Tabla de Contenido

1	Inti	troducción1				
	1.1	General	1			
	1.2	Objetivo General	2			
	1.3	Objetivos Específicos	2			
	1.4	Estructura del Trabajo	2			
2	Mé	etodos de Generación de Registros Artificiales	3			
	2.1	Métodos Empíricos	3			
	2.2	Métodos de Fundamentos Físicos Desconocidos	4			
	2.3	Métodos Físicos	5			
	2.4	Metodologías Determinísticas	6			
	2.5	Métodos Híbridos	7			
	2.6	Métodos Estocásticos de Fuente Puntual	8			
	2.6	6.1 Modelamiento Espectral	10			
	2.7	Métodos Estocásticos de Fuente Finita	11			
3	Мо 15	odelo de Generación de Registros Sintéticos Propuesto por Otárola y Ruiz	(2016)			
	3.1	Sistemas de Coordenadas	18			
	3.2	Partición de la Energía	19			
	3.3	Efecto de Superficie Libre	20			
	3.3	3.1 Onda P	20			
	3.3	3.2 Ondas SV y SH	21			
	3.4	Formas Espectrales	23			
	3.5	Determinación de Ángulo de Incidencia en Modelo Multicapas	24			
	3.6	Forma Funcional de la Fuente	25			
	3.7	Frecuencia Esquina	26			
	3.8	Factores de Escalamiento	26			
	3.9	Descomposición en componentes Norte-Sur, Este-Oeste y Vertical	27			
4	Pro	opagación de Ondas en el Suelo	29			
	4.1	Función de Transferencia de Onda SH	30			

4.2	Función de Transferencia de Ondas SV y P32		
4.3	Ejemplo de Cálculo de Funciones de Transferencia		35
4.4	Me	todología Propuesta para Incorporar Efectos de Sitio	37
5 Ge Terrem	enera oto d	ación Estocástica de Acelerogramas Sintéticos en Roca Basa de Tohoku	l para el 39
5.1	Ter	remoto de Tohoku del 11 de Marzo de 2011	
5.2 regis	5.2 Parámetros de la Metodología de Otárola y Ruiz (2016) para la sim registros sintéticos		
5.2	2.1	Fuente Sísmica	41
5.2	2.2	Trayectoria	43
5.2	2.3	Efecto de Sitio	45
5.2	2.4	Estaciones Simuladas	45
5.3	Re	sultados en Roca Basal para Terremoto de Tohoku de 2011	46
		•	
6 Ge 65	enera	ación de Acelerogramas Sintéticos para Japón Considerando Efecto	os de Sitio
6 Ge 65 6.1	enera Res	ación de Acelerogramas Sintéticos para Japón Considerando Efecto sultados en Superficie para el Terremoto de Tohoku de 2011	os de Sitio
6 Ge 65 6.1 7 Dis	enera Res scusi	ación de Acelerogramas Sintéticos para Japón Considerando Efecto sultados en Superficie para el Terremoto de Tohoku de 2011	os de Sitio 67 85
6 Ge 65 6.1 7 Dis 7.1	enera Res scusi Dis	ación de Acelerogramas Sintéticos para Japón Considerando Efecto sultados en Superficie para el Terremoto de Tohoku de 2011 ión cusión de Resultados	os de Sitio 67 85 85
6 Ge 65 6.1 7 Dis 7.1 7.2	Res Res scusi Dis Me	ación de Acelerogramas Sintéticos para Japón Considerando Efecto sultados en Superficie para el Terremoto de Tohoku de 2011 ión cusión de Resultados joras a la Metodología	os de Sitio 67 85 85 86
6 Ge 65 6.1 7 Dis 7.1 7.2 8 Co	Res Res scusi Dis Me onclu	ación de Acelerogramas Sintéticos para Japón Considerando Efecto sultados en Superficie para el Terremoto de Tohoku de 2011 ión cusión de Resultados joras a la Metodología siones y Recomendaciones	os de Sitio 67 85 85 86 88
6 Ge 65 6.1 7 Dis 7.1 7.2 8 Co 8.1	Res Res Scusi Dis Me onclu Coi	ación de Acelerogramas Sintéticos para Japón Considerando Efecto sultados en Superficie para el Terremoto de Tohoku de 2011 ión cusión de Resultados joras a la Metodología siones y Recomendaciones nclusiones	os de Sitio 67 85 85 86 88 88
6 Ge 65 6.1 7 Dis 7.1 7.2 8 Co 8.1 8.2	Res Res Scusi Dis Me onclu Coi Red	ación de Acelerogramas Sintéticos para Japón Considerando Efecto sultados en Superficie para el Terremoto de Tohoku de 2011 ión cusión de Resultados joras a la Metodología siones y Recomendaciones nclusiones	os de Sitio 67 85 85 86 88 88 88 88
6 Ge 6.1 7 Dis 7.1 7.2 8 Co 8.1 8.2 9 Bib	Res Res Scusi Dis Me onclu Coi Rec oliogi	ación de Acelerogramas Sintéticos para Japón Considerando Efecto sultados en Superficie para el Terremoto de Tohoku de 2011 ión cusión de Resultados joras a la Metodología siones y Recomendaciones nclusiones comendaciones	os de Sitio 67 85 85 86 88 88 88 88
6 Ge 6.1 7 Dis 7.1 7.2 8 Co 8.1 8.2 9 Bib 10 A	Res Res Scusi Dis Dis Me onclu Coi Rec oliog	ación de Acelerogramas Sintéticos para Japón Considerando Efecto sultados en Superficie para el Terremoto de Tohoku de 2011 ión cusión de Resultados joras a la Metodología siones y Recomendaciones nclusiones comendaciones rafía	os de Sitio 67 85 85 86 88 88 88 88

