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MITIGATION CONTROL AGAINST PARTIAL SHADING EFFECTS 

IN LARGE-SCALE PHOTOVOLTAIC POWER PLANTS USING AN 
IMPROVED FORECASTING TECHNIQUE 

En un trabajo previo se propuso un control de mitigación de efecto nube que 
permitía disminuir los efectos nocivos de la nubosidad parcial sobre parques fotovoltaicos 
en la frecuencia de sistemas eléctricos de potencia. Esto último sin la necesidad del uso 
de acumuladores de energía. La estrategia se basa en la operación sub-óptima de los 
parques (operación en deload) con tal de disponer de reservas de potencia. A pesar que 
la implementación del sistema nombrado mejoró la frecuencia del sistema de forma 
significativa en comparación al caso base (sin el sistema de control), la operación en 
deload de los parques implica una gran cantidad de energía que no se está 
aprovechando, lo que no se consideró en la metodología. Con tal de mejorar esto, el 
siguiente trabajo propone un control de mitigación de efecto nube en parques 
fotovoltaicos de gran escala basado en una herramienta de pronóstico de radiación. Esto 
último permite disminuir las pérdidas de energía junto con mitigar los efectos de la 
nubosidad parcial, mediante la determinación de un nivel de deload en los parques 
fotovoltaicos usando dicho pronóstico. 

 En primer lugar, esta tesis presenta una revisión bibliográfica y discusión del 
estado del arte de las técnicas de pronóstico en parques fotovoltaicos. Se muestra que 
la selección de la técnica de pronóstico depende en la información disponible y la ventana 
de tiempo del pronóstico, es decir, dependerá del caso de estudio. Dicho esto, se propone 
el uso de una técnica de pronóstico basada en redes neuronales en el Sistema 
Interconectado del Norte Grande (SING) de Chile. El pronóstico sirve para determinar el 
nivel de deload en el parque fotovoltaico para los siguientes 10 minutos, en función de 
una rampa de radiación. 

Los resultados muestran que la implementación de la técnica de pronóstico no solo 
mejora la respuesta en frecuencia del sistema, sino que también disminuye las pérdidas 
energéticas de forma significativa.  
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MITIGATION CONTROL AGAINST PARTIAL SHADING EFFECTS 

IN LARGE-SCALE PHOTOVOLTAIC POWER PLANTS USING AN 
IMPROVED FORECASTING TECHNIQUE 

A previous investigation proposed a control strategy to allow partially shaded 
photovoltaic power plants (PV-PPs) to mitigate the detrimental effects on the frequency of 
power systems without the need for energy storage. That strategy was based on a sub 
optimal operation of the plants (deloaded operation) in order to have power reserves 
available. Even though the system’s frequency improved significantly with the inclusion of 
the aforementioned system, the deloaded operation implies energy losses in the power 
system, which was not considered in the methodology. To improve this, the following work 
proposes a mitigation control against partial shading effects in large PV-PPs based in on 
an irradiance forecasting tool. This allows to determine the deload level in the PV-PPs, to 
lower the energy losses in addition to mitigate the effects of partial shading.  

First, this thesis presents a literature review and discussion of the state-of-the-art 
forecasting techniques in PV-PPs. It is shown that the selection of a forecasting technique 
depends on the available information and the timeframe of the forecast, and therefore the 
case study. Based on this, a forecasting technique based on artificial neural networks 
(ANNs) is proposed and implemented for the Northern Interconnected System (NIS) of 
Chile. The forecast is for determining the deload level in the PV-PPs for the next 10 
minutes, based on the forecasted radiation ramp. 

The results show that the implementation of the forecasting technique not only 
improves the system’s frequency response, but also decreases the energy losses in a 
significant way.   
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Chapter 1.  
 

Introduction 

Grid-connected photovoltaic (PV) power plants have been the renewable energy 
source with the highest annual growth rate in the world, reaching 30% in 2014 [1] and a 
total installed capacity of 177 GW by the end of the same year [2]. However, the inherent 
variability and uncertainty of PV generation, as well as the conventional operation at the 
maximum power point (MPP) of PV power plants (PV-PPs), necessarily leads to a 
reduction of power systems capability to deal with frequency deviations [3]. These are still 
the most relevant challenges in the operation and control of power systems with high 
penetration of PV systems [4].  

The variability of the output power of PV-PPs has two main causes: 1) changes in 
the sun’s position throughout the day and 2) partial or total shading due to moving clouds. 
The rising and setting of the sun regularly leads to 10-13% changes in PV output over a 
period of 15 minutes for single-axis tracking PV-PPs [5]. On the other hand, clouds are 
driven by stochastic processes and are largely responsible for rapid changes in the output 
power of PV-PPs that concern transmission system operators (TSOs). Changes in solar 
radiation in one location due to passing clouds can exceed 60% of the peak radiation in a 
matter of seconds [5].  

Considering the day-ahead power system operation planning, the geometry of the 
sun is  well known and thus easily managed by TSOs [3]. On the other hand, cloud-
induced variability and irradiation uncertainty can be managed through: 1) increasing 
operating reserves in the power system or 2) incorporating new control strategies in PV-
PPs to allow these technologies to participate in frequency regulation. Operating 
experience with large PV plants has demonstrated that large, rapid changes in the output 
of PV plants are possible [6]. This is the case of multi-MW PV plants in the Southwestern 
U.S. and southern California, where it has been reported that PV output can change more 
than 70% in a timeframe of 5 to 10 minutes [6], [7]. Depending on the system operating 
conditions and PV penetration, large changes as the described before could exhaust the 
ramping reserves available in conventional generation units, and thus threaten the power 
balance of the system. Furthermore, the efforts of conventional power plants to follow net 
load changes can lead to an increase in the cycling of synchronous generators, which 
could cause extra wear and tear on the generating equipment [3]. Several studies have 
reported that these frequency issues could constrain the integration of large-scale PV-
PPs in power systems [8], [9]. These issues occur especially in systems with slow 
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secondary frequency response, with reduced capabilities for frequency response, or in 
low-inertia power systems. Secondary control is a combination of automatic generation 
control (AGC) and manual dispatch actions to maintain energy balance and scheduled 
frequency. Other possibilities can include the use of energy storage and the deloaded 
operation of renewables. The secondary frequency response covers a time frame of tens 
of seconds to tens of minutes, being the thermal units the slowest to respond due to the 
thermodynamics of those generation units.  

Chile has an installed capacity of over 1.2 GW in PV technology [10], [11] and by 
2017 it will rise to over than 2.5 GW [11]. This makes Chile a top 10 country in PV installed 
capacity worldwide [2]. On the other hand, considering the high solar potential in northern 
Chile, it is expected to have a significant amount of PV-PPs concentrated there. Due to 
the low inertia, limited ramp rates and slow reaction times of the available conventional 
units in the Northern Interconnected System (NIS) of Chile, this level of PV penetration 
makes of Chile a critical case study from a frequency perspective.   

In [3] a mitigation control against partial shading effects (MICAPAS) for PV-PPs is 
proposed. This control is based on a deloaded operation of the PV arrays, meaning that 
the panels do not operate in the maximum power point (MPP). This control allows the PV-
PP to deploy their active power reserves when shaded sections exist. However, the 
presented strategy uses a constant “deload level”, without any kind of economic 
consideration. The deloaded operation in PV panels means that part of the total energy is 
lost and so the PV-PPs owners lose money if there is no economic retribution for ancillary 
services. An improved control strategy would decide the deload level for each timeframe 
(1 hour, 10 min or 5 min depending on the power system) in a dynamic way, based on the 
forecast radiation levels and system conditions.  

In order to improve the control response between maximizing PV energy 
production and minimizing the effects of the output power variability, this work proposes 
a control strategy to determine the PV-PPs deload level based on an improved forecasting 
technique.  

1.1. Research hypothesis 

It has been proven that a mitigation control against partial shading effects using a 
deloaded operation of PV-PPs improves the frequency response and performance of a 
power system. In this context, to use a forecasting technique to determine a dynamic 
deload in a PV-PP will not only improve the system’s performance but also minimize the 
energy losses.   
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1.2. Objectives 

General objective 

To design a mitigation control against partial shading effects in large-scale 
photovoltaic power plants based on an improved forecasting tool.  

Specific objectives 

1. Study and analyze the state-of-the-art in forecasting techniques for 
radiation and PV-PPs output power. 

2. Develop a forecasting tool suitable for different type-days.  
3. Implement the aforementioned forecasting technique and get the 

forecasted radiation data per PV-PP. 
4. Define a deload function depending on the experimenter power ramps by 

the system.  
5. Design and implement the mitigation control against partial shading effects 

considering a dynamic deload level. 
6. Analyze the dynamic power system response under different scenarios and 

evaluate the proposed model performance. 

1.3. Thesis structure 

This thesis is structured into the following chapters: 

 Chapter 2 presents a literature review and discussion of forecasting 
methods for grid-connected photovoltaic systems.  

 Chapter 3 presents the structure of both control models: forecasting and for 
mitigation of partial shading. 

 Chapter 4 presents the methodology of this work.  

 Chapter 5 presents the case study used to test both forecast and control 
models. 

 Chapter 6 presents and analyze the results.  

 Chapter 7 contains a summary of this work, the final conclusions and also 
some references to possible evolutions and future work.  
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Chapter 2.   
 
Forecasting Methods for Grid-Connected Photovoltaic 
Systems 

In this section, some of the existing forecasting methods are reviewed. In general, 
there are two ways to forecast PV output power: indirect and direct forecasting methods 
[12]. For indirect forecasting methods, historic solar irradiance and weather information is 
used in order to predict first the solar radiation and then the associated output power. 
Direct forecasting methods use historical data of existing PV-PPs output power to predict 
future injections.   

This chapter presents different forecasting methods for grid-connected PV 
systems. In order to get a general impression of all forecasting methods, wind power 
forecasting methods have been also included.  

2.1. Uncertainty and variability of the output power in PV-PPs 

Variability and uncertainty are inherent characteristics of power systems. Constant 
load and generation changes are events that may arise in a sudden way during the day, 
especially when there is a significant penetration of variable generation technologies. 
These changes must be compensated in order to ensure frequency regulation and 
therefore the power system’s frequency stability. 

Generation units change their power output to follow load changes throughout the 
day. To do this, they keep a specific amount of operating reserves to track the frequency 
grid changes. 

The increase of variable generation in power systems will increase the variability 
and uncertainty that must be managed by TSOs and system planners [5]. Different studies 
have shown that using forecasts of variable generation and decreasing the time between 
the dispatches done by system operators during the day can greatly facilitate the 
integration of these technologies in power systems [13]. 

The output power of PV-PPs is variable because the sun changes its position 
throughout time. The rising and setting of the sun leads to 10-13% changes in PV output 
over a period of 15 minutes for single-axis tracking plants [5]. Moreover, the most 
important source of short-term variability of PV generation is the cloud-induced because 
it is given by a stochastic process [6] and it can change the peak insolation by more than 
60% in a matter of seconds [5]. On the contrary, changes induced by the sun’s geometry 
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are known as a deterministic process, and then they can be well estimated. Figure 2.1 
shows the global radiation under cloudy conditions, and under a clear sky. It shows that 
under cloudy conditions, significant changes happen in a timescale of minutes. In order 
to attend the partial shading problem in PV-PPs, the implemented forecast has to work in 
a time scale of seconds to minutes (and not more). The chosen time scale will depend on 
the different characteristics of the available data and the forecasting errors that result from 
this data.  

 

Figure 2.1: Global solar radiation under clear sky and real conditions. 
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2.2. Forecasting methods in PV-PPs 

This section presents a review of the most relevant forecasting techniques used in 
PV-PPs nowadays: 1) numerical methods [12], [14], [15], 2) artificial neural network (ANN) 
based methods  [16], [17], [18], 3) auto-regressive models [19], [20], [21]; and 4) 
probabilistic techniques that lead to synthetic series [22], [23], [24].  

Numerical methods  

Numerical weather predictions (NWPs) are weather predictions based on 
mathematical models, given by several mesoscale simulation systems. They are 
physically-based weather forecasts and are mostly used for local weather forecasting in 
regions or cities [15]. The temporal development of the atmosphere’s state is modeled by 
differential equations that describe the physical laws governing the weather [25].These 
kind of models have the disadvantage of a coarse spatial resolution. The spatial 
resolutions are usually between 5 [15], 12.5 [26] and 25 km2 grids [14]. The temporal 
resolution (between 3-6 hours) is also too wide for the purposes of this work. 

Post-processing methods have been used in order to 1) reduce systematic errors; 
2) account for local effects; and 3) to calculate other variables such as PV power forecast. 
Most of the post-processing methods that are used to forecast PV power output have 
temporal interpolation and spatial averaging [14]. There are also physical post-processing, 
introducing new input parameters for better results [15], [18]. 

