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1. Introduction

The analysis of sequential economies with incomplete markets has been a central topic of

research in theoretical economics since the pioneering articles of Radner (1972) and Hart (1975).

These works led to a vast literature which gave account of the different imperfections that

may appear when financial markets are incomplete (for a review of the principal results see

Geanakoplos (1990)). This framework also offered the possibility to study asset-pricing in a

general equilibrium context, providing macroeconomics with a useful widely-applicable tool based

on microeconomic analysis.

Despite the development achieved by this line of investigation, the question of existence of

equilibrium in infinite horizon economies supposes a complex issue. One of the principal problems

in this context is that, when agents are allowed to sell short, they can make use of Ponzi schemes.

That is, they can postpone the commitment of its financial obligations by acquiring new debt

at each successive period, undetermining the problem of a utility maximizing individual. The

classical solution to this problem—applied in the macroeconomic equilibrium literature with

complete markets—was the imposition of debt constraints or transversality conditions to the

individuals’ choice sets, eliminating exogenously the possibility of agents committing into these

non-solvent plans.

The application of such techniques to the incomplete markets framework was non-trivial, since

there is not necessarily a unique vector of present values of future resources to define the transver-

sality conditions. To solve this issue, Magill and Quinzii (1994) proposed to use personalized

deflators given by the Kuhn-Tucker multipliers induced by the budget constraints. Using this

approach, they show that when agents are uniformly impatient—a joint requirement in prefer-

ences and endowments—and assets are short-lived, an equilibrium with transversality condition

always exists. Also, there is a one-to-one correspondence between equilibria with transversality

conditions and equilibria with implicit debt constraints. This last property allows to determine

explicit debt constraints that are never binding in equilibrium. Similarly, Hernández and Santos

(1996) show the existence of equilibrium for uniform impatient agents when assets are short-lived

and transversality conditions are determined by using the most punishing deflator among those

compatible with non-arbitrage. For long-lived assets, equilibrium does not necessarily exists,

because the dependence of deliveries in prices may induce discontinuities on individual demands

(cf., Magill and Quinzii (1996), Hernández and Santos (1996), Levine and Zame (1996)).
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Debt constraints and transversality conditions are financial frictions included on budget sets

that do not have an economic rationale. As an improvement to this respect, Araujo, Páscoa

and Torres-Mart́ınez (2002) introduced credit risk to the infinite-horizon analysis of incomplete

markets, by allowing agents to default on collateral-backed debt. With the collateral structure

they were able to endogenously rule out Ponzi schemes and prove equilibrium existence without

the need of assuming that agents are uniformly impatient, or including either debt constraints or

transversality conditions on budget sets. Moreover, these results can be extended to economies

with long-lived assets (Araujo, Páscoa and Torres-Mart́ınez (2005, 2011)) without requiring

further assumptions.

In the present project, we follow these previous works and address an infinite-horizon general

equilibrium model with default, where assets are backed by collateral. When agents decide to

default, the physical guarantees—that they were burdened to constitute when selling the debt

contract—are seized, without any additional credit recovery mechanism or utility punishment.

We add three principal features to this framework: (i) the possibility of prepayment of debt,

which was introduced to the general equilibrium literature in a recent paper by Iraola and Torres-

Mart́ınez (2013); (ii) the existence of incomplete financial participation, developed by Angeloni

and Cornet (2006), Aouani and Cornet (2009), and Seghir and Torres-Mart́ınez (2011), among

others; and (iii) the possibility of individuals to attain leasing transactions.

Our model extends that of Iraola and Torres-Mart́ınez (2013) not only to a multi-period

setting (allowing infinite horizon analysis), but also adds rental markets and incomplete financial

participation on investment opportunities. We allow the durability of commodities to depend

on wether they are consumed by its owner or by a lessee. Thus, in our economy the aggregated

physical resources available in any state of nature is determined endogenously, as it can vary

with individual decisions about demand and consumption.

