
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE INGENIERÍA INDUSTRIAL

RESOLUCIÓN DE PROBLEMAS DE DISEŃO DE REDES MEDIANTE
DUAL-ASCENT PARA APLICACIONES INDUSTRIALES

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN GESTIÓN DE OPERACIONES

SEBASTIÁN ANDRÉS RIVAS SÁENZ

PROFESOR GUÍA:
RAFAEL EPSTEIN NEHUMHAUSER

MIEMBROS DE LA COMISIÓN:
MARCELO OLIVARES ACUŃA
JOSE CORREA HAEUSSLER

PABLO ANDRES REY

Este trabajo ha sido parcialmente financiado por:
Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)

SANTIAGO DE CHILE
2016

2

Resumen

En este trabajo se desarrolla un nuevo enfoque para resolver el problema de diseño de redes
no capacitadas con fuente única en base a la combinación de métodos desarrollados en estudios
previos. Para este tipo de problemas, la formulación multicommodity que desagrega las
demandas ha sido utilizada extensamente y se ha probado que se obtienen mejores resultados
que con la formulación de flujo en redes clásica al comparar sus relajaciones lineales. En este
trabajo se muestra que dicha formulación puede mejorar aún más al duplicar y dirigir arcos
no-dirigidos. Con este concepto, se desarrolla un método de ascenso dual específico para el
problema de diseño con fuente única que entrega cotas inferiores de buena calidad. Dentro
de este método se propone un esquema de clasificación de commodities que permite una
representación reducida del problema y que entrega mejores cotas inferiores en las instancias
testeadas. Adicionalmente, este método también entrega una subred de tamaño reducido
que se utiliza para encontrar soluciones primales factibles. Se muestra, que en este sentido,
el método de ascenso dual es una excelente herramienta de selección de arcos en términos
del potencial que tiene la subred de encontrar soluciones primales de buena calidad. Para
obtener la solución primal, se utiliza la formulación multicommodity original o un esquema de
generación de filas dependiendo del tamaño de la instancia. Se testean los distintos enfoques
en instancias de distintos tamaños de redes en forma de grilla generadas aleatoriamente
variando sus parámetros y su relación de costos fijos a costos de flujo, testeando instancias
que en su equivalente de formulación multicommodity llegan a más de 16 millones de variables.

3

4

Abstract

We develop a new approach to solve the single source uncapacitated network design prob-
lem by combining different methods developed in previous studies. For these types of prob-
lems, the multicommodity formulation that disaggregates demands has been extensively used
and has proved to be tighter in the linear relaxation than the classic network flow formu-
lation. We show that such formulation can further improve by duplicating and directing
non-directed edges. With this concept we develop a specific dual-ascent procedure for the
single source problem that is capable of giving good quality lower bounds to the problem.
We propose a commodity sorting scheme to solve this dual-ascent procedure that allows a
smaller representation of the problem and delivers better lower bounds. Additionally, this
procedure also delivers a reduced size sub-network that we use to find feasible primal solu-
tions. We show that, in this sense, the dual-ascent procedure is an excellent arc-selecting
tool in terms of the capacity of the sub-network of obtaining good quality primal solutions.
Depending on the size of the instance, the original directed multicommodity formulation or a
row generation scheme is used to find the upper bounds to the problem. We test the different
approaches on random instances of gridded networks of different sizes (up to an equivalent
of approximately 16 million variables in the directed multicommodity formulation) varying
their parameters and their fixed to flow cost relation.

5

Agradecimientos

Al profesor Rafael Epstein por la confianza que depositó en mí y por sus consejos en el
trabajo y en la vida.

A los profesores miembros de la comisión: Pablo Rey por su minuciosa revisión y asertivos
comentarios; a Marcelo Olivares por la oportunidad de continuar esta investigación; a José
Correa por su disposión a participar de este trabajo y el conocimiento que me entregó durante
la carrera.

A Linda Valdés por su gestión en la recta final.

A la Comisión Nacional de Investigación Científica y Tecnológica por financiar parcial-
mente este trabajo.

6

Contents

List of Tables 9

List of Figures 11

1 Introduction 12
1.1 Network Design Problems . 12
1.2 Objectives . 14

2 Framework 15
2.1 Mathematical Model . 15

2.1.1 Network Flow Formulation . 15
2.1.2 Multicommodity Formulation . 17
2.1.3 Dicut Formulation . 18

2.2 Strengthening the Model . 20

3 Solution Approaches 28
3.1 Dual-Ascent Procedure . 28

3.1.1 Implementation Details . 32
3.1.2 Algorithm Enhancements . 33

3.2 Primal Solutions . 35
3.2.1 MCD Formulation . 35
3.2.2 DICUT Formulation and Rounding Heuristic 36

4 Computational Results 38
4.1 Directed Dual-Ascent . 39
4.2 Commodity Order . 40
4.3 Method Comparison . 41
4.4 Further Analysis - Dicut Performance . 45

5 Conclusion 47

6 Bibliography 49

7

8

List of Tables

4.1 Test problems and equivalent MCD size . 39
4.2 Directed and Non-Directed Dual-Ascent GAP comparison 39
4.3 Sorted and Non-Sorted Dual-Ascent GAP comparison 41
4.4 Final Result Summary: MIP, Dual-Ascent and Reduced MCD 43
4.5 Final Result Summary: Dicut with MPH and MCD 43

9

10

List of Figures

2.1 Cycled solution on MC linear relaxation . 20
2.2 Cycle elimination through directed formulation 24
2.3 Simplified graphical representation of MCDL 26

4.1 Performance Comparison of Directed and Non Directed DualAscent 40
4.2 Performance Comparison of Sorted and Non Sorted DualAscent 41
4.3 Method application scheme . 42
4.4 Average lower/upper bound gap of the applied methods 44
4.5 Dicut performance 300 nodes, 565 arcs and 240 commodities 46
4.6 Dicut performance 500 nodes, 955 arcs and 400 commodities 46

11

Chapter 1

Introduction

Network design problems typically involve finding the best way to transport a given com-
modity from an origin to a destination. The problem is generally modeled through a network
consisting of a set of nodes and a set of arcs that represent the studied space. Some nodes
could represent a supply for a determined commodity and others could represent demands.
With this model, the objective is to choose the correct subset of nodes and arcs that are
able to satisfy the demands while also minimizing the transportation costs. Specifically in
the design problems, the transportation costs not only consider the flow cost for moving the
commodity, but also a fixed cost usually related to the construction of a road or means for
transport. This modeling strategy has proved very useful in its application to problems of
Electricity, Telecommunications, Transportation, Logistics and Planning among others. A
good survey of applications of this problem may be found in [10].

In terms of applied mathematics, there already exist several approaches to solve the previ-
ously described problem. Basically, it seeks to optimize a value subject only to a finite number
of alternatives and therefore it can be modeled as a mixed integer programming problem.
Such problems already have several exact algorithms to find the optimal solution. However,
in real industry applications, the number of variables and constraints grow in such a way
that traditional methods become inefficient, as they take impractically large amounts of time
to obtain solutions. In this context, the scope of study focuses in finding good alternative
algorithms or heuristics that can ensure that the execution times do not grow significantly
with the growth of the network under study even in expense of getting an exact optimal
solution. This study continues the work originally proposed in [12] and the main structure
for the implementation of the studied methods are strongly based on the work in [3], where
the use of the Dual-Ascent strategy for the the network desing problem was first presented.

1.1 Network Design Problems

The concept of Network Design Problems is a general classification for a wide set of
problems which differ from each other according to specific parameters or constraints. All of
them have in common the usual network model, which consists of a set of nodes and a set

12

of arcs or edges. Nodes usually represent origin, destination or transit points for determined
inputs or commodities. Each arc or edge can have minimum or maximum flow capacity, a
fixed cost that has to be paid if the arc is used in the final solution, and a variable cost
per unit of flow. An accurate study of classical network flow problems and a survey of both
algorithms and data structures for their implementation can be found in [1]. As discussed in
such study, various special cases can be obtained either by limiting the network structure,
fixing costs and/or restraining the amount of supply or demand nodes. In this regard, the
network problems can be classified according to the following features:

• Capacity : Arcs with or without minimum or maximum capacity constraints.

• Type of Network : Directed arcs or non-directed edges.

• Offer/Demand Structure: Multiple origins and destinations or single source.

• Cost Structure: Fixed costs, linear flow costs, non-linear costs, among others.

• Commodities : Multiple or single commodity flows.

• Network Structure: Complete graphs, bipartite graphs, multiple layers, among others.

Using these features, the specific problem that we study can be classified as an unca-
pacitated network design problem in non-directed graphs with a single commodity source
that considers both fixed costs and linear flow costs, or in short SS-UND (single source un-
capacitated network design). In [10] it is shown that with some slight modifications, this
particular problem is actually a generalization of several known and deeply studied classical
optimization problems. This list considers the Travelling Salesman Problem, Facility Loca-
tion Problem, Minimum Cost Flow, Minimum Spanning Tree and the Steiner Tree Problem,
among others. Many of these problems are difficult to solve in a computational complexity
sense (NP-Hard), so as a generalization of those problems, we can conclude that the problem
under study is also NP-Hard. Furthermore, regarding the mentioned problems, the network
design problem can be interpreted as a combination of the Minimum Cost Flow and the
Steiner Tree Problem. On one hand, in the Steiner Tree Problem, the objective is to find
the most efficient way of connecting a subset of nodes by paying the fixed costs of including
the corresponding edges. In the Network Design Problem, this is the minimum requirement
that enables to get flow to the demand nodes. On the other hand, in the Minimum Costs
Flow Problem, demand nodes are already connected and the requirement is to find the better
way to route flow to achieve the minimum cost. In network design problems both of these
problems must be solved simultaneously. These two components provide a trade-off between
flow and fixed costs (or fixed and operational costs). On one side, if more arcs are included,
arcs with lower flow costs might be available at the expense of higher fixed costs. On the
other side, by selecting fewer arcs in the design and thus, reducing the fixed costs, the flow
costs might eventually increase.

13

1.2 Objectives

The general objective of this work is to combine algorithms and heuristics to develop
strategies to efficiently solve the Single Source Uncapacitated Network Design Problem. To
accomplish such objective, the following specific objectives where defined.

• Study existing formulations and solution approaches for the problem under study.

• Explore existing algorithms and heuristics to solve similar problems.

• Analyze alternative strategies or adaptations of studied methods to improve their effi-
ciency in terms of CPU memory usage and execution times.

• Program algorithms and heuristic and create means of measuring their performance in
a testing environment

14

Chapter 2

Framework

2.1 Mathematical Model

In this section, different formulations for the SS-UND problem are presented and discussed
in order to identify their advantages and disadvantages. Considering this discussion, we then
propose a strengthening adaptation for one of the formulations that we implement, improving
its quality in terms of their linear relaxation tightness.