In [26], an extensive analysis of the North American Mesoscale (NAM) forecast in 
California is presented. Unlike [23] and [24], a cloud probability is added to the NAM 
forecast using satellite imagery. These results were compared to measured GHI in 
stations all around California. For clear sky conditions, i.e. in cases where the clear-sky 

index 𝑘𝑡 was over 0.8, the forecast interval contained 89.5% of the measurements. For 

very cloudy conditions (𝑘𝑡 < 0.6), the forecast contained between 25% and 80% of the 
measurements. Similar percentages were contained by Lorenz et al. in [14], but with wider 
forecast intervals. 

In [15], the poor performance of NWP in cloudy days is improved by adding the 
water path1 participation in the linear function that describes solar irradiance in that 
research.  

 
1 The water path is a measure of the total amount of liquid water present between two points in the 

atmosphere. 
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ANN-based methods 

One effective method for PV forecasting are ANN-based methods [16], [17], [18], 
[27]. ANNs are computational models inspired on human neurons. In contrast to 
conventional mathematical logic, the main characteristics of human thinking process is 
imprecise, fuzzy, but adaptive [28]. ANNs learn from examples by constructing an input-
output mapping without explicit derivation of the model equations.  

An ANN consists of many interconnected artificial neurons that interact with each 
other in a certain way. Neurons are simple processing units, and each connection has a 
weight factor [18]. Every neuron in the network sums its weighted inputs and compares 

this sum with a threshold to produce an internal activity level 𝑎𝑖. This process is shown in 
equation (1). Here, 𝑤𝑖𝑗 is the weight associated to the connection between input 𝑗 to 

neuron 𝑖, 𝑥𝑖𝑗 is the input signal number 𝑗 to neuron 𝑖, and 𝑤𝑖0 is the weight associated to 

the connection between an input clamped at −1 to neuron 𝑖 [18], or the threshold value. 
The weights of the connections are adjusted during the training process in order to get the 
desired input/output relation of the neural network (NN).  

𝑎𝑖 = ∑𝑤𝑖𝑗 ⋅ 𝑥𝑖𝑗 − 𝑤𝑖0

𝑛

𝑗=1

 (1) 

The internal activity is passed through a nonlinear function 𝜑 to produce the output 𝑦𝑖 of 
the neuron (equation 2). 

𝑦𝑖 = 𝜑(𝑎𝑖) (2) 

Several nonlinear functions can be used in order to produce the neuron’s output, being 
the most used ones the sigmoid functions [16], [18], [29]. Sigmoid functions are S-shaped 
functions, as shown in equation (3). 

𝜑(𝑎𝑖) =
1

1 + 𝑒−𝑎𝑖/𝑝 
 (3) 

In equation (3), 𝑎𝑖 is the activation into neuron 𝑖 and 𝑝 is a number that controls the 

shape of the curve, usually set to 1. Higher values of 𝑝 give a flatter response curve and 
lower values of 𝑝 produce a steeper curve (Figure 2.2). 
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Figure 2.2: Different sigmoid response curves. 

There are two different network models: feedforward and feedback (or recurrent) 
networks [28]. The first ones consist of a network where signals travel only in one way: 
from input to output. Feedback networks, on the other hand, have signals traveling in both 
directions by introducing loops within the network as applied in [30]. In PV power forecast 
and most of the applications, however, multi-layer feedforward networks are normally 
used [16], [17], [18]. 

Multi-layer feedforward networks consist of an input layer composed by single layer 
of neurons following an arbitrary number of hidden layers, each one composed by a 
specific number of neurons. The input signal propagates throughout the network in a 
forward direction. An example of a three-layer feedforward neural network is shown in 
Figure 2.3. 

 
Figure 2.3: Three-layer feedforward neural network.  

There can be any number of hidden layers within a feed-forward network. However, 
this number is not an issue because of the universal approximation theorem. This theorem 
states that a feedforward network with a single hidden layer can represent any function, 
given the right parameters [28]. This behavior is confirmed by empirical results [29]. The 
number of hidden neurons, on the other hand, is determined by the complexity of the 

Input Hidden layer 1 Hidden layer 2 Output layer 
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problem and the size of the training data [27]. Most of the research done until now 
determines this number by a heuristic process [16], [17], [18], [27].  

In a given high dimensional input-output dataset, neural networks are able to 
provide a promising modelling service. The dimension of the dataset plus the number of 
hidden neurons determine the generalization capacity and the accuracy of the neural 
network. An ANN that is too small will fail to formulate a precise mapping. A network that 
is too big, on the other hand, may trigger an overfitting problem that tends to deteriorate 
the generalization ability of the model [27]. This problem can be solved by dividing the 
dataset and cross-validating the results. 

The next step is to choose an algorithm in order to estimate the weights. There are 
various methods to estimate the weights in an ANN. The most used method in forecasting 
applications is the backpropagation method [4], [16], [17], [21], [27]. Another method is 
the Neuro-Evolution of Augmenting Topologies (NEAT), which consists in a genetic 
algorithm that changes the weights and number of nodes of the network simultaneously 
[31]. 

Autoregressive methods 

 Autoregression is a regression of a variable against itself, i.e. the forecast of a 
given variable is done by using a linear combination of past values of the same variable. 

Hence, an autoregressive model is a model that estimates the variable in time 𝑡 given past 
values of the same variable in times 𝑡 − 1, 𝑡 − 2, etc.  

It is important to note that for these kind of models, the process 𝑦𝑡 has to be 
stationary. Loosely speaking, a stochastic process is stationary if its statistical properties 
do not change with time. Even knowing that the PV output power is a nonstationary 
process, it can be made stationary with various techniques such as normalization or post-
processing [20], [32],[33], [34].     

An autoregressive model of order 𝑝 can be written as [35]:  

𝑦𝑡 = 𝑐 + 𝜙1 ⋅ 𝑦𝑡−1 + 𝜙2 ⋅ 𝑦𝑡−2 + ⋯+ 𝜙𝑝 ⋅ 𝑦𝑡−𝑝 + 𝑒𝑡 (4) 

where 𝑐 is a constant, 𝑒𝑡 is white noise and 𝜙𝑥 are fixed constants. This model is called 
an 𝐴𝑅(𝑝) model. This kind of models are used generally for identification, but they are 
also useful for time series development. 

In [20], an AR model is used in order to predict a future time series of irradiance. 
The model uses past samples of global horizontal irradiance (GHI) and forecasts hourly 
irradiance values. The GHI is normalized by using clear-sky index in order to create a 
clearer stationary time series. The method uses 15-min observations of solar power 
resolution and was used to predict hourly values of solar power.  
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Exogenous inputs such as a forecast predictions �̂�𝑡|𝑡−1
𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

, ambient temperature or 

relative humidity, for example, can be added to an AR model. These kind of models are 
called ARX (autoregressive with exogenous input) and may provide a better estimation 
for future values since it incorporates more information. The results vary depending on 
the correlation between the exogenous input variables and the forecasted variable. An 
example of this is shown in [19], where GHI and satellite data is combined and used as 
input in an 𝐴𝑅(5) model. The model uses satellite data as an exogenous input because it 
adds more information concerning cloud coverage, and therefore predicts cloudy days 
with more precision. In [20], the AR model is enhanced by using a NWP forecast as an 
exogenous input, creating an ARX model.  

An ARX model can be written as follows: 

𝑦𝑡 = 𝑐 + 𝜙1 ⋅ 𝑦𝑡−1 + 𝜙2 ⋅ 𝑦𝑡−2 + ⋯+ 𝜙𝑝 ⋅ 𝑦𝑡−𝑝 + 𝐾1 ⋅ �̂�𝑡|𝑡−1
𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

+ 𝑒𝑡 (5) 

Rather than using past values of the forecast variable in a regression, a moving 

average model (MA) uses past forecast errors (𝑓𝑒) in a regression-like model [36]: 

𝑦𝑡 = 𝑐′ + 𝑒𝑡 + 𝜃1 ⋅ 𝑓𝑒𝑡−1 
+ 𝜃2 ⋅ 𝑓𝑒𝑡−2 

+ ⋯+ 𝜃𝑞 ⋅ 𝑓𝑒𝑡−𝑞 
 (6) 

where 𝑒𝑡 is white noise and 𝜃𝑥 are unknown coefficients (being 𝑥 = 1,2, … , 𝑝). This model 
is referred as a 𝑀𝐴(𝑞) model. Here, 𝑦𝑡 can be understood as a weighted moving average 
of the past forecast errors.  

When combining the MA model with the derivative AR, an ARIMA model is 
obtained. ARIMA stands for autoregressive integrated moving average model. The full 
model can be written as [37]: 

𝑦𝑡
′ = 𝑐̅ + 𝜙1𝑦𝑡−1

′ + ⋯+ 𝜙𝑝𝑦𝑡−𝑝
′ + 𝜃1𝑒𝑡−1 + ⋯+ 𝜃𝑞𝑒𝑡−𝑞 + 𝑒𝑡 (7) 

where 𝑦𝑡
′ is the differenced series. This model is said to be an 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) model or 

process, where 𝑝 is the order of the AR part, 𝑑 is a non-negative integer defining the 
differential part and 𝑞 is the order of the MA part. This equation can also be written as 
[38], [34]: 

(1 − 𝐵)𝑑𝑌𝑡 = 𝜇 +
𝜃(𝐵)

𝜙(𝐵)
𝑒𝑡 (8) 

It is worth noting that many of the discussed models in the literature are special 
cases of the ARIMA model. For instance, an 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) with 𝑑 = 0 is an 𝐴𝑅𝑀𝐴(𝑝, 𝑞) 
model. An ARMA model is stationary for appropriate 𝜙 and 𝜃. An ARMAX model is an 
ARMA model with exogenous input. In solar forecasting applications the exogenous input 
could be a NWP-based forecast as in [20], precipitation amount, humidity, insolation [34], 
among others. 
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Many of these models are already implemented in MATLAB. Hence, their 
application is straightforward having consideration the limitations, like stationarity.  

Synthetic series 

Synthetic series are used to make statistical data based on observations. This kind 
of series are important for PV power forecasting because usually 1-hour series are 
available while the resolution of partial shading in PV-PPs in the order of minutes, thus 
the creation of synthetic series can help to broad the resolution when measured data is 
missing.  

In [22], a second order Markov model is proposed. Markov models are 

representations of stochastic processes. A Markov process 𝑋𝑡 with a set of 𝑚 allowed 
states is said to be in state 𝑗 at time 𝑡 if 𝑋𝑡 = 𝑗. In a first order, given that the process is in 

state 𝑖 at time 𝑡 − 1, the probability that it will be in state 𝑗 at time 𝑡 is given by a fixed 
probability 𝑃𝑖𝑗 written mathematically as: 

 𝑃𝑖𝑗 = 𝑃(𝑋𝑡 = 𝑗 |𝑋𝑡−1 = 𝑖, 𝑋𝑡−2 = 𝑖𝑡−2, … , 𝑋0 = 𝑖0) = 𝑃(𝑋𝑡 = 𝑗 | 𝑋𝑡−1 = 𝑖) (9) 

𝑃𝑖𝑗 is known as the transition probability from state 𝑖 to 𝑗, and is independent of the 

states of the process at other times. In a second order Markov process, the transition not 

only depends on 𝑡 − 1 but also on 𝑡 − 2. The second order transition matrix is constructed 
as follows: 

𝑃2 =

[
 
 
 
 
 
 
𝑃111 𝑃112 … 𝑃11𝑚

𝑃121 𝑃122 … 𝑃12𝑚

⋮ ⋮ ⋱ ⋮
𝑃211 𝑃212 … 𝑃21𝑚

𝑃221 𝑃222 … 𝑃22𝑚

⋮ ⋮ ⋱ ⋮
𝑃𝑚𝑚1 𝑃𝑚𝑚2 … 𝑃𝑚𝑚𝑚]

 
 
 
 
 
 

 

Another way to generate synthetic series is shown in [23]. First, a cluster depending 
on atmospheric conditions is determined by cloud conditions using a modified clear sky 
index. Then, the synthetic irradiation is split into two parts: a deterministic component and 
a stochastic component, as shown in equation (10). 

𝐼10𝑚
𝑖 = 𝐼10𝑚_𝑖3

𝑖 + 𝑠𝑖𝑔𝑛(𝑟) ⋅ 𝐴 (10) 

The deterministic component 𝐼10𝑚_𝑖3
𝑖  is determined by the mean value on a defined 

time frame. Then, for the stochastic component, random numbers are generated from an 
uniform distribution curve [0,1]. The inverse beta value corresponding to that probability 
and sky condition is calculated and multiplied by the maximum standard deviation to 
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generate 𝐴. Finally, 𝑟 is defined by random numbers from a normal distribution curve with 
zero mean and unit standard [23].  

