
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
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DESARROLLO Y APLICACIÓN DE UN MODELO A ESCALA GENÓMICA PARA EL ESTUDIO DEL
METABOLISMO DE CÉLULAS CHO

Las células animales son uno de los principales sistemas para la producción de biofármacos,
sin embargo la mayoria de las estrategias para mejorar su productividad no están respaldadas por
conocimiento especı́fico para las lı́neas celulares usadas en la industria. En este trabajo se reconstruye
un modelo a escala genómica para células CHO para ampliar el conocimiento de procesos celulares
asociados con productividad en la sı́ntesis de biofármacos.

Para lograr este objetivo analizamos el modelo a escala genómica de ratón iMM1415 usando
herramientas desarrolladas para explorar el efecto de knockout de genes y determinación de flujos
en crecimiento celular. Nuestros resultados muestran que esta red metabólica está dominada por
metabolismo de lı́pidos. Adicionalmente, confirmamos que un enfoque de sampleo, donde se explora el
espacio de soluciones en vez de imponer un objetivo de optimización, es más apropiado para el estudio
del metabolismo en sistemas complejos como células animales.

Posteriormente, se desarrolla en estudio comparativo de las herramientas desarrolladas para la
generación automática de modelos preliminares, donde los resultados obtenidos utilizando tres algoritmos
(modelSEED, Pantograph y Pathway tools) muestran que Pantograph es la herramienta más apropiada
para la generación de un modelo a escala genómica de células CHO. Este algoritmo produce un modelo
basándose en un modelo previo y ortologı́a entre ambos organismos, produciendo un modelo preliminar
que hereda caracterı́sticas como asociaciones de genes distintas para distintos organelos celulares lo que
es crucial para potenciales aplicaciones de modelos para eucariontes.

El modelo iNJ1301 para células CHO es reconstruido de acuerdo a la metodologı́a propuesta
basándose en iMM1415 y el modelo humano Recon 1. iNJ1301 tiene 3,709 reacciones asociadas a 1,301
genes y fue validado con información experimental para esta lı́nea celular prediciendo correctamente
el crecimiento celular en un 88% de los casos simulados. Adicionalmente, este modelo es reducido
imponiendo cambios en expresión de genes reportados para representar un metabolismo ineficiente
del carbono caracterizado por sı́ntesis de lactato y el shift metabólico observado en esta lı́nea celular,
mostrando el potencial de este enfoque para ser usado en la integración de datos transcriptómicos. Al
utilizar un nuevo enfoque basado en ortologı́a se pudieron encontrar nuevas asociaciones de genes no
incluı́das en reconstrucciones creadas utilizando metodologı́as clásicas para la generación de modelos,
por lo que los resultados de este trabajo fueron incorporadas en el modelo consenso iCHO1766.

La identificación de marcadores asociados a productividad mejorada en células CHO ha sido
abordada desde la perspectiva genómica, transcriptómica y proteómica. En este trabajo integramos datos
transcriptómicos para dos clones de células CHO que muestran distintos perfiles de productividad en el
modelo iNJ1301. Datos de un alto (HP) y bajo (LP) productor de IgG son integrados al modelo usando iMAT
(integrative metabolic analysis tool) obteniéndose modelos reducidos que presentan una alta conservación
de vias metabólicas de glutatión y azúcares nucleotı́dicos. Este enfoque es luego acoplado con sampleo de
las redes metabólicas encontrándose que ambos modelos presentan comportamientos distintos, donde el
clon HP está enfocado en el uso del ciclo del TCA y la vı́a pentosas fosfato. Finalmente, concluimos que este
enfoque que combina distintas herramientas utilizadas en biologı́a de sistemas es una nueva herramienta
que permite el estudio exhaustivo de sistemas biológicos complejos tales como lı́neas celulares animales.
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RECONSTRUCTION AND USE OF A CHO GENOME-SCALE MODEL FOR STUDYING ITS
METABOLISM

Mammalian cells are one of the main hosts for production of biopharmaceuticals comprising over 50%
of the approved therapeutic proteins available on the market. Several strategies have been developed in
order to improve maximum cell density and productivity, however most of these approaches do not rely on
specific knowledge on these cell lines. In order to give new insights on metabolism, genome-scale models
(GSMs) have emerged as a powerful tool since they provide a global representation of all biochemical
transformations that could be carried our by a specific organism and their association to genes.
In this work a CHO genome-scale model was reconstructed in order to improve understanding of
cellular proceses that undergo enhanced productivity for biopharmaceutical production. We analyzed
the iMM1415 metabolic reconstruction using developed tools to explore the effects of gene knockouts
and flux determination in biomass synthesis. Our results show that this metabolic network is dominated
by lipid metabolism, particularly a sampling approach implementation confirmed that potential metabolic
engineering targets for cell growth improvement are associated with this pathway. Additionally this work
confirmed that a sampling approach rather than standard Flux Balance Analysis (FBA) is more suited to
simulate mammalian metabolism due to the uncertainty surrounding the definition of a biological objective
for complex eukaryote organisms.
A comparative study of three algorithms: modelSEED, Pantograph and Pathway tools showed that
Pantograph is the best method suited to be used for the generation of a CHO genome-scale model. This
tool produces a CHO draft metabolic reconstruction based on a template model and ortholog information
requiring an non annotated genome sequence to achieve its purpose. The obtained CHO-Pantograph draft
model has different gene associations for identical reactions occurring on different cell compartments due
to inherited properties from the metabolic reconstruction used as a template. This feature is crucial for
applications such as integration of genomic or transcriptomic data. It is proposed that this approach could
be expanded using information derived from different models in order to obtain an improved draft model.
The CHO genome-scale model iNJ1301 is reconstructed according to the expanded methodology proposed
previously where two models were used as templates: iMM1415 and the human reconstruction Recon
1. The obtained model iNJ1301 has 3,709 reactions associated to 1,301 genes, and was validated with
experimental data correctly predicting cell growth on 88% of the performed simulations. By reducing
this model using reported changes on key carbon metabolism genes and extracellular constraints it was
possible to replicate the behavior observed experimentally showing that this approach has the potential to
be used to explore integration of large omic datasets. The gene association findings obtained from this
work were incorporated into the CHO consensus metabolic reconstruction iCHO1766.
Identification of markers associated to increased productivity in CHO cells is an ongoing effort which has
been approached from the genomics, proteomics and metabolomics perspective. In this work we integrate
transcriptomic data for two CHO cell clones that display high (HP) and low (LP) production of IgG into the
CHO iNJ1301 GSM. To achieve this goal, iMAT (integrative metabolic analysis tool) was used to reduce
iNJ1301 for representation of both scenarios. The obtained models exhibit characteristics consistent with
previous findings on increased productivity in CHO cells. This approach is then coupled with uniform
random sampling finding that although both models share central carbon metabolism reactions essential
for biomass synthesis their flux distributions showed different metabolic scenarios with a HP clone focused
mainly on the TCA cycle and pentose phosphate pathway. It is concluded that this novel approach where
two system biology tools are coupled is more suited for the analysis of complex eukaryote organisms where
their biological objective remains unclear, such as mammalian cell lines.
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Introduction

Mammalian cells are currently one of the main hosts for production of biopharmaceuticals,
comprising more than 50% of the approved therapeutic proteins available on the market (Zhu,
2012) (Table 1). Cell lines such as Chinese Hamster Ovary (CHO) cells, Murine myeloma
(NSO and SP2/0) cells among others are utilized due to their ability to perform post-translational
modifications similar to the ones present in humans. Specifically, CHO cells have been widely
used due to their ability to grow either in suspension or in adherence and the existence of
characterized protocols for gene transfection and clone selection (Butler, 2005).

Table 1: Biopharmaceutical products approved by FDA. Adapted from Zhu (2012)

Product Year
approved

Description Expression system

Belatacept (CTL4-Ig Fu-
sion)

2011 CTLA4-Ig Mutant Mammalian

Yervoy (Ipilimumab) 2011 Anti-CTLAl4 MAb Mammalian
Victoza (Liraglutide) 2010 GLP-1 Analog Yeast
Pancreaze (Pancrelipase) 2010 Pancreatic enzyme Tissue Extraction
Vpriv (Velaflucerase) 2010 Human

glycocerebrosidae
Mammalian

Xiaflex (Collagenase) 2010 Clostridial Collagenase
for Injection

Bacteria (Clostridium his-
tolyticum)

Provenge (Prostate Can-
cer Cellular Vaccine)

2010 Prostatic Acid
Phosphatase (PAP)-
GM-CSF

Cancer cell

Lumizyme (Alflucosidase
alfa)

2010 Glucosidase alfa Mammalian (CHO)

Arzerra (Ofatumumab) 2009 Anti C20 MAb Mammalian

With the increasing demand for biopharmaceuticals, there is also a growing need for new
strategies to optimize the performance of mammalian cell culture processes. Strategies such
as media design (Altamirano et al., 2000, 2006; Mochizuki et al., 1993), fed-batch cultures with
gradual glucose addition (Ljunggren & Häggström, 1994; Xie & Wang, 1994; Bibila & Robinson,
1995; Zhou et al., 1997, 1995) and cell line engineering are used to improve cellular productivity
in culture.

Engineering of mammalian hosts has been mainly focused on altering cellular metabolism
(Irani et al., 2002; Chen et al., 2001; Wlaschin & Hu, 2007; Jimenez et al., 2011; Kim & Lee,
2007), cell cycle control, apoptosis (Fussenegger et al., 1997; Mazur et al., 1998; Carvalhal et al.,

1



0 Introduction

2003; Meents et al., 2002), protein secretion (Dorner et al., 1992; Borth et al., 2005; Kitchin &
Flickinger, 1995), and glycosylation (Ferrara et al., 2006; Yamane-Ohnuki et al., 2004; Mori et al.,
2004; Kanda et al., 2006) (Table 2). These rational modifications have successfully contributed to
improve productivity in large-scale biopharmaceutical production.

Table 2: Cell engineering strategies to improve mammalian cell metabolism. Adapted from Lim
et al. (2010)

Gene Mechanism of action Effects Reference(s)

LDH A Reduced flux of pyruvate to
lactate

Reduced glucose consumption
and lactate production rate

(Chen et al., 2001;
Kim & Lee, 2007)

Pyruvate
carboxylase

Over-expression of yeast PC to
achieve enhanced conversion of
pyruvate into oxaloacetate

Reduced glucose consumption
and lactate production rate

(Irani et al., 2002;
Elias et al., 2003)

GS Over-expression of GS to enable
conversion of glutamate into
glutamine

Eliminate need for glutamine,
reduced ammonia and lactate
accumulation

(Bell et al., 1995;
Cockett et al., 1990)

p27KIPI Binds and inhibits cyclin/CDK
complexes to arrest in G1-phase

Induced growth-arrest and im-
proved specific productivities

(Fussenegger et al.,
1997; Mazur et al.,
1998; Carvalhal et al.,
2003; Meents et al.,
2002)

p53175P Induces p21CIPI, GADD45 and
IGF-BP3

Induced growth arrest and im-
proved specific productivity

(Fussenegger et al.,
1997; Mazur et al.,
1998)

IRF-I Induces p21CIPI Induces growth arrest but did not
improve specific productivity in
BHK cells

(Kirchhoff et al., 1996;
Carvalhal et al., 2000)

BiP Facilitates folding assembly of
proteins in ER

Impeded secretion of recombi-
nant proteins in CHO cells

(Dorner et al., 1992;
Borth et al., 2005)

PDI Catalyzes formation of disulfide
bonds

Improved IgG secretion in CHO
cells

(Borth et al., 2005;
Kitchin & Flickinger,
1995)

ManII Removes mannose in an
α1,3 or α1,6-linkage from
Man5(GlcNAc)3

Increased proportion of
complex-type glycans on
antibodies

(Ferrara et al., 2006)

Fut8 Transfers fucose from GDP-
fucose to GlncNAc in an α1,6-
linkage (core fucose)

siRNA knockdown/double
knockout of Fut8 led to
antibodies with defucosylated
structures and enhanced ADCC
effect of up to 100-fold

(Yamane-Ohnuki
et al., 2004; Mori
et al., 2004; Kanda
et al., 2006)

An alternative strategy to design cell clones with improved productivity is to use ”omics” to
identify markers associated with product synthesis. This approach has been tackled from the
transcriptomic, proteomic and metabolomic perspective where studies have compared differences
in cell line productivity (Dietmair et al., 2012; Farrell et al., 2014; Orellana et al., 2015; Carlage
et al., 2009; Chong et al., 2012; Kang et al., 2014; Nissom et al., 2006). Overall findings suggest
that high producer CHO cell clones have an up-regulated metabolism associated with unfolded
protein response (Carlage et al., 2009), citric acid cycle, oxidative phosphorilation, glutathione
metabolism (Orellana et al., 2015; Chong et al., 2012) and protein glycosylation (Chong et al.,
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2012) as well as an overal downregulation of cell growth (Carlage et al., 2009; Chong et al., 2012;
Nissom et al., 2006).

However, most of the previously mentioned efforts rely on basic research made in cancer cells
to identify potential gene targets for cell engineering, and statistical and clustering techniques for
identification of differentially expressed genes or proteins and despite that they have been used for
decades there are still cellular processes that have not been completely characterized. This lack
of understanding translates into the fact that most of culture improvements used in the industry
are based solely on statistic analysis (Legmann et al., 2009) rather than specific knowledge for
each cell line.

Genome-scale models

In order to give new insights on metabolism, genome-scale models have emerged as a powerful
tool since they provide a global representation of all biochemical transformations that could be
carried by a specific organism. This representation is given by coefficients in the stoichiometric
matrix (S) of size m×n, which define the mass balance among all the n reactions ensuring that the
total amount of any of the m metabolites being produced must be equal to its total consumption in
steady state. Additionally, each reaction can also be given upper and lower bounds which define
the maximum and minimum allowable fluxes of the reactions. These additional constraints are
mainly used to establish the composition of the extracellular environment and allow for a further
reduction of the solution space for feasible flux distributions.

Figure 1: Flux Balance Analysis (FBA): addition of constraints allow for a reduction of the allowable
solution space for finding a flux distribution for the metabolic reconstruction. Adapted from Orth
et al. (2010)

Flux Balance Analysis (FBA, Figure 1) is used to calculate a flux distribution (v) in the metabolic
network, thereby making it possible to predict the growth rate of the studied organism or rate
of production of a metabolite of interest. This is achieved by the definition of a phenotype, or
biological objective such as cellular growth, and using linear programming tools to solve the
optimization problem: a flux distribution that maximizes cell growth under the previously defined
context (Orth et al., 2010).

Genome-scale models (GSMs) also include logical rules called Gene Protein Reaction (GPR)
associations, which allow to illustrate the relationship between genes and reactions present in
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the metabolic reconstruction. Additionally, these logical rules are the basis for simulation of gene
knockouts (Burgard et al., 2003) and further studies on its effect on cellular metabolism (Figure 2).
This approach for studying cell metabolism has been used for metabolic engineering applications
(Lee et al., 2005; Burgard et al., 2003; Zelle et al., 2008), study of multi-species relationships
(Schilling et al., 2002; Stolyar et al., 2007) and contextualization of high throughput microarray
data (Shlomi et al., 2008) among several other applications (Oberhardt et al., 2009). Metabolic
reconstructions have been used to simulate alterations in cellular metabolism for a great number
of organisms (Feist et al., 2009).
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Figure 2: Gene Protein Reaction (GPR) associations: connections between genes and reactions
are represented as GPR associations by using Boolean rules. The first level (teal) corresponds to
genetic loci, the second level (pink) to transcripts, the third level (orange) to functional proteins and
the fourth level (blue) to reactions. Adapted from Reed et al. (2003)

Automatic generation of draft genome-scale models

The process of metabolic reconstruction has been previously described to be complex and time
consuming taking up to 2 years for a team of 6 people to reconstruct a model for a complex
organism such as Homo sapiens (Duarte et al., 2007). Thiele & Palsson (2010) have provided a
protocol describing 96 steps required for building a high-quality genome-scale model divided into
4 main stages: draft reconstruction, refinement, conversion of the reconstruction into computable
format and network evaluation.

Several tools have been developed towards an automatic generation of draft versions of GSMs
based on their genome annotation, EC numbers and or gene orthology (Karpe et al., 2011;
Henry et al., 2010; Notebaart et al., 2006; Loira et al., 2015). The modelSEED is a web-based
tool to generate draft versions of genome-scale models for prokaryote organisms, it bases
their predictions on direct automatic genome annotation and it is able to assemble a biomass
function based on predetermined reaction templates for gram positive and negative organisms.
This tool has been used to generate models for Escherichia coli, Clostridium acetobutylicum,
Ketogulonicigenium vulgare and Bacillus megaterium (Dash et al., 2014; Zou et al., 2012; Orth
et al., 2011; Zou et al., 2013) among others.

Pathway tools bases its pathway prediction on a previously annotated and manually curated
genome, this algorithm infers the reactome and metabolic pathways using information available on
the MetaCyc database(Caspi et al., 2010). The reactions catalyzed by a gene product are inferred
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from three information fields: their EC number, gene product name (enzyme name) and Gene
Ontology (GO) terms (Karpe et al., 2011).

