Tabla de Contenido

1. Introducción	1
1.1. Propiedades del renio	1
1.2. Usos del renio	2
1.3. Producción y precios de renio y cobre	2
1.4. Ocurrencia y metalurgia extractiva del renio	5
1.5. Motivación	6
1.6. Objetivo general	6
1.7. Objetivos específicos	6
1.8. Hipótesis	6
1.9. Alcances	7
2. Antecedentes	8
2.1. Fundamentos teóricos de electroquímica	
2.1.1. Termodinámica	
2.1.2. Cinética electroquímica	10
2.1.3. Controles cinéticos	11
i. Control por transferencia de carga	11
ii. Control por transferencia de masa	13
iii. Control mixto	14
2.1.4. Consumos de energía	15
2.1.5. ITO en electroquímica	16
2.2. Economía del hidrógeno	17
2.2.1. Integración de energías renovables y la electrólisis del agua	
2.3. Electrólisis del agua	21
2.3.1. Consideraciones termodinámicas	23
i. Voltaje termo-neutral	
2.3.2. Consideraciones cinéticas	
i. Término de equilibrio (ΔEe)	
ii. Término de disipación óhmica (<i>IRohm</i>)	
iii. Término de estabilidad ($\Delta V t$)	

iv. Término de disipación por sobrepotencial (η)	27
2.4. Electrocatálisis de la reacción de evolución de hidrógeno	28
3. Estado del Arte	32
3.1. Electrodeposición de renio	32
3.2. Electrodeposición de aleaciones de renio	36
3.3. Efecto electrocatalítico del renio	39
3.4. El cobre y la electrocatálisis	43
3.5. Nanotubos de carbono en la electrocatálisis	44
3.6. Conclusiones del Estado del Arte	46
4. Metodología Experimental	48
4.1. Etapa I: Electrodeposición	48
4.3. Etapa II: Caracterización	49
4.4. Etapa III: Electrocatálisis de la reacción de evolución de hidrógeno	50
5. Resultados y Discusión	52
5.1. Electrodepósitos	52
5.1.1. Pruebas exploratorias	52
5.1.2. Electrodeposición: Muestras tipo A	56
5.1.2.1. Microscopía óptica y espectro UV-Visible de muestras tipo A	57
5.1.2.2. Microscopía de Barrido Electrónico (SEM) y análisis elemental (ED muestras tipo A	S) de 60
i. Muestra tipo A: ITO-Cu	60
ii. Muestra tipo A: ITO-Re	63
iii. Muestra tipo A: ITO-Re-Cu	65
iv. Muestra tipo A: ITO-Re-Cu-CNT	68
5.1.3. Electrodeposición: Muestras tipo B	71
5.1.3.1. Microscopía óptica y espectro UV-Visible de muestras tipo B	72
5.1.3.2. Microscopía de Barrido Electrónico (SEM) y análisis elemental (ED muestras tipo B	S) de 77
i. Muestra tipo B: ITO-Cu	77
ii. Muestra tipo B: ITO-Re	79
iii. Muestra tipo B: ITO-Re-Cu	81
iv. Muestra tipo B: ITO-Re-Cu-CNT	84

5.1.3.3. Difracción de Rayos-X (GI-XRD) de muestras tipo B91
5.1.3.4. Conclusiones de la electrodeposición de muestras tipo B
5.1.4. Electrodeposición: Análisis de sensibilidad de parámetros con respecto a muestras tipo B
5.1.4.1. Conclusiones de análisis de sensibilidad de parámetros de electrodeposición para muestras tipo B98
5.2. Reacción de evolución de hidrógeno99
5.2.1. Conclusiones del comportamiento electroquímico de los materiales 105
6. Conclusiones
6.1. Recomendaciones para trabajo futuro107
7. Bibliografía
8. Anexos
Anexo A: Propiedades adicionales de renio y cobre115
Anexo B: Precio de metales del grupo del platino118
Anexo C: Definición de escenarios de demanda energética y emisiones de CO ₂ 119
Anexo D: Comparación de H2 y combustibles fósiles120
Anexo E: Diseño de celdas en electrólisis de agua121
Anexo F: Densidad de corriente de intercambio (io) de la REH para diferentes materiales
Anexo G: Cálculo teórico de la pendiente de Tafel en el mecanismo de la reacción de evolución de hidrógeno
Anexo H: Almacenamiento de hidrógeno gaseoso en nanotubos de carbono131
Anexo I: Procedimiento experimental de lavado de electrodos y elaboración de soluciones
a) Elaboración de solución de sulfato de cobre y perrenato de amonio
b) Procedimiento de corte de ITO132
c) Procedimiento de lavado de ITO133
d) Procedimiento de lavado de electrodo de Pt133
e) Procedimiento de lavado de electrodo de Cu
Anexo J: Comparación de GI-XRD entre muestras tipo B de ITO-Re-Cu e ITO-Re-Cu- CNT 135