Kernel density estimation method 

Since there is little research on probabilistic active power forecasting of large-scale 
PV-PPs, wind power forecasting methods have also been reviewed. In [39], a Kernel 
density estimation (KDE) is proposed.  

A probability density function (pdf) of a random variable 𝑌 can be estimated 
knowing that the explanatory variable 𝑋 is equal to 𝑥. This is shown in equation (11) where 
𝑥𝑡+𝑘 | 𝑡 are the explanatory variables for time 𝑡 + 𝑘 that exist in time 𝑡, 𝑝𝑡+𝑘 is the wind 

power forecasted at 𝑡 + 𝑘, 𝑓𝑃,𝑋 is the multivariable density function and 𝑓𝑋 is the pdf of 𝑋. 

𝑓𝑃(𝑝𝑡+𝑘 | 𝑋 = 𝑥𝑡+𝑘 | 𝑡) =
𝑓𝑃,𝑋(𝑝𝑡+𝑘, 𝑥𝑡+𝑘 | 𝑡)

𝑓𝑋(𝑥𝑡+𝑘 | 𝑡)
  (11) 

The pdf of 𝑋 has to be estimated, and it is done by a kernel density estimation given 
by 

𝑓𝑋(𝑥) =
1

𝑁 ⋅ ℎ
∑𝐾 (

𝑥 − 𝑋𝑖

ℎ
)

𝑁

𝑖=1

 (12) 

where 𝑁 is the number of samples, 𝐾 is a kernel function and ℎ is the bandwidth 
parameter. 

Kernels functions are compared in order to choose the most useful one. This is the 
most important step in the method, because it determines the accuracy. The explanatory 
variables used in this case are lineal combinations of wind speed, direction, hour of the 
day and other measured values.  
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2.3. Discussion and proposal 

Different solar forecasting methods were presented in this section. Although there 
is a lot of research in this area, there is still much to improve in the forecasting process of 
intra-hour solar irradiance.  

NWP methods allows to model regional irradiance forecast accurately, being their 
most accurate spatial resolution within the range of kms (1 to 100 kms). Their most 
accurate temporal resolution is between 1h to days and thus these kind of models are the 
most attractive ones for long-term forecasting. On the other hand, these forecast 
techniques are less accurate under cloudy conditions, even after post-processing, and 
therefore NWP methods are usually used as an input of other empirical methods to 
improve intra-hour forecasting.   

ANN methods offers a nonlinear approximated model for power output, 
independent of physical characteristics such as tilt angle. These models have successful 
modeled the PV output power within intra-hour time horizons, and so it works well for this 
work purposes. Other advantage of ANN is that they are easy to manipulate online once 
trained offline. The drawback of NN-based models is that they have to be re-trained as 
long as the natural conditions evolve (as it happens with global warming). 

Autoregressive linear methods have the advantage of generating forecast time 
series in a simple way. They are statistical models with relevant researches and works in 
different time frames. It only depends of the available information as in ANN. The 
disadvantage is that one important condition of autoregressive models is the stationary 
characteristic of the forecasted variable, and therefore there is a need to pre-process the 
used data in order to fulfil the model requirements.    

Synthetic series methods have the capacity of accurately describing irradiance 
behavior when given sufficient data. Hence, the correct construction of Markov series in 
a 10 minute range, for example, depends directly on the availability of data in a 10 minutes 
timeframe. The same happens with other way to generate this kind of series. If synthetic 
series are generated, a key issue is to determine a clear classification and clustering of 
data. The drawback of this probabilistic forecasting (and any other as NN-based methods 
or autoregressive) is the availability of datasets in such a small timeframe. On the other 
hand, the analysis requires a lot of computational processing.  

A summary-diagram of the spatial and temporal resolutions for each reviewed 
forecasting technique is shown in Figure 2.4. It is worth noting that every forecasting 
technique can be used for other temporal or spatial resolutions. However, the resolution 
shown in the figure are those for which the best results have been obtained. 
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Figure 2.4: Summary-diagram of the spatial and temporal resolutions for each 
reviewed forecasting technique.  

Kernel estimation is good for short-term forecasts. It has the advantage of not 
assuming a probability density function a priori, because it is determined depending on 
the given explanatory variables. The problem can get more complex because of the use 
of a big number of explanatory variables. 

The available meteorological data for this work includes information for every 10 
minutes. It contains temperature, relative humidity, global, direct and diffuse solar 
radiation and wind speed. On the other hand, previous work has shown that different type-
days (in terms of cloudiness) have dissimilar forecasting results and behavior, and usually 
cloudy days have higher forecasting errors. Consequently, this work proposes a two-
stage, NN-based forecast, being the first one a classification stage to determine the kind 
of day of the next day, and the second stage forecasts the radiation every ten minutes. 
The kind of day is determined with a clear-sky index, which is described in Appendix A.  
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Chapter 3.  
 

Models 

This work consists on the implementation of two local models at PV-PP level: 
forecasting and control. The forecasting model is based on 4 NN: 1 NN to forecast the 
kind of day and 3 NN to forecast intra-hour radiation. The control model is based on 3 
stages: the first one calculates the PV-PP deload level, the second one is a centralized 
PV-PP control which determines the available reserves of the power plant and then 
delivers a signal to the third part, which is a control scheme that modifies the power output 
per section accordingly.   

 Figure 3.1 shows the Northern Interconnected System (NIS) of Chile and a zoom 
into the local control of a generic PV-PP. The bottom of the figure shows a schematic of 
the proposed two stage model and each of the main functions per local model. 

 

Figure 3.1: Diagram of the work-related models. 
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3.1. Forecasting model 

Various research have shown that to forecast radiation during cloudy days is more 
challenging than other type of days. Due to the stochastic nature of passing clouds, 
forecast accuracy decreases strongly with forecast sampling time [32]. As the main focus 
of this work are partial shading conditions, counting with the best forecast results during 
cloudy days is crucial.  

Even though different types of climate – tropical, arid, mediterranean, continental 
or polar – have different trends, it can be stated that different kind of days – sunny, cloudy 
and overcast – exhibit similar behavior [40]. Many researchers have concluded that a 
classification stage prior to the radiation forecast provides better results than just using 
the same forecasting technique for every kind of day ([12],  [17], [21], [41]). Because of 
this, it is proposed to split the data into different types of day depending on their CSI, and 
train a different ANN per type of day. This improves the network’s response to each kind 
of day, because the overall behavior of each day is more similar and then the network 
training is more straight-forward. The drawback of using this method is that more data is 
needed in order to get good results with each network. Hence, the forecasting model of 
this work includes a classification stage, where the type of day of the next day is 
forecasted to then choose between three neural networks, one for each kind of day: 
sunny, cloudy and overcast. The implemented model uses global solar radiation (GSR) 
as input because the GSR data is easier to get than the PV-PP output power. 
Nevertheless, if PV-PP power output data is available, then it is recommended to use this 
information because of the noise generated by dust, wind, and other conditions that make 
the GSR/Power output conversion less accurate.  

The forecasting model is split into two stages. The first stage forecasts the type of 
day of the next day and selects the pertinent ANN. The second sub-stage uses an ANN 
(depending on the type of day) in order to forecast the solar radiation and power output 
every 10-min during a certain day. The ANN used to forecast the next day’s type of day is 
called CSI-ANN, because it selects the kind of day by its clear-sky index (CSI). The ANNs 
that are used to forecast radiation within the day, every 10 minutes, are called GSR-ANN 
(where GSR stands for Global Solar Radiation). They are different depending on the type 
of day: 1) Sunny, 2) Cloudy and 3) Overcast.  

A general forecasting model scheme is shown illustratively in Figure 3.2 where, 
based on the output of the CSI-ANN, one of the three GSR-ANN is activated. It shows 

that the kind of day of the next day (day 𝑑 + 1) is determined by the CSI-ANN, which has 
3 inputs: CSI of day 𝑑, mean GSR of day 𝑑 and mean temperature of day 𝑑. 
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Figure 3.2: Schematic diagram of forecasting model. 

The clear-sky index (CSI) is a good way to classify the day since it represents a 
comparison between the actual solar radiation and the one under clear-sky conditions (i.e. 
without clouds). This means that the classification depends mostly on the amount of 
clouds in the region.  

The used CSI is calculated as shown in equations (13) and (14). Here, the current 

global radiation (𝐼 stands for irradiance) is compared with the extraterrestrial radiation. For 
more information about the calculation of CSI refer to Appendix A. 

𝐾𝑡 =
𝐼𝑔𝑙𝑜𝑏𝑎𝑙

𝐼𝑒𝑥𝑡
 (13) 

𝐼𝑒𝑥𝑡 = 𝐼0 ⋅ [1 + 0.033 ⋅ cos (
2𝜋

365
⋅ 𝐷𝑂𝑌)] ⋅ cos (𝜃𝑡) 

(14) 

Considering the classification done by Larrañeta in [23], where the type of days are 
given by CSI intervals, the days can be organized into 8 different types. Each type of day 
is determined by the thickness of the clouds and their fluctuations during the day and can 
be identified as one of 5 sky conditions (totally covered, mostly covered, partly covered, 
mostly clear and totally clear).Owing to the usual lack of data to train the NN, a 
classification of 8 type of days seems overwhelming. Furthermore, it is possible to reduce 
the 5 sky conditions proposed in [23] into three different groups: Sunny, Cloudy and 
Overcast. The proposed classification and description is shown in Table 3.1.  

The CSI-ANN is trained with all the available data and the GSR-ANN are trained 
with a dataset that corresponds to the respective kind of day. 

  
𝑃 𝑜𝑢𝑡𝑡+𝑘

 

CSI-ANN 

𝐶𝑆𝐼𝑑+1 

Forecasting Model 

GSR-ANN 
Sunny 

GSR-ANN 
Cloudy 

GSR-ANN 
Overcast 

𝐶𝑆𝐼𝑑 

𝐺𝑆𝑅      
𝑑 

𝑇 𝑑 
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Table 3.1: Classification and description by clear-sky index. 

TYPE OF DAY DESCRIPTION CSI 

SUNNY MOSTLY OR TOTALLY CLEAR DAY. NO CLOUDS WITH OR WITHOUT 
TURBIDITY. 

(0.6,1] 

CLOUDY MOSTLY COVERED DAY WITH GREAT FLUCTUATIONS OR THIN CLOUDS 

WITH FLUCTUATIONS. 
(0.3,0.6] 

OVERCAST TOTALLY COVERED DAYS AND MOSTLY COVERED DAYS WITH SOME 

FLUCTUATIONS. 
[0,0.3] 

CSI-ANN 

Once the data is classified by type of day, a correlation analysis is done in order to 
determine the ANN inputs to get the CSI for the next day. The objective of the CSI-ANN 

is to forecast the CSI of the next day (𝐶𝑆𝐼𝑑+1). The purpose of the correlation analysis is 
to study the strength of that relationship with available statistical data (Table 3.2). 

Table 3.2: Available data for the CSI-ANN construction. 

AVAILABLE DATA NOMENCLATURE 

CSI OF DAY 𝒅 𝐶𝑆𝐼𝑑 
MEAN TEMPERATURE OF DAY 𝒅 𝑇 𝑑 
MEAN GLOBAL SOLAR RADIATION OF 

DAY 𝒅 
𝐺𝑆𝑅      

𝑑 

DAY OF THE YEAR OF DAY 𝒅 𝐷𝑜𝑌𝑑 
MEAN RELATIVE HUMIDITY OF DAY 𝒅 𝑅𝐻    

𝑑 

For the correlation analysis, the Spearman rank correlation is used because this 
kind of correlation does not make assumptions about the distribution of the data, as 
opposed to the Pearson correlation, and it captures de monotonic relationship between 
the random variable [42], which is relevant while working with sudden changes in solar 

radiation. Figure 3.3 shows the results of the Spearman correlation between 𝐶𝑆𝐼𝑑+1 versus 

𝑇 𝑑, 𝐺𝑆𝑅      
𝑑, 𝐷𝑜𝑌𝑑+1 and 𝑅𝐻    

𝑑. It is shown that the 𝑇 𝑑 and 𝐺𝑆𝑅      
𝑑 are the most correlated 

variables with 𝐶𝑆𝐼𝑑+1, and then are good choices for inputs in the CSI-ANN.  
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Finally, with the aim of getting a more accurate forecast model, it is proposed to 
add autoregressive factors in the CSI-ANN input. To get the functional lags, the partial 
autocorrelation of the clear sky index is calculated. The partial autocorrelation, is the 
correlation between two variables after being adjusted for a common factor that may be 
affecting them, such as stationarity. The autocorrelation function is not calculated because 
it measures stationarity [43] and, as it was explained before, solar radiation is a stationary 
process and then the autocorrelation function would reflect the usual rising and setting of 
the sun as a correlation.  