Independently of the specific formulation, an instance of the SS-UND problem is consti-
tuted by a set of nodes N , a set of non-directed edges E, a subset of nodes with positive
demand T , a single source s ∈ N , and the following parameters:

dk : Demand of node k ∈ T
D : Total demand (D =

∑
dk)

Fe : Fixed cost for including edge e ∈ E in the network
Ce : Cost per unit of flow through edge e ∈ E

2.1.1 Network Flow Formulation

A classic formulation for this problem is the Network Flow Formulation (NF), which is
based on the Minimum Cost Flow model. As in the mentioned model, the NF formulation
contains the continuous variables xij that represents a directed flow on a specific direction
through the non directed edge e = {i, j} with i, j ∈ N . Additionally, a set of binary variables
ye are incorporated to the model to represent the inclusion or exclusion of a particular edge
e ∈ E in the design. As usual, for S ⊂ N we use δ(S) to denote the set of edges in the cut
defined by S, namely, δ(S) = {{i, j} ∈ E : i ∈ S, j ∈ N\S}. The model has the following
form.

15

Problem NF

min
∑

e={i,j}∈E

(Feye + ce(xij + xji))

subject to

xij ≤ D · ye
xji ≤ D · ye

∀e = {i, j} ∈ E (2.1)

∑
{i,j}∈δ(i)

(xij − xji) =


D if i = s

−di if i ∈ T ,
0 otherwise

∀i ∈ N (2.2)

xij, xji ≥ 0 ∀{i, j} ∈ E (2.3)
ye ∈ {0, 1} ∀e = {i, j} ∈ E (2.4)

Constraints (2.2), imposed over every node, are the usual flow conservation restrictions.
Particularly, all flow must start at node s as a consequence of the single source structure.
Constraints (2.1), imposed over every edge, force a design variable to be included if its corre-
sponding flow variable is non zero (on either direction), and in effect, pay its fixed cost. This
is a common constraint to relate binary and continuous variables and the use of a sufficiently
large constant is required. In this case, the total sum of demand will be enough considering
that no flow on any edge will ever be greater than that value on an optimal solution (non
negative costs imply that an optimal basic solution without flow cycles does exist).

As shown in [15], considering a linear relaxation to solve this problem, this formulation
is weak both in theory and practice. Generally, the linear relaxation of NF , which we call
NFL, is loose in the optimal integer variables and in the value of the objective function.

Theoretically, the formulation is weak for the following reason. As already mentioned,
the optimal solution does not present flow cycles, so each edge will at least present a null
flow on one of the directions (or both). That is xij = 0 or xji = 0 for all e ∈ E. Therefore,
constraints (2.1) can be replaced by:

xij + xji ≤ Dye ∀e = {i, j} ∈ E (2.5)

Variables ye always tend to be as smaller as possible since it has a positive coefficient in
the objective function, but constraints (2.1) force these variables to take the value of 1 on
certain edges. When relaxing integrality, these are the only constraints restraining the design
variables to be zero, and thus they became active for all edges (even on those where there is
no flow at all). This implies that ye can be replaced by (xij +xji)/D, and therefore obtaining
a linear model which optimal basic solution is a tree of shortests paths from node s to every
demand node using the modified costs equal to c{i,j} + F{i,j}/D. This clearly eliminates the

16

coupling relationship between nodes (the Steiner Tree component of the problem). Moreover,
D is an intrinsic parameter to a specific instance and it can even take any other arbitrary
value sufficiently large. These observations show that the linear relaxation of the Network
Flow formulation will not provide a good approximation of the solution.

2.1.2 Multicommodity Formulation

A disaggregate demand model is proposed in [14] mainly to address the problems associ-
ated to the presence of an arbitrary constant in the forcing constraints (2.1). This model,
known as the Multicommodity Formulation (MC), has been discussed in numerous articles
[15, 8] and has proven to give tighter gaps than the previous formulation.

In this formulation, each demand represents a different commodity that can flow through
any edge. Let K denote the set of commodities that have to flow each node i ∈ T , and let
D(k) denote the destination node in T associated to commodity k ∈ K. Considering that
any edge may present flows of different commodities, we replace variable xij with a variable
xkij that represents the fraction of commodity k that flows from node i to node j through the
edge {i, j}. By recovering the cost structure of the previous model, naturally the flow cost
associated to this variable is equal to c{i,j} · dD(k). We abbreviate such cost with ck{i,j}. In
accordance with this new notation, the Multicommodity formulation is the following.

Problem MC

min
∑

e={i,j}∈E

(
Feye +

∑
k∈K

cke(x
k
ij + xkji)

)
subject to

xkij ≤ ye

xkji ≤ ye
∀e = {i, j} ∈ E,∀k ∈ K (2.6)

∑
{i,j}∈δ(i)

(xkij − xkji) =


1 if i = s

−1 if i ∈ T ,
0 otherwise

∀i ∈ N, ∀k ∈ K (2.7)

xkij, x
k
ji ≥ 0 ∀{i, j} ∈ E,∀k ∈ K (2.8)
ye ∈ {0, 1} ∀e = {i, j} ∈ E (2.9)

As mentioned before, the strategy of disaggregating the demands yields the benefit of
removing the external arbitrary constant from the forcing constraint (2.1). We now show
how this change improves the quality of the linear relaxation solution in comparison to the
previous formulation.

When solving the linear relaxation of NF, the design variables ye take a value equal to
the fraction of the total demand that flows throw the edge e = {i, j}. Following that same

17

argument, in this case we can state that constraints (2.6) can be replaced by:

xkij + xkji ≤ ye ∀e = {i, j}, k ∈ K (2.10)

When solving the linear relaxation of MC (MCL) these constraints (2.10) are active, and
therefore the design variables are equal to maxk∈K{xkij + xkji}, the maximum fraction of the
demands of commodities that flow throw edge e = {i, j}. This simple observation shows that
the optimal value of MCL is greater than or equal to NFL.

Let (x̂,ŷ) be an optimal solution of MCL. A feasible solution (x̃, ỹ) of NFL can be
constructed as follows:

x̃ij =
∑
k∈K

x̂kijdD(k) x̃ji =
∑
k∈K

x̂kjidD(k) ỹe =
x̃ij + x̃ji

D
∀e = {i, j} ∈ E (2.11)

The flow costs component of both solutions are exactly the same, as we show with a simple
rearrangement of the flow cost expression:

∑
e∈E

∑
k∈K

cke(x̂
k
ij+x̂

k
ji) =

∑
e∈E

∑
k∈K

ce ·dD(k)(x̂
k
ij+x̂

k
ji) =

∑
e∈E

ce
∑
k∈K

dD(k)(x̂
k
ij+x̂

k
ji) =

∑
e∈E

ce(x̃ij+x̃ji)

However, the design costs component is not necessarily the same. In the case of the MCL
formulation, as mentioned above, the design variables ŷe are equal to maxk∈K{x̂kij + x̂kji} and
for the NFL formulation, the design variables ỹe are equal to

∑
k(x̂kij+x̂kji)·dD(k)

D
. Given such

expressions, clearly ŷe ≥ ỹe. This shows the advantage of the MC formulation with respect
to the NF formulation from a point of view of the quality of optimal solution of the linear
relaxation.

Despite the benefits of this formulation, it also generates a new problem that limits its
effectiveness. By disaggregating demands, O(|T | · |E|) additional variables and O(|T | · (|E|+
|N |)) new constraints are added to the problem. Even when relaxing integrality, the size of
the problem soon becomes unmanageable by traditional linear programming tools. This is
a particularly impeding limitation when considering industrial-size instances. Just to give
an example, relatively small instances of 300 nodes, 200 destination nodes, in networks with
20% of edge density have around four million variables and the same amount of constraints.

2.1.3 Dicut Formulation

Due to the problems of the Multicommodity Formulation, many researches have been fo-
cused on finding facets and valid inequalities for NF that could enhance the linear relaxation.

18

In this line, [17] proposes one type of these inequalities that have been effective in reducing
the linear gap. In [15], a family of inequalities is proposed, which describe the projection
of the MC formulation variables over the space of variables of the NF formulation and
thus, making their linear relaxation equivalent. However, the number of these inequalities
grows exponentially with the problem size, therefore a row generation scheme is proposed.
The problem of finding efficient algorithms to solve the separation problem (identifying the
violated cuts to be able to add them individually) is still open. In [13] a branch and cut al-
gorithm is developed to solve the SS-UND problem and various types of cuts are introduced.
For some of these inequalities, called single-cuts, the separation problem can be efficiently
solved. For the rest of the cuts, a heuristic is used to identify violated inequalities. The
simple cuts are equivalent to the cutting planes used by [6], [9] and [4] for the Steiner Tree
Problem (STP). We propose the following directed formulation for the SS-UND by using
these simple cuts as an alternative to the previous formulations.

Problem DICUT

min
∑

(i,j)∈A

Fijyij +
∑

(i,j)∈A

cijxij

subject to

∑
(i,j)∈δ+(S)

yij ≥ 1 ∀S ⊂ V, (V \ S) ∩ T 6= φ, s ∈ S (2.12)

xij ≤ D · yij ∀(i, j) ∈ A (2.13)

∑
j∈N

(xij − xji) =


D if i = s

−di if i ∈ T ,
0 otherwise

∀i ∈ N (2.14)

xij, xji ≥ 0 ∀(i, j) ∈ A (2.15)
yij ∈ [0, 1] ∀(i, j) ∈ A (2.16)

Just as the di-cut formulation for the STP proposed in [2] and also used in [4], [5] and [8],
the separation problem of constraints (2.12) is reduced to a min cut problem (or max flow).
First, each design variable value is assigned as an arc capacity. Then, if the min cut between
the source and any destination node has a capacity less than 1, then such cut is added to the
constraints in (2.12). Unlike the STP , this problem also has a flow cost component, therefore
such variables cannot be eliminated. This makes the Dicut formulation for this problem non
equivalent to MC, and thus small gaps cannot guaranteed. Further in this subject will be
presented in the following sections. We could add the constraints proposed in [15], but we
would lose efficiency in the separation problem. We rather opt to add only the simple-cuts
and find the violated ones in an exact (non-heuristic) way.

19

2.2 Strengthening the Model

Although the MC formulation is the best alternative in terms of quality of its linear
relaxation solution, in certain networks, it can still present significant gaps with respect to
the integer solution. In this section, we show what causes this problem and propose means
to strengthen the formulation to improve the gap.