Índice de Tablas

Tabla 1: Propiedades físicas del renio [2].
Tabla 2: Producción mundial de renio y reservas [4]3
Tabla 3: Producción mundial y reservas de cobre [4]. 4
Tabla 4: Contenido de renio en concentrados de molibdenita de diferentes minas [2]5
Tabla 5: Pendientes de Tafel y orden de reacción para mecanismos de la reacción de evolución de hidrógeno [30]
Tabla 6: Parámetros experimentales Etapa I. 48
Tabla 7: Experimentos Etapa II. 49
Tabla 8: Parámetros experimentales de Etapa III. 50
Tabla 9: Condiciones experimentales de electrodeposición para muestras tipo A
Tabla 10: Reducción de la transparencia de las muestras tipo A con respecto a ITO desnudo.
Tabla 11: Tamaño de granos en el depósito de muestra ITO-Cu tipo A en base a imágenesSEM de magnificación 30.000x.61
Tabla 12: Tamaño de granos en el depósito de muestra ITO-Re-Cu tipo A en base a imágenesSEM de magnificación 60.000x.66
Tabla 13: Tamaño de granos en el depósito de muestra ITO-Re-Cu-CNT tipo A en base aimágenes SEM de magnificación 30.000x.69
Tabla 14: Condiciones experimentales de electrodeposición para muestras tipo B
Tabla 15: Reducción de la transparencia de las muestras tipo B
Tabla 16: Tamaño de granos en el depósito de muestra ITO-Re tipo B en base a imágenesSEM de magnificación 30.000x.80
Tabla 17: Tamaño de granos depositados en el sustrato de muestra ITO-Re-Cu tipo B en basea imágenes SEM de magnificación 30.000x.82
Tabla 18: Tamaño de granos depositados sobre la primera capa de muestra ITO-Re-Cu tipoB en base a imágenes SEM de magnificación 30.000x
Tabla 19:Tamaño de granos en el depósito de muestra ITO-Re-Cu-CNT tipo B en base aimágenes SEM de magnificación 30.000x.85
Tabla 20: Picos detectados en el patrón de difracción
Tabla 21: Resumen de parámetros modificados en análisis de sensibilidad de la electrodeposición. 95
Tabla 22: Parámetros cinéticos electroquímicos obtenidos para Pt, Cu y los electrodepósitostipo B.103

Tabla 23: Propiedades del renio. 115
Tabla 24: Propiedades de algunos óxidos y sulfuros de renio
Tabla 25: Potenciales estándar de especies de renio e hidrógeno
Tabla 26: Minerales de cobre más relevantes y sus propiedades
Tabla 27: Potenciales estándar de reacciones del cobre117
Tabla 28: Conductividad eléctrica y térmica del cobre y su dependencia con la temperatura.
Tabla 29: Precio de metales del grupo del platino. 118
Tabla 30: Comparación entre precios de metales año 2015118
Tabla 31: Densidad de energía de diferentes combustibles
Tabla 32: Punto de inflamabilidad de combustibles
Tabla 33: Temperatura de ignición de combustibles
Tabla 34: Parámetros cinéticos en diferentes electrodos para la reacción de evolución de hidrógeno. 122
Tabla 35: Densidad de corriente de intercambio de la reacción de evolución de hidrógeno para el platino. 124
Tabla 36: Capacidad de almacenamiento de diferentes nanotubos de carbono reportados.