Pantograph combines a template reaction knowledge base, ortholog mapping between two
organisms and experimental phenotypic evidence to build a genome-scale metabolic model for the
target organism. Since it uses ortholog information for its prediction, this tool does not require a
highly curated annotated genome for the target organism to generate its metabolic reconstruction
(Loira et al., 2015).

Mammalian genome-scale models

Published genome-scale models (Table 3) are based in available information for Mus musculus due
to its homology to mammalian cell lines and its availability (Sheikh et al., 2005; Quek & Nielsen,
2008; Selvarasu et al., 2010). Sheikh et al. (2005) proposed a genome-scale model for an
SP/2-derived mouse-mouse Hybridoma, which includes a generic metabolic network representing
carbon nitrogen and energetic metabolism. This reconstruction considers two compartments
(cytosol and mitochondria) with 872 intracellular metabolites involved in 1,220 reactions, of
which 473 are linked to genetic information. Metabolic flux analysis of the reconstructed network
predicted cellular growth, synthesis of inhibitory growth metabolites such as lactate and ammonia.
However, they were unable to predict alanine synthesis, or explain partial oxidation of glutamine
observed in vivo (Sheikh et al., 2005).

Table 3: Recent genome-scale models for mammalian cell lines (N/A: not available information)

Statistics Sheikh et al. (2005) Selvarasu et al. (2009) Selvarasu et al. (2012)
Cell line Hybridoma SP/2 Hybridoma CHO
Genes 473 724 N/A
Reactions 1,004 1,494 1,540
Metabolites 915 1,285 1,302
Compartments 3 3 3
Biomass metabolites 37 51 50

Reactions that allow alanine, aspartate and glutamate synthesis were included to obtain a
simulated profile and growth rate consistent with experimental data. Simulation results showed
the predominant use of glycolysis for ATP production, the relevance of the pyruvate node for
metabolic shift and a characteristic profile for lactate production/consumption during exponential
growth phase (Selvarasu et al., 2009).

Selvarasu et al., (2010) proposed a new Hybridoma genome-scale model that included
additional information regarding GPR associations and an improved connectivity in the metabolic
network for lipid, amino acids, carbohydrates and nucleotide synthesis. Flux balance analysis
(FBA) revealed that this metabolic network was topologically dominated by highly connected
metabolites and lipid metabolism was determined to have greater quantity of essential genes
and metabolites (Selvarasu et al., 2010). This reconstruction was subsequently upgraded to
include CHO genomic data and used to study intracellular metabolic changes during growth
and non-growth phases in fed-batch CHO cell culture thus providing a preliminary non-curated
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representation of CHO cell metabolism (Selvarasu et al., 2012).

Additionally a new metabolic reconstruction for Mus musculus metabolism based on the
human model Recon 1 (Duarte et al., 2007) was proposed by Sigurdsson et al., (2010), which
includes 1,415 genes, 2,212 gene associated reactions, 1,514 non-gene associated reactions and
considers reactions occurring in cytosol, mitochondria, Golgi, lysosome, ribosome, peroxisome,
nucleus and extracellular environment. This genome-scale metabolic model was able to predict
lethal genes as well as known flux distributions for non-lethal knockouts in mouse (Sigurdsson
et al., 2010).

However, as it has been previously mentioned these metabolic reconstructions are not based
on specific genome information for CHO cell lines, which makes applications such as integration
of genomic and transcriptomic data impossible. Thanks to the CHO genome sequencing project
(Hammond et al., 2012) there is currently available specific CHO genome database including all
the required information for the reconstruction of a genome-scale model for this cell line.

The availability of a CHO genome-scale model opens a new field of applications towards
a better understanding of their metabolism, particularly the integration of large omic datasets
which are currently studied using statistical tools could unveil new insights towards an improved
productivity in recombinant protein production.
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Objectives

The main goal of this work is to reconstruct a genome-scale model for CHO cells to study cellular
metabolism, and to use it to improve understanding of cellular processes that undergo improved
productivity for biopharmaceutical production. In order to achieve this four specific aims were
outlined:

1. Study existing genome-scale models oriented to mammalian cell lines currently used in the
biopharmaceutical industry.

2. Compare available automatic tools for the generation of eukaryote genome-scale models
in order to determine the most suitable approach to generate a draft CHO metabolic
reconstruction.

3. Generate a draft genome-scale model for CHO cells and study its topological properties and
validate this model using information retrieved from literature.

4. Expand the understanding of improved productivity in CHO cells using tools that allow
integration of transcriptomic data in genome-scale models.

Each of these objectives are covered in the following chapters of this document, with their
respective theoretical background and concluding remarks.
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1 | Analysis of the mouse iMM1415
genome-scale model

1.1 Abstract

Genome-scale models have been used as a tool for studying metabolism and the effect of
gene knockout and over-expression for several biotechnological platforms such as E. coli and S.
cerevisiae. These models reconstructions include logical (GPR: Gene Protein Reaction) rules that
represent the relationship between gene expression and the metabolic transformations that occur
in a specific organism.

Several tools and approaches have been developed to study cellular metabolism using
metabolic reconstructions. These include topological analysis of the metabolic network, and
sampling of the solution space in order to determine correlations between metabolic fluxes and
productivity or biomass synthesis.

In this chapter we analyzed the iMM1415 mouse metabolic reconstruction proposed by
Sigurdsson et al. (2010) which includes 1,415 genes associated with 3,727 reactions. Topological
analysis of this metabolic network showed that over 34% of its reactions corresponds to blocked
reactions that could not carry flux under any simulation, these reactions are potential candidates
for manual curation for improving this metabolic reconstruction. The iMM1415 metabolic model is
highly dominated by lipid metabolism, which comprises most of the obtained lethal knockouts, and
findings for potential metabolic engineering targets based on the implementation of a sampling
approach for studying the solution flux space of this model.

The obtained probability flux distribution showed a predominant use of glucose as main carbon
source with by-product synthesis mainly composed by pyruvate and lactate. This by-product
synthesis is concluded to be associated mainly with mass balance constraints and does not reflect
an inefficient metabolism as it has been observed for several mammalian cell lines. Although,
Flux Balance Analysis based strategies have been widely used for studying the effect of gene
knockouts in silico, we propose the use of alternative approaches such as random sampling of
the flux solution space for mammalian cell systems due to their complexity and the lack of a
consensus for the definition of an objective function.

This sampling approach could be expanded by including experimental measured fluxes for
finding potential bottlenecks for product synthesis in mammalian cell culture.
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1.2 Introduction

With the rising demand for new technologies for optimization of biotechnological processes it
is essential to develop new approaches that allow understanding of the complex systems that
are living organisms. The use of mathematical models for cellular metabolism, particularly
genome-scale models have been developed to test and predict manipulations, such as gene
knockouts, and gene over-expression and its effects on cell growth and productivity (Machado
et al., 2011).

Genome-scale metabolic models are constructed establishing links between enzymes and
isozymes coded in genes and the reactions that they catalyze. This relationship is represented
by GPR (Gene Protein Reaction) logical rules, which give these models the ability to predict
effects of gene expression changes on biomass and product synthesis. Each gene in the GPR
relationship could be either true if the gene is expressed or false if it has been knocked out, the
relationship between different genes in a GPR determines if the reaction is able to occur or not in
the metabolism (Machado et al., 2011; Loira et al., 2015).

By definition of an objective function it is possible to estimate the flux distributions among the
metabolic network and ultimately simulate which gene deletions are lethal for the organism, or
which gene additions or over-expressions have a positive effect on the organisms’ performance
(Burgard et al., 2003).

Estimation of the flux distribution in the metabolic network is determined by Flux Balance
Analysis (FBA), where physico chemical constraints such as mass balance, osmotic pressure and
thermodynamic are applied in order to define a solution space for the fluxes to be determined.
The definition of an objective function such as biomass allows for the final formulation of an
optimization problem which ends in the determination of the optimal flux distribution (Edwards &
Palsson, 2000; Varma & Palsson, 1994; Bonarius et al., 1997).

This approach has been used to analyze the metabolic capabilities of microbial organisms
such as E. coli (Edwards & Palsson, 2000), H. influenzae Rd (Edwards & Palsson, 1999) and
S. cerevisiae (Famili et al., 2003), among others. Hence identifying essential genes for different
phenotypes (aerobic, anaerobic growth), and in silico analysis of mutant strains (Edwards &
Palsson, 2000).

Several strategies have been developed using Flux Balance Analysis as a starting point for
analysis of the behavior of metabolic networks such as Phenotype phase plane (PhPP) analysis
where two parameters that describe the growth and growth conditions are defined as two axes in
a two dimensional space. By solving the optimal flux distribution for all points among the defined
intervals the obtained plane presents the different phenotypes observed on, for example, different
concentrations of glucose and oxygen (Edwards & Palsson, 2000).

Since Flux Balance Analysis does not explicitly represent all the possible flux values that each
reaction could carry, methods designed for exploring the flux solutions have been developed.
These methods include sampling of the set of all achievable flux distributions (Durot et al., 2009;
Almaas et al., 2004; Reed & Palsson, 2004; Wiback et al., 2004) and Flux Variability Analysis
(Durot et al., 2009; Mahadevan & Schilling, 2003).
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Uniform sampling of all the possible solutions gives an overview of the range of flux distributions
that can occur under certain conditions in stationary state. This analysis is based only on the
mathematical description thus avoiding any prior assumption on which metabolic states are most
likely to occur in vivo. These approach has been used to find correlation between higher fluxes in
certain reactions and its effect on an increase of the objective function (Durot et al., 2009; Price
et al., 2004; Becker et al., 2007).

On the other hand, Flux Variability Analysis (FVA) is an optimization procedure that computes
the minimal and maximal fluxes allowed for each reaction (Mahadevan & Schilling, 2003), this tool
identifies blocked reactions that do not carry flux or those that carry a non-null flux in all possible
metabolic state. This prediction of activity of reactions on specific set of metabolic constraints
has been carried away by several authors (Mahadevan & Schilling, 2003; Reed & Palsson, 2004;
Teusink & Smid, 2006; Feist et al., 2007; Shlomi et al., 2007).

Although these tools have been widely used for microbial genome-scale models, their
application in more complex organisms has been sparse due mainly to the size of the metabolic
network and complexity given by the presence of duplicate reactions on different cellular
compartments. In this work we study the structure and main behavior of the mouse genome-scale
model iMM1415 proposed previously by Sigurdsson et al. (2010), by applying these techniques
it is possible to identify targets that could improve cell growth or potentially product synthesis by
mammalian cell lines.

1.3 Material and methods

The mouse metabolic reconstruction iMM1415 based on the human genome-scale model Recon1
(Duarte et al., 2007) includes 1,415 genes associated to 2,212 reactions and 1,514 non-
gene associated reactions. This eukaryotic model considers reactions occurring in the cytosol,
mitochondria, Golgi apparatus, lysosome, ribosome, peroxisome, nucleus and the extracellular
environment (Sigurdsson et al., 2010). The structure of this metabolic network is analyzed from
the topological point of view and by using tools derived from the formulation of the Flux Balance
Analysis (FBA) problem.

1.3.1 Topological Analysis

A topological analysis of the metabolic reconstruction is performed by using the reconstruction
tool from the rBioNet COBRA toolbox extension (Thorleifsson & Thiele, 2011) which analyzes the
connectivity of the genome-scale model, classifying each metabolite by its degree which depicts
the connectivity of each node in the network. Additionally the presence of gaps is analyzed using
the detectDeadEnds script (Schellenberger et al., 2011) which find dead end metabolites in the
model. Dead ends are gaps of the metabolic network consisting on metabolites which either
participate in only one reaction or can only be produced or consumed in the model.

1.3.2 Flux Balance Analysis

The conversion of metabolites given by the reactions present in the mouse metabolic network is
represented in the stoichiometric matrix (S(m × n)) where m is the number of metabolites and n
is the reactions present in the metabolic reconstruction, by considering a flux vector v, the mass
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balance constraints in this metabolic network can be represented as it follows:

S · v = 0

Since the formulation of this problem has multiple feasible flux distributions, given that the number
of fluxes is greater than the number of mass balance constraints, a new set of constraints are
added in order to represent maximum and minimum flux values for each of the components of v:

αi ≤ vi ≤ βi

These constraints account for the thermodynamic constraints of reversibility for each of the
reactions, where αi could adopt negative values if the reaction is reversible or strictly positive if it
is not, and the maximum metabolic capacity of each reaction which is critical for the definition of
exchange reactions, where this constraints allow the definition of the growth media in which the
organism is growing.

The intersection of both set of restrictions defines a region in the flux space that it is referred
as the feasible set, this set can be further reduced by imposing kinetic or regulatory constraints,
and in the limiting condition where all constraints are known the feasible set may be reduced to a
single point.

By the definition of an objective function and linear programming (LP) it is possible to find
an unique distribution of vi values for the proposed system (Edwards & Palsson, 2000). In this
work the definition of the FBA and its resolution was performed using the optimizeCbModel script
included in the COBRA toolbox (Schellenberger et al., 2011; MATLAB, 2010) using maximization
of biomass synthesis as the objective function.

1.3.3 Knockout analysis

Knockout analysis was performed in order to find single gene deletions that alter biomass
synthesis using the singleGeneDeletion script in the COBRA toolbox (Schellenberger et al., 2011).
This algorithm performs single knockouts and evaluates all the gene protein reaction (GPR)
associations in order to find which reactions could not be carried on each knockout strain. If
this is the case the reaction upper and lower bounds are constrained to zero, and a Flux Balance
Analysis is then performed and the value of the obtained objective function flux is recorded for
further analysis.

1.3.4 Flux variability Analysis

Flux Variability Analysis (FVA) is performed in order to detect blocked reactions in the model, using
the optimizeCbModel included in the COBRA toolbox (Schellenberger et al., 2011) switching the
objective function to be a maximization or minimization of the flux for each reaction present in the
model.

1.3.5 Sampling

Uniform random-sampling is used to explore the solution space which includes all the possible flux
distributions that satisfy the constraints included in the formulation of the model. These include
mass balance and enzyme capacity constraints.
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Sampling was achieved using an Artificially Centering Hit-and-Run (ACHRS) sampler provided
by the COBRA toolbox (Schellenberger et al., 2011). These sampler selects 5,000 random set
points in order to find 5,000 solutions of the iMM1415 network.

The obtained results of this procedure include 5,000 values flux values for each of the reactions
present in the model. The flux distributions for key reactions in biomass synthesis were then
analyzed by plotting an histogram for each one of them in order to analyze the most probable
value for each reaction as well as its distribution.

Additionally a correlation analysis on the obtained solutions is made in order to determine
strong correlations between reaction fluxes and biomass synthesis, these reactions could be
potential candidates for metabolic engineering for an optimization of cell growth in vivo.

1.4 Results and Discussion

1.4.1 Topological analysis

The analyzed model has 1,415 genes associated with 3,727 reactions, organized to give the
distribution of degrees and nodes observed in Figure 1.1. This distribution presents a small
amount of metabolites that have a high connectivity on the network, while most of them only
participate in a small amount of reactions, according to what has been reported by several authors
for different metabolic reconstruction for different organisms (Edwards & Palsson, 1999, 2000;
Famili et al., 2003; Förster et al., 2003; Schilling et al., 2002). This is a reflection of the existence of
carrier molecules such as ATP, NADH, NADPH that participate on most reactions on this network,
while other molecules present lower degree, which are known to be essential for specific functions
of cellular metabolism (Palsson, 2006).

Figure 1.1: Node-degree distribution for the mouse genome-scale model iMM1415

On the other hand, the analyzed metabolic reconstruction includes 425 dead end metabolites,
which correspond to a 15% of the metabolites represented by this model. These compounds are
associated with gaps in the metabolic network, and are distributed among all the eight cellular
compartments included in the model (Figure 1.2).

Most of the dead-end metabolites are associated with the cytosol (34%) and mitochondria
(19%), however this is due to the fact that these compartments include most of the metabolites
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Table 1.1: Highly connected metabolites in the iMM1415 mouse model. The degree parameter
depicts the number of reactions in which each compound participates

Metabolite Compartment Degree

Hydrogen cytosol 590
ADP cytosol 164
akg cytosol 25

ala-L cytosol 26
atp cytosol 225
f6p cytosol 11

glc-D cytosol 15
gln-L cytosol 31
glu-L cytosol 47
h2o cytosol 384
lac cytosol 6
nh4 cytosol 49

glc-D extracellular 15
glu-L extracellular 12
h2o lysosome 185

accoa mitochondria 45
adp mitochondria 56
akg mitochondria 21

ala-L mitochondria 2
atp mitochondria 64
coa mitochondria 99

glu-L mitochondria 30
atp nucleus 32

present in the model and it is not a reflection of poor connectivity associated to these
compartments. The presence of these metabolites is associated with blocked reactions
present in the model, which are detected by Flux Variability Analysis.