The partial autocorrelation function is shown in Figure 3.4. Even though the first 8 
lags are relevant statistically speaking, the first lag is used because it is significantly more 
relevant than the other ones, reaching a 0.97 correlation compared to a 0.2 of the third.   

 

Figure 3.3: Spearman rank correlation between CSI and other variables.  

Figure 3.4: Clear-sky index sample partial autocorrelation function.  
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Once the correlation analysis is done, an ANN is trained using Lavenberg-
Marquardt backpropagation with the Neural Network Toolbox of MATLAB. Lavenberg-
Marquardt is used because of its training velocity. Cross-validation is not necessary at this 
stage because, first, three subsets are used (training, validation and test) and, second, it 
serves as a classification neural network and so the CSI does not have to be too accurate, 
but to be near the most probable day. When dividing the data into three subsets, each 
one serves one purpose. The training set is used to fit the models, the validation set is 
used to estimate the prediction error for model selection and the test set is used for 
assessment of the generalization error of the chosen model [44]. The sets are selected in 
order to have a proportional type of day representation. Therefore, the data is selected 
without breaking days apart and having the same (or similar) proportion of types of days.  

Figure 3.5 shows the performance of the designed ANN data, i.e., training, 
validation and test, and the overall performance. The best overall performance is given by 
the ANN of 8 hidden nodes and so is the one chosen.  

 

In Figure 3.6, a schematic of the CSI-ANN is shown. This includes the 3 inputs 

(𝐶𝑆𝐼𝑑, 𝑇 𝑑 and 𝐺𝑆𝑅      
𝑑), the 8 nodes in the hidden layer chosen previously, and the output 

(𝐶𝑆𝐼𝑑+1).  

When the whole data is tested in terms of the quantity of days that are not well 
forecasted (for example, a cloudy day is forecasted as a sunny day) the error is equal to 
an 8.76%. This means that a wrong GSR-ANN is going to be used during almost 32 days 
a year. This is why it is important that all three GSR-ANNs have a good generalization 
capability. As a consequence, the error can be compensated by the GSR-ANN.    

Figure 3.5: CSI ANN performance in the training, validation and test sets. 
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Figure 3.6: CSI-ANN diagram. 

GSR-ANN 

In the second forecasting stage, three different neural networks have to be 
designed. To do this, the overall data is divided into three datasets: 1) Sunny, 2) Cloudy 
and 3) Overcast, which are then used to train each different neural network. To do this, 
the CSI of every day of the available data is calculated as shown in Appendix A, and the 
information of each kind of day is arranged into three datasets.  

The objective of the GSR-ANN is to forecast the global solar radiation of the next 

10 minutes (𝐺𝑆𝑅𝑡+10). In this case, the available data for the correlation analysis is the 
one shown in Table 3.3. 

Table 3.3: Available data for the GSR-ANN construction. 

AVAILABLE DATA NOMENCLATURE 

GSR MEASURED IN TIME 𝒕 𝐺𝑆𝑅𝑡 

TEMPERATURE MEASURED IN TIME 𝒕 𝑇𝑡 

GLOBAL SOLAR RADIATION MEASURED IN TIME 𝒕 𝐺𝑆𝑅𝑡 

DAY OF THE YEAR OF ACTUAL DAY (𝒅) 𝐷𝑜𝑌𝑑 

RELATIVE HUMIDITY MEASURED IN TIME 𝒕 𝑅𝐻𝑡 

A new correlation analysis has to be done to determine the inputs in these new 

neural networks. To do this, the available data shown above is compared with the 𝐺𝑆𝑅𝑡+10. 
Figure 3.7 shows the Spearman Rank Correlation between GSR and other variables in 
sunny days and the partial autocorrelation function of GSR. It can be seen that the GSR 

CSI-ANN 

𝐶𝑆𝐼𝑑 

𝐺𝑆𝑅      
𝑑 

𝑇 𝑑 

𝐶𝑆𝐼𝑑+1 
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at time 𝑡 + 10 is slightly correlated with the temperature and inversely correlated with the 
relative humidity (RH) at time 𝑡. It does not correlate with the day of the year and so this 
variable is not to be considered as an input. 

 

 Figure 3.8 shows the Spearman rank correlation between GSR and other variables 
under cloudy and overcast conditions on the left, and the partial autocorrelations functions 
on the right. It is shown that overcast days have a similar performance to sunny days but 
with a lower GSR/T correlation and higher GSR/RH correlation. The GSR/RH correlation 
is lower than GSR/T only in the case of cloudy days. This shows that cloudy days have 
different behavior than overcast or sunny days. 

The performed analysis shows that in every kind of day there is a very significant 

partial autocorrelation between GSR in time 𝑡 and GSR in time 𝑡 + 10 𝑚𝑖𝑛. Thus, every 
ANN should consider at least one lag. As the second lag is not significant comparing it to 
the first one, only one lag is considered.  

Figure 3.7: Spearman Rank Correlation between GSR and other variables (left) and 

sample partial autocorrelation (right) for sunny days.  
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The correlation analysis shows that the best way to design a neural network for 
GSR is considering three inputs: 

1) Forecasted mean temperature of the next lag (10-min ahead) 
2) Forecasted mean relative humidity of the next lag (10-min ahead) 
3) Actual GSR 

For each of the three neural networks, the Bayesian Regularization algorithm is 
used for training, because the forecasting of GSR is more complex than the forecast of 
CSI, and then the computational complexity of Levenberg-Marquardt is too heavy to train 
this network [45]. 

The next step for the GSR ANN construction is to determine the number of nodes 
in the hidden layer. The number of nodes can be determined by heuristic, genetic or other 

Figure 3.8: Spearman rank correlation between GSR and other variables (left) and 
sample partial autocorrelation (right). Cloudy days on top and overcast days in the 
bottom. 
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optimization algorithm processes. Because of the complexity of the problem and the data 
quantity, a heuristic approach is implemented. The process starts with one neuron/node 
in the hidden layer and then increases iteratively until reaching 16 nodes in the hidden 
layer. A maximum of 16 is chosen because neural networks in these applications usually 
use less than that [17], [24], [30].  

A 10-fold cross-validation is done for every number of nodes, in order to avoid 
overfitting in the neural network and have a better generalization capability in the final 
model. An example of a cross-validation process considering three sets (training, 
validation and test) and 5 is shown in Figure 3.9. In that figure, each circle represents 
radiation, relative humidity and temperature time-series data, and the data is split in three 
sets – training, validation and test – in 5 different ways. In the case of this work, the data 
is split in 10 different ways (folds).  

 
Figure 3.9: 5-fold cross-validation process with two sets: training and test. 

Once the data is splitted, each fold is used to train one neural network. Again, an 
iterative process is used to train the ANN and determine the quantity of nodes in the 
hidden layer. In order to determine the model that best fits in each kind of day, the mean 
and standard deviation of the training and test data performances (given by the NMSE) 
are analized to find the best alternative. This is shown in Figure 3.10 for every kind of day. 
In each type of day, the number of nodes is determined by the lowest mean NMSE and 
standard deviation.  

In overcast days (above of Figure 3.10), the best alternative is given by 11 nodes 
considering mean and standard deviation of the NMSE. The best alternative for cloudy 
days is given by 15 nodes and for Sunny days is 9 nodes, because these cases have the 
lower mean and standard deviation of NMSE.  

1
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 fold 

2
nd

 fold 

4
th
 fold 

5
th
 fold 

Training Set 
Validation Set 
Test Set 



 

25 

 

The next step is to determine exactly what ANN to use, because in each fold of the 
cross-validation process a different neural network was designed. For this, the validation 
data performance is calculated in order to know the overall performance of the neural 
networks.  

Figure 3.11 shows 3 graphs, one for each kind of day. Each graph shows the best 
NN per kind of day, depending on the number of nodes in the hidden layer. As it was 

Figure 3.10: Training and test performances of GSR ANN for Overcast (top), Cloudy 
(middle) and Sunny (bottom) days. The mean performance given the 10-fold cross-
validation per node (left) and the standard deviation (std) of the performance per node 

(right). 
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explained before, each fold serves to train a different NN, and then it has to be determined 
the best NN not only for its number of hidden nodes but the correspondent fold. In Figure 
3.11, the NMSE of validation, train and test data is shown considering every given fold. 

 

The best GSR ANN for each kind of day are the ones shown in Table 3.4. Different 
performances given by the NMSE are shown too. 

  

Figure 3.11: NMSE for validation, train and test performances for each fold. From 
top to bottom and left to right are shown the best fit GSR ANNs for overcast, cloudy 

and sunny days.  
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Table 3.4: Best neural networks for each kind of day. 

TYPE OF 

DAY 
NUMBER 

OF NODES 
NUMBER 

OF FOLDS 
NMSE OF 

VALIDATION 

DATA 

NMSE OF 

TRAINING 

DATA 

NMSE OF 

TESTING DATA 

OVERCAST 11 10 0.0038 0.0037 0.0030 
CLOUDY 15 3 0.0029 0.0033 0.0036 
SUNNY 9 9 0.0027 0.0034 0.0020 

Finally, the GSR-ANNs are shown in Figure 3.12.  

 

Figure 3.12: GSR-ANNs diagrams.  
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3.2. Control Model 

The control model involves the calculation of a deload level depending on the 

forecasted GSR in 𝑡 + 10 𝑚𝑖𝑛 given by the first stage (𝐺𝑆𝑅𝑡+10
̃ ) and the measured GSR 

in 𝑡 (𝐺𝑆𝑅𝑡). The deload level is the percentage in which the 𝑃𝑚𝑝𝑝 is decreased. This is 

calculated by a function that is determined by the best and worst radiation ramps the 
system could suffer. After this calculation, the MICAPAS control model proposed in [3] is 
implemented.  

Figure 3.1 shows a schematic of the control model. It first calculates the deload 

level 𝜒 for the PV-PPs based on the forecasted power in 𝑡 + 10 (𝑃𝑜𝑢𝑡
𝑡+10̃) and its current 

value 𝑃𝑜𝑢𝑡𝑡. The deload level 𝜒 enters a centralized controller of the PV-PP and computes 

the available reserves of the power plant and the power deficit between sections.  

The strategy considers a division of PV-PP into 𝑁 sections, each one given by a 
different micro-inverter. Each section has a certain reserve level which depends on the 

incident radiation and deload level 𝜒. With the information given by the 𝑁 PV-PP sections, 
the MICAPAS calculates a control signal which is used to deploy reserves when a partial 
shading of the PV-PP is calculated. Each section of the PVPP includes a d-q power 
controller to change the MPP reference. Hence, their power output is altered as needed 
by the MICAPAS.  

 

Figure 3.13: Diagram of control model. 
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MICAPAS 

The frequency control strategy to allow partially shaded PV-PPs to mitigate the 
detrimental effects on system is based in a coordinated deloaded operation of the PV 
arrays that conform the PV-PPs. The strategy divides the PV-PP into N sections, each 
section with a specific reserve level given by the deload level that was calculated before.  

MICAPAS requires a PV-PP architecture in which the MPP of each section can be 
tracked and independently controlled. Thus, a parallel-connected microconverter, series-
connected microconverter, or a microinverter architecture are possible choices [46]. In 
this study, a microinverter architecture is employed; where each PV section can be 
composed by several panels. An example of a PV-PP with a microinverter architecture is 
shown in Figure 3.14. 

 

Figure 3.14: PV-PP with a microinverter architecture. 

MICAPAS is continually monitoring each PV section of the PV-PP, in particular 
receiving the MPP of each section 𝑖 (𝑃𝑚𝑝𝑝𝑖

), which depends on the 𝐺𝑆𝑅 and temperature 

𝑇 at 𝑡. Based on these values, MICAPAS is constantly calculating a deload value (given 
by the function described in equations (19) and (20)). When one or more sections are 
under shaded conditions and there are reserves to deploy (i.e. the deload level is different 
from zero), the controller orders the unshaded sections to deploy their active power 
reserves. A general block diagram is shown in Figure 3.15.  

Grid 
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PV 
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Figure 3.15: MICAPAS schematic.  

The block “Power deficit calculation” in Figure 3.15 computes the total power deficit 
due to a partial-shading condition in the PV-PP based on: 

Δ𝑃 = [∑max{𝑃𝑚𝑝𝑝𝑖

𝑡 }
𝑖=1,…,𝑁

− 𝑃𝑚𝑝𝑝𝑖

𝑡

𝑁

𝑖=1

] ⋅ (1 − 𝜒) (15) 

Where 𝜒 is the deload level defined in the previous section. As can be seen from 

(15), Δ𝑃 is different from zero only when at least one PV section is not under shading 

conditions.  