Figure 2.1 illustrates an instance where the MCL formulation fails to obtain the optimal
integer solution.

s

31

2

F = 20
c = 5

F = 20
c = 10

F = 10
c = 5

F = 20
c = 12

d = 1

d = 11

2

(a) Undirected graph

s

31

2

(1) (1)

(1)

Fixed Cost = 50
Flow Cost = 20
Total Cost = 70

(b) Optimal integer solu-
tion

s

31

2

(1/2) (1/2)

(1/2) (1/2)

Fixed Cost = 35
Flow Cost = 32
Total Cost = 67

(c) Optimal relaxed solu-
tion

Figure 2.1: Cycled solution on MC linear relaxation

Figure 2.1(b) shows the integer optimal solution according to the parameters of the in-
stance shown in 2.1(a). The values in parenthesis denote the value of the design variables
ye associated to each edge. The total cost of the solution is 70, 50 for the fixed cost and 20
for the flow cost. Figure 2.1(c) shows the optimal solution of MCL. In this case, the design
variables ye associated to each edge take a value of 1/2. Considering constraint (2.6), each
edge only allows a maximum flow of 1/2. To satisfy the full unit of the demand of node 1, half
of the flow goes through path (s,1) and the other half goes through path (s,3,2,1). The cost
for commodity 1 is (10) · (1/2) + (5 + 5 + 12) · (1/2), which results in 16. Similarly, to satisfy
the full unit of the demand of node 2, half the flow goes through path (s,1,2) and the other
half goes through path (s,3,4). The cost for commodity 2 is (10 + 12) · (1/2) + (5 + 5) · (1/2),
which also results in 16, giving a total flow cost of 32. Then, the total cost of the solution
is 67, 32 for the flow cost and 35 for the fixed cost. This example shows that MCL can still
present a high optimal gap.

In this particular instance, the problem clearly is the fractional values of the optimal
design variables. However, what causes this is the cyclic structure of the solution, allowing
the existence of two possible paths from the source to each destination, and hence a lower
cost solution. Another important aspect of this example is that edge {1, 2} presents flow in
opposite directions. For commodity 1, flow goes from node 2 to node 1, and for commodity
2, flow goes from node 1 to node 2. If this could be prevented, then the cyclic structure
cannot grant any benefit over the tree structure of the integral solution, and thus the original
optimal solution could be recovered with the linear relaxation model.

20

We previously discussed three formulations for the SS-UND. The NF and MC formu-
lations are both non-directed in their edge design variables (motivated by the non-directed
nature of the original problem). However, the Dicut formulation presents directed arc vari-
ables. We now show that the MC formulation can improve by incorporating such quality.
This is accomplished by replacing each edge e = {i, j} by two arcs (i, j) and (j, i) with equal
fixed and flow cost. Intuitively, this modification will incorporate a cost penalization of flows
on opposite directions. If flows occur on both directions on an edge, now both design vari-
ables (i, j) and (j, i) must be built and both will have to pay the associated fixed cost. For
further discussions, we use A to denote the set of directed arcs instead of E that denotes the
set of non-directed edges. Nevertheless, we sometimes maintain the use of edges to explicitly
show that some constraints or variables will appear in both directions. In such cases, the sets
E and A denote both the same network, either in edge or arc representation accordingly.

On the rest of this section we generalize the observations made on the previous example.
We show that in fact, the integer optimal solution will never present cycled nor opposite
direction flows, which can occur on the relaxed solution. Following the previous, we present
the formulation over the directed network and show that it is equivalent to the non-directed
version in the discrete problem. We base the analysis upon three basic characteristics of
the SS-UND problem: (i) the problem is uncapacitated; (ii) there is a single source for all
commodities, (iii) Each arc has equal flow costs for every commodity (as in the original
problem, where in fact, there was a single commodity with multiple demand sinks.)

Proposition 1 There is always an optimal solution for the SS-UND problem that is a tree.

Proof. Given a feasible solution y for the design variables (that is, a subset Ẽ ⊂ E with
ye = 1 ∀e ∈ Ẽ such that s is connected to every node i ∈ T), we can assign optimal values
for the flow variables x by solving a Shortest Path Problem from s to each node in T . Given
that xe cannot be positive for any e where ye < 1, then let ye = 0 ∀e /∈ Ẽ. Considering that
the cost per unit of flow is equal for every commodity, then the shortest paths do not depend
on the demand of each commodity dk. Also, since there is a single source, this problem
is solved by calculating the shortest path tree from s to every other node in N and then
iteratively eliminating the leaves of the tree that do not end in a node in T . Then, if each arc
without flow is eliminated from y (yij = 0 if xij = 0), we obtain a tree as the final discrete
solution for the problem. Note that this final step could only cause an improvement in the
total solution cost. In conclusion, with any feasible solution, another tree-structured feasible
solution with equal or smaller cost can be constructed, and hence the SS-UND always allows
a tree-structured optimal solution. Note that in cases with edges with Fe = 0 or ce = 0,
multiple optimal solutions could exist, however using the above procedure, a tree-structured
optimal solution can always be found.

Proposition 2 There is always at least one optimal solution (y, x), in which there are no
arcs with flow in opposite directions, i.e. (xkij = 1) with k ∈ K ⇒ (xhji = 0) ∀h ∈ K.

Proof. Let y∗ be the optimal design variables. As previously discussed, given the design
variables, the optimal choice for the flow variables x∗ does not depend on the individual
commodity demands dk. Therefore, for simplicity and without loss of generality, let us

21

assume dk = 1,∀k ∈ K, and in consequence ckij = cij,∀k ∈ K, ∀{i, j} ∈ A.

Suppose there exists an optimal solution with an edge e = {i∗, j∗}, such that xki∗j∗ = 1, k ∈
K and for other certain commodity h ∈ K there also exists flow in the opposite direction,
ie. xhj∗i∗ = 1

Since the optimal values for the flow variables x are solving a Shortest Path Problem, let
li,j denote the length (or cost) of the shortest path from node i to node j (path i− j). Then,
considering xki∗j∗ = 1, the path from s to D(k) must include arc (i∗, j∗) , so the length from
s to j∗ is:

ls,j∗ = ls,i∗ + ci∗j∗

On one hand, if ci∗j∗ is positive, then we have ls,j∗ > ls,i∗ .

Using the same argument as before, given that xhj∗i∗ = 1, arc (j∗, i∗) must be in a path
s−D(h), and hence we can state:

ls,i∗ = ls,j∗ + cj∗i∗

Therefore, we can also conclude that ls,i∗ > ls,j∗ , which is a contradiction that discards
the existance of flow in opposite directions.

On the other hand, if ci∗j∗ = 0, then ls,i∗ = ls,j∗ . In this case, there will be multiple
optimal possible optimal solutions. One of these solutions is to send both commodities k and
h together from s to i∗. Commodity k can flow through arc (i∗, j∗) and from j∗ to D(k).
Commodity h instead can flow from i∗ to D(h) without flowing through arc (j∗, i∗). In such
optimal solution, we have xhj∗i∗ = 0.

Proposition 2 enables improvements which, although redundant in the discrete problem,
can reduce the gap in the linear relaxation. One way to strengthen the MC formulation is
to introduce the discussed result as a linear constraint:

xkij + xhji ≤ ye ∀h, k ∈ K, ∀e = {i, j} ∈ E (2.17)

This constraint could replace the forcing constraints (2.6) and will contribute to avoid flow
in opposite directions. However, doing so will add O(K2 · E) additional constraints to the
problem, and thus contributing even further with the unmanageable size of real instances.
For further discussion, we refer to this new formulation as the Multicommodity Extended
formulation (MCE).

As already mentioned, another way to avoid flow in opposite directions is to direct the
design variables by replacing each edge by two arcs. We refer to this new formulation as the

22

Multicommodity Directed Formulation (MCD). Several articles for similar combinatorial
problems have reported that this modification tightens the linear relaxation gap. For example,
in [11] the directed formlation for the Minimum Spanning Tree and the Steiner Tree problem
is discussed.

In the integer problem, both models are equivalent, in account of reaching optimality
only one arc in a determined direction is built, recovering the non-directed optimal solution.
Yet, the great advantage of MCD is the benefits of its linear relaxation, which we call
MCDL. First, the linear model MCDL has the same number of constraints as MCL and
only doubles the number of design variables. Second, as we will prove, its linear relaxation
solution is identical to the linear relaxation of the Extended Multicommodity Formulation
MCEL without the additional exponential number of constraints.

Consider the following formulation for MCD:

Problem MCD

min
∑

e={i,j}∈E

(
Fe(yij + yji) +

∑
k∈K

cke(x
k
ij + xkji)

)
subject to

xkij ≤ yij

xkji ≤ yji
∀e = {i, j} ∈ E,∀k ∈ K (2.18)

yij + yji ≤ 1 ∀{i, j} ∈ E (2.19)

∑
{i,j}∈δ(i)

(xkij − xkji) =


1 if i = s

−1 if i ∈ T ,
0 otherwise

∀i ∈ N, ∀k ∈ K (2.20)

xkij, x
k
ji ≥ 0 ∀{i, j} ∈ E,∀k ∈ K (2.21)

yij, yji ∈ {0, 1} ∀e = {i, j} ∈ E (2.22)

This formulation forces to declare on which direction each edge is used before it is con-
structed, causing that twice the costs is paid if it is used on both directions. Nevertheless,
we also add constraint (2.19) to avoid such situation in the integer problem. Based on this,
the optimal solution for MCD will have flow only on one direction in each arc, then using
the result in proposition 2 we can state that this solution is also optimal on formulation
MC (In general terms, the rest of the problem is the same). With this we have shown that
the directed formulation MCD is valid for the SS-UND problem. The following proposition
shows the benefits of the linear relaxation MCDL.

Proposition 3 TheMCDL problem is equivalent to theMCEL problem in terms of optimal
values of objective functions. Also, an optimal solution of MCDL is optimal in MCEL and
an optimal solution in MCEL can be projected to an optimal solution of MCDL.

Proof. Let (ŷ, x̂) be an optimal solution of MCDL. Define (ỹ, x̃) as vectors for the variables

23

of MCEL such that ỹe = ŷij + ŷji, ∀e = {i, j} ∈ E and x̃ = x̂. We can see that (ỹ, x̃) is a
feasible solution of MCEL and that it has the same cost as (ŷ, x̂)

Now Let (ỹ, x̃) be an optimal solution of MCEL. Let (ŷ, x̂) be vectors for the variables of
MCD that take the following values: ŷij = maxk{x̃kij}, ŷji = maxk{x̃kji}, for all e = {i, j} ∈ E
and x̂ = x̃.

Given that for any commodity pair (k, h) it holds that x̃kij + x̃hji ≤ ỹe, we can directly
conclude that x̂kij + x̂hji ≤ 1. Also, by construction (ŷ, x̂) satisfies constraint (2.18), therefore
it is a feasible solution in MCDL. Since (ỹ, x̃) is optimal in MCEL, as discussed after
presenting the MC formulation, we have ỹe = maxk{x̃kij}+ maxk{x̃kji} for all e = {i, j} ∈ E.
This implies that ỹe = ŷij + ŷji. Therefore, both solutions have the same cost. This shows
that a feasible solution in MCDL can be lifted from an optimal solution in MCEL and that
it will have an equal cost.