Under this framework, we are able to prove existence of equilibrium with analogous hypotheses

to those described on Iraola and Torres-Mart́ınez (2013), for the finite horizon case. However,

when the relevant horizon is infinite, an additional condition—not required on the previous

literature with collateral-backed securities—is included to guarantee the existence of equilibrium.

This hypothesis is related to individual preferences, and can be described as a particular kind of

impatience, although it is not the uniform patience used on default-free models.

To build the asset structure of our economy we follow closely the model by Iraola and Torres-

Mart́ınez (2013), where debt contracts are pooled in passthrough securities that serve as the

investment instruments. Thus, each credit contract is characterized by its emission node, coupon
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payments, prepayment rule, and collateral requirements; while passthrough securities are com-

pletely defined by its price and payments delivered to investors through time. Since each credit

contract is uniquely associated to one passthrough security, payments delivered from debtors of

the former are proportionally distributed among creditors of the latter.

The possibility of prepayment in a general equilibrium context is particularly interesting since

it allows the occurrence of loans with negative equity as an equilibrium phenomena. That is,

agents can rationally decide to honor the coupons of a debt, even when the associated collateral

has a lower market value than the prepayment cost. In order to observe this kind of behavior, it

is fundamental to incorporate liquidity contractions or incomplete financial participation, since

payment decisions are determined by the availability of alternative credit opportunities. In other

words, if credit opportunities are not subject to any class of shrinkage, individuals optimally

decide to apply strategic default on their debt (cf., Araujo, Páscoa and Torres-Mart́ınez (2005,

2011)).

In this framework it is also possible to observe heterogeneous decisions among agents when it

comes to the fulfillment of their financial commitments. That is, different individuals with the

same obligation can make different decisions —either to pay, prepay or default on their debt— at

the same state of nature, depending on their respective preferences and financial opportunities.

We illustrate these possibilities in a numerical example.

The rest of the paper is organized as follows. Section 2 describes the model, notation, and

equilibrium definition; Section 3 displays our principal results on equilibrium existence for the

finite and infinite horizon cases; Section 4 develops the numerical example where loans with

negative equity occurs in equilibrium. Finally, Section 5 contains some concluding remarks.

Proofs are left to appendices.
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2. An Economy with Securitization and Liquidity Contractions

Information structure. We consider a discrete time economy with time horizon T ∈ N ∪ {+∞}

and where periods are denoted by t ∈ {0, 1, . . . , T}. Uncertainty is characterized by a set S of

states of nature. At each period t the available information is homogeneous across agents and is

given by a finite partition Ft of S. There is no information at t = 0, i.e., F0 = {S}. Information

is revealed through, as Fs is at least as fine as Ft, for any s > t. When T <∞, we assume that

#S <∞ and FT = {{s} : s ∈ S}.

A node is a pair ξ = (t, σ), where t ∈ {0, 1 . . . , T} and σ ∈ Ft. The only initial node is denoted

by ξ0. Let D be the event-tree composed of all nodes in the economy. Given ξ ∈ D, tξ and σξ are

respectively the date and the information set associated with ξ. Let Ds := {ξ ∈ D : tξ = s} be

the set of nodes at period s, where the set of terminal nodes DT is assumed to be empty when the

economy has infinite horizon. The set of intermediate nodes is denoted by D̊ := D \ ({ξ0}∪DT ).

If both tµ > tξ and σµ ⊆ σξ, then µ is a successor node of ξ, denoted as µ > ξ. As customary,

µ ≥ ξ means that either µ = ξ or µ > ξ. Let ξ− be the only immediate predecessor of ξ (i.e., the

only node that satisfies ξ > ξ− and tξ = tξ− + 1), and ξ+ := {µ ∈ D : µ > ξ ∧ tµ = tξ + 1} the

set of immediate successor nodes of ξ ∈ D.

Physical markets. There is a finite an ordered set L of commodities which can be traded,

consumed and leased. At every ξ ∈ D, spot markets for each commodity are available, and

characterized by a vector of spot prices pξ = (pξ,l)l∈L ∈ RL+. The plan of prices along the

event-tree is denoted by p = (pξ)ξ∈D.