Cytoplasm

Extracellular

Golgi

Lisosome

Mitochondria

Nucleus

Ribosome

Peroxisome

Figure 1.2: Compartment distribution of dead end metabolites
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FVA is performed in order to find reactions which are not able to carry non-zero fluxes
due to topology or constrains of the optimization problem. 1,295 of the 3,727 reactions in
this model correspond to blocked reactions, these reactions include transport reactions that
were previously restricted to carry zero flux in the formulation of the FBA problem due to the
previously defined media composition. Among the blocked reactions only 421 reactions included
metabolites previously detected as dead-end metabolites for this model. These reactions were
mainly associated with transport reactions, amino acid metabolism, fatty acid metabolism and
glycan metabolism.

1.4.2 Knockout Analysis

Genome-scale models can be used to simulate the effect of gene deletions in cellular growth and
productivity. These knockouts are simulated by analyzing each of the GPR (Gene protein reaction)
logical rules in order to determine if the deletion has an effect on the associated reaction.

A lethal knockout analysis was performed finding that the metabolic network iMM1415 presents
63 single lethal gene deletions associated with 174 reactions (Table 1.2). This number of genes
represents nearly 4% of the represented genes by this model which is consistent with robust
metabolic networks of complex organisms where multiple isozymes and alternative pathways are
present in order to prevent lethal effects of single gene deletions.

Table 1.2: Lethal gene deletions according to the iMM1415 metabolic model

Gene ID Reactions Metabolic pathway Metabolites

108147 AICART, IMPC IMP Biosynthesis amp, atp, damp, dgmp, gmp
11564 ADSL1, ADSL2 Nucleotides, IMP Biosynthesis amp, atp, damp, dgmp, gmp
19895 RPI Pentose Phosphate Pathway amp, atp, damp, dgmp, gmp
27053 ASNS1 Alanine and Aspartate Metabolism asn
110196 DMATTx, GRTTx Cholesterol Metabolism chsterol
14137 SQLSr Cholesterol Metabolism chsterol
235293 LSTO1r, LSTO2r Cholesterol Metabolism chsterol
66586 CLS Glycerophospholipid Metabolism clpn
14555 G3PD1 Glycerophospholipid Metabolism clpn, pail, pchol, pe, pglyc, ps
100042918 CYOR-u10m Oxidative Phosphorylation cmp, dcmp,dtmp,tmp
13244 DHCRD1, DHCRD2 Sphingolipid Metabolism sphmyln

Further analysis was performed in order to study if there is a predominant metabolite that
is associated with a non growth simulated phenotype, finding that most of them are related
with cholesterol metabolism, amino acid metabolism and pentose phosphate pathway which is
consistent with previous simulations made by Sigurdsson et al. (2010). This is also consistent with
other mouse metabolic reconstructions, where cholesterol and lipid metabolism was found to be
of extreme importance for obtaining a non-lethal phenotype in flux balance analysis simulations
(Selvarasu et al., 2010).

Although several strategies have been developed in order to find gene knockout candidates
(Burgard et al., 2003) to improve performance of biological systems, none of the knockout analysis
performed in this work were able to improve biomass synthesis previously estimated by flux
balance analysis, which is mainly due to the formulation of the FBA problem as an optimization
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where biomass is maximized.

In order to find new candidate targets for improvement of mammalian cell lines we performed
an unbiased exploration of the metabolic network: Uniform random sampling of the flux space
solution, which will be discussed in the next section.

1.4.3 Flux Balance Analysis and sampling

Uniform random-sampling of the iMM1415 metabolic network was achieved using the ACHRS
sampler available on the COBRA toolbox. The distribution of fluxes is represented as a histogram
of all possible flux values for the main exchange reactions associated with biomass synthesis
(Figure 1.3). This distribution of fluxes is not subjected to a biological objective, thus it displays
different values for biomass synthesis obtained from valid solutions that satisfy all the capacity and
mass balance constraints of the formulation of the FBA problem.
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Figure 1.3: Probability flux distribution for biomass production and relevant exchange reactions.
Positive fluxes indicate metabolite synthesis, fluxes are in [mmol/gDW h]

An analysis of the obtained distributions exhibit the model behavior without the pressure added
by the maximization of an objective function. Particularly for the iMM1415 mouse reconstruction
predominant negative values are obtained for the glucose exchange reaction which are an
indication of the relevance of this carbon source for supporting biomass synthesis. Simulated
values for over 5000 samples showed a predominant synthesis of lactate and pyruvate as
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by-products of carbon metabolism.

Lactate has been known to be a secondary metabolite of inefficient carbon metabolism
characterized by over-consumption of glucose, slower cell growth and decreased productivity
(Omasa et al., 1992; Glacken et al., 1986; Chen et al., 2001; Gambhir et al., 2003). This metabolic
state also known as the Warburg effect is not observed on the obtained flux distribution, where
lactate and pyruvate are synthesized at lower rates that the ones observed experimentally (Europa
et al., 2000). Meaning that this phenomena is due to additional regulatory constraints that are not
present on the formulation of this metabolic model.

Based on the obtained fluxes for key reactions associated with biomass synthesis, the most
probable flux value is determined by calculating the median for the obtained flux distributions
presented previously (Table 1.3). Biomass synthesis flux values are lower than the ones obtained
from Flux Balance Analysis (FBA) simulations. The decrease of this key parameter is explained
by the lack of a predefined biological objective on the sampling approach as opposed to the FBA
problem formulation. However, the most probable flux value obtained from this analysis is more
consistent with maximum growth rates observed in mammalian cells in culture (Jimenez et al.,
2011; Altamirano et al., 2006; Wilkens et al., 2011).

Table 1.3: Comparison between calculated fluxes. The most probable flux corresponds to the peak
of the histogram made from the uniform random sampling, lower and upper bound were determined
by FVA. Fluxes are in [mmol/gDW h]

Reaction ID Reaction name vmin Most probable flux vmax

Biomass Biomass synthesis 1.3634 0.003 1.3634
EX glc Glucose exchange -1 -0.9816 2.3845
EX O2 Oxygen exchange -100 -78.71 -22.02

EX CO2 CO2 exchange -100 64.46 144.4
EX lac Lactate exchange 0 0.0501 7.7
EX pyr Pyruvate exchange 0 0.0546 8.5154

Mathematical linear programming is used to find an optimal flux distribution that maximizes
cell growth. However, this assumption has been found not to be valid in cases such as overflow
metabolism (Ibarra et al., 2002), eukaryote organisms such as S. cerevisiae (Sánchez et al.,
2012) multi-tissue genome-scale metabolic networks (Bordbar et al., 2011), and plants (Collakova
et al., 2012). Although previous publications using genome-scale models for studying mammalian
cell lines were able to correctly predict cell growth using FBA (Sheikh et al., 2005; Selvarasu
et al., 2010, 2012), these predictions were achieved by applying several constraints for uptake
and synthesis of metabolites. By using a sampling approach rather than FBA we are able to find
values for cell growth without imposing any additional constraints on the metabolic reconstruction.

This alternative approach where the flux solution space is explored by uniform sampling could
be able to find new metabolic engineering targets for improving biomass and product synthesis. In
order to achieve this goal a correlation matrix (Figure 1.4) is calculated in order to find candidate
reactions for improve biomass synthesis. Figure 1.4 shows that most of the reactions have a
nearly null correlation with each other, but certain groups of reactions arrise showing correlation

16



1.4 Results and Discussion 1 Analysis of the mouse iMM1415 genome-scale model

indexes close to 1.
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Figure 1.4: Correlation matrix calculated using 5000 sample points for the 3726 reactions in the
iMM1415 model.

Particularly for biomass synthesis, flux through cardiolipin synthase reaction is found to be
highly correlated with biomass synthesis in the iMM1415 metabolic model. This reaction is
responsable for production of cardiolipin from phosphatidyl glycerol and CDP-diacylglycerol (Lu
et al., 2006). Cardiolipin synthase has been found no to be essential for growth in S. cerevisiae
but its deletion leads to a decrease of 30-75% on cell growth (Tuller et al., 1998). Despite the fact
that cardiolipin has been found to essential for many mitochondrial processes, no studies of the
effect of over-expressing this gene have been made to the date.

Cardiolipin is included in the biomass composition for Mus musculus proposed by Sigurdsson
et al. (2010) due to their relevance in composition of the mitochondrial membrane, however the
stoichiometric contribution to the biomass reaction is considerable lower than the ones made by
amino acids and other essential compounds such as cholesterol.

As it has been previously mentioned lipid metabolism has been found to be of greater
importance for biomass synthesis in previous studies of this metabolic reconstruction and other
mouse based mammalian cell lines metabolic reconstructions (Sigurdsson et al., 2010; Selvarasu
et al., 2010). By using a sampling approach we were able to find a new potential target that could
be studied for improving cell growth. This approach could be expanded for finding new potential
metabolic engineering targets for product synthesis.
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1.5 Conclusions

Genome-scale models have been used for exploring cellular metabolism, particularly the effect
of gene knockouts and over-expression for several organisms of interest for the biotechnology
industry. These representations include all the existing reactions on the studied organism and their
correlation with the genes that encode for enzymes associated with their occurrence. However,
most of these approaches are focused on finding an unique flux distribution by solving mass
balance and flux capacity constraints and an biological objective function, which for eukaryote
organisms has been discussed not to be as straightforward as for microorganisms such as E. coli.

The iMM1415 mouse metabolic reconstruction proposed by Sigurdsson et al. (2010) has been
previously studied in order to find lethal knockouts for validation of this metabolic reconstruction.
In order to achieve that goal, Flux Balance Analysis based simulations were performed and
then compared with experimental data. In this chapter we take this analysis one step further by
assessing blocked reactions using Flux Variability Analysis finding that over 34% of the reactions
present are not able to carry any flux, these reactions which are also associated with synthesis of
dead-end metabolites are candidates for future curation of this metabolic reconstruction.

Gene knockout analysis of this metabolic reconstruction is performed in order to find potential
metabolic engineering candidates that could lead to an increase of cell growth without finding any
knockouts that improve biomass synthesis. This is due to the formulation of the Flux Balance
Analysis optimization problem where the flux distribution is already being optimized.

Due to the limitations that a FBA based approach imposes, an uniform random sampling
approach was used to explore the behavior of this metabolic reconstruction. The probability
flux distribution obtained showed a predominant use of glucose as carbon source and lactate
and pyruvate synthesis as by-products. Additionally the most probable value for cell growth is
consistent with maximum growth rates observed in mammalian cells in culture, contrary to values
obtained using the classical FBA approach. The definition of a biological objective for complex
organisms such as mammalian cells has been previously discussed finding that for several cases
the assumption of maximization of growth rate is not valid. The obtained results suggest that using
a sampling approach could give a better representation of mammalian cell metabolism.

Further analysis on the probability flux distribution among 5,000 samples revealed that
cardiolipin synthase is highly correlated with biomass synthesis. This finding is backed by previous
analysis made on mammalian metabolic reconstructions where lipid metabolism has been found
to have a great impact on biomass synthesis. Additionally, several studies have found this gene to
be essential for cell growth at high temperatures for eukaryote organisms such as S. cerevisiae.

This sampling approach could be expanded by including experimental constraints regarding
extracellular fluxes in order to give a better representation of flux distributions and finding potential
bottlenecks for product synthesis in mammalian cell culture.

1.6 Supplementary Material

1.6.1 Supplementary files

• 01iMM1415knockoutAnalysis.xls: knockout analysis results for the iMM1415 model
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• 01SamplingiMM1415.mat: sampling of 5,000 flux distribution of the iMM1415 metabolic
reconstruction
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2 | Comparative study on strategies
for the generation of a CHO
genome-scale model

2.1 Abstract

Genome-scale model reconstruction is a complex and time-consuming process, henceworth
several automatic strategies have been developed to generate preliminar draft genome-scale
models based on the organisms genome, its curated annotation or ortholog information.

Although most of these methods are broadly used, a comparison between them has not yet
been made, and due to the inherent complexity of eukaryotic organisms it is extremely important
to select an appropriate tool to develop a draft version of a CHO metabolic reconstruction that
minimizes manual curation while guaranteeing a high quality of the obtained model.

In this chapter, three CHO draft genome-scale models were generated using modelSEED
(CHO-modelSeed), Pathway tools (CHO-Pathway tools) and Pantograph (CHO-Pantograph). The
obtained models were then compared based on the presence of precursors of CHO cells biomass,
number of compartments, genes and finally network analysis.

Based on the comparative analysis among the obtained models we propose that the choice of
an algorithm for generating genome-scale models depends mainly on two factors: the complexity
and the level of available information for the studied organism. Particularly for CHO cells,
modelSEED is an easy to use algorithm that only requires the unannotated genome sequence,
but since it was formulated for prokaryotes it is unable to manage large genomes and different
cellular compartments.

On the other hand, Pathway tools requires an highly curated genome annotation that is not
currently available for CHO cells. Despite this issue, the obtained CHO-Pathway tools model is
well connected and has a great number of reactions associated to 618 genes and only two missing
biomass compounds.

Pantograph bases its predictions on orthology mapping and a template model, thus the
obtained model (959 genes, 3,205 reactions) inherits all the reactions added on the gap filling
process made for the previous metabolic reconstruction. Contrary to the previous analyzed
methods, this algorithm was able to generate a CHO draft model that has different gene
associations for identical reactions occurring on different cell compartments, and is able to
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represent all the metabolites included on the CHO biomass reaction.

We propose that Pantograph is the best suited method to be used for the generation of a
CHO genome-scale model. This method could be complemented with information obtained from
different models in order to deliver an improved CHO draft genome scale model.

2.2 Introduction

Genome-scale models (GSM) have emerged as a powerful tool to give new insights on metabolism,
since they provide a global representation of all biochemical transformations that could be carried
by a specific organism. To illustrate the relationship between genes and reactions, GSM include
logical rules called Gene Protein Reaction (GPR) associations, which allow to simulate knockouts
of specific genes and its effects on cellular metabolism (Thiele & Palsson, 2010).

However, the process of metabolic reconstruction has been previously described to be
complex and time consuming: it can take from 6 months for a well-studied bacterial genome,
or up to 2 years for a team of 6 people to reconstruct the human metabolism (Duarte et al.,
2007). Thiele & Palsson (2010) have provided a protocol describing each of the 96 steps required
for building a high-quality genome-scale metabolic reconstruction divided into 4 main stages:
draft reconstruction, refinement, conversion of reconstruction into computable format and network
evaluation. These stages are continuously iterated until model predictions are similar to phenotypic
characteristics of the target organism.

Motivated by the inherent complexity of this process and the potential applications for GSM,
several tools have been developed towards an automatic generation of draft versions of genome-
scale models. Tools such as ModelSEED, Pantograph and Pathway tools are able to establish draft
versions of the desired GSM based on genome annotation, EC numbers and or gene orthology
(Karpe et al., 2011; Henry et al., 2010; Notebaart et al., 2006; Loira et al., 2015).

ModelSEED (Henry et al., 2010) is a web-based tool to generate draft versions of genome-
scale models. It starts from an assembled genome sequence by genome annotation carried by
the RAST (Rapid Annotation Server) server in order to generate a preliminary reconstruction for
each organism that consists of a reaction network including GPR associations, reversibility and an
organism-specific biomass reaction.

Gene Protein Reaction associations are established based on the output for genome
annotation and mapping between biochemical reactions and standarized functional roles assigned
to genes made by RAST. This mapping is used to differentiate between formation of protein
complexes to catalyze a certain reaction (and connector on the GPR rule), and cases where
multiple protein products are able to carry the same reaction (or ) (Henry et al., 2010).

During the preliminary reconstruction stage, modelSEED is able to assemble a biomass
function based on predetermined reaction templates for gram positive and negative
microorganisms. Additionally it performs an auto-completion of the obtained network based
on databases such as KEGG and 13 published genome-scale models and Flux Variability Analysis
(FVA) where reactions are classified as essential, active or inactive, the latter indicating a gap in
the metabolic network. Flux Balance Analysis (FBA) is then used to perform an gene essentiality
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consistency check, where the results are compared with reported gene essentiality data for the
desired organism (Henry et al., 2010).

This tool has been used to generate models for Escherichia coli, Clostridium acetobutylicum,
Ketogulonicigenium vulgare and Bacillus megaterium (Dash et al., 2014; Zou et al., 2012; Orth
et al., 2011; Zou et al., 2013). However, since its main use is oriented to generate genome-scale
models for prokaryotes it is not capable of processing large genome sequence, deal with different
cellular compartments or to generate a biomass equation for eukaryotic organisms.

Unlike modelSEED, Pathway tools bases its pathway prediction on an previously annotated
and manually curated genome. Based on this information it infers the reactome and metabolic
pathways using information available on the MetaCyc database which has been optimized for
pathway prediction by the addition of taxonomic information associated to specific pathways and
the division of pathways into smaller segments conserved by evolution (Caspi et al., 2010). The
reactions catalyzed by a gene product are inferred from three information fields present in the
input genbank file for a gene product: the EC number, gene product name (enzyme name) and
Gene Ontology (GO) terms (Karpe et al., 2011).

