were 100
times smaller than those with dislocations. This is evidence for the fact that the presence
itself of the dislocations is the source for the fluctuations.
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Conclusion

In this work the behaviour of a copper single crystal with dislocations has been simulated
through molecular dynamics. It has been attempted to study the internal friction generated
by this sample when subject to oscillatory stress. Once the stress-strain plots were calculated
for temperatures from 0 K to 250 K, the area of the hysteresis loops were calculated (the
dissipated energy per cycle can be found in table 5.1). Although the Q−1 obtained from
this simulations is bigger than the corresponding expected Q−1 from the analytical model,
it is later found that the stress fluctuations are too big to discern the real dissipated energy.
Thus, from this work it is possible to calculate an upper bound for the precision required to
observe the effect in this type of simulations. Also from the simulations and the calculation
of ∆W we deduce that the Peierls Barrier must be very small, since the hysteresis, if present,
has not been detected.

It is notable that it is possible to obtain through an analytical model (and parameters
obtained through simulations) an order of magnitude for the Q−1 that is in agreement with
experiments. If this is also true with other FCC models needs to be checked. It was also
found that most of the stress fluctuations in the simulations were caused by the movement of
the dislocations. During the calculations of the shear modulus of copper without dislocations
the fluctuations were a hundred times smaller than the simulations with dislocations, this
is reflected in the error of the calculation of the shear modulus. Finally, it is found that it
is necessary to lower the stress fluctuations. The upper bound for these fluctuations are of
the order of 10−7 eV/ Å3. It may be possible to reduce these fluctuations by averaging the
hysteresis curves over many cycles, although this was already done for 3 and 10 cycles which
hasn’t reduced the fluctuations significantly. This supports the idea that the fluctuations
are not white noise, but instead there is a source for theses fluctuations in the interaction
between the sound waves and the dislocations.

As future work it would be interesting to lower the stress fluctuations or increasing the
internal friction in the samples in order to study this effect. One possibility is creating bigger
samples, or including more dislocations, although the computational cost may prove to be
prohibitive to get to sufficiently high internal friction. Another option is to study other FCC
crystals with higher damping coefficients, this would increase the dissipated energy in the
frequency at which the hysteresis is maximum. A third option is to filter the stress time
series. By filtering the frequencies of the stress which do not contribute to the formation of
the hysteresis it may be possible to observe the dephase between stress and strain.

50



Bibliography

[1] I. Shin and E. Carter. Possibe origin of the discrepancy in peierls stresses of fcc metas:
First-principles simulations of dislocation mobility in aluminium. Physical Review B,
88(6):064106, 2013.

[2] J.P. Hirth and J. Lothe. Theory of Dislocations. Krieger Publishing Company, second
edition, 1982.

[3] F. Marchesoni. Internal friction by pinned dislocations: Theory of the bordoni peak.
Phisical Review Letters, 74(15):2973–2976, 1995.

[4] A.S. Nowick and B.S. Berry. Anelastic Relaxation in Crystalline Solids. Academic Press,
first edition, 1972.

[5] M. J. Konstantinovic. Internal friction study of dislocation dynamics in neutron irradi-
ated iron, and iron-copper alloys. Journal of Nuclear Materials, 395:75–78, 2009.

[6] M. J. Konstantinovic. Magnetic after-effect study of dislocation relaxation in fe-based
alloys. Journal of Physics D, 44:305002, 2011.

[7] L.D. Landau and E.M. Lifshitz. Theory of Elasticity. Pergamon, third edition, 1986.

[8] R. Peierls. The size of a dislocation. Proceedings of the Physical Society, 52(1):34–37,
1940.

[9] F. R. N. Nabarro. Dislocations in a simple cubic lattice. Proceedings of the Physical
Society, 59(2):256–272, 1947.

[10] D. Hull and D.J. Bacon. Introduction to Dislocations. Elsevier, fifth edition, 2011.

[11] J.D. Eshelby. Edge dislocations in anisotropic materials. Philosophical Magazine,
40(308):903–912, 1949.

[12] J.D. Eshelby. The interaction of kinks and elastic waves. Proceedings of the Royal
Society, 266(308):222–246, 1962.

[13] A.H. Cottrell. Dislocations and Plastic Flow in Crystals. Oxford University Press, first
edition, 1958.

51



[14] W. Cai, V. Bulatov, J. Chang, J. Li, and S. Yip. Dislocation core effects on mobility.
Philosophical Magazine, 12(1):1–80, 2004.

[15] P.G. Bordoni, M. Nuovo, and L. Verdini. Relaxation of dislocations in copper. Il Nuovo
Cimento, 14(2):273–314, 1955.