The block “Reserve level calculation” estimates the total amount of operating 
reserves available in the PV-PP according to: 

Rt(𝜒) = ∑𝑃𝑚𝑝𝑝𝑖
⋅ 𝜒

𝑁

𝑖=1

 
(16) 

Finally, MICAPAS calculates a control variable in order to deploy the power 
reserves in case of shading conditions. This signal enters to the control of each PV section 
making the active power controller to act. The control signal is defined as: 

𝐾𝑟 = (1 −
Δ𝑃

𝑅𝑡(𝜒)
) 

(17) 

The signal 𝐾𝑟 takes values between 0 (when the power deficit Δ𝑃 is equal to the 
total reserves) and 1 (when Δ𝑃 is zero). If Δ𝑃 > 𝑅𝑡(𝜒), the value of 𝐾𝑟 is limited to its lower 
value, 0.  
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As a summary, when 𝐾𝑟 = 1, no control action is carried out and the operation of 
the PV section is sustained and when 0 < 𝐾𝑟 < 1, the control signal deploys the active 
power reserves of the PV-PP. 

Deload level 

The MICAPAS uses a deload level 𝜒, which is calculated using both the forecasted 

(𝑃𝑜𝑢𝑡𝑡+10
̃ ) and measured (𝑃𝑜𝑢𝑡𝑡) power. In particular, this work uses the forecasted and 

measured radiations (𝐺𝑆𝑅𝑡+10
̃  and 𝐺𝑆𝑅𝑡, respectively) to calculate a forecasted ramp ℛ 

that represents the magnitude of the fall or rise of radiation in 10 minutes. The ramp ℛ is 
calculated as follows: 

Based on the forecasted PV power ramp, the idea is to find a “sound” deload level 
for the PV-PP. Thus, the main idea is to select a function 𝜒(ℛ), where 𝜒 is the deload level 

and ℛ is the radiation ramp. To do this, two functions are compared: a ramp-type function 
and a step-type function.  

To define the 𝜒(ℛ) functions, it is important to have a notion of what a “bad” and a 
“good” ramp is. This is determined by historical measured data, were the maximum, 
minimum and mean radiation ramps are analyzed. The maximum and minimum deload 
levels also have to be determined to define the 𝜒(ℛ) functions. The minimum deload level 
is given by the forecasting error and the maximum deload level is given by the one that is 
needed to maintain the system’s frequency between its operational limits in [3].    

The first step to determine 𝜒(ℛ) is to define the minimum radiation ramp level upon 
which the control scheme should work at minimum deload level. Since the rising and 
setting of the sun produces periodic radiation ramps during a day, the minimum ramp level 
should not be zero. Furthermore, the minimum ramp is calculated as the maximum ramp 
during a day without clouds in a year. For this purposes, a clear sky model of a summer 
day in northern Chile is calculated. Hence, the radiation of a day without clouds is 
determined. This is because the radiation ramps during a summer day are the highest of 
the year, and then, the steepest ramps during a clear-sky day through a summer day are 
the worst possible radiation ramps for a non-cloudy situation. The clear sky model is 
defined according to [47].  

Figure 3.16 (a) shows the calculated clear-sky day and Figure 3.16 (b) shows a 
histogram of the radiation ramps during that day. It can be seen that the maximum 

ℛ =
|𝐺𝑆�̃�𝑡+10 − 𝐺𝑆𝑅𝑡|

𝐺𝑆𝑅𝑡
 

(18) 
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radiation ramps during a summer day are 0.05 (5%), therefore this ramp level is set to be 
the lowest in the deload function 𝜒(ℛ).   

 

Figure 3.16: (a) Clear-sky day conditions during a summer day in northern Chile 
and (b) 10-minute ramps during a clear-sky day. 

The second step to determine the ramp function is to define the maximum radiation 
ramp level in which the control should work at maximum deload level. To define this, the 
radiation ramps are calculated in each PV-PP. A histogram of radiation ramps every 10 
minutes during a year (in each PV-PP) are shown in Figure 3.17. Each color in the 
histogram bars show a different PV-PP.  

 

Figure 3.17: Radiation ramps during a year. 

(a) (b) 

Global Radiation in San Pedro de Atacama 

Clear-sky conditions 
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Figure 3.17 shows that the steepest ramp during a year, considering every PV-PP, 
is equal to 28%. This level is used as the maximum ramp possible for the deload function 
𝜒(ℛ). 

Finally, the minimum deload level is set as the root mean squared error (RMSE) of 
the forecast and the measured radiations, divided by the minimum radiation level between 
11:00 and 17:00 of the corresponding day of the forecasting, which in this case 
corresponds to an approximate 2% of error. The reason to choose this error is that 
between those hours the PV-PP penetration is maximum, and so a forecasting error would 
be more relevant than at other times in the day.  

The maximum deload level is set as 15%, because it proves to give good results 
in [3], leaving the system frequency in the normal range of operation. On the other hand, 
the step-type 𝜒(ℛ) function will start and end in the same deload level than the ramp-type 
of function, but the deload level will change every 5% of ramp. The equations for both 
functions are shown below. 

Both deload functions are shown in Figure 3.18. The saturation of both functions is 
proposed to avoid unnecessary energy losses in the system.  

𝜒(ℛ)[%] = {

2 ℛ[%] ≤ 5%

0,6 ⋅ ℛ[%] − 1 5% < ℛ[%] < 28%

15 ℛ[%] ≥ 28%

 
(19) 

𝜒(ℛ)[%] = {

2 ℛ[%] ≤ 5%
5 5% < ℛ[%] < 10%

10 10% < ℛ[%] < 15%
15 ℛ[%] ≥ 15%

 
(20) 
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Figure 3.18: Deload level versus radiation ramp in 10 minutes. 

Control of PV section 

The PV section control, or local control scheme of each PV section, receives the 

signal 𝐾𝑟 and 𝜒 from MICAPAS to change the power output if it is requested by the central 
controller (see Figure 3.19). It also delivers the 𝑃𝑚𝑝𝑝𝑖

𝑁  from the MPPT of section 𝑁 to 

MICAPAS. For this control scheme to work, a cascaded DC/DC converter connection of 
photovoltaic modules has to be considered, as it is shown in [48].  



 

35 

 

Figure 3.19: PV section configuration. 

A cascaded DC/DC converter configuration is represented in Figure 3.19, where a 
boost converter is connected to a DC bus, providing galvanic isolation and performing 
MPPT control before connecting the PV section to the grid via a PV inverter. This kind of 
configuration is widely used in grid-connected photovoltaic systems [49], [50], [51] and 
decouples the PV system operating point from the PV inverter grid control. The MPP of 

the PV section (𝑃𝑚𝑝𝑝
𝑖 ) is calculated in the boost converter and additionally sent to the 

MICAPAS.  

In this study, the deloaded operation of the PV section is accomplished by 
controlling the PV inverter of each PV-PP section and operating it at a lower DC voltage 
than the one calculated by the MPPT controller. Although an increased DC voltage would 
also result in an output power reduction of the PV-PP, a reduced DC voltage is selected 
due to the higher efficiency of the converter [52]. A general scheme of the section 
controller implemented in the PV inverter is shown in Figure 3.20.  
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Figure 3.20: PV Section Control scheme, for a certain section 𝒊 of the PV-PP.  

The “PV-PP Section 𝑖 Array” of Figure 3.20 calculates the output power from a 
radiation measurement given the following expressions [53]: 

𝑃𝑝𝑎𝑛𝑒𝑙 =
𝐸𝑔,𝑝𝑣 ⋅ 𝑃𝑝𝑘,𝑝𝑎𝑛𝑒𝑙 ⋅ 𝜂𝑟𝑒𝑙 ⋅ 𝜂𝑖𝑛𝑣

𝐸𝑆𝑇𝐷
 (21) 

𝑃𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑃𝑝𝑎𝑛𝑒𝑙 ⋅ 𝑛𝑢𝑚𝑝𝑎𝑛𝑒𝑙𝑠 (22) 

Where 𝑃𝑝𝑎𝑛𝑒𝑙 is the active power output of the panel in 𝑘𝑊, 𝑃𝑠𝑦𝑠𝑡𝑒𝑚 is the system’s 

active power in 𝑘𝑊, 𝑛𝑢𝑚𝑝𝑎𝑛𝑒𝑙𝑠 is the number of panels per inverter, 𝐸𝑔,𝑝𝑣 is the GSR, 𝐸𝑆𝑇𝐷 

is the standard irradiance value of 1000 𝑊/𝑚2, 𝑃𝑝𝑘,𝑝𝑎𝑛𝑒𝑙 is the total rated peak power of 

the solar panel in 𝑘𝑊, 𝜂𝑟𝑒𝑙 is the relative efficiency of the panel and 𝜂𝑖𝑛𝑣 is the efficiency 
factor of the inverter.  

The MPPT of each section is implemented in the boost converter and therefore the 

signals of voltage and power at the MPP (𝑉𝑚𝑝𝑝
𝑖  and 𝑃𝑚𝑝𝑝

𝑖 , respectively) are calculated 

disjointedly from the PV control scheme. The 𝑃𝑚𝑝𝑝
𝑖  signal is sent to the central controller 
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(MICAPAS) and the local DC voltage controller in the PV-PP section. The 𝑃𝑚𝑝𝑝
𝑖 signal is 

used to calculate the supplementary signal Δ𝑉𝑑𝑐𝑖
 of the DC voltage controller.  

In this work, the deloaded operation is accomplished by operating the array at a 

lower level than the optimal point 𝑉𝑚𝑝𝑝
𝑖  given by the MPPT. This is done by calculating a 

new signal Δ𝑉𝑑𝑐𝑖
 in the DC voltage controller. The DC voltage controller compares the 

measured power output 𝑃𝑚𝑒𝑎𝑠
𝑖  with the reference power output 𝑃𝑖

𝑟𝑒𝑓
. The error signal is 

sent to a PI controller subsequently. 

The block “DC Voltage Controller” of Figure 3.20 is a PI controller that adjusts the 
active power considering the deload level. A control diagram of this block is shown in 
Figure 3.21. 

 

Figure 3.21: DC voltage controller block diagram. 

The reference power 𝑃𝑖
𝑟𝑒𝑓

 is calculated as: 

𝑃𝑖
𝑟𝑒𝑓

= 𝑃𝑚𝑝𝑝𝑖
⋅ 𝐾𝑟 ⋅ 𝜒 (23) 

The control compares 𝑃𝑖
𝑟𝑒𝑓

 to the measured output power 𝑃𝑚𝑒𝑎𝑠
𝑖 . This enters the PI 

control that delivers a value of Δ𝑉𝑑𝑐𝑖
 in order to operate in a deloaded level.  If the deload 

level is zero, then 𝑃𝑖
𝑟𝑒𝑓

= 𝑃𝑚𝑒𝑎𝑠
𝑖  and Δ𝑉𝑑𝑐𝑖

 is zero. 

The 𝑉𝑚𝑝𝑝𝑖
 signal enters to the 𝑑 − 𝑞 controller as the optimal DC voltage to operate 

the section. The difference between the measured value, 𝑉𝑑𝑐
𝑚𝑒𝑎𝑠 and the optimal value 

𝑉𝑚𝑝𝑝𝑖
 is compared to the additional signal Δ𝑉𝑑𝑐𝑖

 and the error is sent to a PI controller 

thereafter to generate the 𝑑-axis current reference value (Figure 3.22). However, a delay 
block is added in order to compare the 𝑉𝑑𝑐

𝑚𝑒𝑎𝑠 and 𝑉𝑚𝑝𝑝𝑖
 signals in which the delay time 
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corresponds to the action time of the MPPT. Finally, the 𝑑-axis current then regulates the 
active power of the converter.  

 

Figure 3.22: Block diagram of the d current controller. 
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Chapter 4.  
 

Methodology 

This chapter describes the methodology of this work. The methodology is shown in general 

in Figure 4.1. 

.  

 

 
 
Figure 4.1: Methodology of this work.  

Dynamic modeling 

This part consists in the implementation of the models of the power system and the 
PV-PPs in the simulation tool DigSILENT PowerFactory 15.1. The simplified model of the 
Northern Interconnected System of Chile (NIS) has 120-buses, 68 generation units and 
101 loads for the year 2020. Most of the generation units are gas-based or carbon-based 
thermal units. The vast majority of the loads correspond to industrial loads, particularly 
induction motors associated with the mining industry.    

Dynamic Modeling 

Worst-Case  
Scenario Selection 

Hourly Dispatch Dynamic Simulations 

Base 

Constant 

Ramp 

Step
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Worst-case scenario selection 

As the main objective of this control strategy is to act when partial shading is 
occurring in a PV-PP, the worst-case scenario consider a cloudy day with the steepest 
ramps.  