By finding the metabolic pathways present in the studied organism, Pathway tools is then
able to use this information to search for missing enzymes and fill gaps in the metabolic
network hence reducing computational demands on gap filling. However this process is hard
because reaction inference is imperfect, some reaction are present in multiple pathways and
pathway variants share many reactions in common, increasing size of Metacyc (Karpe et al., 2011).

Pantograph combines a template reaction knowledge base, ortholog mapping between two
organisms, and experimental phenotypic evidence to build a genome-scale metabolic model for a
target organism. This tool has the ability to inherit information from a well-curated template model
and deal with compartments, hence Pantograph can be used for generate GSM for eukaryotic
organisms, providing an advantage over other reconstruction methods mentioned previously (Loira
et al., 2015).

This method bases the conservation of metabolic reactions on ortholog mapping, orthologs
are genes from different species that derive from a single gene in their last common ancestor.
Such genes are known to have often retained identical biological roles despite the speciation
event (Fitch, 1970). Often, this sequences have duplicated after two species diverged from each
other. In this case there is more than one ortholog in one or both species and the orthologs are
said to have a one-to-many or many-to-many relationship (Remm et al., 2001).

The identification of orthology groups has proven to be helpful for genome annotation,
comparative genomics and for search of drug targets in microbial genomes (Tatusov et al.,
1997; Galperin & Koonin, 1999). Several automatic tools have been developed for ortholog
identification, such as inParanoid and orthoMCL. inParanoid stands for in-paralog and ortholog
identification. This method is based on a all-versus-all BLAST-based sequence comparison
between two genomes to detect orthologs based on the principle that ortholog sequences should
score higher with each other than any other sequence in the other genome. This comparison is
then complemented with special rules for cluster analysis in order to extract orthologs and paralogs
arising from duplication after speciation (in-paralogs) (Remm et al., 2001). orthoMCL serves the
same purpose as inParanoid but it differs in the requirement that recent paralogs must be more
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similar to each other than to any sequence from other species. This method can also be extended
to cluster orthologs from multiple species(Li et al., 2003). To resolve arising issues due to the
many-to-many orthologous relationships considering at least two species, orthoMCL applies the
Markov Cluster algortihm (Van Dongen, 2000), which has been successfully applied for clustering
large sets of protein sequences with complex domain structures (Enright et al., 2002).

2.3 Materials and methods

In order to determine which method would be used for the generation of the CHO genome-scale
model we tested three tools that allow an automatic generation of draft models based on available
information for this cell line (Figure 2.1). The generated models were then modified to include an
accurate biomass representation for CHO cells proposed by Selvarasu et al. (2012).

pathway Tools

Draft CHO
model

 Rattus

Projection
Homo sapiens

inParanoid

orthoMCL

Ortholog
search

Mus musculus

norvegicus

CHO-K1
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proteome

proteome

proteome

proteome

CHO-K1
genome

server
RAST annotation

CHO genome
annotation

modelSEED

Draft CHO
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CHO-K1 genome
annotation

Figure 2.1: Generation of three CHO genome-scale draft models using Pantograph, modelSeed
and Pathway Tools

2.3.1 ModelSEED

The unannotated CHO genome was retrieved from the CHO genome initiative (Hammond
et al., 2012) and uploaded to the RAST server in order to obtain an automatically annotated
genome to be used as input for modelSEED. Since CHO cells have a large genome compared
to prokaryotes, the input information was segmented in order to annotate different chromosomes
in parallel obtaining one model by chromosome or chromosome pair in modelSEED as output.
This sub-model approach for generating genome-scale models is achieved due to the fact that the
modelSEED database establishes standard identifiers for metabolites and its reactions.

The obtained models were then merged using MATLAB and the COBRA toolbox (MATLAB,
2010; Schellenberger et al., 2011) in order to obtain a CHO genome-scale model that keeps all
the gene associations computed originally by modelSEED. The rewriting of genome associations
was achieved by combining different gene rules of repeated reactions by adding an or connector
between both gene associations.
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2.3.2 Pathway tools

An annotated version of the CHO genome was retrieved from NCBI (Genbank ID 301008) and a
fasta file including all the gene sequences obtained from the CHO genome database were used
as input for Pathway Tools.

The obtained model was then modified in order to convert the gene identifiers to be compatible
with the NCBI database and compare it with the alternative CHO genome-scale draft models. To
achieve this goal gene descriptions provided by pathway tools were analyzed and compared with
the annotated CHO genome in order to find matches between gene names.

Since different gene IDs could match the same gene description provided by Pathway tools,
each case was analyzed in order to include all the ncbi identifiers that were found on the CHO
genome annotation.

2.3.3 Pantograph

A metabolic reconstruction for Mus musculus iMM1415 based on Recon 1 (Duarte et al., 2007)
was used as template (Figure 3.1), this genome-scale model has 1,415 genes associated to
2,212 reactions and 1,514 non-gene associated reactions. This eukaryotic model considers
reactions occuring in the cytosol, mitochondria, golgi, lysosome, ribosome, peroxisome, nucleus
and extracellular environment (Sigurdsson et al., 2010).

Ortholog search was performed using the stand-alone versions of inParanoid (Remm et al.,
2001) and ortho-MCL (Li et al., 2003), which find clusters of ortholog genes based on similarity
scores calculated by NCBI-Blast between proteomes of the analyzed species. The proteome
sequences were retrieved from the CHO genome initiative (Hammond et al., 2012) and Ensembl
(Flicek et al., 2013), in order to find orthologs between CHO and Mus musculus and CHO and
Homo sapiens. For ortholog search using orthoMCL the proteome of Rattus norvegicus was also
used (Figure 3.1).

2.3.4 Constrained-based flux analysis

Critical components for biomass synthesis were identified by analyzing metabolic pathways that
lead to its synthesis using the COBRA toolbox (Schellenberger et al., 2011) which has specific
functions for the study of cellular metabolism such as knockout studies and Flux Balance Analysis.

CHO cell composition was derived from the biomass function obtained from the analysis of five
CHO cell lines (CHOmAB M50-9, M500-7, CHO K1, CHO DG44 and CHO DXB11) (Selvarasu
et al., 2012). The ability of these models to synthesize biomass was tested by inspection of the
presence of all the biomass precursor and by the use of the biomassPrecursorCheck tool available
on the COBRA Toolbox (Schellenberger et al., 2011).

In order to test the connectivity of the obtained networks, GapFind (Kumar et al., 2007) was
used to find dead end metabolites existing on each of the studied genome-scale models. This
method explores the stoichiometric matrix in order to find metabolites that participate in only one
reaction or can only be produced or consumed in the model.
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2.4 Results and Discussion

Three models were generated using modelSEED, Pathway Tools and Pantograph. These
algorithms mainly differ on the information that they use to generate an initial or draft version of
the genome-scale model. ModelSEED and Pantograph require an unannotated version of the
genome and proteome as an input respectively. On the other hand, Pathway tools requires an
highly curated genome annotation for generating a draft metabolic reconstruction.

The obtained CHO models were then analyzed to test their ability to produce biomass
precursors, based on the composition proposed by Selvarasu et al. (2012). Additionally, their
genome-associations were studied in order to establish the ability of each of the generated models
to represent the CHO metabolism and its association with its genome.

2.4.1 Obtained draft genome-scale models

Using modelSEED six models were generated from the unannotated CHO genome sequence
(Chromosomes 1, 2 and 3, 4 and 5, 6, 7, 8 and X). These models are combined in order to
obtain a CHO genome-scale draft model (Table 2.1). The obtained CHO-Seed model has 648
reactions associated to 1,700 genes among which are included Unknown genes identified by this
algorithm for three reactions associated to DNA replication, Protein biosynthesis and a NADH
dehydrogenase.

Table 2.1: Constructed genome-scale models using modelSeed: six models were initially obtained
for different chromosomes of CHO (CHO-C1, CHO-C2-3, CHO-C4-5, CHO-C6, CHO-C7 and CHO-
C8-x) and then merged to form the CHO-Seed Model

Statistics CHO-C1 CHO-C2-3 CHO-C4-5 CHO-C6 CHO-C7 CHO-8-x CHO-Seed
Genes 118 298 152 567 283 303 1,700
Reactions 412 473 431 456 445 451 648
Metabolites 441 517 462 483 471 481 632
Compartments 2 2 2 2 2 2 2

Since this method is based on automatic genome annotation, modelSEED creates its own
gene names which could not be directly mapped to standard gene NCBI identifiers, which have
been recognized as a standard by the metabolic reconstruction community. Thus making it
impossible to perform a direct comparison between considered genes, and reactions between
CHO-Seed and other CHO draft reconstructions generated in this work.

The CHO-Seed model only considers cytosolic and extracellular reactions and it lacks
representation for five biomass components: N-Acetylneuraminate, cholesterol, glycogen, 2-
phosphoglycolate and sphingomyelin, which are known for being present mainly in mammalian
cells. The absence of this metabolites on the metabolic network is due to the fact that the
modelSEED database has been optimized for its use on prokaryotes for it doesn’t have information
regarding the reactions that lead to synthesis or consumption of these compounds.

Pathway tools initially identifies 772 reactions by their EC number, enzyme name and or GO
term, 87 reactions with ambiguous enzyme name matches and 4,311 genes as candidates for
probable metabolic enzymes that were not included in the model. By processing this information
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the obtained CHO-Pathway Tools model has 1,034 reactions associated to 618 genes and
includes only two cellular compartments: cytoplasm and an extracellular environment.

Further analysis on Pathway tools gene identifiers reveals that most of them map to a single
ID of the NCBI gene database. After integration of the results of this analysis the number of genes
present on the CHO-Pathway Tools genome-scale model is reduced from 772 to 496 genes. This
match was based on gene names provided as output files by pathway tools and the genome
annotation used as an input for Pathway tools.

Unlike the CHO-ModelSeed model, CHO-PathwayTools includes most of the metabolites that
are present on the CHO biomass composition proposed by Selvarasu et al. (2012). Metabolites
such as spermidine, putrescine and sphingomyelin are present on this metabolic reconstruction,
and only two compounds are absent: cardiolipin and glycogen. This reduction on the metabolites
required to be added to the network in order to make it functional is a direct reflection of a better
draft model obtained using Pathway Tools over Model Seed.

In order to obtain a CHO-Pantograph draft model 15,977 groups of ortholog genes between
Homo sapiens and CHO were detected, as well as 17,795 for Mus musculus. Using orthoMCL
19,082 clusters of orthologs were detected for Mus musculus, Homo sapiens and Rattus
Norvegicus (Table 2.2).

Table 2.2: Ortholog group statistics for CHO-Mus musculus and CHO-Homo sapiens search:
groups detected using inParanoid and orthoMCL, number of groups including genes from both
organisms, average size of detected groups and one to one gene mappings

Orthologs Groups Both organisms Average size One-to-one
CHO-Mus musculus 13,545 13,544 4 12,082
CHO-Homo sapiens 15,917 15,917 2 14,558

With this information a CHO genome-scale were generated using Pantograph (Loira et al.,
2015) using the iMM1415 model as template. The obtained model has 3,205 reactions and
includes information associated to 959 genes in the metabolic network (Table 2.3). Contrary to
what was observed for the previously presented draft models, all the metabolites for biomass
production are represented in this draft model, which is due to the fact that Pantograph
inherits all the manual curation made for the template Mus musculus genome-scale model.
An additional consequence of this feature is that the CHO-Pantograph draft model includes
additional compartments not present on the previously obtained reconstructions (Table 2.3). The
CHO-Pantograph model includes 8 compartments: cytosol, golgi, nucleus, peroxisome, lysosome,
ribosome, mitochondria and the extracellular environment, contrary to the CHO-modelSeed and
CHO-Pathway tools models that only include cytosol and extracellular compartments.

2.4.2 Gene Analysis

It has been previously noted that comparison of metabolic reconstructions is a complex procedure
due mainly to lack of standards for the publication of genome-scale models (Oberhardt et al.,
2011), which is translated in different metabolite, reaction and gene identifiers.
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Table 2.3: Obtained genome-scale models using modelSeed, pantograph and Pathway tools

Statistics CHO-modelSeed CHO-Pathway Tools CHO-Pantograph
Genes 1,700 618 959
Reactions 648 1,034 3,205
Metabolites 632 1,230 2,775
Compartments 2 2 8

An analysis of the included genes is performed in order to compare the quality of the obtained
draft reconstructions. However, since modelSeed performs its own genome annotation, the
obtained genes could not be directly mapped to NCBI or other databases for a comparison
between the obtained models. A proposed method to achieve this goal could be making a
blast search for each of the 1,700 sequences in order to find matches with the ncbi database.
However this work could be equivalent to re-annotating the whole CHO genome and it escapes
the objectives of this work.

Despite this issue and based on the relation between the number of genes and reactions, it
could be said that the CHO-modelSeed reconstruction includes a greater number of genes that
are interpreted by the annotation algorithm as different genes but are actually introns of the same
coding gene.

The obtained models using Pathway Tools and Pantograph are compared in order to detect
differences among the included genes for the two reconstructions (Figure 2.2). Both models
include 189 common genes, while the CHO-Pantograph model includes a higher number of genes
not considered on the Pathway tools reconstruction (770), while only 307 genes are exclusively
present on the CHO-Pathway tools model.

Among the 307 exclusive CHO-Pathway tools genes are included several
galactosyltransferases, glutathione S-transferases, NADH:ubiquinone oxidoreductases, and
transglutaminases. However, 24 sequences are identified to have activity located in the
mitochondria by the NCBI database, but their products are currently included as cytosol enzymes
on this model.

The CHO-Pantograph model has a greater number of genes associated to sugar transport
(solute carriers), phosphodiesterases and beta galactosidase sialyltransferases, among others. 83
of these unique genes are associated to the mitochondria according to the ncbi database, these
genes are associated to 265 reactions in the model of which 225 are mitochondrial reactions. The
remaining 40 reactions are citosolic or peroxisomal reactions.

Additionally, we studied gene associations for the duplicated reactions in different
compartments on the CHO-Pantograph draft reconstruction. A total of 167 reactions were identified
on the draft model generated by pantograph that include different genome associations for
different compartments. Such as malic enzyme (ME2) cytosolic (’100767908’), and mitochondrial
(’100771311’), these gene associations were then manually confirmed by genome annotation
available on the CHO-genome database (Hammond et al., 2012).
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Figure 2.2: Comparison between included genes for the CHO-Pantograph and CHO-Pathway Tools
metabolic reconstructions

2.4.3 Network analysis

Another parameter to compare the quality of the obtained draft reconstructions is their connectivity
which is given by the quantification of dead ends. Dead ends are gaps of the metabolic network
consisting on metabolites which either participate in only one reaction or can only be produced or
consumed in the model.

All the obtained dead ends should be manually analyzed on the curation process when they
should be either eliminated by adding reactions to the network based on specific evidence for the
organism; or they should be confirmed as dead ends, meaning that there is a gap on the genome
annotation process.

A gap detection is performed by analyzing the stoichiometric matrix using the COBRA Toolbox.
The CHO-modelSeed model has 127 dead end metabolites, while the CHO-Pathway Tools has
632 and CHO-Pantograph exhibits 692 network gaps. Meaning that in CHO-modelSeed 20% of
the metabolites are dead ends, in CHO-Pathway Tools this percentage ascends to 30% and finally
for Pantograph is a 24%. Since modelSeed integrates an automatic gapFilling step it is expected
that this draft model presents a higher quality based on this parameter. However, this gaps should
still be analyzed in order to accept the algorithm suggestion, otherwise this methodology could be
assigning metabolic functions that are absent on CHO cells.

Considering that highly curated models such as the human metabolic reconstruction recon 1
(Thiele et al., 2013) have a 15% of dead end metabolites on their network, CHO-Pathway Tools
and CHO-Pantograph present an acceptable starting point for the gap filling process. This stage
of the model curation uses tools such as: fastGapFill (Thiele et al., 2014) together with manual
curation comparing the obtained results with information available on specific organism databases
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such as CHOgenome.org (Hammond et al., 2012).

As it has been established on previous sections, not all the draft models include the metabolites
present on the CHO biomass function, meaning that neither model Seed nor Pathway tools were
able to produce functional draft model. Despite having all the biomass components, CHO-
Pantograph is unable to produce several biomass precursors. N-Acetylneuraminate (acnam),
cardiolipin (clpn), dATP (datp), dCTP (dctp), dGTP (dgtp), dTTP (dttp), FAD (fad), glycogenin-
11[1,4-Glc] (glygn1), GTP (gtp), Putrescine (ptrc), sphingomyelin (sphmyln), Spermidine (spmd),
UTP (utp).

This could be a consequence of the restrictions established for the Flux Balance Analysis
(FBA) problem, which are defined based on the chemical composition of cell culture media, or
that the metabolite participates on reactions where it is consumed but it cannot be produced.
Further curation is needed to add reactions that allow the synthesis of biomass metabolites from
components available in the extracellular environment.