Commodities are durable and suffers transformations between periods, which are character-

ized at each ξ ∈ D by two L×L matrices with non-negative entries, (Y c
ξ , Y

r
ξ ). Thus, if a bundle

x ∈ RL+ is consumed at node ξ by its owner, then it is transformed into Y c
µx at each µ ∈ ξ+.

However, if the same bundle is consumed by a lessee, it is transformed into the bundle Y r
µ x at

each µ ∈ ξ+. On the one hand, this structure captures perfectly durable, perishable or depre-

ciable commodities, and also allows for the transformation of some commodities into others. On

the other, we allow owners and lessees to have a different treatment on the commodities they

consume.

Rental markets. Since commodities are durable, we allow individuals to attain lease transactions.

At each ξ ∈ D, there is a set R(ξ) of rental contracts available. Each rental contract a ∈ R(ξ)
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is characterized by a bundle Mξ,a ∈ RL+. The bundle Mξ,a is bought by a lessor at node ξ,

who delivers it to a lessee for a price rξ,a. At each immediate successor µ ∈ ξ+ the contract is

finished, and the lessor receives back the transformed bundle Y r
µMξ,a. Let r = (rξ)ξ∈D be the

plan of rental prices, where rξ = (rξ,a)a∈R(ξ) ∈ RR(ξ)
+ denotes the vector of rental prices at node ξ.

Financial contracts. Borrowing possibilities are characterized by finite and ordered sets of credit

contracts (J(ξ); ξ ∈ D). Each credit contract j ∈ J(ξ) has an associated passthrough security,

which distributes borrowers’ payments and is denoted with the subscript j. The issuing node of

a debt contract j is denoted by ξj (i.e., j ∈ J(ξ) if and only if ξ = ξj). Each debt contract is only

traded at its issuing node, while passthrough securities can be negotiated along the event-tree.

Let K(ξ) :=
⋃

µ∈D:ξ≥µ
J(µ) be the set of investment opportunities available at a non-terminal

node ξ ∈ D. Without loss of generality, assume that at the issuing node ξj the price of the credit

contract j is the same as the price of the associated passthrough security. Let q = (qξ)ξ∈D be

the financial prices, where qξ = (qξ,j)j∈K(ξ) ∈ RK(ξ)
+ .

The issuer of one unit of credit contract j ∈ J(ξ) has the obligation to pledge a physical

collateral Cξ,j ∈ RL+ \ {0} and promises to pay coupons (Aµ,j(π))µ>ξ at the successor nodes of ξ,

where π = (p, q, r) denotes the prices in the economy. The collateral is consumed by the issuer

of the debt as long as the short position is maintained open.

At each intermediate node µ ∈ D̊ such that µ > ξj , the issuer of a debt j may deliver the

coupon, prepay, or default. The prepayment of one unit of credit contract j at µ has a cost

Bµ,j(π) ≥ Aµ,j(π). If a borrower decides to default, collateral guarantees are seized. Let Cµ,j

be the bundle obtained at µ > ξj as a consequence of the transformation generated over Cξj ,j

by its consumption through time, recursively defined by Cµ,j = Y c
µ Cµ−,j . Therefore, the cost of

defaulting on one unit of j at µ > ξj equals pµCµ,j . Notice that, at terminal nodes, borrowers

may deliver the coupon or default, because the prepayment cost implicitly equals the coupon

value.

The buyer of one unit of passthrough security j ∈ J(ξ) receives, at each node µ > ξ, a

unitary payment Nµ,j such that borrowers’ deliveries are fully distributed among security in-

vestors. For convenience of notation, let N = (Nξ)ξ>ξ0 be the vector of security payments, where

Nξ := (Nξ,j)j∈K(ξ−), ∀ξ > ξ0.
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Households. A finite set H of agents demand commodities and trade financial instruments

through the whole event-tree. Each agent h ∈ H is characterized by a utility function Uh :

RD×L+ → R+ ∪ {+∞} and an endowment process wh = (whξ )ξ∈D ∈ RD×L+ .