Figure 2.2 illustrates the same instance previously described in figure 2.1 and how this
time, the integer optimal solution can be obtained through MCDL formulation.

s

31

2

F = 20
c = 5

F = 20
c = 10

F = 10
c = 5

F = 20
c = 12

d = 1

d = 11

2

(a)

s

31

2

(1)
(1)

(1)

Fixed Cost = 50
Flow Cost = 20
Total Cost = 70

(b)

Figure 2.2: Cycle elimination through directed formulation

Each non-directed edge is replaced by two directed arcs with the same flow and fixed cost
as the original edge, resulting in the instance of figure 2.2(a). The solution of the directed
linear relaxation, shown in figure 2.2(b), does not have cycles nor opposite directed flows and
reaches the same cost as the integer optimal solution.

Constraint (2.19) is a key element to understand that MCD will not have a higher cost
than the non-directed formulation. However, we now prove that it can be removed from
the formulation without affecting the optimal solution. Essentially, the cost penalization of
paying twice the fixed cost to allow flow in opposite directions is enough to avoid it. This
result is of great use for the design of the dual ascent algorithm for the next section.

We first define the concept of tight optimal solution for MCDL. If Fi,j is strictly positive,
it is clear that:

yij = max
k
{xkij} ∀{i, j} ∈ E, k ∈ K (2.23)

24

However, if Fi,j is equal to zero, then yij can take any value between maxk{xkij} and 1 and
the solution will still be optimal. We denote as tight optimal solution to those solutions that
satisfy (2.23) for all edges.

Let MCDR be the formulation without considering constraint (2.19), which we call the
Reduced Multicommodity Directed Formulation, and MCDRL its respective linear relax-
ation.

Theorem 1 Problems MCDL and MCDRL have the same set of tight optimal solutions.

Proof. Let (y, x) be a tight optimal solution for MCDRL. We will prove that yij + yji ≤ 1
for all e = {i, j} ∈ E (i.e. constraint (2.19)).

Constraint (2.19) is clearly satisfied if, for a determined edge, there is flow on a single
direction or no flow at all, hence we will only analyze the case where there is flow on both
directions. Let {i∗, j∗} be an edge with flow on both directions. Let p = argmaxk{xki∗j∗} and
q = argmaxk{xkj∗i∗}. Given that (y, x) is a tight optimal solution, then:

yi∗j∗ = xpi∗j∗ and yj∗i∗ = xqj∗i∗ (2.24)

Also, for a specific commodity, no node will receive a total flow greater than the demand
for such commodity. Particularly, for commodity q and node i∗, it holds that:∑

t∈N

xqti∗ =
∑

t∈N\{j∗}

xqti∗ + xqj∗i∗ ≤ 1 (2.25)

Considering that xpi∗j∗ > 0 and given that (y, x) is optimal, flow for commodity p in the
opposite direction must be zero; i.e. xpj∗i∗ = 0. Also, flow p that enters node i∗ must, at least,
be equal to the flow that is already leaving this node; xpi∗j∗ . Therefore, we can state that:∑

t∈N

xpti∗ =
∑

t∈N\{j∗}

xpti∗ ≥ xpi∗j∗ (2.26)

Let PTx(i, k) denote the set of paths between s and i that carry flow of commodity k
according to the flow variables x. Let C(α) be the cost per unit of flow of path α, namely,
C(α) =

∑
e∈α ce. Let Vx(α, k) be the fraction of commodity k that flows through path α

according to solution x.

Using this notation, let ᾱ = argmax{C(α) : α ∈ PTx(i∗, p) ∪ PTx(j∗, q)}. Without loss
of generality, we will assume that ᾱ belongs to PTx(j

∗, q). Figure 2.3 shows a simplified
graphical representation of this notation (not showing every node in each path). For now,
assume that ᾱ is unique. Details of the demonstration when there are multiple paths with
the same cost will be discussed at the end of the proof.

Given that (y, x) is optimal, it is impossible to redirect flow of commodity q from ᾱ to other
path in PTx(i∗, p). That is to say, every path in PTx(i∗, p) is saturated in terms of sending

25

i*

s

j*

Xi*j*
p

Xj*i*
q

. . .

. . .

PTX (j*, q)

PTX(i*, p)

D(q)
D(p)

Figure 2.3: Simplified graphical representation of MCDL

commodity q. In the linear relaxation, it holds that yij = maxk{xkij}, hence, increasing flow
on a certain path increases the cost of the solution (in terms of fixed costs) only if such
additional flow corresponds to the commodity with the highest fraction of flow. In this sense,
the fraction of commodity q flowing through paths PTx(i∗, p) must be greater or equal than
the fraction of commodity p, else there is still some slack to reduce flow of commodity q from
the highest flow cost path ᾱ and re-direct it to one of the paths in PTx(i∗, p). This implies
that:

∑
α∈PTx(i∗,p)

Vx(α, q)−
∑

α∈PTx(i∗,p)

Vx(α, p) ≥ 0 (2.27)

The first term of (2.27) is bound by all the flow of commodity q entering node i∗. That is to
say: ∑

α∈PTx(i∗,p)

Vx(α, q) ≤
∑
t∈N

xqti∗ (2.28)

Considering that xpj∗i∗ = 0, there is no path in PTx(i∗, p) that contains arc (j∗, i∗). Therefore,
we can even tighly bound the first term of (2.27) as follows:

∑
α∈PTx(i∗,p)

Vx(α, q) ≤
∑

t∈N\{j∗}

xqti∗ (2.29)

26

For the second term of (2.27), we have:∑
α∈PTx(i∗,p)

Vx(α, p) =
∑
t∈N

xpti∗ =
∑

t∈N\{j∗}

xpti∗ (2.30)

Therefore, we get: ∑
t∈N\{j∗}

xqti∗ ≥
∑

t∈N\{j∗}

xpti∗ (2.31)

Replacing (2.26) and (2.31) in (2.25) we finally obtain:

xpi∗j∗ + xqj∗i∗ ≤ 1

This final result is valid for every edge, with either flow on one direction or both. Hence,
we conclude:

⇒ yij + yji ≤ 1 for all e = {i, j} ∈ E

Consider some technical details of the demonstration when there are multiple paths tied
in the maximum costs in the set {C(α) : α ∈ PTx(i∗, p) ∪ PTx(j∗, q)}. Suppose there is a
path β in PTx(i∗, p) that has the same cost as ᾱ. If cj∗i∗ is strictly positive, the argument
that paths in PTx(i∗, p) are saturated in regard to commodity q is still valid. If Cj∗i∗ is equal
to zero, then Fj∗i∗ must be positive. In such case, to redirect flow from ᾱ, there must exist
another commodity q̄ different from q such that:

yj∗i∗ = xqj∗i∗ = xq̄j∗i∗

In this way, when redirecting flow of commodity q from path α − (j, i) to path β, the
variable yj∗i∗ will not decrease its value and optimality will be maintained (if this is not true,
then the initial hypothesis that (y, x) was optimal, is broken). In this scenario, a certain
amount of flow can be redirected until eventually there are no more ties in the maximum
costs path.

Empirical and theoretical evidence show that among the proposed formulations, the
MCDR formulation delivers the best result in terms of the quality of its linear relaxation.
However, as already discussed the size of its instances can be too large to handle them di-
rectly. Our proposal consist on finding an approximate solution to theMCDRL using a dual
ascent method. Through this method, we can find a feasible dual solution that will serve
as a lower bound to the optimal value and also reduce the problem size to be able to get a
primal feasible solution. Section 3.1 describes the dual ascent framework and procedure, and
section 3.2 focuses on how to use its output to get a primal feasible solution.

27

Chapter 3

Solution Approaches

3.1 Dual-Ascent Procedure

Since the SS-UND problem is NP-Hard and also reaches impeding sizes in real instances
with the MCDR formulation, we study the use of methods to find good lower bounds and
heuristics solutions instead of the exact optimal solution. The structure of the network design
problem makes it particularly attractive to apply dual-ascent routines that will iteratively
improve a lower bound by finding better dual solutions. Furthermore, these dual solutions
also serve to identify smaller feasible design networks that then can be used by other methods
to find primal solutions. The dual-ascent procedure for the network design problem was first
presented in [3], we base our implementation on such procedure adapting it specifically for
the Directed Multicommodity formulation. We also provide empirical evidence on how the
original method improves when it is designed to solve the directed problem instead of the
undirected one.

Consider the linear programming dual for the formulationMCDRL. Let vki and wkij be the
dual variables associated respectively to contraints (2.20) and (2.18). For each commodity,
one of the constraints of flow conservation (2.20) is linearly dependent to the rest, therefore
we can fix vks = 0 ∀k ∈ K. The dual formulation is the following.

28

Problem DMCD

max zD =
∑
k∈K

vkD(k)

subject to

vkj − vki ≤ ckij + wkij

vki − vkj ≤ ckji + wkji
∀{i, j} ∈ E,∀k ∈ K (3.1)

∑
k∈K

wkij ≤ Fij∑
k∈K

wkji ≤ Fji

∀{i, j} ∈ E (3.2)

For any feasible solution of the DMCD, its objective function value constitutes a lower
bound for the linear relaxation of the MCDR, and hence for the original integer problem.
As explained in [3], the general strategy consists of iteratively modifying the values of the
variables wkij, wkji (w-values), and vki (v-values) in order to increase monotonically the value of
the objective function, and thus improve the lower bound. Note that the objective function
does not depend explicitly on the w-values. Considering this, the w-values could be fixed
to a determined value that satisfies (3.2), and then the problem reduces to finding the best
v-values that satisfies (3.1). Furthermore, with this strategy, v-values no longer depend on
other commodities values. This allows us to decompose the problem in subproblems that can
be solved individually by commodity. Let SPk(w) denote this subproblem corresponding to
commodity k with the fixed w-values w. SPk(w) has the following structure:

Problem SPk(w)

max vkD(k)

subject to

vkj − vki ≤ ckij + wkij

vki − vkj ≤ ckji + wkji
∀{i, j} ∈ E (3.3)

The structure of the subproblem SPk(w) corresponds exactly to the structure of the dual
of the classic Shortest Path Problem from origin s to destination D(k) using as flow costs the
modified costs ĉij = ckij + wkij. Consequently, given the w-values, the length of the minimum
path from the origin to each node i gives the vki values that optimize the subproblem SPk(w).
In particular, the optimal value of the objective function vkD(k) is the length of the shortest
path from the origin to the destination of commodity k. Thus, the value of the main dual
problem DMCD can be improved by increasing the w-values (and hence the ĉij values) so
that they augment the length of a shortest path for a certain commodity.

Basically, the dual ascent method increases the objective function by iteratively increasing
one or more appropriately chosen w-values in such a way that:

29

(i) Constraints (3.2) remains feasible.

(ii) The length of the shortest path s-D(k), vkD(k), increases at least for one commodity
k ∈ K in each iteration.

To satisfy the first condition, we consider as candidates to increase its value only those wkij
for which constraints (3.2) still have slack. Suppose that for a certain iteration, for a certain
arc (i, j),

∑
k∈K w

k
ij < Fij. We define Sij = Fij −

∑
k∈N w

k
ij as the value of the slack in this

particular constraint. This slack can be interpreted as the unabsorbed fixed charge that will
iteratively be allocated in certain w-values to improve the lower bound ZD.