None of the analyzed methods (Table 2.4) were able to generate a functional CHO GSM,
however since CHO-Pantograph includes all the biomass compounds it requires less manual
curation work in order to achieve this goal. This is mainly due to the fact that this algorithm uses
an already curated genome-scale model as a template, hence inherits all the added reactions on
a previous gap filling process. Although this may seem as a great advantage over modelSeed and
Pathway tools, this feature should be analyzed carefully since the choice of a model template has
an important impact on the obtained model. A balance between phylogenetic closeness and quality
of the metabolic reconstruction has to be made. Models highly curated but non closely related to
CHO cells could lead to wrongly integrating reactions that are absent on this mammalian system.
On the other hand, the use of an poorly curated GSM could lead to intensive work trying to fix
issues derived from mistakes present on the template model. It is advised to make a throughly
analysis of the template candidates in order to make an early detection of this issues for the
obtention of an good draft metabolic reconstruction.

Table 2.4: Summary of the obtained CHO draft reconstructions

Statistics CHO-modelSeed CHO-Pathway Tools CHO-Pantograph
Genes (Unique) 1,700 (N/A) 618 (307) 959 (770)
Reactions 648 1,034 3,205
Metabolites 632 1,230 2,775
Compartments 2 2 8
Dead end metabolites (% of total) 127(20) 632(30) 692(24)
Functional model no no no

2.5 Conclusions

Since genome-scale models have emerged as a powerful tool for studying metabolism and
testing knockout strategies in silico, there has been a boost on the development of strategies to
generate draft versions of this metabolic reconstructions. The level of information required by
these algorithms varies from the organisms’ genome, orthologs to a highly curated annotation. In
this work, we tested modelSeed, Pathway tools and Pantograph in order to determine which of

29



2.6 Supplementary material 2 Comparative study on strategies for generation of a CHO GSM

these algorithms is more suitable for the generation of a CHO genome-scale model.

modelSEED requires only the genome sequence to generate a model, which is easily obtained
thanks to the CHO-genome initiative. Additionally it uses a database that generates consistent
models regarding reaction names an metabolites which facilitates model comparison, and
establishes an standard of the obtained models using this algorithm. However, since it was initially
formulated for prokaryotes, the quality of the obtained CHO-modelSEED draft model was not ideal
since it doesn’t include metabolites which are characteristic of eukaryotic organisms. However,
currently there is an ongoing effort to expand this algorithm to eukaryotic which would remediate
all the issues present on the previous work.

CHO genome annotation and manual curation of the CHO-genome database is an ongoing
effort, for which there is still not an available manually curated annotation for CHO cells including
EC numbers as it is required by Pathway Tools. Despite this issue we were able to obtain a
CHO draft genome-scale model using the current annotated genome. We propose that the
integration of updated information could lead to a model with more gene associations, less dead
end metabolites and that is able to synthesize all the required biomass precursors.

The use of ortholog information together with a highly curated model which is closely related
to CHO cells is key to obtain a good quality draft model using Pantograph. This algorithm is
able to produce a model which includes all the metabolites that conform the proposed CHO cell
biomass, while having the greatest inclusion of CHO genes which even includes different genes
associations for the same reactions occurring in different cell compartments.

CHO-Pantograph additionally presents higher connectivity due to the inclusion of reactions
included on the gap filling process of the template model. Although this could be considered as
a great advantage we advice that this issue should be treated carefully, since the choice of the
template model has a big impact on the outcome of this methodology. A balance should be made
between highly curated models and its closeness to the studied organism.
Pantograph could be improved by analyzing genes identified as candidates to have enzymatic
activity by genome annotation or other algorithms in order to include a greater number of gene
associations. Additionally, since different template models lead to different outputs we propose that
a method where different models could be combined should improve the quality of the obtained
CHO genome-scale model. This method will be used in the next chapter of this work for the
generation of a CHO metabolic reconstruction based on ortholog mapping between CHO cells,
Homo sapiens and Mus musculus and metabolic reconstruction for these organisms.

2.6 Supplementary material

2.6.1 Supplementary files

• 02CHOmodelSEED.xml, 02CHOPathwayTools.xml, 02CHOPantograph.xml: metabolic
reconstruction obtained using modelSEED, Pathway Tools and Pantograph respectively
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3 | Reconstruction and validation of
the CHO iNJ1301 genome-scale
model

3.1 Abstract

Genome-scale models have been used as a tool for studying metabolism and the effect of
gene knockout and over-expression for several biotechnological platforms such as E. coli and
S. cerevisiae, however the development of this metabolic models for mammalian cell lines has
been sparse due to the inherent complexity of this organisms. Additionally, most of these
models are based on Mus musculus gene information and experimental data instead of on CHO
genome information and culture data. In this work we reconstruct CHO metabolism using specific
information for CHO cells available thanks to the CHOgenome project (Hammond et al., 2012). To
achieve this goal we used Pantograph, a method based on mapping ortholog genes that is able to
find equivalent functions between a template and a target organism and generate a draft model.
Three metabolic reconstructions were used as templates: an updated Hybridoma model based
on Mus musculus, the human reconstruction Recon 1 and the Mus musculus model iMM1415
based on the previously mentioned human model. The CHO genome-scale model iNJ1301 has
3,709 reactions associated to 1,301 genes. This model was validated with experimental data
and it is capable of correctly predicting cell growth on 88% of the performed tests. We propose
that simulations that do not agree with experimental data are related to regulation processes
not represented by this model, particularly with the delay of mammalian cells for synthesizing
the metabolic machinery to process different carbon sources. Further reduction of this model
is performed in order to represent metabolic states observed experimentally for CHO cells: an
inefficient carbon metabolism characterized by high lactate production, and a reduction of its
synthesis: a phenomena known as metabolic shift, showing that the model iNJ1301 has the
potential to be used to explore integration of large omics datasets such as the ones obtained
from metabolomic and transcriptomic studies. Additionally, the gene association findings made by
this works were incorporated in the CHO consensus metabolic reconstruction iCHO1766.

3.2 Introduction

Mammalian cells are one of the main hosts for production of biopharmaceuticals, since they are
able to perform post-translational modifications similar to the ones present in humans. Specifically,
Chinese Hamster Ovary (CHO) cells have been widely used due to their ability to grow either in
suspension or in adherence and the existence of characterized protocols for gene transfection and
clone selection (Butler, 2005).
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With the increasing demand for biopharmaceuticals, there is also a growing need for new
strategies to improve performance of mammalian cell culture processes. Many of the successfully
implemented modifications are focused on reduction of carbon flux through glycolysis, since CHO
cells consume more glucose than needed to support cellular metabolism. The excess of carbon
influx leads to synthesis of by-products such as lactate, which has been proven to have detrimental
effects on cell growth and product synthesis (Cruz et al., 2000; Glacken et al., 1986; Kurano et al.,
1990; Omasa et al., 1992).

In order to give new insights on metabolism, genome-scale models (GSM) have emerged as
a powerful tool since they provide a global representation of all biochemical transformations that
could be carried by a specific organism. To illustrate the relationship between genes and these
reactions, GSM include logical rules called Gene Protein Reaction (GPR) associations, which
allow to simulate knockouts of specific genes and its effect on cellular metabolism.

Several tools and strategies have been developed to generate draft versions of genome-scale
models, including protocols with 96 stablished steps to obtain a metabolic reconstruction (Thiele
& Palsson, 2010) and automatic tools that based on genome annotation, EC numbers and or
gene orthology are able to establish a draft version of the desired GSM such as model SEED and
Pathway tools (Karpe et al., 2011; Henry et al., 2010; Notebaart et al., 2006).

Metabolic reconstructions have been used to simulate alterations in cellular metabolism for
a great variety of organisms (Feist et al., 2009). However, the inherent complexity and lack
of specific high-quality annotated complete genome sequences for eurakyotic organisms, has
become an obstacle for the generation of specific reconstructions for cell lines used in the industry.

Published mammalian genome-scale models are mainly based in available information for
Mus musculus due to its homology to cell lines and its availability (Sheikh et al., 2005; Quek &
Nielsen, 2008; Selvarasu et al., 2010). Sheikh et al. (2005) proposed a genome-scale model for an
SP/2-derived mouse-mouse Hybridoma, which includes a generic metabolic network representing
carbon nitrogen and energetic metabolism (Sheikh et al., 2005).

Selvarasu et al. (2010) proposed a new Hybridoma genome-scale model that included
additional information regarding GPR associations and an improved connectivity in the metabolic
network for lipid, amino acids, carbohydrates and nucleotide synthesis (Selvarasu et al., 2010).
This reconstruction was subsequently upgraded to include CHO genomic data and used to
study intracellular metabolic changes during growth and non-growth phases in fed-batch CHO
cell culture thus providing a preliminary non-curated representation of CHO cell metabolism
(Selvarasu et al., 2012).

Additionally a new metabolic reconstruction for Mus musculus metabolism based on the
human model Recon 1 (Duarte et al., 2007) was proposed by Sigurdsson et al. (2010), which
includes 1,415 genes, 2,212 gene associated reactions, 1,514 non-gene associated reactions and
considers reactions occurring in cytosol, mitochondria, Golgi, lysosome, ribosome, peroxisome,
nucleus and extracellular environment. This genome-scale metabolic model was able to predict
lethal genes as well as known flux distributions for non-lethal knockouts in mouse (Sigurdsson
et al., 2010).
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In this work we developed a genome-scale model for CHO cells. To achieve this we used
orthology mapping between CHO, Homo sapiens and Mus musculus, and extensive manual
curation based on specific knowledge for this cell line. A draft model was generated using
Pantograph, which is a toolbox that combines orthology mapping between two organisms together
with a template reconstruction (Loira et al., 2015).

Two draft metabolic reconstructions were generated in parallel based on different template
models. An updated version of the Hybridoma model (Mouse Template 1, MT1) and Recon
1 (Duarte et al., 2007) together with the genome-scale model for Mus musculus iMM1415
(Human-Mouse Template 2, HMT2) (Sigurdsson et al., 2010) .

3.3 Materials and methods

For generation of a preliminary CHO genome-scale model we used Pantograph (Loira et al.,
2015). This tool requires a template model and annotated genome for both template and objective
organism. The relationship between template and objective organisms is obtained by ortholog
search between their genomes, which allows to establish a link between these organisms and the
potential biochemical functions associated to the genes of the target organism.

Three models were considered as templates for this network reconstruction. An updated
version of the Hybridoma model (Mouse Template 1, MT1) and Recon 1 (Human Template 1,
HT1) (Duarte et al., 2007) together with the genome-scale model for Mus musculus iMM1415
(Human-Mouse Template 2, HMT2) (Sigurdsson et al., 2010) (Figure 3.1).

MATLAB

 Rattus

Projection Model curation

COBRA
toolbox

Simulation

Validation

Homo sapiens

Template (MT1*)
Selvarasu et al (2010)

inParanoid

orthoMCL

Ortholog
search

Mus musculus

norvegicus

CHO-K1

Template (HT1)
Recon 1

Template (MT2)
iMM1415

Draft CHO
model

Curated CHO
model

Model accuracy
report

Figure 3.1: Proposed strategy for generation of a CHO genome-scale model.

3.3.1 Orthologs

Ortholog genes usually present similar biological activity, thereby representing a link between
genomic annotation of the target with the template organism for generation of this model (Fitch,
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1970; Remm et al., 2001).

Ortholog search was performed using the stand-alone versions of inParanoid (Remm et al.,
2001) and ortho-MCL (Li et al., 2003), which find clusters of ortholog genes based on similarity
scores calculated by NCBI-Blast between proteomes of the analyzed species. The proteome
sequences were retrieved from the CHO genome initiative (Hammond et al., 2012) and Ensembl
(Flicek et al., 2013), in order to find orthologs between CHO and Mus musculus and CHO and
Homo sapiens. For ortholog search using orthoMCL the proteome of Rattus norvegicus was also
used as input in order to give additional information given by its phylogenetic closeness to CHO
cells (Figure 3.1).

3.3.2 Hybridoma model improvement

The Hybridoma model (MT1) proposed by Selvarasu et al. (2010) was updated in order to obtain
a better representation of the relationship between genes and reactions in the template model.
New GPR associations were added to this template by retrieving information from the NCBI-gene
database and KEGG-gene and KEGG-pathway databases using a python script to download
candidate gene associations based on gene name, EC number and metabolites associated to
each reaction.

3.3.3 Model generation and Constrained-based flux analysis

The obtained upgraded template model and ortholog information for Mus musculus, Homo
sapiens and CHO was used to generate a preliminary genome-scale model for CHO cells using
Pantograph (Loira et al., 2015). Critical components for biomass synthesis were identified by
analyzing metabolic pathways that lead to its synthesis using the COBRA toolbox (Schellenberger
et al., 2011) which has specific functions for the study of cellular metabolism such as knockout
studies and Flux Balance Analysis.

GapFind (Kumar et al., 2007) was used to find gaps in the metabolic model. Dead-end
metabolites were subsequently studied using information from databases such as CHOgenome
(Hammond et al., 2012), KEGG (Kanehisa & Goto, 2000; Kanehisa et al., 2016) and Virtual
Metabolic Human (Thiele et al., 2013) in order to fill the gaps present in the initial reconstruction.

Flux Variability Analysis (FVA) (Mahadevan & Schilling, 2003) was performed the obtained
genome-scale models. This algorithm analyses the range in which all the reaction fluxes vary
through the model, hence allowing to study different sub-optimal solutions of the metabolic
networks. This analysis was performed using the FluxVariability algorithm included in the COBRA
toolbox (Schellenberger et al., 2011).

Model validation was performed using Pantograph (Loira et al., 2015) which tests the ability of
the obtained genome-scale models to replicate experimental data, particularly the effect of known
gene deletions and use of alternate carbon sources for CHO cells in culture.
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3.4 Results and Discussion

Using the NCBI-gene database 101 gene associations were added to the Hybridoma model, and
an additional 16 were added manually based on information retrieved from the KEGG database.
With this information a new model (MT1*) was obtained with improved gene associations for
galactose metabolism, tryptophan metabolism, fructose metabolism, TCA cycle and transport,
among others. This improved MT1* model has 1,494 reactions associated to 844 genes of
updated information for Mus musculus.

Three genome-scale models were generated in parallel using Pantograph (Loira et al., 2015)
using the three templates (MT1*, HT1, HMT2) mentioned previously (Table 3.1), using the biomass
synthesis reaction for CHO cells proposed by Selvarasu et al. (2012), which was obtained from
analysis of five CHO cell lines (CHO mAB M50-9, M500-7, CHO K1, CHO DG44 and CHO DXB11).

Table 3.1: Obtained CHO draft genome-scale models

Statistics CHO-MT1 CHO-HT1 CHO-MT2 CHOHT1-MT2
Genes 635 1,187 959 1,213

Reactions 1,336 3,472 3,205 3,550
Metabolites 1,164 2,766 2,775 2,779

Compartments 3 8 8 8

A total of 1,378 CHO genes were represented on the three generated draft models (Figure
3.2). Of those 1,215 are represented by the union of CHO-HT1 and CHO-MT2 and only 163 are
represented only in the model using the improved version of MT1 as template. This is mainly a
consequence of the template gene mapping, since models with higher gene representativity have
more candidates to be conserved on the projection step based on ortholog evidence.

However, an additional analysis of the genes represented only in CHO-MT1 revealed that
the 163 genes only represented by this model are associated to amino acid metabolism and
transport subsystems that were previously updated in the MT1 template model, demonstrating
that a well-mapped reaction to gene template is key for the obtention of a high degree gene
representation in the draft model.

The obtained CHO-MT1 model has 1,336 reactions associated to 635 genes, having a greater
representation of the glycan biosynthesis, and lipid metabolism (Figure 3.3), which is consistent
with the previous structural analysis that stated that this metabolic network was dominated by
essential genes associated to lipid metabolism (Selvarasu et al., 2010) .

A gap filling was made in order to obtain a functional model that is able to synthesize biomass,
where a total of 148 reactions were added to the CHO-MT1 model to allow synthesis of amino
acids, nucleotides and lipids that comprise the biomass composition given by Selvarasu et al.
(2012).

Both HT1 and HMT2-derived models included 926 genes common CHO genes, however
303 genes were only included in the Human-CHO model and 45 genes were only considered in
the reconstruction of the Mouse-CHO model (Figure 3.2). These Human-CHO and Mouse-CHO
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Figure 3.2: Distribution of included CHO genes using an Hybridoma model, iMM1415 and Recon
1 as template for generation of a CHO draft genome-scale model

models were then combined in order to obtain a genome-scale model for CHO cells.