Individuals may face restricted access to financial instruments. Thus, Jh(ξ) ⊆ J(ξ) and

Kh(ξ) ⊆ K(ξ) denote, respectively, the set of credit contracts and the set of securities that agent

h can trade at ξ. We denote by Ĵ h(ξ) the set of credit contracts issued before ξ that were

available to agent h. We assume that agents do not loss the access to investment opportunities

along the event-tree. That is, for every h ∈ H, Kh(ξ−) ⊆ Kh(ξ) at any non-terminal node ξ ∈ D.

At the initial node ξ0 every agent h ∈ H chooses an allocation zhξ0 = (xhξ0 , θ
h
ξ0
, ϕhξ0 , φ

h
ξ0
, ψhξ0)

belonging to Eh(ξ0) := RL+ × RK
h(ξ)

+ × RJ
h(ξ)

+ × RR(ξ)
+ × RR(ξ)

+ , where

xhξ0 = (xhξ0,l)l∈L is the autonomous consumption bundle;1

θhξ0 = (θhξ0,j)j∈Kh(ξ0) is the investment portfolio;

ϕhξ0 = (ϕhξ0,j)j∈Jh(ξ0) is the debt position;

φhξ0 = (φhξ0,a)a∈R(ξ0) is the position as a lessor;

ψhξ0 = (ψhξ0,a)a∈R(ξ0) is the position as a lessee.

At every intermediate node ξ ∈ D̊, agent h chooses zhξ = (xhξ , θ
h
ξ , ϕ

h
ξ , ϕ

α,h
ξ , ϕβ,hξ , φhξ , ψ

h
ξ ) in the

set

Eh(ξ) := RL+ × RK
h(ξ)

+ × RJ
h(ξ)

+ × RĴ
h(ξ)

+ × RĴ
h(ξ)

+ × RR(ξ)
+ × RR(ξ)

+ ,

where ϕα,hξ,j are the coupons of debt j honored at ξ, and ϕβ,hξ,j are the units of j prepaid at ξ.

At every terminal node ξ ∈ DT , agent h chooses an allocation zhξ = (xhξ ) ∈ Eh(ξ) := RL+. It

follows from the description above that agent h choses strategies zh = (zhξ )ξ∈D in the space

Eh :=
∏
ξ∈D

Eh(ξ).

For convenience of notation, at every node µ ∈ D we write ϕα,hµ,j = ϕhµ,j whenever j ∈ J(µ).

Thus, at any µ ∈ ξ+, agent h defaults on ϕγ,hµ,j := (ϕα,hξ,j − ϕ
α,h
µ,j − ϕ

β,h
µ,j ) units of credit contract

j ∈ K(ξ).

Individuals choice constraints. The existence of collateralized contracts and rental markets im-

pose patrimonial obligations on borrowers and lessors. While borrowers are required to constitute

collateral guarantees, lessors only can rent a bundle when they have its property. Thus, associ-

ated to an allocation zhξ ∈ Eh(ξ) at node ξ, the total demand for commodities of agent h ∈ H

at this node is equal to the sum of her autonomous consumption, the bundles leased, and the

1Autonomous consumption is one that is not related to collateral guarantees nor to lease transactions.
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collateral requirements associated to debt positions, i.e.,

dhξ (zhξ ) :=


xhξ +

∑
a∈R(ξ)

Mξ,a φ
h
ξ,a +

∑
j∈Jh(ξ)

Cξ,jϕ
h
ξ,j if ξ = ξ0;

xhξ +
∑

a∈R(ξ)

Mξ,a φ
h
ξ,a +

∑
j∈Jh(ξ)

Cξ,jϕ
h
ξ,j +

∑
j∈Ĵh(ξ)

Cξ,jϕ
α,h
ξ,j if ξ ∈ D̊ ;

xhξ if ξ ∈ DT .