The authors of this general algorithm (see [3]) developed two different algorithms that
differ mainly in the selection of arcs where the slack is assigned, the path diversion method
and the labeling method. We use the labeling method, which increases at each iteration
several w-values of the same commodity k.

As discussed, the general idea is to increase as much as possible the lengths of the s−D(k)
paths for every commodity. The labeling method accomplishes this by partitioning the set
of nodes N into two subsets for every commodity: N1(k), which always contains the source
for commodity k, and N2(k), which always contains the destination D(k) for commodity
k. Nodes in N2(k) are also referred to as the labeled nodes for commodity k. If every arc
in the cutset between N1(k) and N2(k) increases its w-values, then naturally the length of
the shortest path between the source and every node in N2(k) will increase (including the
destination D(k)). However, not every arc in such cutset must increase its w-value to obtain
the same result. The labeling method uses this notion to identify the best possible arcs to
increase its w-values and also increase multiple values simultaneously.

Let A(k) = {(i, j) ∈ A / i ∈ N1(k) ∧ j ∈ N2(k)} denote the directed cutset between N1(k)
and N2(k). The objective is to identify which of the arcs in A(k) must increase its wkij values
to increase vkD(k), the length of s−D(k), the shortest path for commodity k. Note that if a
certain arc (i, j) in A(k) does not belong to s−D(k), then an increase of wkij will not increase
vkD(k). We refer to the arcs that do belong to the shortest path s−D(k) as tight arcs (note
that there could be multiple shortest paths with the same cost, in such cases, there could be
more than one tight arc in A(k)). Tight arcs must satisfy the following condition:

vkj − vki = ckij + wkij (3.4)

If non-tight, we define the tight slack :

TSki,j = (ckij + wkij)− (vkj − vki) (3.5)

We also use A′(k) ⊆ A(k) to denote the set of every tight arc in A(k), and A′′(k) =
A(k)\A′(k) to denote every non-tight arc in A(k).

With this definitions, we can state that for a given N1(k) and N2(k), to increase vkD(k) we
must increase wkij for every arc (i, j) ∈ A′(k). Nevertheless, when doing so, besides increasing

30

vkD(k), we also increase vkj for every j ∈ N2(k) which in effect, according to (3.5), will reduce
the tight slack of every arc in A′′(k). Eventually, This could produce at a certain point, that
a non-tight arc becomes tight, and thus, every additional amount increased in the wkij values
of the tight arcs will be of no use towards increasing the lenght of the shortest path to the
destination D(k). Essentially, an increase in the length of a certain arc that belongs to the
shortest path will augment the final length of the shortest path only when such increase does
not make another path a better alternative.

As already discussed, the increase of the w-values is also restricted by the feasibility
constraints of DMCD. Hence, in accordance with the stated conditions (i) and (ii), to
determine the maximum increase in the lengths of the arcs in A′(k) the following must be
considered:

(i) To maintain feasibility of (3.2), the maximum increase of the w-values in A′(k) is given
by the minimum slack available,

ρ1 = min {Sij : (i, j) ∈ A′(k)} (3.6)

(ii) To avoid tight arcs to stop being tight, the maximum increase of the w-values in A′(k)
is given by the minimum amount needed to make at least one non-tight arc become
tight.

ρ2 = min
{
TSki,j : (i, j) ∈ A′′(k)

}
(3.7)

An increase of ρ = min {ρ1, ρ2} in wkij, ∀(i, j) ∈ A′(k) produces that vkj augments in ρ, ∀j ∈
N2(k), maintaining feasibility in DMCD. At the end of each increase, if ρ = ρ1, the slack Sij
of some arc (i, j) ∈ A′(k) is reduced to zero. In the opposite case, if ρ = ρ2, some non-tight
arc of A′′(k), will move to A′(k).

The dual-ascent procedure mechanizes this strategy. Initially, every w-value is fixed to
zero and the v-values are calculated by solving a Shortest Path Problem from s to every
destination D(k) using the flow costs cij as arc lengths. Afterwards, considering the value
vi as the result obtained, each vki is calculated by multiplying by the corresponding demand:
vki = dk ·vi. This first step can only be done by the fact that there is a single source structure;
otherwise, multiple shortest paths routines should have to be performed. After setting the
initial distances, the labeled node sets are initialized only including the destination for each
commodity, N2(k) = {D(k)}, that implies that N1(k) = N\N2(k), however, there is no need
to store the non-labeled nodes. In each iteration the algorithm chooses a commodity k such
that s /∈ N2(k), then calculates de maximum possible increase and simultaneously reassigns
the w-values of the arcs in A′(k) along with the distances of the nodes in N2(k) (and hence,
zD, the dual objective function, is also updated). If such increase produces that for a certain
arc Sij = 0, then node i must be labeled. The algorithm iterates until s is labeled in each
N2(k), ∀k ∈ K. This labeling procedure guarantees that, at the end, every arc with zero
slack will constitute a feasible design solution which allows a directed path from s to every
destination D(k).

Finally, the dual-ascent procedure will deliver as an output, both the value of a feasible
dual solution zD, that constitutes a lower bound to the MCDR problem, and also a subset
of directed arcs that allows a feasible primal solution.

31

In the next section we describe our specific implementation based on this labeling proce-
dure.

3.1.1 Implementation Details

In the previous section we already presented that by fixing the w-values, the dual prob-
lem DMCD can be decomposed in subproblems that no longer have an explicit relation
between commodities. This concept is a key element to the particular implementation that
we developed.

The labeling method that we discussed maintains sets of labeled nodes N2(k) and sets of
tight arcs A′(k) and non-tight arcs A′′(k) in the cutset between the labeled and non-labeled
nodes. There is one of each of these sets for every commodity k that must be stored in
a determined data structure. In each iteration, a certain commodity must be chosen and
the corresponding sets must be used. However, when the commodity is already chosen for a
particular iteration, the information stored in the sets for the other commodities are of no use
for that iteration. Considering this, there is no need to store these sets for every commodity
simultaneously if the commodity choice is maintained until the destiny for such commodity
is labeled. At this point, another commodity can be chosen, and the data structures to store
the sets can be reset. Basically, the algorithm that we developed will choose only a certain
commodity for each iteration. For such commodity, it will allocate as much of the slack as
needed in the w-values of that commodity to increase the shortest path between the source
and the sink. Only then it will iterate to the next commodity. This allows us to maintain in
memory only one of each set instead of one per commodity, and in consequence save memory
space. The cut set A(k) and its corresponding subsets of tight and non-tight arcs can also
be recalculated in each iteration to even save up more memory space. However, we opted to
store them explicitly considering we only need to store them for one commodity.

Another important detail of our implementation is that it is based on the dual of the
Directed Multicommodity formulation. In the original algorithm proposed in [3], there is
only one slack Sij for each edge {i, j} that is used up by the w-values wkij and wkji. As
imposed by constraints (3.2) of the DMCD formulation, the directed version that we propose
has a slack for every arc. Therefore, for each edge {i, j}, there will be a slack Sij for arc (i, j)
that will be used up by the w-values wkij and also another slack Sji for arc (j, i) that will be
used up by the w-values wkji.

The network is modeled by a directed graph composed of a set of nodes holding an adjacent
directed arc list. Each arc is a structure that contains its corresponding fixed cost Fij, its
remaining slack Sij; and its flow cost per unit cij. Even though the MC formulation accepts
different flow cost for each commodity, for this particular implementation we only need to
store cij,∀(i, j) ∈ A and dk,∀k ∈ K to obtain the flow costs ckij = dk · cij.

The network data structure also stores the source node s, the demand for each commodity
dk and a reference to their destination nodes D(k). The labeled nodes N2(k) are stored using
a Boolean array and also a singly linked list to be able to access only the labeled nodes more
quickly. The cut sets A′(k) and A′′(k) are stored using circular doubly linked lists to be able

32

to add or delete arcs from the lists more efficiently.

Considering the way that the algorithm labels the nodes, there is no need to store or
update the w-values directly. As discussed in [3], after every ascent step, w-values satisfy the
condition:

wkij = max
{

0, vkj − vki − ckij
}
∀(i, j) ∈ A (3.8)

Therefore, maintaining the v-values updated is enough and hence, the algorithm does not
require to explicitly store the w-values. Moreover, given that each arc stores its slack Sij,
during the dual-ascent procedure, the w-values are only used to calculate the tight slack
TSkij (as per equation (3.5)). However, the first time an arc (i, j) appears in a k iteration,
initially wkij = 0, therefore the tight slack can be calculated only from the flow costs ckij and
the distances vki and vkj . Assuming that the arc is non-tight (TSkij 6= 0), after any w-value
increase phase, the tight slack reduces exactly in the amount increased in that given iteration.
Hence, instead of storing or calculating the w-values to be able to calculate the tight slack,
it can rather be stored directly as an attribute of each element in the list of non-tight arcs
A′′(k). This value will be local to A′′(k), making it unnecessary to store it for other arcs, and
therefore not present as an attribute of the arc structure.

Considering the mentioned above, Algorithm 1 shows a pseudo code for this specfic im-
plementation of the dual-ascent routine.

The dual ascent routine delivers as output: (a) a file containing all the zero slack arcs
(Sij = 0), which form a feasible solution for MCDR; and (b) a summary file, storing the
value of ZD, CPU time and number of iterations.

3.1.2 Algorithm Enhancements

The Dual-Ascent procedure iteratively chooses a certain commodity, explores the cut set
A(k), increases w-values in its maximum possible value and then updates the dual objective
function zD. Notice however, that the commodity choice is arbitrary (and moreover, in our
specific implementation it is maintained until the destination node is labeled). Therefore,
there is no guarantee that the slack Sij is optimally allocated within the corresponding w-
values wkij for each arc. In [3] a strategy using the complementary slackness conditions is
proposed to test the correct allocation of w-values.

The output of the dual ascent procedure provides a subset of arcs with zero slack that
form a feasible design solution for the problem. That is yij = 1 if Sij = 0. For this design, the
optimal flow variables xkij can be easily obtained by solving a shortest path problem for each
commodity (using the corresponding costs ckij as arc lengths). This feasible primal solution
is very useful to identify certain conflictive arcs that might have their w-values using up the
slack in a non-optimal allocation. The first step is to check the following complementary
slackness conditions considering the dual w variables and the primal feasible solution (y, x)
that can be generated from the dual ascent output.

wkij(x
k
ij − yij) = 0

wkji(x
k
ji − yji) = 0

∀{i, j} ∈ A,∀k ∈ K (3.9)

33

Step 0: General Initialization
Set Sij ← Fij,∀(i, j) ∈ A.
Run a shortest path routine from s to every node in the network; let vi be the shortest
path length to node i.
Set vki ← dk · vi.
Set zD ←

∑
k∈K v

k
D(k).