Amino acid metabolism

Carbohydrate metabolism

Glycan biosynthesis and metabolism

Lipid metabolism

Membrane transport

Metabolism of cofactors and vitamins

Metabolism of other amino acids

Nucleotide metabolism

Others

Energy metabolism

Figure 3.3: Classification of metabolic reactions in CHO genome-scale models: CHO-MT1: a CHO
reconstruction made from an Hybridoma model based on Mus musculus and the CHO-HT1-MT2
model derived from both Mus musculus and Homo sapiens ortholog information

The obtained CHO-HT1-MT2 model has 3,550 reactions associated to 1,213 genes
characterized by a greater representation of nucleotide metabolism, carnitine shuttle and transport
reactions between compartments. Among all 3,550 reactions only Serine C-palmitoyltransferase
(SERPT) had to be rewritten manually since it was represented by two conflicting GPRs
(100689415 and 100689326) for the HT1 draft and (100689326 and 100770263) for MT2. This
GPR was re-written as (100689326 and (100770263 or 100689415)) on the CHO-HT1-MT2
draft model, assuming the different genes as alternative isozymes that are able to carry out this
reaction, this assumption was then confirmed by a blast search on the CHOgenome database
(Hammond et al., 2012).
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A gap filling was carried in order allow synthesis of biomass precursors such as glycogen,
cholesterol, spermidine, and nucleotides for the CHO-HT1-MT2 model (Table 3.5), where eight
reactions were added in order to obtain a functional CHO-HT1-MT2 model. The obtained functional
models CHO-MT1 and CHO-HT1-MT2 were then initially studied using Flux Balance Analysis
(FBA) using reported fluxes for mammallian cells (Selvarasu et al., 2010, 2012; Wilkens et al.,
2011).

3.4.1 Flux Balance Analysis

Flux Balance Analysis simulations are performed in order to establish a general behavior of
the obtained models (Figure 3.4) where different scenarios were analyzed. A fed-batch culture
of CHO cells (Selvarasu et al., 2010), batch culture of CHO cells supplemented with glucose
and galactose where a metabolic shift is observed towards co consumption of galactose and
lactate (∆L/∆G< 0) (Wilkens et al., 2011) and an Hybridome batch culture (Selvarasu et al., 2009).
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Figure 3.4: Prediction of cell growth by Flux Balance Analysis (FBA) based on published data for
uptake or synthesis of amino acids and carbon sources. Experimental data (�), CHO-MT1 model
(�), CHO-HT1-MT2 model (�)

The analyzed models were able to predict cell growth with errors varying from 8% to 80%
approximately (Figure 3.4). Both models were able to predict biomass synthesis with higher
accuracy on exponential growth stages and behave poorly predicting observed growth rates on
later stages of culture (Selvarasu et al., 2009). This is consistent with the basis of the Flux Balance
Analysis problem where a stationary state is assumed in order to determine the metabolic flux
distribution.
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CHO-MT1 FBA simulations showed a higher consistency with experimental data, except on
the 23 hours data point for Selvarasu et al. (2009) which exhibits the highest error (80%) among
all the analyzed simulations. This model is characterized by an increased dependency on amino
acids for biomass synthesis which allows higher biomass synthesis on that data point where
higher fluxes of amino acid transport are observed.

Further analysis on this model showed that its metabolism is mainly focused on amino acid
rather than on carbohydrate metabolism for biomass synthesis, which leads to better predictions
on cell growth but intracellular flux distributions that are not consistent with knowledge on this
cell line. Particularly, glucose consumption has to be forced on this model, and even when it is
consumed it is not destined to pathways such as glycolysis to generate energy and nucleotide
precursors. This major issue is inherited from the Hybridoma model based on Mus musculus
genome information, used as template for generation of CHO-MT1, showing that the importance
of choosing a good quality template for the generation of a draft model.

On the other hand, the CHO-HT1-MT2 model showed better predictions on the Selvarasu et al.
(2009) dataset, while showing better behavior regarding the use of carbon sources. Contrary on
what has been noted for CHO-MT1, CHO-HT1-MT2 consumes glucose or galactose without being
forced to do so, and it presents positive fluxes on glycolysis as expected on this biological system.

Based on this observations, CHO-HT1-MT2 would be used as the CHO genome-scale model
for further studies since it gives a better representation on central carbon metabolism based on
the previously presented simulations. Additionally, this model has the advantage of representing a
higher number of genes derived from the high completion of the human metabolic reconstruction
recon 1 (Duarte et al., 2007) and its derived mouse model iMM1415 (Sigurdsson et al., 2010).

3.4.2 Gap Filling and manual curation

Following the gap filling process started on the previous stage in order to obtain a functional
model, further gap filling was made to reduce the 128 root gaps present on the metabolic network
by manual curation as described on the methods section.

Part of this stage was also fixing metabolites that had suffixes L and U making reference to
liver and uterus variants of different metabolites, leading to identical reactions with the same GPR
associations that added unnecessary gaps to the network.

By retrieving information from human, and CHO databases, the number of gaps was reduced
to 110 by addition of 40 reactions (Table 3.6), which is considered as a great reduction since
the published human reconstruction has 112 root gaps. The obtained CHO model has 1,301
genes associated to 3,709 reactions and it is called iNJ1301 due to the number of genes that this
reconstruction represents. The remaining gaps were confirmed by the CHO-genome database
and could be target for further curation in future work.

3.4.3 Validation

CHO cell experimental data regarding use of several carbon sources and gene knockouts was
retrieved from literature. Alternative tested media was supplemented with fructose, mannose,
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lactose, sucrose, etc. or amino acids and analysed in order to verify cell growth (Faik & Morgan,
1977), knockout studies include genes related to central carbon metabolism, such as lactate
dehydrogenase A (LDHA), glutamine synthase (GS) and dihydrofolate reductase (DHFR) (Yip
et al., 2014; Fan et al., 2012; Santiago et al., 2008).

In order to represent the metabolic context of growth in mammalian cell lines, gene 100761248
associated with fructose bisphosphatase was down-regulated, since this gene expression is
known to be decreased in cancer cells (Li et al., 2013).

True positives (TP) and negatives (TN) show the cases where simulated predicted growth (TP)
or non-growth (TN) is in agreement with reported experimental data. False negatives (FN) and
positives (FP) are cases where simulations contradict what has been previously reported.

Obtained predictions for this metabolic reconstruction showed an 88% accuracy (Table 3.2).
False positives (FP) are obtained for lactose, sucrose and ribose cellular growth, which is due to
verified presence of extracellular reactions that allow conversion to other carbon sources such as
fructose and glucose that are known to support cell growth. Particularly, in media supplemented
with lactose as carbon source, β-galactosidase (LACZe (100766856)) transforms this sugar into
galactose and glucose, which are able to support cell growth (Figure 3.5). A search in the CHO
genome database revealed that this gene has been annotated as a lactase, and additionally
its protein homologs in human and rat have regions associated to carbohydrate transport and
metabolism (Hammond et al., 2012).

This discrepancy between experimental data and simulation results, could be associated to
regulation of gene expression regarding metabolization of alternative carbon sources. Contrary
to the representation of cellular metabolism achieved by genome-scale models, where all genes
could be expressed simultaneously, mammalian cells have a slower response to express all the
specific enzymes required to use a certain carbon source. This delay could result in cellular
death since there is not enough energy to support cell growth while producing the set of protein
machinery required to metabolize a specific carbon source, such as lactose.

Particularly in Faik & Morgan (1977) CHO cells were switched from media containing glucose
to media supplemented with alternative carbon sources (Faik & Morgan, 1977), contrary to what
has been reported for adaptation of mammalian cells to alternative carbon sources made by
gradual dilution of glucose supplemented media (Wlaschin & Hu, 2007; Petch & Butler, 1996).

Lack of regulation on these metabolic reconstruction is also an issue for LDHA knockout.
Complete knockout of LDHA has been reported as lethal for CHO cells that have down-regulated
pyruvate dehydrogenase kinase 1, 2 and 3 (PDHK) (Yip et al., 2014). However, flux balance
analysis simulations consider that all reactions consuming or producing reducing power could be
expressed without delay. This lack of regulation leads to alternative pathways for NADH restoration
instead of lactate production by lactate dehydrogenase.

On the other hand, validation simulations were able to predict media supplementation
requirements where knockout of the dihydrofolate reductase gene (dhfr ) was performed (Table
3.2). Knockout of dhfr (100689028) was lethal on standard media formulation due to lack of
thymidine supplementation, further addition of this metabolite to the restriction set for this test
resulted on cell growth as reported by Santiago et al. (2008). Additionally, this model validation
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Figure 3.5: Validation of a genome-scale model for CHO cells. Predicted cell growth on lactose
as carbon source is due to the presence of reaction LACZe that allows conversion of lactose to
galactose and glucose, carbon sources that are able to support cellular metabolism.
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Table 3.2: Experimental evidence of CHO cell growth behaviour under different media conditions and gene knockouts.

Reference Media CHO
knocked
gene

Mmu
ortholog

Gene name Exp. Growth Simul. Growth Result

(Faik & Morgan, 1977) Lactose n/a, media only - + FP
(Faik & Morgan, 1977) Sucrose n/a, media only - + FP
(Faik & Morgan, 1977) Ribose n/a, media only - + FP
(Faik & Morgan, 1977) Xylose n/a, media only - - TN
(Faik & Morgan, 1977) Pyruvate n/a, media only - - TN
(Faik & Morgan, 1977) Citrate n/a, media only - - TN
(Faik & Morgan, 1977) Alanine n/a, media only - - TN
(Faik & Morgan, 1977) Valine n/a, media only - - TN
(Faik & Morgan, 1977) Isoleucine n/a, media only - - TN
(Faik & Morgan, 1977) Serine n/a, media only - - TN
(Faik & Morgan, 1977) Threonine n/a, media only - - TN
(Faik & Morgan, 1977) Aspartate n/a, media only - - TN
(Faik & Morgan, 1977) Glutamate n/a, media only - - TN
(Faik & Morgan, 1977) Histidine n/a, media only - - TN
(Faik & Morgan, 1977) Arginine n/a, media only - - TN
(Faik & Morgan, 1977) Proline n/a, media only - - TN
(Faik & Morgan, 1977) Glutamine n/a, media only - - TN
(Santiago et al., 2008) DMEM 100689028 MMU13361 dhfr - - TN
(Santiago et al., 2008) DMEM+thym 100689028 MMU13361 dhfr + + TP
(Liu et al., 2010) CDCHO 100764163

100764367
100689028

MMU14645
and
MMU13361

GS and
DHFR

+ + TP

(Faik & Morgan, 1977) Fructose n/a, media only + + TP
(Faik & Morgan, 1977) Mannose n/a, media only + + TP
(Faik & Morgan, 1977) Galactose n/a, media only + + TP
(Faik & Morgan, 1977) Maltose n/a, media only + + TP
(Fan et al., 2012) DMEMGln 100764163

100764367
MMU14645 gs + + TP

(Yip et al., 2014) DMEMSup 100689064 MMU16828 LDHA - + FP
(Yamane-Ohnuki et al.,
2004)

DMEM 100751648 MMU53618 FUT8 + + TP

(Liu et al., 2010) CDCHO 100764163
100764367
100689028
100751648

MMU14645
and
MMU13361
and
MMU53618

GS and
DHFR and
FUT8

+ + TP

Overall results: TP: 9, TN: 15, FN: 0, FP: 4; accuracy: 0.88
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was performed using specific CHO data instead of reported Mus musculus knockout data as it has
been done for previous metabolic reconstructions for mammalian cell lines (Selvarasu et al., 2010).

Validation results could be improved by incorporation of additional restrictions to this system.
Particularly, integration of large datasets for gene expression or additional regulation constraints
that represent the metabolic scenario on mammalian cells. These approaches have been
previously implemented for simpler model organisms such as E. coli where this information is
widely available, however there is still no such equivalent level of information for CHO cells.
Initiatives such as the CHO genome database (Hammond et al., 2012) and the CHO bibliome
(Golabgir et al., 2016) are currently working to generate and gather large datasets that could be
used with this metabolic reconstruction in the future.

3.4.4 Use of iNJ1301 to simulate CHO metabolism

The obtained CHO genome-scale model iNJ1301 has 3,709 reactions associated to 1,301 genes,
and it is able to represent all the known metabolic transformations that this organism is able to
carry on. As it has been previously shown, this model is able to predict cell growth by applying
constraints regarding amino acid and carbon sources uptake and production. However, in order
to represent the specific scenario of mammalian cell lines in culture it is necessary to apply an
additional set of constraints based on literature for cancer cell lines and metabolic engineering
(Quek et al., 2010).

Mammalian cell lines in culture have a similar behaviour than cancer cells, they exhibit high
fluxes through the glycolytic pathway leading to synthesis of metabolic byproducts such as
lactate, a phenomena known as the Warburg effect (Warburg et al., 1956). Since glycolysis is
highly active, the net effect through this pathway would be represented by the activity of fructose
phosphofructokinase instead of fructose bisphosphatase, an enzyme that has been reported to
be inactive on cancer cells (Li et al., 2013). This scenario would be represented as an additional
constraint to this model.

Additional restrictions added in order to represent the metabolic scenario present on this cell
line are: down-regulation of phosphoenolpyruvate (PEP) carboxykinase which is also derived
from high fluxes through glycolysis instead of gluconeogenesis on mammalian cells (Quek et al.,
2010); pyruvate carboxylase activity that has been reported to be negligible (Bonarius et al., 2001;
Mancuso et al., 1994).

Since ATP production has been discussed to be highly relevant for cancer cells we set this
as the optimization objective while setting a minimum of cell growth which corresponds to the
lower bound for the biomass reaction based on reported experimental data for CHO cells (Table
3.3). Additional constraints for transport of amino acids and carbon sources, as well as oxygen
consumption were derived from CHO cell culture data (Selvarasu et al., 2012; Martı́nez et al.,
2013).

In order to summarize the metabolic state of the cells in the resulting simulations ∆L/∆G will
be used. This parameter represents the ratio between lactate synthesis (or consumption) and
glucose consumption in culture, and the analyzed simulations. Hence, high values of ∆L/∆G
are an indicator of an inefficient metabolism where a large portion of the consumed glucose is
transformed to lactate instead of serve for energy generation in the TCA cycle (Europa et al., 2000).
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Table 3.3: Additional restrictions for simulation of CHO metabolism using the iNJ1301 model

Reaction ID Lower bound Upper bound Reference
PCm - 0 (Bonarius et al., 2001; Mancuso et al., 1994)
FBP - 0 (Quek et al., 2010; Li et al., 2013)
G6PDA - 0 Glutamine to feed the TCA cycle
biomass 0.002 - Minimum biomass synthesis (Martı́nez et al., 2013)
EX o2(e) -0.02 - (Martı́nez et al., 2013)
DM atp(c) Objective function

The obtained metabolic flux distribution using this set of new restrictions and objective function
presents high lactate synthesis and LDH activity as expected for this cell line. A lower flux through
the TCA cycle is also observed, where glutamine is the major metabolite that feeds this cycle, as
it has been also observed for cancer cells (Warburg et al., 1956).

In order to represent the observed metabolic shift towards a reduction of lactate synthesis
observed in culture, a new set of constraints was imposed on the same CHO iNJ1301 model.
These constraints include information derived from previous transcriptomic and proteomic studies
where a fold change of expression was calculated for this metabolic state (Mulukutla et al., 2012)
and flux for exchange of amino acid and carbon sources previously published for CHO cells
exhibiting this metabolic state (Martı́nez et al., 2013).

Table 3.4: Additional restrictions for simulation of metabolic shift using the iNJ1301 model

Reaction ID Fold change Reference
GLCt1r, GLCt2 2 -1.6 (Mulukutla et al., 2012)
PFK -1.6 (Mulukutla et al., 2012)
RPE 1.5 (Mulukutla et al., 2012)
PEPCKm 2.7 (Mulukutla et al., 2012)
RPI -1.4 (Mulukutla et al., 2012)
ALATA L 2.32 (Mulukutla et al., 2012)
ICDHxm -2.32 (Mulukutla et al., 2012)
G6PDH2r -1.4 (Mulukutla et al., 2012)
PGM, DPGM, DPGase -1.3 (Mulukutla et al., 2012)
ME2 -1.8 (Mulukutla et al., 2012)
biomass 0.0017 Minimum biomass requirement (Martı́nez et al., 2013)
EX o2(e) -0.02 (Martı́nez et al., 2013)
DM atp(c) Objective function

A reduction of a 33% in the ∆L/∆G value was observed after addition of the new set of
restrictions based on gene expression data. This reduction lead to a maximum value of 1.48 for
the model representing a more efficient carbon metabolism compared to a maximum of 2.239
previously obtained (Figure 3.6). This reduction is not due to external constraints applied to
lactate synthesis in the model, and it is a direct consequence of the changes exhibited on Table
3.4 showing that these changes on cell expression could be the regulatory basis of the metabolic
state exhibited by this cell line.
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Figure 3.6: Flux Variability Analysis (FVA) for the iNJ1301 CHO genome-scale model applying
internal constraints for an inefficient carbon metabolism (Warburg effect, minimum(�) and
maximum (�) metabolic fluxes) and for metabolic shift (minimum (�) and maximum (�) metabolic
fluxes)

This change of the efficiency of carbon metabolism is enhanced by the addition of constraints
associated to the extracellular environment that characterizes this metabolic state. A general
reduction on amino acid and carbon source transport led to an elimination of lactate synthesis
and a final metabolic state characterized by a fixed value for ∆L/∆G of 0. This confirms that this
change of metabolic state is associated to changes in the metabolism at an intracellular level and
also by external conditions which are associated with later stages in culture.