[16] R. Truell, C. Elbaum, and B.B. Chick. Ultrasonic Method in Solid State Physics. Aca-
demic Press, first edition, 1969.

[17] D. H. Niblett and J. Wilks. The internal friction of annealed copper at low temperatures.
Proceedings of the Physical Society, 73(95):95–99, 1959.

[18] A. Seeger. On the theory of the low-temperature internal friction peak observed in
metals. Philosophical Magazine, 1(7):651–662, 1956.

[19] N.F. Mott and F.R.N. Nabarro. Dislocation theory and transient creep. Physical Society
Bristol Conference Report, pages 1–19, 1948.

[20] P.G. Bordoni. Elastic and anelastic behavior of some metals at very low temperatures.
Journal of the Acoustical Society of America, 26(4):495–502, 1954.

[21] F.R. Nabarro. Theoretical and experimental estimates of the peierls stress. Journal of
the Acoustical Society of America, 75(3):703–711, 1997.

[22] A. Maurel, V. Pagneux, F. Barra, and F. Lund. Interaction between an elastic wave and
a single pinned dislocation. Physical Review B, 72(17):174110, 2005.

[23] A. Maurel, V. Pagneux, F. Barra, and F. Lund. Wave propagation through a random
array of pinned dislocaations: Velocity change and attenuation in a generalized granato
and lücke theory. Physical Review B, 72(17):174111, 2005.

[24] N. Rodriguez, A. Maurel, V. Pagneux, F. Barra, and F. Lund. Interaction between elastic
waves and prismatic dislocation loops. Journal of Applied Physics, 106(2):054910, 2009.

[25] J. Marian and A. Caro. Moving dislocations in disordered alloys: Connecting continuum
and discrete models with atomistic simulations. Physical Review B, 74(2):024113, 2006.

[26] S. A. Skirlo and M. J. Demkowitz. Viscoelasticity of stepped interfaces. Applied Physics
Letter, 103(17):171908, 2013.

[27] S. Plimton. Fast parallel algorithms for short-range molecular dynamics. J Comp Phys,
117(5):1–19, 1995.

[28] A. Stukowski. Visualization and analysis of atomistic simulation data with ovito - the
open visualization tool. Modelling Simul. Mater. Sci. Eng., 18(5):012012, 2010.

[29] M.S. Daw and M.I. Baskes. Embedded-atom method: Derivation and application to
impurities, surfaces, and other defects. Physical Review B, 29(12):6443–6453, 1984.

[30] M.S. Daw, S.M. Foiles, and M.I. Baskes. Embedded-atom method: a review of theory

52



and applications. Materials Science Reports, 9(7-8):251–310, 1993.

[31] Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress. Struc-
tural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom
calculations. Physical Review B, 63(22):224106, 2001.

[32] Y. Mishin, D. Farkas, M. J. Mehl, and D. A. Papaconstantopoulos. Interatomic poten-
tials for monoatomic metals from experimental data and ab initio calculations. Physical
Review B, 59(5):3393–3407, 1999.

[33] C.A. Becker, F. Tavazza, Z. Trautt, and R.A. Buarque de Macedo. Considerations
for choosing and using force fields and interatomic potentials in material science and
engineering. Current Opinion in Solid State and Materials Science, 17(1):277–283, 2013.

[34] A. Granato and K. Lücke. Theory of mechanical damping due to dislocations. Journal
of Applied Physics, 27(6):583–593, 1956.

[35] A. Granato and K. Lücke. Application of dislocation theory to internal friction phenom-
ena at high frequencies. Journal of Applied Physics, 27(7):789–805, 1956.

[36] G.R. Brown and D.H. Nibblet. The bordoni internal friction peak in copper. Journal of
physics D: Applied Physics, 6(7):809–818, 1973.

[37] W.C. Overton and J. Gaffney. Temperature variation of the elastic constants of cubic
elements. i. copper. Physical Review, 98(4):969–977, 1955.

[38] C. Espinoza. Caracterización de densidad de dislocaciones mediante espectroscopía de
resonancia ultrasónica no lineal. Master’s thesis, Universidad de Chile, 2013.

53



Appendices

54



Appendix A

Time lengths for simulations

In this appendix we summarize in table A.1 the computer time required for the different
simulations. For all the simulations 10 nodes of the cluster in the physics department in
Universidad de Chile are considered. This cluster has 12 servers with 2 CPU Xeon quad core
5504, each server has 8 cores and there are 96 cores in total. It also has 4 GB of RAM and
250 GB of hard disk space.