Initialize the set CANDIDATES = K, the set of unmarked commoditites.
while CANDIDATES 6= φ do

Select a commodity k from CANDIDATES.
Step 1: Commodity Initialization
Set N2 = {D(k)}.
Set A′ = φ and A′′ = φ.
forall the arcs a = (i,D(k)) ∈ A do

Calculate TSkij = ckij − vkj + vki , (j = D(k))

if a is tight then
add a to A′

else
add a to A′′ with its corresponding TightSlack

end
end
Step 2: Iterations for Commodity k
while s /∈ N2 do

Set ρ1 = min{Sij : (i, j) ∈ A′}
Set ρ2 = min{TSkij : (i, j) ∈ A′′}
Set ρ = min {ρ1, ρ2}.
Update Sij ← Sij − ρ, ∀(i, j) ∈ A′.
Update vki ← vki + ρ, ∀i ∈ N2.
Update TSkij ← TSkij − ρ, ∀(i, j) ∈ A′′
Increase zD = zD + ρ.
if ρ = ρ1 for some (i∗, j∗) satisfying Si∗j∗ = 0 then

Label node i∗ : N2 ← N2 ∪ {i∗}
Update arcs in cutsets A′ and A′′, removing all arcs (i∗, j) with j ∈ N2, and
adding all arcs (l, i∗) with l ∈ N\N2 to the corresponding set

end
if ρ = ρ2 for some (i∗, j∗) satisfying TSki∗j∗ = 0 then

Remove (i∗, j∗) from A′′ and add it to A′
end

end
Remove k from CANDIDATES

end
Algorithm 1: Dual-Ascent Implementation Pseudo Code

Naturally, in (y, x) there can not be flow if the corresponding design variable is zero,
hence, the only way to break this conditions is when yij = 1 and xkij = 0. In such case, in an
optimal solution, wkij must be zero. Therefore, inspecting the arcs with non-zero w-values,
can help to identify certain conflictive arcs that are not meeting the complementary slackness
conditions. The strategy to possibly improve the feasible primal solution consists on forcing

34

the identified conflictive w-values to be zero. This is accomplished by re-executing the dual
ascent procedure but assuming that Sij is zero each time it comes across an specific arc with
(i, j, k) indices that did not meet the conditions. The new dual solution produces a new
primal feasible solution and the complementary slackness conditions can again be checked.
This leads to an iterative scheme where in each step a new dual solution could be found.
This strategy, however, does not guarantee that a better solution is actually found.

3.2 Primal Solutions

In terms of actually solving the original SS-UND problem, the dual-ascent procedure only
provides a lower bound to its optimal objective function value and a subset of arcs that allow
the existence of a feasible primal solution. In this section, we propose and discuss alternatives
to get a primal solution from the given subset of arcs.

In [3], drop/add heuristics are used to find good primal solutions. We developed two
alternative methods that consist of performing an intermediate processing of the network
given by the dual-ascent and then solving either a MCD or a DICUT formulation over such
network.

3.2.1 MCD Formulation

The reduced network structure provided by the dual-ascent, which we denote G′ = (V,A′)
besides having significantly less arcs, can further reduce its size in terms of the MCD for-
mulation.

Essentially, we take advantage of the fact that the new network has directed arcs instead
of non-directed edges, which eventually produces that a given node becomes inaccessible by
the origin. Identifying such nodes enables us to remove certain design and flow variables
from the problem.

Let i → j denote that i is connected to j if and only if there exists a directed path from
i to j. We also define A+

i and A−i respectively as the forward and backwards star of node i.
That is, A+

i = {j ∈ N : (i, j) ∈ A} and A−i = {j ∈ N : (j, i) ∈ A}

Given the way the algorithm labels the nodes, every labeled node is connected to at least
a certain destination D(k). However, there is no guarantee that they are accessible from s.
If s is not connected to a certain node i, then we can remove from A every arc (i, j) with
j ∈ A+

i and every arc (j, i) with j ∈ A−i without loosing optimality, and hence reducing the
problem size.

From another point of view, given the lower density of the sub-network delivered by the
dual-ascent procedure, it also may occur that certain commodities cannot flow through every
arc. Let CON(k) = {i ∈ N ; i→ D(k)} denote the set of nodes connected to the destination
of commodity k. If i /∈ CON(k), then we can state that in every feasible solution of MCD

35

the variables xkij are equal to zero for every arc (i, j) with j ∈ A+
i . Therefore, we can remove

such flow variables and also the constraints (2.18) corresponding to those arcs and commodity
from the formulation. These reductions significantly decrease the size of the problem and
in some cases it is possible to solve it directly with traditional linear programming software
through the MCD formulation.

3.2.2 DICUT Formulation and Rounding Heuristic

Considering that G′ has a lower density than G, the DICUT formulation becomes an
interesting alternative to get a primal solution. Given that G′ has less amount of arcs, the
number of cutting planes needed to find a feasible solution will be decreased along with the
iterations of the method.

Additionally, as in the last subsection, we use a similar approach to strengthen the for-
mulation. Let Ti = {t ∈ T/i→ t} denote the set of all destination nodes that are reachable
by a certain node i. In any feasible solution, the maximum volume that may flow out of
a node i is given by the total amount of demand of the destination nodes reachable by i.
Therefore, we can state that ∀i ∈ N each arc (i, j) with j ∈ A+

i will have a flow bound by
Mij =

∑
t∈Ti dt. In consequence, we can replace constraints (2.13) with:

xij ≤Mij · yij ∀(i, j) ∈ A (3.10)

Unlike the STP , where the DICUTL and MCL formulations are equivalent, in the SS-
UND, even with the proposed strengthening, the DICUTL can present a higher gap than
the MCL due to fractional values on the design variables.

To address this problem, we propose a Rounding Heuristic to execute after the DICUT
has ended adding all the possible cuts to the problem to be able to get a feasible integer primal
solution. This heuristic is a generalization of the Minimum Cost Paths Heuristic developed
for the STP in [16] and discussed in [18]. In essence, the heuristic which we denote MPH,
tries to incorporate information both from the LP fractional solution and the cost structure
of the network.

The complete cutting plane procedure and heuristic is the following:

Cutting Plane Method

• Step 0 : Initialization:

1. Load graph from dual ascent solution.

2. Eliminate unfeasible arcs.

3. Calculate Ti, for all i ∈ N \ T .

4. Calculate Mij.

36

5. Formulate DICUT LP.

• Step 1 : Solve LP.

• Step 2 : For each i ∈ T :

1. Find max-flow from s to i/.

2. If max-flow > 1, add violated cut.

• Step 3 : If no cuts were added, continue to Step 4. Else, go to Step 1.

• Step 4 : If LP solution is not integer, run rounding heuristic.

Rounding Heuristic

• Step 0 : Initialization:

1. Eliminate every arc with yij = 0 from A

2. Set r̄ ← 1
|K|(
∑

k∈K dk).

3. Set ĉij ← (1− yij/2)(cij r̄ + Fij).

4. Set UMK = K. Set M = {s}.

5. Calculate shortest path tree from s to every node in N using costs ĉij. Let vi be
the path length to node i.

• Step 1 : Find k∗ = arg min{vD(k)/k ∈ UMK}.

• Step 2 : Set UMK = UMK \ {k∗}. Set r̄ = r̄(|UMK|+1)−dk∗
|UMK| .

• Step 3 : For every arc (i, j) in the path s− k∗, update ĉij ← r̄ · cij and mark it. Add to
M each node i in this path , including D(k∗), and update vi according to the new ĉij
values.

• Step 4 : Recalculate shortest paths to every node in N \M .

• Step 5 : If UMK 6= φ, go to Step 1. Else STOP.

The final feasible primal solution will be the tree formed by every marked arc.

37

Chapter 4

Computational Results

Every test described in this section was performed in a personal computer with an Intel
Core 2 Duo 2.66Hz processor with 4GB RAM. To solve the linear programming models with
traditional methods we used Gurobi Optimization mathematical programing solver software
version 5.5 [7].

To test the methods and algorithms we used randomly generated networks with a grid
structure of different sizes. Considering the original nature of the problem, the networks have
non-directed edges {i, j} that have equal flow and fixed costs in both directions (cij = cji and
Fij = Fji). Both of the costs are randomly assigned with a uniform probability distribution.
The relation between the maximum possible fixed cost (Fmax) and the maximum possible
flow cost (Cmax) is modified to study the effect on the algorithm performance. Two sets of
random instances are generated by modifying this relation; set A of random networks have a
Fmax/Cmax of 1.67 and set B a relation of 3.33. Given the number of nodes, a squared grid
is constructed with each side having L nodes, where L =

⌊√
N
⌋
. If the square root of the

number of nodes is not an integer number, then an additional row of (N−L2) nodes is added
to the grid. Every arc always exist, connecting each node to other adyacent nodes in the same
row and upper or lower rows. That is to say, that the number of edges is constant between
instances with the same number of nodes. The source node s and the set of destination nodes
T are randomly assigned between all available nodes.

In every test, we vary the size of the instances to analyze the scaling of the methods. We
also include manageable size instances to be able to run a MIP model in order to obtain the
integer optimal of the problem, and thus, be able to identify the lower and upper bound gap.

Table 4.1 shows the size of the problems that we used and their equivalence on the MCD
formulation. We used instances ranging from 100 nodes, 360 arcs and 20 commodities to
others of 2000 nodes 7820 arcs and 1600 commodities.

38

Continuous Integer Total
N K A Variables Variables Constraints
100 20 360 7,200 360 9,200
100 80 360 28,800 360 36,800
500 200 1910 382,000 1,910 482,000
500 400 1910 764,000 1,910 964,000
1000 200 3872 774,400 3,872 974,400
1000 800 3872 3,097,600 3,872 3,897,600
2000 1600 7820 12,512,000 7,820 15,712,000

Table 4.1: Test problems and equivalent MCD size

4.1 Directed Dual-Ascent

As mentioned on section 3.1.1, we implemented a directed version of the dual-ascent
procedure according to the strengthening discussed in section 2.2. In this section, we show
results of tests that compare the original non-directed dual-ascent with the directed version.
To measure the performance of the different methods we calculated the exact optimal value
for each instance. We used the MCD formulation for this purpose. We repeated each test
10 times for each selection of parameters (N, K and network of type A or B), generating
10 different instances. Table 4.2 shows the average gap for each method for the different
instances. The same information is also shown graphically in Figure 4.1.

A-Type B-Type
N K GAP ND [%] GAP D [%] GAP ND [%] GAP D [%]
100 20 4.64 2.83 10.62 6.62
100 80 3.44 2.50 8.53 5.84
500 200 3.73 2.86 7.90 5.18
500 400 2.58 2.04 6.46 4.99
1000 200 4.56 3.55 8.87 6.54
1000 800 2.24 1.82 5.39 4.45

Table 4.2: Directed and Non-Directed Dual-Ascent GAP comparison

As expected and for every instance that we tested, the directed version of the dual-ascent
clearly outperforms the non-directed version.

The results also show that the dual-ascent procedure performs better in networks with a
lower Fixed/Flow cost relation (A-type).