Índice de Figuras

Figura 1: Precios del renio (2008-2015) [4]
Figura 2: Precios del cobre (2008-2015) [4]
Figura 3: Diagrama de Pourbaix del sistema renio-agua y cobre-agua a 25°C9
Figura 4: Esquema de controles cinéticos11
Figura 5: Reacciones electroquímicas en electrodo
Figura 6: Variación de la densidad de corriente límite con la agitación
Figura 7: Esquema de diagrama de Evans de controles cinéticos15
Figura 8: Demanda mundial de energía y emisión de CO ₂ al año 2040 [15]17
Figura 9: Esquema del ciclo de energía utilizando electrólisis del agua para almacenar la energía solar y celdas de combustible para generar electricidad [25]21
Figura 10: Esquema de celda de electrólisis de agua alcalina convencional [27]22
Figura 11: Potencial de celda para la producción de hidrógeno por electrólisis del agua en función de la temperatura [28]24
Figura 12: Aumento de potencial de electrolizador en el tiempo debido a efectos de degradación de electrodos [12]
Figura 13: Típico gráfico de Tafel para la evolución de hidrógeno y de oxígeno [28]27
Figura 14: Variación de voltaje aplicado a una celda de electrólisis con un flujo de corriente en la celda [12]
Figura 15: Voltametría cíclica en electrodo de Pt. Solución de $0.125 \text{ [mol/dm^3] ReO_4} + 0.01 [mol/dm^3] NaOH para diferentes velocidades de barrido: (a) 0.005 [V/s], (b) 0.05 [V/s] y (c) 0.5 [V/s] [38]. 34$
Figura 16: Voltametría cíclica en electrodo de Au. Solución de 0.125 [mol/dm ³] ReO4 ⁻ + 0.01 [mol/dm ³] NaOH para diferentes velocidades de barrido: (a) 0.005 [V/s], (b) 0.05 [V/s] y (c) 0.5 [V/s] [38]
Figura 17: Voltamograma (curvas a y b) y barrido nanogravimétrico (curvas a' y b') a 10 $[mV/s]$ en electrodo de Au en 6.25 $[mM]$ de CuSO ₄ () y 6.25 $[mM]$ de CuSO ₄ + 50 $[mM]$ de HReO ₄ () a pH=2 [41]
Figura 18: Imagen SEM de un film Cu-Re electrodepositado a un potencial de -0.75 [V] vs. SCE [41]
Figura 19: Voltamogramas medidos en solución 0.5 [mol/dm ³] de H ₂ SO ₄ : (a) ITO desnudo, (b) Óxidos de renio electrodepositados por corriente pulsante en diferentes condiciones (velocidad de barrido: 200 [mV/s]) [43]
Figura 20: Comparación de densidad de corriente de intercambio de REH en función de la

Figura 20: Comparación de densidad de corriente de intercambio de REH en función de la velocidad de barrido de materiales electrodepositados. 1A y 1B basados en 0.02 [mol/dm³]

de ReO ₄ ⁻ a 10 y 50 [A/m ²], 2A y 2B basados en 0.04 [mol/dm ³] de ReO ₄ ⁻ a 10 y 50 [A/m ²] [5]
Figura 21: Etapas experimentales
Figura 22: Imágenes de la celda utilizada y esquema de la disposición de electrodos51
Figura 23: Experimento E1 - ITO-Cu
Figura 24: Experimento E2 - ITO-Cu53
Figura 25: Diagrama de Pourbaix del sistema Indio-Agua a 25°C y 0.001 [M] de indio [13].
Figura 26: Experimento E3 - ITO-Cu
Figura 27: Experimento E4 - ITO-Cu55
Figura 28: Esquema de corriente pulsante directa utilizada en experimentos tipo A56
Figura 29: Imágenes de microscopía óptica de electrodepósitos tipo A
Figura 30: Espectro de trasmisión de los materiales electrodepositados tipo A sobre ITO en el rango UV-Visible
Figura 31: Imágenes SEM: Experimento ITO-Cu tipo A60
Figura 32: Análisis elemental mediante EDS de la muestra ITO-Cu tipo A (EDS puntual).
Figura 33: Imágenes SEM: Experimento ITO-Re tipo A63
Figura 34: Análisis elemental mediante EDS de la muestra ITO-Re tipo A (EDS puntual).
Figura 35: Análisis elemental mediante EDS de la muestra ITO-Re tipo A (EDS de área).64
Figura 36: Imágenes SEM: Experimento ITO-Re-Cu tipo A66
Figura 37: Análisis elemental mediante EDS de la muestra ITO-Re-Cu tipo A (EDS puntual). 67
Figura 38: Análisis elemental mediante EDS de la muestra ITO-Re-Cu tipo A (EDS de área).
Figura 39: Imágenes SEM: Experimento ITO-Re-Cu-CNT tipo A
Figura 40: Análisis elemental mediante EDS de la muestra ITO-Re-Cu-CNT tipo A (EDS puntual)70
Figura 41: Análisis elemental mediante EDS de la muestra ITO-Re-Cu-CNT tipo A (EDS de área)
Figura 42: Esquema de corriente pulsante directa utilizada en experimentos tipo B71
Figura 43: Imágenes de microscopía óptica de electrodepósitos tipo B72
Figure 44. Esqueme de encombleje del norte electrode