Because the computational burden of simulating a whole day is very high, the 
interval between 11:00 to 17:00 hours is selected for the dynamic simulations. 

To define worst ramps the day with the smallest standard deviation with respect to 
clear sky model of the same day was first selected. This day (called reference day) is 
January 5th. Afterwards, the difference between the other days and this day was calculated 
as follows: 

Δ𝑅𝑎𝑑𝑖
𝑘 = |𝑅𝑎𝑑𝑖

𝑘 − 𝑅𝑎𝑑𝑟𝑒𝑓| (24) 

Where Δ𝑅𝑎𝑑𝑖,𝑗
𝑘  is the difference of radiation between day 𝑖 of (PV-PP 𝑘) and the 

reference day (𝑅𝑎𝑑𝑟𝑒𝑓). Then, the sum of ramps in a day is calculated using the following 
equation: 

Rindex = ∑|
Δ𝑅𝑎𝑑𝑖

𝑘(𝑛) − Δ𝑅𝑎𝑑𝑖
𝑘(𝑛 − 1)

10
|

𝑀

𝑘=1

 (25) 

Where Rindex is the index that reflects the ramping level in a day. 𝑀 is the number 
of radiation samples in a day and is divided by ten because the ramps are caused in 10 

minutes. Finally, Rindex is normalized as follows: 

Rindex
̂ =

Rindex

max(Rindex)
 

(26) 

Then, the worst day (more variable) is the day with an index equal to 1. The worst 

days are selected by choosing the maximum Rindex
̂  per kind of day (sunny, cloudy and 

overcast). These are shown in Figure 4.2.  
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Figure 4.2: Worst days per classification of kind of day. 
 

Finally, the case study is February 7th, because is the one that shows worst results 

(Rindex
̂  near 1) in almost every PV-PP and it is also the day with the maximum PV 

penetration in the power system. This means this day is a worst case not only from a ramp 
perspective, but also from a frequency stability point of view.  

Hourly dispatch 

The hourly dispatch is defined by an approximation of the electricity demand on 
February 7th 2020. This dispatch is determined by using historical demand data and a 
merit list based on the marginal costs of the conventional generators in the year 2020. 

Since the PV-PPs have a relevant penetration in the power system only when the 
radiation is significant, the day was not fully simulated. Hence, the worst hours in a 
radiation perspective were selected. The selected hours in that day were from 10:30 and 
18:30, because those are the hours of maximum penetration of PV-PPs. On the other 
hand, an 88.2% of the projected demand of the NIS for 2020 corresponds to the industrial 
sector [54], which in the case of the NIS is mainly mining industry. This means that the 
demand on the NIS is almost constant, and so the considered demand is equal to 2832.36 
[MW].  
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Dynamic simulations 

In this work, 4 different dynamic simulations are performed: 

 Base case: This simulation corresponds to the system without deload. 
Thus, in this case there is no mitigation control against partial shading.   

 Simulation S15c: This dynamic simulation considers a constant deload 
level of 15%, because it is shown in [3] to be the best case scenario and 
maintaining the frequency between a normal operation range. 

 Simulation S15Ramp: This simulation uses a ramp-type deload function 
𝜒(ℛ).  

 Simulation S15Step: This simulation uses a step-type deload function 𝜒(ℛ).  
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Chapter 5.  
 
Case study 

The power system under study is the Northern Interconnected System (NIS) of 
Chile. This system is used both for analyzing the forecasting performance of the neural 
networks and the dynamic performance of the whole control strategy. The NIS is located 
in the middle of the Atacama Desert, a place with one of the greatest solar potentials in 
the world [55].Considering the high solar potential in northern Chile, and the estimations 
of 2.5 GW of installed capacity in PV technology by 2017 in Chile [11], it is expected to 
have a significant amount of PV-PPs concentrated in the NIS.  

The NIS is a 50-Hz-isolated electricity system and is characterized by a thermal 
generation mix based on coal, oil and natural gas. The most relevant characteristic of the 
conventional units in the NIS from a frequency perspective are slow reaction times, low 
inertia levels and limited ramp rates. 

The projected installed capacity for 2020 is 5800 MW and its projected peak load 
3300 MW. The system load is characterized, by 88.2% of industrial load, corresponding 
to the mining industry, while the remaining 11.8% corresponds to residential customers. 
The PV capacity estimation of the NIS is based on the available information of future 
projects corresponding to private initiatives in Chile [56]. The PV-PPs are distributed at 
four distinctive locations throughout the Atacama Desert. 

A simplified diagram of the NIS is shown in Figure 5.1.The black dots are electrical 
substations, the black triangles are thermal power plants, the light blue circles represent 
the meteorological stations in the NIS and the yellow circles represent PV-PPs sectors. In 
sector 1, five power plants are represented, sector 2 includes one power plant, sector 3 
three power plants and sector 4 six. The maximum power per zone in each simulation 
scenario is shown in Table 5.1. Sector 2 is not included in the dynamic simulations 
because the presence of that power plant (and others) increases the PV penetration from 
more than 37% to almost a 50%, which made the system very unstable.  
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Figure 5.1: Simplified diagram of the NIS of Chile. 

Table 5.1: Maximum power of PV-PPs during the different operation scenarios. 

PHOTOVOLTAIC POWER 

PLANT ZONES 
MAXIMUM 

POWER 
BASE CASE 

MAXIMUM 

POWER 
CONSTANT 

15% 

MAXIMUM 

POWER 
RAMP 

MAXIMUM 

POWER 
STEPS 

ZONE 1 347.12 297.13 342.41 345.39 
ZONE 2 N/C N/C N/C N/C 
ZONE 3 386.94 331.23 381.70 385.02 
ZONE 4 165.84 141.94 163.6 165.04 
TOTAL 899.91 770.33 887.71 895.41 

Thermal power plant 

1 

2 

4 

3 

CAMA 

PALM 

CRUC 1, 2 SLAR 

PANG 

SPED 

PV-PPs 

Meteorological stations 
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In an ideal situation, solar data or output power of PV-PPs would be available and 
then the forecasting models would be determine by using that data. However, there was 
no data for the radiation or the output power per PV-PP, and therefore the CSI-ANN and 
GSR-ANNs for each PV-PP were trained using the data of the nearest meteorological 
station. The solar radiation data per PV-PP is calculated as it is shown in Appendix B 
using available information from meteorological stations nearby. Since the generated data 
per PV-PP is constituted by only one year, this data is not enough to train the ANNs. 
Therefore, different ANNs are trained depending on their sector. For sector 1, PALM 
meteorological station is used, for sector 2 a ponderation between PALM and CRUC 1, 
for sector 3 CRUC 1 and for sector 4 SLAR.  The corresponding meteorological station 
for each PV-PP sector is shown in Table 5.2. 

 
Table 5.2: Used ANNs for each PV-PP sector. 

 PV-PP SECTOR ANN METEOROLOGICAL STATION 

1 PALM 
2 PALM AND CRUC 1 
3 CRUC 1 
4 SLAR 

Nevertheless, each section of the PV-PPs has to have a different radiation level 
depending on whether there are clouds or not. To mimic this effect, three out of four 
sections of the PV-PPs is considered to have the aforementioned radiation data and the 
other one is considered to have a clear sky model radiation.  

The next sections of this chapter explain the case study used in the forecasting tool 
and the control model in separate ways for better understanding.  
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5.1. Forecasting case study 

Due to the lack of data per PV-PPs, the ANNs were trained, validated and tested 
based on the available information of three meteorological stations: Pozo Almonte 
(PALM), Crucero (CRUC) and Salar (SLAR). The places are shown in Figure 5.2 and the 
coordinates and elevation of the places are shown in Table 5.3. This table shows the 
available data in each meteorological station. The complete dataset corresponds to 10-
min measures of global horizontal radiation, diffuse radiation, direct normal radiation, 
temperature, relative humidity and wind speed.  

 

Figure 5.2: PALM, CRUC and SLAR meteorological stations. 

 
  

PALM  

CRUC  

SLAR  



 

47 

Table 5.3: Sites characteristics.  

 PALM CRUC SLAR 

LATITUDE 20°15’24.48” S 22°16’28.56” S 22°20’27.24” S 

LONGITUDE 69°46’30.00” W 69°33’57.96” W 68°52’35.76” W 

ELEVATION 1024 m.a.s.l. 1185 m.a.s.l. 2526 m.a.s.l. 

AVAILABLE 

DATA 

08/01/2008 – 

10/29/2015 

08/28/2009 – 

11/11/2014 

05/20/2010 – 

12/31/2012 

  For the CSI-ANN training, per day measures are needed, therefore the 10-minute 
data was averaged in order to get mean values of temperature, relative humidity and GSR 
per day. 

For the GSR-ANNs, the 10-minute data was split into the different kind of days – 
Sunny, Cloudy and Overcast – depending on their CSI classification. The classification 
was done considering the calculation of CSI shown in Appendix A and the classification 
that was shown in Table 3.1. Each group of data – Sunny, Cloudy and Overcast – was 
used to train the respective GSR-ANN. The total data for each kind of day per 
meteorological station is shown in Table 5.4.  

Table 5.4: Total 10-min data for kind of day. 

METEOROLOGICAL STATION KIND OF DAY TOTAL 10-MIN DATA 

PALM 
SUNNY 48942 
CLOUDY 94215 

OVERCAST 41178 

CRUC 
SUNNY 44626 
CLOUDY 69157 

OVERCAST 28163 

SLAR 
SUNNY 19250 
CLOUDY 21910 

OVERCAST 11078 
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5.2. Control Case Study 

The dynamic performance of the control model was tested for a critical day in terms 
of solar variability. The solar variability was measured as shown in Chapter 4. 

The proposed control was tested for four different scenarios regarding their deload 
level, all of them with the same total PV capacity (see Table 5.5).  

Table 5.5: PV-PPs in dynamic simulations and maximum power. 

PHOTOVOLTAIC POWER 

PLANT 
MAXIMUM 

POWER 
BASE CASE 

ATACAMA SOLAR 272.90 
PV COYA 87.11 

SAN PEDRO DE ATACAMA I 34.91 
SAN PEDRO DE ATACAMA II 34.91 
SAN PEDRO DE ATACAMA III 34.91 
SAN PEDRO DE ATACAMA 

IV 
34.91 

CALAMA SOLAR 1 13.10 
CALAMA SOLAR 2 13.10 
CRUCERO ESTE 139.11 

CRUCERO OESTE 160.72 
SALAR DE HUASCO 34.91 

POZO ALMONTE SOLAR 1 8.74 
POZO ALMONTE SOLAR 2 13.10 
POZO ALMONTE SOLAR 3 17.47 

TOTAL 899.91 

The difference among the scenarios is the nature of the deload level, 𝜒. The first 
two scenarios consider a constant deload level over the day (0% and 15%). The third 
scenario considers the proposed scheme with a deload level defined based on a ramp 
function, and the fourth scenario considers the proposed scheme with a deload level 
depending on a step function. This is shown in Table 5.6. 

. 
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Table 5.6: Considered scenarios for the study. 

SCENARIO CHARACTERISTICS DELOAD LEVEL 

S0C CONSTANT 𝜒 = 0 

S15C CONSTANT 𝜒 = 15 

S15RAMP VARIABLE 𝜒 = {

2 ℛ[%] ≤ 5%

0,6 ⋅ ℛ[%] − 1 5% < ℛ[%] < 28%

15 ℛ[%] ≥ 28%

 

S15STEP VARIABLE 𝜒 = {

2 ℛ[%] ≤ 5%
5 5% < ℛ[%] < 10%

10 10% < ℛ[%] < 15%

15 ℛ[%] ≥ 15%
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Chapter 6.  
 

Results 

In this work, a mitigation control against partial shading effects is designed 
including an improved forecasting technique to determine the deload level in the PV 
panels. This section presents first the results of the forecasting model and then the results 
of the control model, considering the calculated deload level using the forecasting tool.  

6.1. Forecasting 

As seen in previous sections, three different GSR-ANN were designed after a CSI-
ANN, in each meteorological station. The CSI-ANNs have a NMSE between 1.8% and 
2.4%, which makes it a very accurate classification stage. The NMSE of each CSI-ANN, 
plus the number of nodes in the hidden layer in each, is shown in Table 6.1. 

Table 6.1: NMSE per CSI-ANN. 

METEOROLOGICAL 
STATION 

NUMBER OF 

NODES IN THE 

HIDDEN LAYER 

NMSE OF THE 
CSI-ANN 

PALM 6 2.43 % 

CRUC 14 1.83 % 

SLAR 13 1.91 % 

The number of nodes in the hidden layer was determined by the best overall results 
following a trial-and-error process. The overall performance was calculated as the NMSE 
of all the sets (training, validation and test). This analysis is shown in Figure 6.1. It is worth 
noting that the CSI-ANN may calculate a decimal number, thus the result of the CSI-ANN 
has to be round to its nearest integer.  