39

(N
=1
00
; K
=2
0)

(N
=1
00
; K
=8
0)

(N
=5
00
; K
=2
00
)

(N
=5
00
; K
=4
00
)

(N
=1
00
0;
K=

20
0)

(N
=1
00
0;
K=

80
0)

0

2

4

6

8

10

12
Av

er
ag

e
G
ap

[%
]

Average Gap vs Network Topology

A-Type Non-Directed
A-Type Directed

B-Type Non-Directed
B-Type Directed

Figure 4.1: Performance Comparison of Directed and Non Directed DualAscent

4.2 Commodity Order

The algorithm described in 3.1.1 does not specify the order in which commodities are
chosen. In previous studies [3] it was reported that specific rules to choose the order of
commodities does not significantly or consistently improve the performance of the algorithm.
However, our particular scheme of maintaining the commodity choice until its destination
node is marked suggested that the order could play an important role in the performance. We
tested different rules and observed a consistent improvement of the mean gap when choosing
commodities sorted from highest demand volume to lowest demand volume. To perform
these tests, we used instances of the same sizes and characteristics as those of the previous
section. We again used the MCD formulation to get an objective comparable value for the
dual-ascent output, and we also repeated the process 10 times for each selection of parame-
ters. Table 4.3 shows the average gap for each method for the different instances. The same
information is also shown graphically in Figure 4.2.

Although the sorted scheme does show a significant improvement considering the average
results in all the tested problems, not every instance result actually presented improvement.
In some particular cases, the initial random sorting of demand delivered a smaller gap. This
suggests that, for every instance, a specific sorting scheme that delivers a better result can
be found. A possible procedure could be to parallelize the dual-ascent algorithm with a
set of different sorting methods and then choose the highest objective function value ob-
tained. However, considering the characteristics of the CPU used in this study we preferred
to maintain the proposed sorting method for the following tests.

40

A-Type B-Type
N K GAP Non-Sort [%] GAP Sort [%] GAP Non-Sort [%] GAP Sort [%]
100 20 2.99 2.43 6.34 5.90
100 80 2.52 1.93 5.08 4.74
500 200 2.85 2.39 5.31 4.94
500 400 2.19 1.68 4.96 4.13
1000 200 3.52 2.88 6.54 5.89
1000 800 2.03 1.69 4.45 3.07

Table 4.3: Sorted and Non-Sorted Dual-Ascent GAP comparison

(N
=1
00
; K
=2
0)

(N
=1
00
; K
=8
0)

(N
=5
00
; K
=2
00
)

(N
=5
00
; K
=4
00
)

(N
=1
00
0;
K=

20
0)

(N
=1
00
0;
K=

80
0)

0

2

4

6

8

Av
er
ag

e
G
ap

[%
]

Average Gap vs Network Topology

A-Type Non-Sorted
A-Type Sorted

B-Type Non-Sorted
B-Type Sorted

Figure 4.2: Performance Comparison of Sorted and Non Sorted DualAscent

4.3 Method Comparison

In this section we present results for every method that was previously discussed. For
the dual-ascent procedure, we sorted the demands according to the improvement proposed
in 4.2. We discarted the smaller sized sets of 100 nodes and also included a larger 2000 node,
1600 commodities, 3360 arcs set where the MCD MIP formulation could not be solved.

We again used multiple instances and show results for the average values for each category.
Every instance was solved by each of the discussed methods according to the following scheme.
Figure 4.3 shows a simplification of how the methods are applied according to this scheme.
Tables 4.4 and 4.5 show the average results for the tested instances and Figure 4.4 shows the
average gap of each method where the MIP solution could be obtained.

In first place, if the size of the instance allows it, we used the MCD MIP formulation to
get the exact optimal value. Considering that in some cases the lower bound gap provided

41

Original
Network

Reduced
Network

Dual-
Ascent

Dicut

MIP

MCD

2nd Network
Reduction

MCD MPH

Figure 4.3: Method application scheme

by the dual-ascent was too large, this step becomes particularly relevant. With the exact
optimal value we can measure the real performance of each method without depending on
the quality of the dual-ascent result. However this was not possible in all cases, resulting in
the reduction of this analysis only for smaller instances. We refer to this result as the MIP
value and we report the CPU time to obtain it.

Secondly, we perform the dual-ascent procedure storing both the lower bound value and
the subset of arcs that allow a feasible solution. We denote this lower bound as the DA value.
For this test, we report the mean gap between the MIP value and the DA value obtained,
along with the CPU time and the amount of arcs left in the sub-network as a percentage of
the original amount of arcs. Using the sub-network provided by the dual-ascent procedure,
we then get a feasible primal solution according to the process described in section 3.2.1
which consists of an arc elimination step and then solving a reduced size MCD formulaion
to obtain an upper bound to the optimal value. We report both gaps of this value with
respect to the DA value and the MIP value, along with the CPU time of the procedure.

Taking the sub-network that was used in the previous step, we then perform the DICUT
method as described in section 3.2.2. This method provides an upper bound to the optimal
value and we again report both its gap with respect to the DA value and with respect to the
optimal value. The MPH heuristic performed in this step to find a integer feasible solution
only takes into consideration the arcs that end up with a positive design value yij > 0. This
subset of arcs can again be considered as a sub-network that allows a feasible solution that
can be obtained with an alternative method other than the MPH rounding heuristic. For
this method we also report the mean number of dicut iterations, the mean CPU time and
the amount of arcs of the output sub-network as a percentage of the original amount of arcs.

Using the output sub-network of the dicut method we finally solve a MCD formulation.
The value obtained with this method is the best possible value that the MPH heuristic can

42

achieve and in a sense, measures the potential of the dicut formulation. As usual, for this
method we report both of the gaps and the CPU time.

MIP Dual-Ascent MCD (DA out)
N K Type time Gap time Arcs left Gap(da) Gap(mip) time

[s] [%] [s] [%] [%] [%] [s]

500 200 A 69.8 2.31 0.8 34.4 2.48 0.11 14.5
B 67.9 5.22 0.8 39.3 5.52 0.03 18.0

500 400 A 93.5 1.62 1.1 41.4 1.67 0.02 26.3
B 122.8 4.05 1.1 46.0 4.15 0.03 35.7

1000 200 A 180.8 2.29 1.1 29.8 2.44 0.10 21.0
B 188.5 5.19 0.5 38.8 5.50 0.11 30.7

1000 800 A 595.1 1.20 2.3 42.8 1.23 0.02 103.4
B 899.3 4.36 3.4 46.3 4.43 0.09 128.1

2000 1600 A - - 8.3 43.9 1.15 - 761.0
B - - 8.6 53.7 2.56 - 1195.4

Table 4.4: Final Result Summary: MIP, Dual-Ascent and Reduced MCD

Dicut+MPH Dicut+MCD
N K Type Gap(da) Gap(mip) iterations time arcs left Gap(da) Gap(mip) time*

[%] [%] [#] [s] [%] [%] [%] [s]

500 200 A 3.75 1.53 251.2 217.3 27.3 2.51 0.26 9.3
B 11.03 6.40 329.0 422.1 27.8 5.58 0.66 9.4

500 400 A 2.61 1.03 122.6 135.3 34.1 1.68 0.09 17.4
B 8.27 4.56 142.7 198.7 34.7 4.16 0.28 20.7

1000 200 A 4.07 1.87 1012.9 8004.6 22.2 2.50 0.27 12.4
B 13.53 9.04 1919.3 43088.8 26.3 5.62 0.73 13.8

1000 800 A 2.63 1.46 268.2 2003.8 35.0 1.24 0.06 69.6
B 11.09 7.22 343.0 2398.4 34.7 4.45 0.29 73.6

2000 1600 A 2.60 - 490.0 23160.8 35.5 1.16 - 422.0
B 8.98 - 901.0 66713.5 38.6 2.58 - 407.4

(*) Execution time does not include the Dicut method.

Table 4.5: Final Result Summary: Dicut with MPH and MCD

In terms of the Dual-Ascent procedure, it can be observed that it takes significantly less
CPU time to execute it in comparison to the other methods. In cases where the optimal
solution could be obtained, the mean lower bound gap is always below 5.3% and tends to
be lower when the fixed/flow cost ratio is smaller (type A networks) or when the relation
between total nodes and demand nodes is smaller. The subnetwork this process delivers
always has less than 54% of the arcs of the original network.

Solving the instances with the reduced size MCD formulation over the output network
of the Dual-Ascent is, in a way, a tool to measure the quality of the delivered arcs in terms
of their capacity to obtain a value as closer as possible to the MIP value. In this sense, the
Dual-Ascent is an excellent arc selecting procedure. The mean upper bound gap obtained
through the reducedMCD is always below 0.11% (when it could be measured). From another

43

(N
=5
00
; K
=2
00
)

(N
=5
00
; K
=4
00
)

(N
=1
00
0;
K=

20
0)

(N
=1
00
0;
K=

80
0)

−2

−1

0

1

2

Av
er
ag

e
G
ap

to
M
IP

So
lu
ti
on

[%
]

Method Comparison A-Type Networks

DA MCD Dicut+MPH Dicut+MCD

(N
=5
00
; K
=2
00
)

(N
=5
00
; K
=4
00
)

(N
=1
00
0;
K=

20
0)

(N
=1
00
0;
K=

80
0)

−5

0

5

10

Av
er
ag

e
G
ap

to
M
IP

So
lu
ti
on

[%
]

Method Comparison B-Type Networks

DA MCD Dicut+MPH Dicut+MCD

Figure 4.4: Average lower/upper bound gap of the applied methods

point of view, considering that in some cases the original problem size is unmanageable, the
dual-ascent procedure allows to reduce the size of the problem enough to be able to solve
it through the multi-commodity directed formulation. Throughout all the tested cases, a
maximum gap of 5.5% is observed. However, in even larger instances this method might not
be an option.

The Dicut method is significantly slower than the reduced size MCD and even slower
than the original sized MCD MIP when it could be solved. This is a consequence of the
amount of iterations needed for this method to converge. In every iteration O(K) max
flow/min cut problems are solved to identify the cuts to add to the formulation, and then a
Dicut formulation LP is solved. The number of these iterations tends to be bigger in Type
B networks and in test cases where the relation between total nodes and demand nodes is
smaller. Even when the method could not identify any further cuts to add to the problem,
the final LP solution was not integer in any case and the MPH rounding heuristic had to
be used to find an integer solution. The CPU time taken by the heuristic is included in the
total Dicut method time and is always significantly faster in relation to the Dicut iterations
times (less than 1 second). In section 4.4 we study the impact on the final solution when the
iterations are stopped before the method converges.