ÍNDICE DE TABLAS

Tabla 1: Parámetros de Ruptura definidos por Kurahashi e Irikura (2011) y u Ghofrani et al (2013a)	tilizados por 43
Tabla 2: Estaciones Simuladas	45
Tabla 3 Bondad de Ajuste para Simulación Espectral en la Horizontal	63
Tabla 4: Bondad de Ajuste para Simulación Espectral	83

TABLA DE FIGURAS

Figura 2-1: Tipificación de Generación de Registros Artificiales (Elaboración Propia)4
Figura 2-2: Esquema de simulación de un registro artificial según lo propuesto por Boore
(2003)
Figura 3-1: Esquema de Método de Generación propuesto por Otárola v Ruiz (2016).
Parte 1 (Otárola 2015)
Figura 3-2: Esquema de Método de Generación propuesto por Otárola y Ruiz (2016).
Parte 2 (Otárola 2015)
Figura 3-3: Esquema de incidencia y descomposición de onda P (Otárola 2015) 20
Figura 3-4: Esquema de Incidencia de Onda SV (Otárola 2016)21
Figura 3-5: Esquema de cálculo de ángulos de incidencia en superficie suponiendo un
modelo de capas horizontales (Otárola 2015)24
Figura 3-6: Relación entre eies cardinales, eies globales y eies locales para la falla ii-
ésima (Otárola 2015)
Figura 4-1: Esfuerzos que actúan sobre una porción de suelo
Figura 4-2: Sistema Multicapas
Figura 4-3: Esquema de Armado de Matrices de Rigidez
Figura 4-4: Perfil de Suelo usado para cálculo de funciones de transferencia 35
Figura 4-5: Eunción de Transferencia Horizontal para Onda SH 36
Figura 4-6: Función de Transferencia para onda SV en estrato de 10m 36
Figura 4-7: Función de Transferencia para Onda SV en estrato de 5m 37
Figura 4-8: Resumen de la Metodología desarrollada en el presente trabajo
Figura 5-1: Réplicas y Evento Principal de Toboku 2011 (IMA 2011) 40
Figura 5-2: Ruptura del terremoto de Japón e intensidades (NIED 2011) 41
Figura 5-2: Nopelo de Ruptura (Kurabashi e Irikura 2011)
Figura 5-3: Modelo de Ruptura para el Terremoto de Toboku (Vagi y Eukabata 2011) 42
Figura 5-5: Ubicación de estaciones de este modelo
Figura 5-6: Resultados temporales de las simulaciones y los registros observados, en la
componente Norte-Sur
Figura 5-7. Resultados temporales de las simulaciones y los registros observados, en la
componente Este - Oeste
Figura 5-8: Resultados temporales de las simulaciones v los registros observados, en la
componente Vertical
Figura 5-9: Superposición temporal de las simulaciones y los registros reales, en la
componente Norte-Sur
Figura 5-10: Superposición temporal de las simulaciones y los registros reales, en la
componente Este-Oeste53
Figura 5-11: Superposición temporal de las simulaciones y los registros reales, en la
componente Vertical
Figura 5-12: Descomposición según ondas P, SV y SH del registro simulado según las
Componentes Norte-Sur
Figura 5-13: Descomposicion segun ondas P, SV y SH del registro simulado segun las
Componentes Este-Oeste
rigura 5-14. Descomposicion segun ondas P, SV y SFI del registro simulado segun las
Componences venical

Figura 5-15: Espectros de respuesta para un sistema de un grado de libertad, con un Figura 5-16: Espectros de respuesta para un sistema de un grado de libertad, con un Figura 5-17: Espectros de respuesta para un sistema de un grado de libertad, con un Figura 5-18: Espectros de respuesta para un sistema de un grado de libertad, con un Figura 5-19: Espectros de respuesta para un sistema de un grado de libertad, con un Figura 5-20: Espectros de respuesta para un sistema de un grado de libertad, con un Figura 6-1: Perfiles de velocidad de onda de corte en las estaciones analizadas en este estudio. El círculo naranjo representa la ubicación del acelerómetro en la roca basal ..65 Figura 6-2: Función de Transferencia para onda SH66 Figura 6-5: Resultados temporales de las simulaciones y los registros observados, en la Figura 6-6: Resultados temporales de las simulaciones y los registros observados, en la Figura 6-7: Resultados temporales de las simulaciones y los registros observados, en la Figura 6-8: Superposición temporal de las simulaciones y los registros reales, en la Figura 6-9: Superposición temporal de las simulaciones y los registros reales, en la Figura 6-10: Superposición temporal de las simulaciones y los registros reales, en la Figura 6-11: Descomposición según ondas P, SV y SH del registro simulado según las Figura 6-12: Descomposición según ondas P, SV y SH del registro simulado según las Figura 6-13: Descomposición según ondas P, SV y SH del registro simulado según las Figura 6-14: Espectros de respuesta para un sistema de un grado de libertad, con un Figura 6-15: Espectros de respuesta para un sistema de un grado de libertad, con un Figura 6-16: Espectros de respuesta para un sistema de un grado de libertad, con un Figura 6-17: Espectros de respuesta para un sistema de un grado de libertad, con un Figura 6-18: Espectros de respuesta para un sistema de un grado de libertad, con un

Figura 6-19: Espectros de respuesta para un sistema de un grado de libertad, con ur	า
amortiguamiento del 5%, para componente Vertical	84
Figura 6-20: GOF para Registros en Suelo	84
Figura 7-1: Comparación entre Resultados de este modelo y Ghofrani et al (2013a)	867
Figura 10-1: Esquema multicapas de suelo	.943