Similarly, to determine consumption allocations we need to consider that lessees consume

the bundles that they rent and borrowers hold collateral guarantees. Thus, associated to an

allocation zhξ ∈ Eh(ξ) at node ξ, the individual consumption at this node is given by

chξ (zhξ ) :=


xhξ +

∑
a∈R(ξ)

Mξ,a ψ
h
ξ,a +

∑
j∈Jh(ξ)

Cξ,jϕ
h
ξ,j if ξ = ξ0;

xhξ +
∑

a∈R(ξ)

Mξ,aψ
h
ξ,a +

∑
j∈Jh(ξ)

Cξ,jϕ
h
ξ,j +

∑
j∈Ĵh(ξ)

Cξ,jϕ
α,h
ξ,j if ξ ∈ D̊ ;

xhξ if ξ ∈ DT .

A key property of our model is that durability of commodities may depend on whether an agent

consumes or leases them and, therefore, the availability of physical resources is endogenously

determined in equilibrium. In particular, when agent h chooses an allocation zhξ ∈ Eh(ξ) at node

ξ, the physical resources available at immediate successor node µ ∈ ξ+ are given by

W h
µ (zhξ ) := whµ + Y c

µd
h
ξ (zhξ )−

∑
a∈R(ξ)

(Y c
µ − Y r

µ )Mξ,a φ
h
ξ,a.

Given prices π = (p, q, r) ∈ P and security payments N = (Nξ)ξ>ξ0 ∈ N , where

P := RD×L+ ×
∏

ξ∈D\DT

RK(ξ)
+ ×

∏
ξ∈D\DT

RR(ξ)
+ , N :=

∏
ξ∈D\{ξ0}

RK(ξ−)
+ ,

the objective of each agent h ∈ H is to choose a plan zh ∈ Eh to maximize the utility derived

from consumption, subject to the following constraints,

ghξ0(zhξ0 ; (π,N)) := pξ0

(
dhξ0(zhξ0)− whξ0

)
+

∑
j∈Kh(ξ0)

qξ0,jθ
h
ξ0,j−

∑
j∈Jh(ξ0)

qξ0,jϕ
h
ξ0,j−rξ0(φhξ0−ψ

h
ξ0) ≤ 0;

for every intermediate node ξ ∈ D̊,

ghξ (zhξ , z
h
ξ− ; (π,N)) := pξ

(
dhξ (zhξ )−W h

ξ (zhξ−)
)

+
∑

j∈Kh(ξ)

qξ,jθ
h
ξ,j −

∑
j∈Jh(ξ)

qξ,jϕ
h
ξ,j

−
∑

j∈Kh(ξ−)

(qξ,j +Nξ,j) θ
h
ξ−,j +

∑
j∈Ĵh(ξ)

Φh
ξ,j(z

h
ξ , z

h
ξ− ;π)− rξ(φhξ − ψhξ ) ≤ 0 ;

ϕα,hξ,j + ϕβ,hξ,j ≤ ϕ
α,h
ξ−,j , ∀j ∈ Ĵ h(ξ) ;
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where Φh
ξ,j(z

h
ξ , z

h
ξ− ;π) is the j-debt payment delivered at node ξ, i.e.,

Φh
ξ,j(z

h
ξ , z

h
ξ− ;π) := Aξ,j(π)ϕα,hξ,j +Bξ,j(π)ϕβ,hξ,j + pξCξ,jϕ

γ,h
ξ,j .

For every terminal node ξ ∈ DT ,

ghξ (zhξ , z
h
ξ− ; (π,N)) := pξ

(
dhξ (zhξ )−W h

ξ (zhξ−)
)
−

∑
j∈Kh(ξ−)

Nξ,jθ
h
ξ−,j

+
∑

j∈Ĵh(ξ)

min{Aξ,j(π), pξCξ,j}ϕα,hξ−,j ≤ 0.

This last set of restrictions makes explicit the fact that, for finite horizon economies, utility

maximizing agents apply strategic default at the last period. That is, at terminal nodes they

will pay the minimum between the coupon and the current value of the collateral.

Given prices and security payments (π,N) ∈ P × N , the choice set of agent h, denoted by

Γh(π,N), is the collection of plans zh ∈ Eh satisfying restrictions above.