Although slower, the Dicut method solves a single commodity formulation LP that re-
quires less memory space to store an instance than the multi-commodity formulation. This
allows finding upper bounds to problems that are otherwise unapproachable with the previ-
ous methods. Through this approach, a mean gap of approximately 6.86% in relation to the
Dual-Ascent lower bound is obtained. However, in relation to the actual MIP value, a gap

44

of 4.14% is obtained. Again, this method has a worse performance when tested on networks
with higher relation between fixed and flow costs (Type B). In such cases, the mean gap
in relation to the MIP value is 6.8% when the mean gap is only 1.5% on the Type A net-
works. These results show such poor performance of the MPH rounding heuristic in Type
B networks that it should not be considered as a viable option for finding good quality upper
bounds to the SS-UND problem. Nevertheless, as already mentioned, the input network for
the heuristic (arcs with yij > 0 after the dicut iterations) can instead be used to solve a
MCD LP. Across all the tested instances, such network had an average of only 32% of the
initial arcs, which is a network small enough to solve the LP in relatively short CPU times.
Through this method, we obtain an average gap of 3.15% when compared to the Dual-Ascent
lower bound and an average gap of 0.33% when compared to the actual optimal value. On
one hand, it can be concluded out of these results that theMCD LP over the filtered network
can deliver good upper bounds to the optimal value of the problem. On the other hand, and
more importantly, we can conclude that both the Dual-Ascent and the Dicut are excellent
arc selecting procedures.

4.4 Further Analysis - Dicut Performance

Considering the large CPU times required to perform the dicut method, we studied how
the quality of the solution is improved with each iteration. As previously discussed, the
final MCD method delivers the best possible primal solution that can be obtained with any
heuristic from the dicut subset of arcs with positive design variables. By solving a MCD
formulation after each dicut iteration, we are able to measure the real impact of each iteration
independently of the quality of the chosen rounding heuristic.

To perform this test, we used two network topologies; one of 300 nodes, 565 arcs and
240 commodities and another of 500 nodes, 955 arcs and 400 commodities. For each case,
we repeated the process 20 times generating a different random instance for each iteration.
Figures 4.5 and 4.6 show curves for CPU time and intermediate gap for each iteration for
each case.

It can clearly be observed that the method does not require performing all the iterations
until no cuts are found. In both cases there is a point where no further improvement can be
obtained even though the algorithm can still identify certain cuts that do not satisfy the flow
condition. This suggests that a stopping rule could be implemented to reduce CPU time on
larger sized instances. For example, periodically after a specified number of iterations, the
rounding heuristic or anMCD formulation problem can be executed. If the gap improvement
is lower than a given threshold, then the method can stop.

45

0 20 40 60 80 100 120
0.1

0.15

0.2

0.25

Iterations

G
ap

[%
]

Gap vs Iterations

0 20 40 60 80 100 120

5

10

15

20

25

30

Iterations
T
im

e
[s
]

CPU Time vs Iterations

Figure 4.5: Dicut performance 300 nodes, 565 arcs and 240 commodities

0 50 100 150
7.5 · 10−2

0.1

0.13

0.15

0.18

0.2

Iterations

G
ap

[%
]

Gap vs Iterations

0 50 100 150

20

40

60

80

100

120

140

160

Iterations

T
im

e
[s
]

CPU Time vs Iterations

Figure 4.6: Dicut performance 500 nodes, 955 arcs and 400 commodities

46

Chapter 5

Conclusion

The results of this study show that single source uncapacitated network design problems
can be solved effectively by combining extended multicommoity formulations, dual-ascent, a
row generation scheme and rounding heuristics. Previous evidence shows that disaggregate
multicommodity formulations reduce the gap between the discrete solution and the lineal
relaxation solution. We show that by directing the design variables on a non-directed network
an even tighter gap can be obtained. This result generalizes previous studies made on other
problems like the Steiner Tree Problem.

To solve large-scale instances, we use a heuristic approach to find lower and upper bounds
to the optimal of the integer problem. For the lower bound, we design a specialized dual-
ascent procedure based on the work in [3]. We incorporate three main features to the al-
gorithm; a directed design variable nature, a single source structure and a commodity sort
scheme based on demand volume. We show empirical tests that corroborate a better perfor-
mance of the procedure when incorporating these features. We also propose an alternative
implementation that allows us to reduce the memory usage when storing variables of the
algorithm without increasing computational effort.

In addition to the lower bound value, the dual-ascent procedure also delivers a reduced
sized sub-network that can be used to find upper bounds to the problem. We use this sub-
network to obtain good feasible primal solutions that serve as upper bounds to the problem.
On the tested instances we observed that an average of 40% of the arcs were selected. We
show that these arcs are of excellent quality in terms of their capacity to obtain a tight gap
in relation to the optimal value. An average gap of 0.06% was obtained using the same
formulation as in the original complete network.

To get a primal solution we used two different approaches; solve the multicommodity
formulation over the selected arcs, and apply a row generation scheme based on a dicut
formulation of the problem. The key difference between them is how the trade-off between
execution time and CPU memory usage is managed.

On one hand, given the good quality of the sub-network obtained with the DA procedure,
the first approach delivered excellent results. Across all the tested instances of different sizes

47

and parameters, we obtained mean gaps between 1.0% and 5.5% (comparing primal and
dual-ascent values). The best results where obtained with a smaller relation between fixed
and flow costs and with a smaller relation between total nodes and demand nodes. However,
this approach might still not be a feasible alternative in terms of its problem size in large
instances.

On the other hand, the row generation scheme based on the dicut formulation offers a
much smaller representation of the problem, which makes it a better alternative for large-
scale instances. The procedure iteratively solves a linear relaxation of a dicut formulation,
which requires significantly less memory space considering its aggregate demand nature.
Given that the final solution obtained through the row generation method was never integer
in its design variables, we developed a rounding heuristic. With this heuristic we obtained a
mean gap of 6.9% across the tested instances. However, the performance of this method is
considerably affected by the ratio between flow and fixed costs. On larger ratio instances, a
mean gap of 10.6% was obtained while on smaller ratio instances a gap of 3.1% was obtained.
These results suggest that a better heuristic should be developed for each type of instance.
Continuing this string of thought, we studied the quality of the output of the dicut method in
terms of its capacity to get a good upper bound independently of the heuristic. Essentially,
the heuristic only uses a subset of arcs according to the values of the design values (arcs such
that yij > 0). We used this subnetwork to solve a multicommodity directed formulation and
thus we where able to obtain the best result any heuristic could obtain.

The subnetwork has approximately 30% of the arcs of the original network and across the
tested instances we obtained mean gaps between 1.0% and 5.5% in relation to the dual-ascent
value and mean gaps between 0.1% and 0.7% in relation to the actual optimal value. With
the presented results we can conclude that the row generation scheme is also an excellent
arc-selecting tool and there is a great potential to develop topology specific heuristics to find
integer primal solutions in a faster way.

While this approach makes handling large-scale instances possible, it also takes consider-
ably more CPU time given the amount of iterations it has to perform to converge. Measured
across all the tested instances, the row generation approach took an average of approximately
200 times more CPU time to execute in relation to Multicommodity formulation approach.
Considering this, we also studied how the number of iterations of the method affected the
quality of the solution. As a result of this exercise we highlight that the method presents
a fast convergence curve that suggests the use of a stopping rule. We believe this is a key
finding that points towards the enhancement of the process that is taking the longest CPU
time within method. Much remains to be studied in the separation problem; hence as topic
of future research, we propose to study in greater detail the row generation scheme, either
focused on better ways of finding violated cuts, other type of simple cuts or stopping rules
to optimize the trade-off between CPU time and quality of the solution.

48

Chapter 6

Bibliography

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[2] Y.P. Aneja. Solving the steiner tree on a graph using branch and cut. Networks, 10:167–
168, 1980.

[3] Anantaram Balakrishnan, Thomas L. Magnanti, and Richard T. Wong. A Dual-
Ascent Procedure for Large-Scale Uncapacitated Network Design. Operations Research,
37(5):716–740, 1989.

[4] Francisco Barahona and Laszlo Ladányi. Branch and cut based on the volume algorithm:
Steiner trees in graphs and max-cut. RAIRO - Operations Research, 40(1):53–73, 2006.

[5] Sunil Chopra, Edgar R. Gorres, and M.R. Rao. Solving the steiner tree problem on a
graph using branch and cut. ORSA Journal on Computing, 4(3):320–335, 1992.

[6] Sunil Chopra and M. R. Rao. The steiner tree problem i: Formulations, compositions
and extension of facets. Math. Program., 64(2):209–229, April 1994.

[7] Inc. Gurobi Optimization. Gurobi optimizer reference manual. http://www.gurobi.
com, 2014.

[8] Kaj Holmberg and Johan Hellstrand. Solving the Uncapacitated Network Design Prob-
lem by a Lagrangean Heuristic and Branch-And-Bound. Oper. Res., 46(2):247–259,
1998.

[9] T. Koch and A. Martin. Solving steiner tree problems in graphs to optimality. Networks,
32(3):207–232, 1998.

[10] T. L. Magnanti and R. T. Wong. Network design and transportation planning: Models
and algorithms. Transportation Science, 18:1–56, 1984.

[11] Thomas L. Magnanti and Laurence L. Wolsey. Handbooks in OR & MS, volume 7,

49

http://www.gurobi.com
http://www.gurobi.com

chapter 9 Optimal Trees, pages 503–615. Elsevier Science B.V., 1995.

[12] Marcelo Olivares. Ascenso Dual en la Resolución de Redes de Gran Tamaño Aplicado a
Diseño de Caminos Forestales, 2000. Universidad de Chile, Facultad de Ciencias Físicas
y Matemáticas, Departamento de Ingeniería Industrial, Santiago de Chile.

[13] Francisco Ortega and Laurence Wolsey. A branch-and-cut algorithm for the single com-
modity uncapacitated fixed charge network flow problem. Networks, 41(3):143–158,
2000.

[14] R. Rardin and U. Choe. Tighter relaxations of fixed-charge network flow problems.
Report J-79-18, 1979.

[15] Ronald L. Rardin and Laurence A. Wolsey. Valid inequalities and projecting the multi-
commodity extended formulation for uncapacitated fixed charge network flow problems.
European Journal of Operational Research, 71(1):95–109, November 1993.

[16] H. Takahashi and A. Matsuyama. An Approximate Solution for the Steiner Problem in
Graphs. Math.Japonica, 24:573–577, 1980.

[17] Tony J Van Roy and Laurence A Wolsey. Valid inequalities and separation for uncapac-
itated fixed charge networks. Oper. Res. Lett., 4(3):105–112, October 1985.

[18] Pawel Winter. Steiner problem in networks: A survey. Networks, 17(2):129–167, 1987.

50

	List of Tables
	List of Figures
	Introduction
	Network Design Problems
	Objectives

	Framework
	Mathematical Model
	Network Flow Formulation
	Multicommodity Formulation
	Dicut Formulation

	Strengthening the Model

	Solution Approaches
	Dual-Ascent Procedure
	Implementation Details
	Algorithm Enhancements

	Primal Solutions
	MCD Formulation
	DICUT Formulation and Rounding Heuristic

	Computational Results
	Directed Dual-Ascent
	Commodity Order
	Method Comparison
	Further Analysis - Dicut Performance

	Conclusion
	Bibliography