Figura 45: Esquema de fluidodinámica y gradiente de concentración generada en porta- electrodo
Figura 46: Espectro de trasmisión de los materiales electrodepositados tipo B sobre ITO en el rango UV-Visible
Figura 47: Comparación de espectro de trasmisión entre muestras tipo A y tipo B75
Figura 48: Imágenes SEM: Experimento ITO-Cu tipo B77
Figura 49: Análisis elemental mediante EDS de la muestra ITO-Cu tipo B (EDS de área).78
Figura 50: Imágenes SEM: Experimento ITO-Re tipo B79
Figura 51: Análisis elemental mediante EDS de la muestra ITO-Re tipo B (EDS de área). 80
Figura 52: Imágenes SEM: Experimento ITO-Re-Cu tipo B81
Figura 53: Análisis elemental mediante EDS de la muestra ITO-Re-Cu tipo B (EDS de área).
Figura 54: Esquema de electrodeposición en muestra ITO-Re-Cu tipo B
Figura 55: Imágenes SEM: Experimento ITO-Re-Cu-CNT tipo B
Figura 56: Imágenes SEM: Experimento ITO-Cu tipo B (continuación)
Figura 57: Análisis elemental mediante EDS de la muestra ITO-Re-Cu-CNT tipo B (EDS de área)
Figura 58: Imágenes SEM de atrapamiento mecánico de nanotubos de carbono. En la imagen (A) se observa una zona del depósito con mayor separación entre cristales y menor cantidad de nanotubos de carbono en comparación a la imagen (B), donde se muestra una zona con mayor densidad de cristales. En la imagen (C) se muestra el atrapamiento de un bundle de nanotubos, la imagen (D) es una magnificación de la misma zona
Figura 59: Presencia de bundles de nanotubos de carbono en superficie de muestra ITO-Re- Cu-CNT tipo B
Figura 60: Imágenes SEM que indican la electrodeposición de cobre sobre nanotubos de carbono
Figura 61: Imágenes SEM de zona superior e inferior de muestra ITO-Re-Cu-CNT tipo B.
Figura 62: Imágenes de microscopía óptica de 4 muestras diferentes de ITO-Re-Cu-CNT tipo B (A, B C y D) obtenidas bajo las mismas condiciones experimentales
Figura 63: Patrones de GI-XRD de electrodepósitos tipo B. Líneas punteadas indican los picos asociados al sustrato ITO, los cuales están presentes en todas las muestras analizadas.
Figura 64: Experimento S1 - ITO-Re-Cu-CNT95
Figura 65: Experimento S2 - ITO-Re-Cu-CNT
Figura 66: Experimento S3 - ITO-Re-Cu96