The first simulation considered is the equilibration of the sample at 0.0001 K. The high
number of steps is needed to avoid big oscillations on the free walls and also to allow oscilla-
tions of the dislocations to disappear. The heating of the sample to different temperatures is
done for 500000 steps. This process needs to be slow to again avoid violent oscillations from
the free walls. The number of steps needed for simulations of constant shear rate will depend
on the shear strain applied, this is because the time for the stress to achieve equilibrium will
increase with lower shear strains.

Simulation Computer time (hours) Number of time steps
Equilibration of sample at 0.0001 K 168 2000000

Heating to 50 K, 100 K, 150 K, 200 K,250 K 40 500000
Thermalization 8 100

Applying constant shear rate 1 to 84 50000 to 1000000
Oscillatory shear strain (1 cycle) 12 189000

Table A.1: Table with the computer time for the different simulations in this work and the
number of time steps (∆t = 0.002ps) in the corresponding simulation.
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Appendix B

Partial dislocations in FCC metals

In this appendix a small description of partial dislocations will be given in order to understand
the sample used in the dynamical simulations of this thesis where four partial dislocations
appear.

The majority of common metals have either a face centered cubic structure (FCC), a body
centered cubic structure (BCC) or an hexagonal close packed structure (HCP). The major
difference between these structures is the unit cell. These are shown in figure B.1.

Much of the dislocation behaviour in FCC metals is due to the Shockley dissociation
[14]. This is a process in which a dislocation with a Burgers vector 1

1
〈110〉 splits into two

partial dislocations (dislocations whose Burgers vector is not a lattice vector). Between both
dislocations a stacking fault (SF), i.e. a disordering in the crystallographic planes, is formed.
In Miller index notation, the process is written as

1

2
[110] =

1

6
[211] + SF +

1

6
[121].

This is a manifestation of the lattice periodicity having an effect on the dislocations that

(a) BCC structure (b) FCC structure (c) HCP structure

Figure B.1: Most common crystal structures for metals, body centered cubic (BCC), face
centered cubic (FCC) and hexagonal close packed (HCP). In this thesis the focus will be on
FCC metals and the core structure of dislocations in this type of structure.
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is not predicted by theories in the continuum. The EAM potential used in the simulations
describes well the partial dislocation formation. In figure B.2 it is possible to see the partial
dislocations in the direction of the dislocation lines and in figure B.3 it is seen in the direction
of the normal vector to the slip plane.

Figure B.2: Dislocation separated in two partial dislocations and a HCP stacking fault seen
in the direction of the dislocation line. In green are shown the atoms in a FCC structure, in
red HCP, in blue BCC and unknown in gray. The partial dislocation is formed by atoms in
BCC and unknown structure.

Figure B.3: Dislocation separated in two partial dislocations and a HCP stacking fault seen
in the direction of the normal vector to the slip plane. In red are the atoms in HCP structure,
in blue BCC and unknown in gray. The partial dislocation is formed by atoms in BCC and
unknown structure.

The Shockley dissociation is energetically favourable in FCC metals. To see this we must
compare:

• The energy given by the presence of a 1
2
〈110〉 dislocation to the energy given by the

presence of the corresponding partial dislocations. From this we will deduce that there
is a net energy reduction from dissociation.
• The presence of the stacking fault and the interaction of the partial dislocations with

each other. From this we will deduce that there is an equilibrium distance given by the
competition of these two energies
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First note that the energy due to the presence of the dislocation is Gb2 where G is the
shear modulus and b is the Burgers vector [10]. The energy of the perfect dislocation is

G(
a

2
〈110〉)2 =

Ga2

2

where a is the lattice vector. The energy of the two partial dislocations is

2G(
a

6
〈112〉)2 =

Ga2

3

Thus there is an energy reduction of Ga2

6
by just considering the energy due to the presence

of the dislocations.

Now we show that the two generated partial dislocations have an equilibrium distance.
For this, we must consider the force of the interaction between the two partial dislocations
and the force of the interaction between the stacking fault and each partial dislocation.

The force of the interaction between the partial dislocations will be large at short distances.
The dislocations repel each other because of the directions taken by the Burgers vector and
the force has a 1/d dependence on the distance d between the dislocations [10]. Then because
of this interaction the partial dislocations will tend to maximize d.

The energy of the stacking fault generated between the partial dislocations is proportional
to the area covered by the stacking fault [10]. If we consider this energy per unit length as we
do for the dislocation then this energy is proportional to the distance d between the partial
dislocations. This energy will provide a constant force per unit length line that tends to pull
the dislocations together [10]. The effect is that the partial dislocations will tend to minimize
d because of their interaction with the stacking fault.

In total we have a force with a 1/d dependence and a constant force in the opposite
direction. The net result is an equilibrium distance between the partial dislocations. This
can be seen in the samples of the atomistic simulations, for example in figure 5.1.
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