The results show that the error convergence between the performance of each 
subset in the CRUC meteorological station is better, which may suggest that the CRUC 
data is less variable than the one in the other meteorological stations, because every set 
of data has more similar results. On the other hand, the SLAR station has higher errors in 
the test set. This is because SLAR has less information than the other meteorological 
stations, therefore the generalization capacity of the CSI-ANN in SLAR is worse than the 
other stations. 
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When addressing the error as the number of times in a year were the type of day 
is wrongly forecasted, the result is 28 days, thus a 7.7% of the year. This means that the 
GSR-ANNs have to be evaluated for all kind of days, in case the CSI-ANN wrongly 
forecasts the type of day. 

The other three GSR-ANN per meteorological station passed through a more 
complex design process, where a 10-fold cross-validation was done. This process 
suggests a larger computational burden in the training process than the CSI-ANN, were 
there was no cross-validation. The distribution and computational burden for each GSR-
ANN in each meteorological station is shown in Table 6.2. 

  

Figure 6.1: Overall, validation and test performance in the CSI-ANN per 
meteorological station. 
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Table 6.2: Number of measures and computational burden in each kind of day. 

METEOROLOGICAL STATION KIND OF DAY COMPUTATIONAL 
BURDEN (HOURS) 

PALM 
SUNNY 6.9 
CLOUDY 14.6 

OVERCAST 6.0 

CRUC 
SUNNY 6.3 
CLOUDY 10.7 

OVERCAST 4.1 

SLAR 
SUNNY 2.7 
CLOUDY 3.4 

OVERCAST 1.6 

As the CSI-ANN can wrongly forecast 28 days in a year, it is important to show the 
forecasting error of the GSR-ANNs when evaluating not only the corresponding type of 
day data, but also the data of the other type of days. The NMSE of every GSR-ANN, when 
evaluating them with the data of every type of day, is shown in the following table: 

Table 6.3: NMSE between forecasted and real values per GSR-ANN for every type 
of day. 

METEOROLOGICAL STATION              GSR-ANN 
DATA 

OVERCAST 
 

CLOUDY 
 

SUNNY 
 

PALM 
OVERCAST 0.02 % 0.02 %  0.03 %  
CLOUDY 0.05 % 0.02 % 0.01 % 
SUNNY 0.05 % 0.02 % 0.01 % 

CRUC 
OVERCAST 0.02 % 0.04 % 0.06 % 
CLOUDY 0.08 % 0.03 % 0.02 % 
SUNNY 0.08 % 0.03 % 0.02 % 

SLAR 
OVERCAST 0.03 % 0.05 % 0.21 % 
CLOUDY 0.09 % 0.03 % 0.44 % 
SUNNY 0.10 % 0.03 % 0.02 % 

When evaluating the GSR-ANNs with their corresponding type of day data, the 
NMSE is always smaller than 3% in every meteorological station, which means the 
forecast has good results when the kind of day is well forecasted. On the other hand, 
when the day is wrongly forecasted, the NMSE in PALM can reach a 4.7% error, in CRUC 
a 8.3% and in SLAR a 44.0%. SLAR is a critical case because of the lack of data in that 
place (less than 2 years), and therefore an important conclusion is that the lack of data 
affects significantly the overall performance of the proposed forecasting model.   

In order to visually show the result of a forecasting, the worst and best-case 
scenarios were selected in terms of NMSE per day in the PALM meteorological station.  
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The worst-case scenario in sunny days in terms of bias was at January 27th 2014. 

The maximum bias in this day was of 451.30 𝑊/𝑚2. On the other hand, the best-case 
scenario in sunny days was at January 5th 2010, reaching a maximum bias of 11.52 

𝑊/𝑚2. The forecast is shown in Figure 6.2 and it can be seen that the maximum bias is 
between 14:00 and 16:00 hours.  

 

Figure 6.2: Forecast of the worst and best-case day during sunny days in PALM 
meteorological station. In (a) is shown the worst-case during January 27th 2014 and 
in (b) is shown the best-case during January 5th 2010. 

The worst-case scenario in terms of bias for cloudy days was at February 11th 2014. 

The maximum bias is 406.73 𝑊/𝑚2. On the other hand, the best-case scenario in cloudy 

days was at September 20th 2013, reaching a maximum bias of 6.35 𝑊/𝑚2. Figure 6.3 
shows the ANN forecast of both days and the measurements. This figure shows that the 
forecast underestimates the real radiation almost every time during the maximum 
penetration times, which is best for the mitigation control application because it allows to 
save all the necessary reserve without overestimating the deload level.  

(a) (b) 
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Figure 6.3: Forecast of the worst and best-case day during cloudy days in PALM 
meteorological station. In (a) is shown the worst-case during February 11th 2012 
and in (b) is shown the best-case during September 20th 2013. 

Finally, the worst-case scenario for overcast days is at February 13th 2012, were 

the maximum bias reached is 273.31 𝑊/𝑚2. On the other hand, the best-case scenario 

in overcast days was at May 15th 2012, reaching a maximum bias of 9.87 𝑊/𝑚2. Figure 
6.4 shows the ANN for both days and it shows the same underestimation as in case of 
cloudy days. 

(a) (b) 
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Figure 6.4: Forecast of the worst and best-case day during overcast days in PALM. 
In (a) is shown the worst case on February 13th 2012 and (b) shows the best day in 
July 4th 2011.  

Overall is fair noting that, even though sunny days exhibit a higher bias, the total 
radiation of the day is also higher than cloudy and overcast days. This means that, in 
percentage, the difference is lower in sunny days because the overall radiation is higher.  

6.2. Control 

The control model was tested in a simplified model of the NIS with 120-buses for 
the year 2020 in the software DigSILENT PowerFactory. Four different scenarios were 
simulated for comparison purposes:  

1. S0c: Base case. No control action is taken. 

2. S15c: Best-case in [3]. The model is tested for a constant deload of 15%.  

3. S15Ramp: The model is tested for a variable deload level 𝜒(ℛ) with a ramp-
type function. 

4. S15Step: The model is tested for a variable deload level 𝜒(ℛ) with a step-
type function.  

For scenarios S15Ramp and S15Step, the deload level was calculated previous to 
the model implementation in the power system simulation tool. To do this, the radiation 
data was forecasted depending on the type of day and the proximity to the corresponding 

(b) (a) 
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meteorological station. After the forecast is done, the radiation ramps and deload level 
are calculated for each deload-variable scenario. 

 Figure 6.5 shows the power system’s frequency for all of the aforementioned 
operation scenarios. The straight lines at 49.8 and 50.2 [Hz] indicates the lowest and 
highest allowable levels for the system frequency according to the Chilean grid code 
during normal operation [57]. It is shown that there is a significant improvement of the 
system’s frequency when applying the MICAPAS controller (in comparison to the base 
case). It is also shown that a frequency-related normal operation of the power system is 
achieved during all the day in the cases were the control scheme is operating. When the 
data is analyzed in detail, it shows that there is an abnormal operation of the power system 
in both deload-variable scenarios. 

The frequency peaks that can be identified between 11:00 and 12:00, and between 
17:00 and 18:00 can be attributed to a forecasting error in predicting the steepest drop or 
rise. The other option would be that the control scheme is deploying reserves as the 
deload level is changing, which is the case on the rest of the day in the variable-deload 
scenarios.  

 

Figure 6.5: System frequency for scenarios S0c, S15c, S15Ramp and S15Step. 

In scenarios S15Ramp and S15Steps, the system operates over the minimum 
normal operation frequency throughout all time, and above the maximum normal 
operation frequency a 1.2% of the time, which is not clear from the figure but is shown in 
Table 6.4. This issue is solved by the active power reduction loop, that is mandatory for 
PV-PPs as shown in the Chilean grid code [57]. It can also be argued that this control 
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scheme may increase the energy shedding from PV-PPs, but that would be the case only 
if the frequency is under or above the normal operation band, which is not the case a 
98.8% of the time during a worst-case day. Therefore, the energy shedding would not be 
necessary a significant amount of times during a year. Furthermore, the Chilean grid code 
mandates PV-PPs to shed energy only if the frequency is out of the normal operation band 
during 3 hours, which is not the case. In addition, the figure also shows very few 
differences between both deload-variable scenarios. This is because both deload levels 
are very similar between a power ramp of zero and 10%, as it was shown in Figure 3.18, 
and the ramps during this day are between 0 and 10% more than a 91% of the time. 
Moreover, a 53% of the ramps during the day are equal to 5% or less, thus the deload 
level is the same for both scenarios.    

In conclusion, the frequency response under this control scheme is better than the 
base case and very similar to a case with a constant deload level of 15%, because it stays 
between a normal operation band a 98.8% of the time and the partial shading effect is 
mitigated. 

Table 6.4 shows the maximum PV penetration in each operation scenario, the 
percentage of the time that the system frequency is below 49.8 Hz and the percentage of 
the time that the system frequency is over 50.2 Hz.  

Table 6.4: Maximum PV penetration, amount of time below 49.8 Hz and amount of 
time above 50.2 Hz for every operation scenario. 

OPERATION 
SCENARIO 

MAXIMUM PV 
PENETRATION 

AMOUNT OF TIME (%) 
BELOW 49.8 HZ 

AMOUNT OF TIME (%) 
ABOVE 50.2 HZ 

S0C 37.89% 24.00% 0.00% 
S15C 31.76% 0.00% 0.00% 

S15RAMP 36.53% 0.00% 1.18% 
S15STEP 36.84% 0.00% 1.18% 

It is clear from the table that the maximum PV penetration is given by the base 
case, which is reasonable because the base deload level for both S15Ramp and S15Step 
is 2%. Nevertheless, the maximum PV penetration is higher in the variable cases than in 
the constant 15% case, for at least a 4%. A higher PV penetration implies a more difficult 
situation for frequency regulation in the system, and so the amount of time above 50.2 Hz 
for both variable scenarios is understandable and it could also be considered be low.  

Another important objective to this work is to prove that this forecasting technique 
decreases the energy losses during a day without worsening the frequency performance. 
The second point is proven by the aforementioned analysis, while the energy losses are 
shown in Figure 6.6. It is clear that there is an important difference between constant and 
variable deload level. The total energy losses during the day in S15c are equal to a 7%, 
whereas the energy losses in S15Ramp and S15Step are 2.04% and 2.17%, respectively. 
Therefore, the energy losses are decreased in at least 3 times when adding the 
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forecasting technique to the control system. It is also worth noting that during a variable 
day, which is the case in this simulation, energy losses are less than during a better day 
as it comes to cloudiness. This is because during a very variable day the power reserves 
are being deployed in a more consistent manner than during a less variable day, and 
therefore the energy losses during a better day in terms of clouds variability are higher 
than in this case. Hence this control scheme should be avoid during clear-sky days. 

 

Figure 6.6: Cumulative energy losses for scenarios S15c, S15Ramp and S15Step, 
in comparison with the base case. 

Other important issue to address are the control efforts from the centralized 
controller when a variable deload level is applied. This is important because the MICAPAS 
may add variability of power flows between the different sections of a PV-PP. Figure 6.7 

shows the changes in the MICAPAS main signal, 𝐾𝑟, which changes the deload level in 
the PV sections. It is shown that, meanwhile in scenario S15C the signal 𝐾𝑟 is constantly 
changing its reference, in scenarios S15Ramp and S15Steps it changes only in the first 
great fall and somewhere in the middle of the day, which is a better response for the 
controller. 

 Regarding the controller efficiency, it can be concluded that the ramp-type function 

for the deload level is more efficient, because in this case 𝐾𝑟 is zero most of the time which 
means that all the power reserves are being deployed from the PV-PP.  
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Figure 6.7: MICAPAS signal 𝑲𝒓 during the day. 

 
Figure 6.8: Total PV-PPs output power during the day per scenario. 

What is shown in Figure 6.7 regarding the system’s efficiency is confirmed by 
Figure 6.8 because it shows that, when a ramp-type function is used, the power 
differences are lower than in the step-type function. It is shown that in both variable 
scenarios most of the power reserves are being deployed constantly, while in the constant 
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level of deload the power losses are significant because a 15% of deload is not necessary 
all the time.  

  Finally, Figure 6.9 shows the 10-minute power ramps of the aggregated power of 
the conventional generation units. The NIS operator demand a ramping capacity, for each 
conventional unit of their system, of 2.7 MW/min [56]. This means that the 10-min power 
ramps of each conventional generation unit has to be 27 MW/10min. It is clear from the 
figure that the aggregated power of the conventional generation units surpass this 
ramping level in both variable scenarios, but the needed ramps from each unit is not, 
unless only one unit is capable of regulating frequency in the system. In S15Ramp the 
conventional units are over a 27 MW/10min ramping level a 5.1% of the time and in 
S15Step a 3.3% of the time, which means that there are not ramping problems when 
implementing this control strategy.  