Figura 67: Experimento S4 - ITO-Re-Cu-CNT97
Figura 68: Voltamogramas medidos en una solución 0.5 [M] de H ₂ SO ₄ de los electrodepósitos (ITO-Cu, ITO-Re, ITO-Re-Cu e ITO-Re-Cu-CNT) y el sustrato ITO desnudo a una velocidad de barrido de 5 [mV/s]
Figura 69: Comparación de voltamogramas entre platino y electrodepósito ITO-Re tipo B (izquierda) y electrodepósitos ITO-Re, ITO-Cu, ITO-Re-Cu, ITO-Re-Cu-CNT tipo B y cobre puro (derecha)
Figura 70: Imágenes de microscopía óptica de electrodepósitos tipo B antes y después de la prueba de voltametría cíclica (VC)
Figura 71: Gráfico de Tafel para los electrodepósitos tipo B102
Figura 72: Desviación en gráfico de Tafel de electrodepósito ITO-Re tipo B103
Figura 73: Esquema de tipos de superficie en un electrodepósito tipo B104
Figura 74: Diseños de celda (a) Electrólisis alcalina convencional, (b) Electrólisis avanzada (sin gap), (c) Electrolito de polímero sólido (medio ácido)
Figura 75: Curva I-n para un cátodo de Pt en 5 [M] de H2SO4130
Figura 76: Capacidad de almacenamiento de diferentes nanotubos de carbono reportados hasta el año 2010
Figura 77: Corte de ITO
Figura 78: Patrones de GI-XRD de electrodepósitos ITO-Re-Cu e ITO-Re-Cu-CNT tipo B. Líneas punteadas indican los picos asociados al sustrato ITO, los cuales están presentes en ambas muestras analizadas

Índice de Ecuaciones

Ecuación 1: Energía libre de Gibbs	8
Ecuación 2: Energía libre de Gibbs en función de la actividad	8
Ecuación 3: Energía libre de Gibbs	8
Ecuación 4: Ecuación de Nernst	9
Ecuación 5: Reacción electroquímica	10
Ecuación 6: Ecuación de Faraday	10
Ecuación 7: Velocidad de reacción electroquímica	10
Ecuación 8: Sobrepotencial	11
Ecuación 9: Ecuación de Butler-Volmer	12
Ecuación 10: Ecuación de Tafel	12
Ecuación 11: Densidad de corriente de intercambio en función de parámetros catódico	os13
Ecuación 12: Densidad de corriente de intercambio en función de parámetros anódico	s 13
Ecuación 13: Ley de Fick electroquímica	13
Ecuación 14: Densidad de corriente límite	14
Ecuación 15: Relación de controles cinéticos con respecto al control mixto	14
Ecuación 16: Densidad de corriente por control mixto	14
Ecuación 17: Energía consumida	15
Ecuación 18: Consumo específico de energía	15
Ecuación 19: Eficiencia de corriente en electrodeposición	16
Ecuación 20: Electrólisis de la molécula de agua	21
Ecuación 21: Reacción en celdas de combustible	21
Ecuación 22: Reacción catódica y anódica en una celda de electrólisis convencional	22
Ecuación 23: Ecuación de Nernst	23
Ecuación 24: Potencial de celda estándar de la electrólisis del agua.	23
Ecuación 25: Entalpía de formación de electrólisis del agua	24
Ecuación 26: Voltaje termo-neutral	24
Ecuación 27: Tensión de celda en la electrólisis del agua	25
Ecuación 28: Resistencia total de celda	25
Ecuación 29: Término de disipación por sobrepotencial	27

Ecuación 30: Reacción global de evolución de hidrógeno en medio ácido y alcalino29
Ecuación 31: Adsorción de hidrógeno en superficie del electrodo
Ecuación 32: Mecanismo de evolución de hidrógeno con desorción química
Ecuación 33: Mecanismo de evolución de hidrógeno con desorción electroquímica30
Ecuación 34: Reducción de Re(VII) a Re metálico
Ecuación 35: Reacción global de reducción del ion perrenato
Ecuación 36: Electrodeposición del ion divalente
Ecuación 37: Reducción química del ion perrenato
Ecuación 38: Reducción de Re(V)
Ecuación 39: Reducción de Re(IV)
Ecuación 40: Adsorción de hidrógeno en estructura de Re(III)
Ecuación 41: Regeneración del catalizador basado en Re(III)40
Ecuación 42: Ecuación de Tafel125
Ecuación 43: Adsorción de hidrógeno en superficie del electrodo
Ecuación 44: Mecanismo de evolución de hidrógeno con desorción química125
Ecuación 45: Mecanismo de evolución de hidrógeno con desorción electroquímica 125
Ecuación 46: Velocidad de formación de hidrógeno adsorbido126
Ecuación 47: Pendiente de Tafel de paso A como etapa controlante126