A better representation of this metabolic state could be managed with a complete dataset for
gene expression on both scenarios using tools developed to link omics datasets with metabolic
reconstructions. Algorithms such as iMAT (Integrative metabolic Analysis Tool) (Shlomi et al.,
2008) and GIMME (Gene Inactivity Moderated by Metabolism and Expression) (Becker & Palsson,
2008) find fluxes distributions based on transcriptomic data rather than optimization of an objective
function for the studied organisms, and could be a better representation of what is observed
experimentally for CHO cells in culture.
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3.5 Conclusion

The iNJ1301 was the result of combination of two genome-scale models for Mus musculus
and Homo sapiens, by basing this model on manual curation previously made for two different
organisms new gene-association rules were found. This was possible fue to consistent
metabolite and reaction nomenclature on both models which is non-common on this metabolic
reconstructions. Standardization on this nomenclatures is vital for applying this strategy for
metabolic models in the future.

This CHO genome-scale model is able to represent the relationship between 1,301 genes and
3,709 metabolic reactions and includes an specific biomass function derived from previous cell
composition for several CHO cell lines. By reducing the INJ1301 reconstruction can exhibit the
inefficient carbon metabolism where an excess of glucose consumption leads to lactate synthesis
in culture. Additional constraints were also able to represent the metabolic context where this
behavior is reversed, a phenomena known as metabolic shift.

This genome-scale model based on specific information for CHO cells could be used to explore
several applications such as integration of large datasets of omics data such as metabolomic or
transcriptomics, using specific tools that have been developed to this end (Machado & Herrgård,
2014). This approach has been previously used to reveal biomarkers for Alzheimer’s disease
using an human metabolic reconstruction (Stempler et al., 2014) and to study physiology by
representing different metabolic scenarios based on RNA expression data for several tissues
(Bordbar & Palsson, 2012).

The findings made by this metabolic reconstruction were then submitted to a consensus CHO
genome-scale model which was recently published including the work of seven other groups that
worked extensively to finish this metabolic reconstruction. By using a new approach based on
gene orthologs, the iNJ1301 CHO metabolic reconstruction was able to find new gene association
rules that were absent on previous drafts of the community CHO model.

The community CHO metabolic reconstruction (iCHO1766) comprises more than 1,700 genes
associated to over 6,000 metabolic reactions. Transcriptomic, proteomic and metabolomic data
were used to represent CHO-K1, CHO-S and DG44 cells in a computational model, finding that
although previous cell engineering approaches successfully redirect metabolic resources towards
product synthesis, cells are still working at only 25% of their capacity. Using this metabolic
reconstruction, new strategies could be proposed to improve product synthesis towards the
creation of new CHO cell lines.
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3.6 Supplementary Material

Table 3.5: Added reactions from initial gap filling to obtain a functional CHO-HT1-MT2 model

Reaction ID Reaction Metabolite
CLS hs cdpdag hs[c] + pglyc hs[c]→ clpn hs[c] + cmp[c] + h[c] clpn hs[c]

CYOR u10m 2 ficytC[m] + 2 h[m] + q10h2[m]→ 4 h[c] + 2 focytC[m] + q10[m] ctp[c], dctp[c], dttp[c], utp[c]
GLGNS1 3 udpg[c]→ glygn1[c] + 3 h[c] + 3 udp[c] glygn1[c]
METAT atp[c] + h2o[c] + met-L[c]→ amet[c] + pi[c] + ppi[c] cys-L[c], pchol hs[c], sphmyln hs[c], spmd[c]
MTAP 5mta[c] + pi[c]→ 5mdr1p[c] + ade[c] spmd[c]

OMPDC h[c] + orot5p[c]→ co2[c] + ump[c] ctp[c], dctp[c], dttp[c], utp[c]
ORPT orot5p[c] + ppi[c]↔ orot[c] + prpp[c] ctp[c], dctp[c], dttp[c], utp[c]
SQLEr h[r] + nadph[r] + o2[r] + sql[r]→ Ssq23epx[r] + h2o[r] + nadp[r] chsterol[c]

Table 3.6: Examples of added reactions for the CHO model iNJ1301

Reaction ID Reaction GPR
DEDOLP h2o[c] + 0.100000 dedoldp[c]→ h[c] + pi[c] + 0.100000 dedolp[c] -
DOLPMT 0.100000 dolp[c] + gdpmann[c]→ 0.100000 dolmanp[c] + gdp[c] (100689294 and 100689451 and

100689420 or 100773731)
GLCNACPT 30.100000 dolp[c] + uacgam[c]→ ump[c] + 0.100000 naglc2p[c] 100689054

BDMT gdpmann[c] + 0.100000 chito2pdol[c]→ gdp[c] + h[c] + 0.100000 mpdol[c] 100773731
DOLDPPer h2o[r] + 0.100000 doldp[r]→ 0.100000 dolp[r] + h[r] + pi[r] 100761712
DEDOLR 0.100000 dedol[c] + h[c] + nadph[c]→ 0.100000 dolichol[c] + nadp[c] -
GPIMTer 0.100000 dolmanp[r] + gacpail[r]→ 0.100000 dolp[r] + h[r] + mgacpail[r] (100764842 and 100761026)

3.6.1 Supplementary files

• 03CHOmodel.xml: CHO metabolic reconstruction

• 03GapFilling.xls: Gap filling analysis for the CHO model



4 | Integration of transcriptomic data
in the iNJ1301 model for studying
markers of increased productivity
in CHO cells

4.1 Abstract

The increasing demand for therapeutic proteins has been a driving force for development of new
strategies to improve cell productivity. Common approaches rely on targeting genes involved in
pathways related to cell cycle, central metabolism, apoptosis and protein secretion. However,
despite several experimental efforts, cellular processes underpinning high-productivity cell clones
remain poorly understood.

In order to identify novel potential targets associated with high recombinant protein synthesis
we employed a systems biology approach using transcriptomic data from IgG producing CHO
cells. This data was further integrated with the CHO iNJ1301 genome-scale metabolic model using
iMAT (integrative Metabolic Analysis Tool). Two models were obtained based on transcriptomic
data and extracellular flux constraints for both a high producer (HP) and low producer (LP)
CHO IgG clone. Using iMAT the HP sub model showed highly conserved pathways which have
been previously associated with improved productivity: glutathione metabolism, nucleotide sugar
metabolism and synthesis of glycosylation precursors.

Uniform random sampling was used for exploring the flux solution space without imposing
a biological objective for optimization in both models, showing that despite both the HP and
LP models exhibit shared reactions associated with central carbon metabolism, changes in
their probability flux distribution are consistent with previous metabolic studies on productivity:
the obtained CHO LP model shows an increased glycolytic activity and lactate synthesis with
decreased fluxes in the pentose phosphate pathway.

This new combined novel approach, where system biology tools are coupled with sampling
of the solution space could be expanded for developing in depth studies of flux distributions that
undergo improved productivity in other organisms relevant for the biotechnological industry.
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4.2 Introduction

Mammalian cell culture systems have become one of the main platforms for biopharmaceutical
production. Since the approval for tPA production by CHO cells on 1986 by the FDA, there has
been an increasing demand for the use of these platforms which has motivated the development
of new strategies towards optimization of processes using mammalian cells (Butler, 2005). Media
design (Altamirano et al., 2000, 2006; Mochizuki et al., 1993) and cellular engineering (Irani et al.,
2002; Chen et al., 2001; Wlaschin & Hu, 2007) have been used as approaches to optimize their
behavior towards an increased productivity phenotype. However, most of these strategies rely
mainly on bibliographic knowledge available for mammalian cell lines.

An alternative strategy to design clones with improved productivity is to use ”omics” to
identify markers associated with product synthesis. This approach has been tackled from the
transcriptomic, proteomic and metabolomic perspective, where studies have compared differences
in cell line productivity (Dietmair et al., 2012; Farrell et al., 2014; Carlage et al., 2009; Chong et al.,
2012; Kang et al., 2014; Nissom et al., 2006; Orellana et al., 2015). Overall findings suggest
that high producer CHO cell clones have an up-regulated metabolism associated with unfolded
protein response (Carlage et al., 2009), citric acid cycle, oxidative phosphorylation, glutathione
metabolism and protein glycosylation (Chong et al., 2012) as well as an overall downregulation of
cell growth (Carlage et al., 2009; Chong et al., 2012; Nissom et al., 2006).

Orellana et al. (2015) used quantitative proteomics to identify markers of good production
CHO cell lines, finding that two biological processes were identified as differentially regulated
after clustering the differentially expressed proteins by their biological function: up-regulation of
glutathione biosynthesis and down-regulation of DNA replication.

Genome-scale models provide a new framework for integration of large omic datasets due to
the link between genes and reactions which are inherent to metabolic reconstructions. Due to the
inherent complexity of gene regulation there is no straightforward way to integrate transcriptomic
data into constraint-based models, thus several algorithms have been developed based on
different assumptions (Reed, 2012). These methods either work on finding an unique flux
distribution based on transcript levels or generating an specific sub-model that represents the
metabolic context given by the transcriptomic data (Machado & Herrgård, 2014).

Gene Inactivity Moderated by Metabolism and Expression (GIMME) uses gene expression
data to build context specific sub-models (Becker & Palsson, 2008) and finds a flux distribution
which is consistent with the given biological objective while minimizing the use of reactions
previously classified as inactive based on transcriptomic data.

On the other hand, Integrative Metabolic Analysis Tool (iMAT) uses values for gene expression
for classifying reactions into highly and lowly expressed, then it finds a flux distribution which
maximizes the consistency with this classification without considering the definition of an biological
objective for the metabolic reconstruction. Additionally, iMAT predicts gene up or down regulation
based on the obtained flux distribution, for example: if a gene is classified as highly expressed but
its associated fluxes show otherwise, it is said that this gene is down-regulated.

Motivated by the growing interest on metabolic reconstruction applications, these methods
for integration of transcriptomic data have been rapidly increasing. Machado & Herrgård (2014)
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developed a systematic evaluation of their predictive capability testing their predictions using
experimental datasets taken from literature for E. coli and S. cerevisiae, finding that none of the
methods outperforms the others for all cases, which shows that the solution to this problem is far
from trivial.

In this work we generated two genome-scale sub models to represent the metabolic context
of a high and a low IgG producer CHO cell clones. To achieve this goal the CHO iNJ1301 model
is reduced using extracellular flux and transcriptomic data for both clones. The obtained models
were then analyzed to find metabolic markers that could explain differences in specific productivity
for CHO cells.

4.3 Materials and Methods

Transcriptomic data from two CHO cell clones producing different quantities of IgG were obtained
previously by Orellana et al. (2015) where a High Producer (HP) and a Low Producer (LP)
clone were analyzed. Both HP and LP cell lines were derived from the same transfection pool
which differed four-fold in mAb-specific productivity 19.5 ± 1 and 4.6 ± 0.2 pg/cell/day respectively.

CHO HP model CHO LP model

CHO model

High Producer 
(HP) CHO clone

Low Producer 
(LP) CHO clone

Model reductionUptake/production
rates

Model reduction with iMAT

exchange rates

Uniform random sampling

(iNJ1301)

High Producer 
(HP) CHO clone

Low Producer 
(LP) CHO clone

Transcriptomic 
data

Figure 4.1: Proposed strategy for integration of transcriptomic data into the CHO iNJ1301 model

The CHO iNJ1301 was expanded to include the reaction of IgG synthesis based on their
amino acidic formulation given by Orellana et al. (2015). A model reduction is achieved by adding
constraints based on extracellular fluxes previously measured on the exponential growth phase
for both HP and LP clones and adjusting those constraints by the error of each measurement in
order to define a lower and upper bound for each reaction. Cell growth and product synthesis
were forced to a minimum production value based on reported data. The obtained CHO-HP and
CHO-LP reduced models were then tested by Flux Balance Analysis (FBA) in order to check if they
were able to comply to all the defined constrains.
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4.3.1 Transcriptomic data integration using iMAT

Transcriptomic data was processed prior to be integrated to the metabolic reconstruction. Zero
reads were deleted and possible duplicated elements in data were analyzed. Data reads where
transformed using a logarithmic transformation and the cut-off value for lower and upper thresholds
were calculated as the 25th and 75th percentile respectively as previously reported by Machado &
Herrgård (2014).

Transcriptomic data integration was achieved using the iMAT implementation published by
Machado & Herrgård (2014) based on the previously published iMAT method (Zur et al., 2010;
Shlomi et al., 2008). This is due to the fact that the originally implemented iMAT algorithm did not
included the tri-valued logic used in the original formulation, where genes were classified as highly
and lowly expressed genes based on their distribution.

Two flux-based models are generated based on the flux distribution given by iMAT, where all
reactions that carry zero flux were deleted. Both CHO HP and LP models were then compared
based on the percentage of conserved reactions in relation of the original metabolic CHO iNJ1301
reconstruction.

4.3.2 Sampling of the obtained sub models

Uniform random sampling of the flux solution space is made for interrogation of the obtained sub
models without imposing an optimality criteria such as maximization of cell growth or product
synthesis. This sampling analysis is achieved using the ACHR algorithm included in the COBRA
toolbox with 5,000 samples, for each of this samples a flux distribution is found which is consistent
with previous constraints associated to mass balance and enzyme capacity.

Reactions previously reported as markers for an improved productivity are studied by analyzing
the flux distribution obtained by this sampling approach. Histograms are plotted to observe the
probability distribution of each of the selected reactions for comparison between the high and low
producer phenotype, where most probable values are associated with higher frequencies for each
of the analyzed plots.

4.4 Results and Discussion

The CHO iNJ1301 genome-scale model was reduced based on experimental fluxes for both
the HP and LP CHO cell clones (Table 4.1). Transcriptomic data is processed as it previously
mentioned on the methods section. The obtained distribution of changes in transcripts was then
integrated into the CHO LP and HP models in order to represent the metabolic context of both
clones.

Using iMAT the generated CHO HP metabolic model had 1,408 reactions while the CHO LP
model was reduced to 1,333 reactions, deletion of reactions is made based on the obtained flux
distribution obtained by iMAT in both scenarios.

Conserved reactions carrying a non-zero flux were analyzed for the obtained models. Highly
conserved pathways among both models are related to central carbon metabolism (glycolysis, TCA
cycle, pentose phosphate pathway) and amino acid metabolism (alanine metabolism, glutamate
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Table 4.1: Extracellular constraints for the CHO low and high producer model based on
experimental data. Fluxes are in [mmol/gDW h]

Reaction ID HP LP
Lower bound Upper bound Lower bound Upper Bound

EX glc -0.8799 -0.1945 -0.6841 -0.553
EX lac 0.5459 0.9833 0.747 0.843
EX nh4 0.0448 0.1412 0.043 0.049
EX asp-L 0.0037 0.0081 -0.009 -0.008
EX glu-L 0.0062 0.0156 -0.013 -0.009
EX asn-L -0.1373 -0.0569 -0.114 -0.100
EX ser-L -0.068 -0.0242 -0.069 -0.062
EX gln-L 0.0037 0.0095 0 0.005
EX his-L -0.0062 -0.0014 -0.007 -0.006
EX gly 0.0164 0.0318 0.021 0.025
EX thr-L -0.0187 -0.0049 -0.018 -0.014
EX arg-L -0.015 -0.0004 -0.018 -0.015
EX ala-L 0.002 0.0088 0.01 0.023
EX tyr-L -0.009 -0.0028 -0.009 -0.008
EX val-L -0.0205 -0.0051 -0.021 -0.018
EX met-L -0.0056 -0.0016 -0.007 -0.006
EX trp-L -0.005 -0.001 -0.006 -0.004
EX phe-L -0.0098 -0.0026 -0.011 -0.009
EX ile-L -0.0166 -0.003 -0.018 -0.016
EX leu-L -0.0261 -0.0079 -0.027 -0.024
EX lys-L -0.0163 -0.0057 -0.024 -0.02
EX pro-L -0.0151 -0.0047 -0.018 -0.014

Biomass 0.0243 0.0365 0.0243 0.036
IgG 0.000024 0.000045 0.00000117 0.0000139

metabolism, methionine metabolism, tyrosine, phenylalanine and tryptophan metabolism) as
expected due to the biomass synthesis requirement.

An analysis of the metabolic pathways with marked differences between the predicted HP
and LP models is presented in the Figure 4.2. The metabolic subsystems of each model were
compared with the original iNJ1301 model based on the fraction of the conserved reactions, the
obtained results were plotted based on the most conserved systems for the High and low producer
cell line.

Highly conserved reactions in the High Producer clone (Figure 4.2a) capture previous findings
on improved productivity in CHO cells. The HP clone shows a highly active reactive oxygen species
(ROS) and glutathione (GSH) metabolism which are important antioxidants which properties and
functions have been reported to be potentially advantageous for high mAb producers due to their
participation in formation of formation of disulphide bonds (Orellana et al., 2015) a process that
has been reported as a limiting step in synthesis of secreted proteins (Kojer & Riemer, 2014;
Lappi & Ruddock, 2011).
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Figure 4.2: Integration of transcriptomic data into the iNJ1301 CHO model: (a) selection of
subsystems based of number of reactions with non-zero flux according to iMAT predictions for
the High Producer cell line. (b) Up regulated genes detected for the HP cell line

The high producer metabolism is dominated by pathways associated with synthesis of
glycosylation precursors, which are of great relevance for the correct synthesis and folding of
mAb. This prediction was based solely on changes in gene expression rather than IgG formulation
in the studied sub model, where IgG composition does not include changes associated with
post translational modifications. Supplementation of this approach with the incorporation of
glycosylation patterns to product synthesis could improve the obtained predictions and provide
prediction of other metabolic processes related with high productivity in CHO cells.