 

Figure 6.9: 10-min power ramps of conventional generation units. 
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Chapter 7.  
 

Conclusions 

This work develops  an improvement to the MICAPAS scheme proposed in [3]. The 
proposed improvement included a deload level calculation every 10 minutes depending 
on a forecasting technique based on ANNs.  

 The first part of this work included the design and implementation of the ANNs for 
the forecasting technique to determine the deload level of the PV-PPs. The forecasting 
model was divided in two different stages: the first one forecasts the type of the next day 
by a CSI and the second one uses this information and forecasts the intra-hour radiation 
level. The results show an accurate forecast, with a NMSE between 1.8% and 2.4%. From 
the literature review it can be concluded that using one ANN per type of day is better than 
using only one ANN per PV-PP.  It is also concluded that the needed data to have good 
results has to be composed by, at least, 5 years of data every 10 minutes. This is shown 
by the larger NMSE of the SLAR meteorological station, which only had 2 years of data 
available.  

Since the CSI-ANN has forecasting errors, the GSR-ANNs have to take care of 
those errors. It is shown that the GSR-ANNs that were trained with enough data (>4 years) 
have good results in forecasting other type of days. This can be a particular conclusion in 
the case study because it corresponds to a desert climate with few abnormities caused 
by the Bolivian winter phenomena, but could be valid in other places if tested with enough 
data.   

The second part of this thesis included the design and implementation of a control 
model in PV-PPs. The dynamic simulations showed that, when no control is implemented, 
the power system’s frequency was outside the normal band a 24% of the day, whereas 
when a constant deload level is applied the system’s frequency remained within the 
normal operation band throughout the day. When a variable deload level is implemented, 
the system’s frequency remained between normal operation limits a 98.8% of the time, 
being the 1.2% an over-frequency. The over-frequency issue is solved by implementing 
an active power reduction loop in the controller, which is mandatory for some grid codes, 
as the Chilean one [57].  

Regarding the energy losses, the simulations show that using a variable deload 
level harnesses solar energy by at least 3 times in comparison with the use of solar energy 
when a constant level is applied. Since the simulations are done during a worst-case 
scenario day regarding radiation ramps, it is clear that more reserves are being deployed 
throughout the day because there are differences between sections at almost all time. 
Therefore, a conclusion is that energy losses during a better day are even less in a 
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variable-deload control strategy because less reserves are being deployed during that day 
and only a 2% of deload is applied, contrary to the 15% of a constant-deload strategy. It 
is also clear from the MICAPAS signal results and PV-PPs output power that both 
variable-deload scenarios are more efficient than a constant deload level in energy usage, 
because the variable deload cases deploy all their reserves most of the time, contrary to 
the constant deload level scenario.   

7.1. Future work 

As future work, it is proposed to implement a previous step in the local controller 
which forecasts the next day’s irradiance variability. Depending on the severity of 
irradiance variability the local control scheme of the PV-PP is enabled or disabled and 
therefore the energy losses are minimized.  

Another interesting work is to implement the same control system but using energy 
storage instead of a deloaded operation of the PV-PPs, and analyze the economic impact. 

Finally, this control scheme could generate power flows issues between the PV-
PPs. Hence it is proposed to analyze these effects when applying this control strategy or 
not. 
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.   
 
List of Acronyms 

ANN Artificial Neural Network 

CSI Clear-Sky Index 

DC Direct Current 

DoY Day of Year 

GSR Global Solar Radiation 

GW Giga-Watts 

KDE Kernel Density Estimation 

MICAPAS Mitigation Control Against Partial Shading 

MPP Maximum Power Point 

MPPT Maximum Point Power Tracking 

MSE Mean-Squared Error 

MTM Markov Transition Matrices 

MW Mega-Watts 

NAM North American Mesoscale 

NEAT Neuro-Evolution of Augmenting Topologies 

NIS Northern Interconnected System 

NMSE Normalized Mean Squared Error 

NN Neural Network 

NWP Numerical Weather Prediction 

pdf Probability density function 

PV Photovoltaic 

PV-PP Photovoltaic Power Plant 

RH Relative Humidity 

SNR Signal-to-Noise Ratio 

STD Standard Deviation 

T Temperature 

TSO Transmission System Operator 
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Appendix A.  
 
Concepts and definitions 

Clear-sky and clearness indices 

The clear sky index 𝑘𝑡 is defined as the ratio of the global irradiance 𝐼𝑔𝑙𝑜𝑏 to the 

expected irradiance under clear sky conditions 𝐼𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦 [14]: 

𝑘𝑡 =
𝐼𝑔𝑙𝑜𝑏𝑎𝑙

𝐼𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦
 

(A.1) 

The clearness index 𝐾𝑡 is similarly defined, but includes a normalization of the ground 
level irradiance with respect to the extraterrestrial irradiance [58], [22], as it is shown in 
the following equation: 

𝐾𝑡 =
𝐼𝑔𝑙𝑜𝑏𝑎𝑙

𝐼𝑒𝑥𝑡
 

(A.2) 

Extraterrestrial irradiance is easier to model than the clear sky irradiance due to 
the absence of physical atmospheric fluctuations. Extraterrestrial irradiance, or radiation, 
is the radiation that reaches the outer part of earth’s atmosphere, and varies slightly 
throughout the year [47]. It can be defined as shown in equation (A.3) [47], [59]. 

𝐼𝑒𝑥𝑡 = 𝐼0 ⋅ [1 + 0.033 ⋅ cos (
2𝜋

365
⋅ 𝐷𝑂𝑌)] ⋅ cos (𝜃𝑡) 

(A.3) 

where 𝐼0 = 1367 𝑊/𝑚2 is the solar constant, 𝐷𝑂𝑌 is the day of the year and 𝜃𝑡 is the solar 
zenith angle at time 𝑡. 

 The solar zenith angle at time 𝑡 can be calculated by using the equations in [60]. 
The important variables are shown in Figure A.1. 
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Figure A.1: Relationship of the solar zenith angle 𝜽𝟎 to the latitude 𝝋, the solar 
inclination angle 𝜹, and the hour angle 𝒉. 𝑷 and 𝑫 are the point of the observation 
and the point directly under the sun, respectively [60].  

The solar zenith angle is given by equation (A.4). Here, the hour angle is given by ℎ =
2𝜋𝑡/Δ𝑡⨀, where Δ𝑡⨀ = 86400 sec and the latitude 𝜑 is in rads. 

cos 𝜃𝑡 = sin𝜑 sin 𝛿 + cos𝜑 cos 𝛿 cos ℎ (A.4) 

On the other hand, a proper approximation of the sun’s declination is given by [60]: 

𝛿 = ∑(𝑐𝑛 cos 𝑛𝑡 + 𝑑𝑛 sin 𝑛𝑡)

3

𝑛=0

 
(A.5) 

Where the coefficients are: 

Table A.1: Equation (A.5) coefficients.  

𝑛 𝑐𝑛 𝑑𝑛 

0 0.006918 0 
1 -0.399912 0.070257 
2 -0.006758 0.000907 
3 -0.002697 0.000148 
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Appendix B.  
 
Generation of PV-PPs radiation data 

In this work, the radiation data per PV-PP is generated with the available 
information of meteorological stations nearby. The information is public and it can be found 
in [61]. As every meteorological station were put into service in different years, there are 
meteorological station with as few data as 2 years. Because of this, the radiation data in 
every year, per meteorological station was pondered to get a one-year radiation time-
series.  

The nearby meteorological stations (the one that are placed in northern Chile) are 
seven. Figure 5.1 shows a simplified diagram of the Northern Interconnected System 
(NIS) of Chile, and the relative position of the PV-PPs and meteorological stations. There 
are 20 PV-PPs, but there are placed in 4 clearly defined zones (the ones shown in the 
figure).  

Distance measures will be useful in order to generate different radiation series per 
PV-PP by defining a weight value that depends on the distance between the PV-PP and 
every one of the seven meteorological stations in the zone. Then, the meteorological 
station data every 10-min is multiplied by the corresponding weight and the sum of weights 
and values of the meteorological stations will generate a whole new series. This will be 
the PV-PP series.  
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Figure B.1: Simplified diagram of the Northern Interconnected System (NIS) of 
Chile, including the estimated position of meteorological stations nearby. 

For the distance measures to be computed, the UTM coordinates were calculated. 
Then, the distance (in UTM) between the PVPP number 𝑗 (𝑃𝑉𝑃𝑃𝑗) and the meteorological 

station 𝑖 (𝑀𝑆𝑖) is defined as: 

𝑑𝑀𝑆𝑖

𝑃𝑉𝑃𝑃𝑗[𝑈𝑇𝑀] = √(𝑁𝑈𝑇𝑀
𝑀𝑒𝑡𝑆𝑡𝑎𝑡𝑖 − 𝑁𝑈𝑇𝑀

𝑃𝑉𝑃𝑃𝑗)
2

+ (𝐸𝑈𝑇𝑀
𝑀𝑒𝑡𝑆𝑡𝑎𝑡𝑖 − 𝐸𝑈𝑇𝑀

𝑃𝑉𝑃𝑃𝑗)
2

 
(27) 

This distances are in UTM, and so they have to be normalized. As the data of the 
nearer meteorological stations is more similar to the PV-PP than the ones that are more 
far away, the normalization is done as follows: 

𝑑𝑀𝑆𝑖

𝑃𝑉𝑃𝑃𝑗[𝑝. 𝑢. ] = 1 −
𝑑𝑀𝑆𝑖

𝑃𝑉𝑃𝑃𝑗

max (𝑑𝑀𝑆𝑖

𝑃𝑉𝑃𝑃𝑗)
 

(28) 

Thermal power plant 

PV-PPs 

1 

2 

4 
3 

Meteorological stations 

CAMA 

PALM 

CRUC 1, 2 SLAR 

PANG 

SPED 



 

73 

Finally, the weights of each meteorological station per PV-PP have to sum 1. Then, 
they are defined as 

𝑊𝑀𝑆𝑖

𝑃𝑉𝑃𝑃𝑗 =
𝑑𝑀𝑆𝑖

𝑃𝑉𝑃𝑃𝑗[𝑝. 𝑢. ]

∑ 𝑑𝑀𝑆𝑖

𝑃𝑉𝑃𝑃𝑗7
𝑖=1

 

(29) 

Being 𝐺𝑆𝑅𝑚𝑒𝑎𝑠
𝑀𝑆𝑖  the measurements every 10-min of the meteorological station 𝑖, the 

radiation data of PV-PP number 𝑗 (𝐺𝑆𝑅𝑔𝑒𝑛

𝑃𝑉𝑃𝑃𝑗
) is defined as: 

𝐺𝑆𝑅𝑔𝑒𝑛

𝑃𝑉𝑃𝑃𝑗 = 𝐺𝑆𝑅𝑚𝑒𝑎𝑠
𝑀𝑆𝑖 ⋅ 𝑊𝑀𝑆𝑖

𝑃𝑉𝑃𝑃𝑗
 

(30) 

Finally, this data was compared with a mesoscale numerical model that uses 
satellite images in order to ensure the pertinence of this methodology.  

Although an ideal situation would be to have access to historical radiation and/or 
power output data of PV-PPs, that is difficult to achieve. That is why other methods to 
generate radiation data have to be used.  

In order to know how well the proposed methodology works, a correlation analysis 
was done, where the generated data was compared with the data given by a mesoscale 
model that uses satellite information to get solar radiation in Chile. That model can be 
found in [62].  

First, in order to ensure the pertinence of the mesoscale model, the measured data 
in the San Pedro de Atacama meteorological station was compared with the modeled data 
at the exact same place. The Spearman correlation between this data is shown in Figure 
B.1. The correlation between model and measured data is very high (over 0.9), and then 
the pertinence is confirmed.  
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Figure B.1: Spearman correlation between GSR of mesoscale model and design 
methodology in San Pedro de Atacama meteorological station. 

The second step was to ensure the correlation between the data of the mesoscale 
model and the one that was generated by the proposed methodology. The PV-PP 
Atacama Solar was used for this purposes, and the results are shown in Figure B.2. It is 
shown that the correlation is higher than the one shown in San Pedro de Atacama. This 
happens because the proposed methodology calculates the mean values of every year in 
order to get values of just one year, and then the errors regarding a mesoscale model are 
decreased. 

 

Figure B.2: Spearman correlation between GSR of mesoscale model and design 
methodology in PV-PP Atacama Solar.  

 