Additionally, other markers for increased productivity were also conserved in this sub model
such as an oxidative metabolism (Dickson, 2014), and markers for protein synthesis associated
with Heme metabolism (Ponka, 1999) which has been previously described to have an important
role controlling protein synthesis and cell differentiation but has not been linked to improved
productivity in mammalian cells.
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iMAT is also able to predict candidates for post transcriptional regulation based on the obtained
flux distribution for the high producer clone (Figure 4.2b). These genes are re-classified as highly
expressed despite of their initial classification based on network topology and mass balance
constraints (See figure 4.5 in supplementary material). An analysis made on upregulated genes
associated with metabolic pathways identified as highly active in the HP clone showed that
oxidative phosphorylation includes a high number of transcripts which were not initially identified
as highly expressed, but were found to be associated with high activity on this pathway. Showing
that iMAT is able to amplify the information given by changes in transcripts based on the specific
knowledge given by the CHO metabolic reconstruction.

4.4.1 Sampling of the obtained sub models

The obtained models for CHO high and low producer phenotypes were explored using a sampling
approach rather than Flux Balance Analysis (FBA) as it has been previously discussed in Chapter
1, where the use of biomass as an objective function for mammalian cell representation is
discussed based on the obtained results and previous questioning made on this issue (Feist &
Palsson, 2016).

Probability distribution of key reactions for improved productivity are plotted for both the HP and
LP models in order to observe changes on the distribution associated to changes in mAb synthesis
(Figure 4.3) where abrupt changes on probability distribution are associated with the effect of
extracellular constraints given by the initial reduction based on extracellular flux data (Table 4.1).

Hexokinase 1 (HEX1) and pyruvate dehydrogenase (PDH) are selected as markers of carbon
entry to glycolysis and to the TCA cycle respectively showing that, although there is a tighter
interval for glucose transport for the low producer clone, most of the obtained fluxes tend to
maximize their flux through the glycolytic pathway. Additionally, the LP model shows a decreased
PDH activity showing that only a 32% of the carbon that enters glycolysis is destined to energy
production in the TCA cycle. This parameter is computed based on the median of distributions
for both reactions, and for the high producer this value ascends to over 100% showing a more
efficient metabolism which has been linked to higher recombinant protein synthesis in CHO cells
(Dean & Reddy, 2013; Ghorbaniaghdam et al., 2014).

Oxidative pentose phosphate pathway (PPP) has also been associated with increased
productivity in CHO cells (Dickson, 2014; Chong et al., 2012) and in our previous analysis where
this pathway is highly conserved in the HP model (Figure 4.2). Following the approach used
previously three reactions were selected as markers of activity in PPP: phosphopentomutase
(PPM), ribose-5-phosphate isomerase (RPI) and phosphoribosylpyrophosphate synthetase
(PRPPS) (Figure 4.4), showing that despite having common reactions the low producer model
exhibits fluxes up to two orders of magnitude smaller than the HP submodel.

Uniform random sampling has been previously used for exploring the flux solution space in
genome-scale models without introducing information for an biological objective (Lewis et al.,
2012). This approach has been previously used for identification of transcriptional regulation
(Bordbar et al., 2014; Bordel et al., 2010) and correlated reaction sets (Gomes de Oliveira Dal’Molin
et al., 2015; Price et al., 2004), and finding emergent properties of metabolic networks. In this work
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Figure 4.3: Probability flux distribution obtained for key reactions associated with improved
productivity. Flux units are displayed in [mmol/gDW h]

a coupled strategy for analyzing changes in the metabolic network using transcriptomic data and
sampling is proposed, showing that although the CHO HP and LP models exhibit a great number
of conserved reactions, their flux probability distributions differ among both phenotypes.

4.5 Conclusions

Identification of markers associated with increased productivity in CHO cells is an ongoing effort
which has been approached from the genomics, proteomics and metabolomics perspective.
However, the analysis of omics data is mainly carried away using statistical tools and clustering
techniques. In this work, by the integration of transcriptomic data into a genome-scale model we
were able to reveal previous markers of improved productivity in CHO cells.

Current approaches for integrating transcriptomic data to genome-scale models deliver an
unique flux distribution based on optimization of consistency among classification of transcripts
as highly or lowly expressed (Machado & Herrgård, 2014). This optimization is even coupled
with maximization of a cellular objective for some algorithms such as GIMME (Becker & Palsson,
2008), however the choice of a biological objective is not straightforward for mammalian cells.
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Figure 4.4: Probability flux distribution obtained for key reactions associated with improved
productivity. Flux units are displayed in [mmol/gDW h]

In this work iMAT was used for integrating transcriptomic data of a high and a low IgG
producer CHO cell clone into the iNJ1301 metabolic reconstruction. The obtained models were
reduced based on extracellular flux data and the obtained flux distribution after transcriptomic
data integration, obtaining a CHO HP model that showed highly conserved pathways which
have been previously identified as highly active in high producer clones: glutathione metabolism,
nucleotide sugar metabolism and citric acid intermediates. Additionally, pathways associated
with glycosylation precursors were identified as highly expressed despite the fact that the IgG
formulation included in the iNJ1301 reconstruction did not included these post translational
modifications. Supplementation of this approach with the incorporation of glycosylation patterns to
product synthesis could improve the obtained predictions and provide prediction of other metabolic
processes related with high productivity in CHO cells.

Our results suggest that the use of a genome-scale model as a tool for integrating changes on
transcript levels has an amplifying effect, where genes that could be predicted as lowly expressed
are re classified based on the information given by network connectivity and gene associations
present in the metabolic reconstruction.
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The integration of transcriptomic data was coupled with an uniform random sampling approach
in order to explore general changes in the flux distribution for both the high and low producer. This
analysis showed that despite both models share an considerable pool of reactions associated
with a biomass synthesis requirement, the flux distribution obtained for glycolysis, the TCA cycle
and pentose phosphate pathway showed marked differences which are consistent with previous
finding on metabolic studies for improved productivity in CHO cells.

This approach could be improved using alternative algorithms for integrating transcriptomic
data which use statistical analysis for detecting differentially expressed genes, and do not alter
the topology of the resulting metabolic network (Machado & Herrgård, 2014). Additionally, based
on findings which showed that the HP cell line exhibited an highly active metabolism towards
synthesis of glycosylation precursors, we suggest that an expansion on the IgG composition
for including these post translational modifications which could give rise to new predictions on
productivity and product quality control.

Since the iNJ1301 genome-scale model has the potential of representing all the metabolic
transformations present in CHO cells, this approach could be expanded to other areas of study
in CHO cell metabolism, such as transcriptomic analysis focused on glycosylation patterns of
recombinant proteins in this cell line. Additionally, the use of a coupled transcriptomic integration
and sampling approach could be applied to genome-scale model of organisms of key relevance
in biotechnology in order to develop in depth studies of flux distributions that undergo improved
productivity.
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4.6 Supplementary material
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Figure 4.5: Determination of up and down regulated genes using iMAT. Genes are classified as
highly (green) or lowly (red) expressed based on the post processed transcriptomic values. If a
gene is initially classified as lowly or normally expressed (white) but is then found to be associated
with high fluxes it is then said that this gene is upregulated. Adapted from Shlomi et al. (2008)

4.6.1 Supplementary files

• 04mainTranscriptomic.m: script for transcriptomic data post-processing and integration

• 04CHOHPiMAT.xml, 04CHOLPiMAT.xml reduced metabolic reconstructions obtained for
representing the High and Low producer respectively

• 04SamplingiMAT.mat Sampling results for the previously mentioned metabolic reconstruc-
tions

57



5 | Concluding remarks

Mammalian cells are currently one of the main hosts for biopharmaceutical production, however
most of the strategies developed towards an improved productivity rely on knowledge based on
cancer research or even statistical design of the processes used in the industry. In order to give
new insights on metabolism, genome-scale models have emerged as a powerful tool since they
provide global representation of all biochemical transformations that could be carried by a specific
organism. The lack of specific genomic information for cell lines used in the industry, such as
CHO cells, and the inherent complexity of such organisms has delayed the development of a CHO
metabolic reconstruction to this date.

In this work we approach the pending challenge for both systems biology and mammalian
cell culture development: the reconstruction of a CHO genome-scale model. Although, thanks to
the CHO genome initiative there is currently a database which includes the specific genome for
this cell line, their complexity, reflected on a big genome size, imposes a new series of difficulties
associated with the reconstruction process and simulation in the integration of large omic datasets
which will be discussed bellow.

We describe the current strategies used in systems biology with metabolic reconstructions
applied to the iMM1415 mouse model, finding that a sampling approach rather than Flux Balance
Analysis (FBA) is best suited for studying mammalian cells metabolism. This approach, where an
exploration of the solution space is made instead of an imposition of a biological objective, such
as maximization of cell growth, is more appropriate for mammalian cells which present complex
metabolic and regulation process that have yet not been completely characterized.

The use of system biology tools for studying mammalian cell organism requires a shift on the
classical developed tools in this field, since most of them have been developed based on the
concept that biological systems have a clear objective. Sampling of the solution space has proven
to be an alternative to achieve this goal, since it explores all the feasible solutions of the model
without imposing an cellular objective. However it is a computationally expensive calculation
process that needs to be improved in order to be easily applied to models of eukaryote organisms.
Alternatively research on new objective functions is recommended, only if it is coupled with an
exploration of the analyzed model in order to find consistency among both approaches.

Genome-scale model reconstruction is a complex and time-consuming process, thus several
algorithms have been developed for the automatic generation of draft metabolic reconstructions.
However, most of these are not oriented to eukaryotes, and there is no clear guidance on which is
the best approach to be used on each scenario. We perform a thorough comparative study among
the available tools that have been developed for generation of draft genome-scale models oriented
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to complex eukaryotes such as CHO cells. Our results show that the choice of an algorithm
depends mainly on two factors: the complexity of the target organism and level of available
organism specific information. Based on the performed analysis we conclude that Pantograph
is the best suited method for the generation of a CHO-genome scale model. This algorithm
bases the conservation of reactions and its gene associations on ortholog information and the
highly curated information of an template model for on a phylogenetically close organism, thus
saving valuable time on the manual curation. Additionally, Pantograph is able to generate draft
reconstructions including standard gene identifiers which are crucial for integration of genomic
and or transcriptomic data.

We reconstruct and curate the CHO iNJ1301 genome-scale model using the proposed
expanded Pantograph approach with two template models as input. iNJ1301 has 3,709 reactions
associated with 1,301 CHO genes and was validated with experimental data showing an 88%
accuracy. This metabolic reconstruction includes all the required information for the representation
of all the metabolic states observed experimentally and it has the potential for future integration
of omic datasets. Additionally, the use of the ortholog based approach proposed on this work
allowed finding new gene associations which were incorporated on the CHO consensus metabolic
reconstruction iCHO1766.

We integrate transcriptomic data of two CHO IgG clones with different productivity profiles into
the iNJ1301 model in order to study the potential of genome-scale models for integration of large
omic datasets. An analysis of active reactions on the CHO high producer sub model showed that
productivity is characterized by an active glutathione and nucleotide sugar metabolism. Our results
suggest that using genome-scale models for the analysis of omic datasets has an amplifying effect
on differences among gene expression levels. By considering the metabolic network connectivity,
this approach is able to infer candidates of up and down regulation, thus providing additional
information which is not explicitly included in the raw transcriptomic data.

This approach for analyzing the link between changes on gene expression and productivity is
coupled with uniform random sampling of the obtained models for representing both scenarios,
since, as it has been previously discussed, mammalian cells are complex organisms for which a
biological objective has not yet been defined. The obtained models were subjected to random
sampling analysis finding that although they share common reactions the behavior displayed by
both metabolic networks is consistent with differences observed experimentally: an inefficient
carbon metabolism and low rates on the pentose phosphate pathway characteristic of low
producer clones. This novel approach where two system biology tools are coupled for studying
CHO cells metabolism could be expanded to other areas of study in the biopharmaceutical
industry. Particularly, supplementation of this approach with incorporation of glycosylation patterns
for IgG could improve this model for analysis of the effect of gene changes on the quality of the
obtained product in different culture conditions.

Since the iNJ1301 CHO model includes all the potential metabolic transformations that this cell
line performs it has the potential for being used on studies that provide new candidates for rational
cell engineering. iNJ1301 could be used as a template for hybrid models which include additional
regulation constraints, this additional information is included as a regulation matrix coupled to the
model and allows to simulate the effect that changes in expression of regulatory genes have on
CHO cell metabolism. Additionally, the availability of a metabolic reconstruction based on CHO
genomic information gives rise to new research lines based on the integration of omic datasets
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previously obtained for this cell line, which could reveal undetected changes relevant for the
understanding of key cellular processes associated with an enhanced productivity.

In this thesis, we propose a novel approach for analysis of transcriptomic datasets using
genome-scale models by the integration of a FBA oriented algorithm coupled with a sampling
approach. This method could be improved by directly applying constraints based on gene
expression values to the model and then exploring the obtained solution flux space, rather than
deleting reactions based on flux values as it has been done in this work. Given that sampling
of large metabolic networks is a complex and time-consuming process, the development of new
strategies for reducing the model prior to sampling based on blocked reactions or thermodynamic
constraints is crucial to achieve this goal.

In conclusion this work provides the scientific community with a framework for studying
CHO cells metabolism from the systems biology perspective, which includes a CHO metabolic
reconstruction and a thorough study of available tools suited for their reconstruction and integration
of transcriptomic data. The results of this work have the potential of being expanded for studying
other cell lines used in the biopharmaceutical industry, such as human cell lines or even plants,
thus providing a platform for reconstructing and studying complex biological systems in silico.
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Nomenclature

α, β Minimum and maximum flux constraints

m Number of metabolites in the metabolic reconstruction

n Number of reactions present in the metabolic reconstruction

S Stoichiometric matrix

v Flux vector

Concepts

ACHRS Artificially Centering Hit-and-run

COBRA Constraint Based Reconstruction Analysis

DMEM Dulbecco’s Modified Eagle’s Medium

FBA Flux Balance Analysis

FN False negative

FP False positive

FVA Flux Variability Analysis

GPR Gene Protein Reaction

GSM Genome-scale Model

HP High producer

iMAT Integrative Metabolic Analysis Tool

LP Low producer

mAb Monoclonal Antibody

ROS Reactive oxygen species

TN True negative

TP True positive

Metabolites
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accoa Acetil CoA

akg α ketoglutarate

ala-L L-alanine

chsterol Cholesterol

clpn Cardiolipin

f6p Fructose 6 phosphate

glc Glucose

gln Glutamine

glu Glutamate

GSH Glutathione

lac Lactate

lcts Lactose

pyr Pyruvate

Reactions

ALATA L-alanine transaminase

BDMT GDPmannose:chitobiosyldiphosphodolichol β-D-mannosyltransferase

CLS Cardiolipin synthase

CYORu10m ubiquinol-6 cytochrome c reductase, Complex III

DEDOLP Dehydrodolichol diphosphate phosphatase

DEDOLR Dehydrodolichol reductase

DHFR Dihydrofolate reductase

DM atp Demand reaction atp

DOLDPP Dolichyl-diphosphate phosphohydrolase

DOLPMT Dolichyl-phosphate-mannose-glycolipid α-mannosyltransferase

DPGase Diphosphoglycerate phosphatase

DPGM Diphosphoglyceromutase

FBP Fructose bisphosphatase

G6PDA Glucosamine-6-phosphate deaminase

G6PDH2r Glucose 6-phosphate dehydrogenase
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GALK Galactokinase

GLCNACPT UDP-GlcNAc:dolichol-phosphate GlcNAc phosphotransferase

GLGNS1 Glycogen synthase

GPIMTer GlcN-acylPI mannosyltransferase, endoplasmic reticulum

HEX1 Hexokinase 1

ICDHxm Isocitrate dehydrogenase

LACZe β-galactosidase

LDHA Lactate dehydrogenase A

ME2 Malic enzyme (NADP)

METAP 5-methylthioadenosine phosphorylase

METAT Methionine adenosyltransferase

OMPDC Orotidine-5-phosphate decarboxylase

ORPT Orotate phosphoribosyltransferase

PC Pyruvate carboxylase

PDH Pyruvate dehydrogenase

PDHK Pyruvate dehydrogenase kinase

PEPCK Phosphoenolpyruvate carboxykinase

PFK Phosphofructokinase

PGM Phosphoglycerate mutase

PPM Phosphopentomutase

PRPPS Phosphoribosylpyrophosphate synthetase

RPE Ribulose 5-phosphate 3-epimerase

RPI Ribose-5-phosphate isomerase

RPI Ribose-5-phosphate isomerase

SQLEr Squalene epoxidase, endoplasmic reticular (NADP)
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