Definition 1. An equilibrium for this economy is given by prices, unitary payments and

allocations (
π,N, (zh)h∈H

)
∈ P×N ×

∏
h∈H

Eh,

where π = (p, q, r) and zh = (xh, θ
h
, ϕh, ϕα,h, ϕβ,h, φ

h
, ψ

h
), such that:

(1) For each h ∈ H, zh ∈ argmax
z∈Γh(π,N)

Uh(ch(z)).

(2) Physical markets are cleared,∑
h∈H

dhξ0(zhξ0) =
∑
h∈H

whξ0 ;
∑
h∈H

dhξ (zhξ ) =
∑
h∈H

W h
ξ (zhξ−), ∀ξ > ξ0.

(3) Rental markets are cleared,∑
h∈H

φ
h
ξ =

∑
h∈H

ψ
h
ξ , ∀ξ ∈ D \DT .

(4) Security markets are cleared,∑
h∈H+

j (ξ)

θ
h
ξ,j =

∑
h∈H+

j (ξj)

θ
h
ξj ,j =

∑
h∈H−j

ϕhξj ,j , ∀ξ ∈ D \DT , ∀j ∈ K(ξ);

where H+
j (ξ) := {h ∈ H : j ∈ Kh(ξ)} are the agents with access to security j at node ξ,

and H−j := {h ∈ H : j ∈ Jh(ξj)} are the potential borrowers of j.2

2Notice that, as investors does not loss access to financial opportunities (i.e., Kh(ξ−) ⊆ Kh(ξ), for any non-

terminal node ξ), it follows that H+
j (ξ−) ⊆ H+

j (ξ) at any non-terminal node.
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(5) For any security j ∈ K(ξ), payments (Nµ,j)µ∈ξ+ are determined in such form that re-

sources delivered by borrowers are proportionally distributed among lenders, i.e.,

Nµ,j

∑
h∈H+

j (ξ)

θ
h
ξ,j =

∑
h∈H−j

Φh
µ,j(z

h
µ, z

h
ξ ;π), ∀µ ∈ ξ+, ∀j ∈ K(ξ);

Nµ,j

∑
h∈H+

j (ξ)

θ
h
ξ,j =

∑
h∈H−j

min{Aµ,j(π), pµCµ,j}ϕ
α,h
ξ,j , ∀µ ∈ ξ+ ∩DT , ∀j ∈ K(ξ).
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3. Existence of Equilibrium

This section establishes the existence of equilibrium. For the finite horizon case, the result is

an extension of that obtained by Iraola and Torres-Mart́ınez (2013) to a multi-period setting,

including investment constraints and rental markets. The hypotheses required to guarantee the

existence of equilibrium are completely analogous to those described on that previous work.

Theorem 1. Suppose that a finite horizon economy satisfies the following hypotheses:

(H1) For each h ∈ H, Uh is continuous, strictly increasing, and strongly quasi-concave.3

(H2) For each h ∈ H, (W h
ξ )ξ∈D � 0 where W h

ξ0
= whξ0 and W h

ξ = whξ + Y c
ξW

h
ξ− , ∀ξ > ξ0.

(H3) For each ξ ∈ D and j ∈ K(ξ−), functions Aξ,j and Bξ,j are continuous.

(H4) For each p ∈ RD×L++ , there exists ξ ∈ D and j ∈ J(ξ) such that, for some µ ∈ ξ+ we have

min{Aµ,j(p, ·, ·), ‖YµCµ,j‖Σ} > 0.

Then, there is an equilibrium where both N 6= 0 and q 6= 0.

Assumption (H1) imposes classical requirements on utility functions, which are satisfied for

any individual with rational, continuous, strictly monotonic, and strictly convex preferences. Es-

sentially, Assumptions (H1)-(H3) ensure the existence of well behaved demand correspondences.

Assumption (H4) precludes the existence of trivial security markets. Indeed, it implies that there

is at least one debt contract with non-trivial coupons and collateral requirements and, therefore,

there is at least one security with positive price and payments in equilibrium.

The incompleteness of financial markets or the presence of long-lived assets may compromise

equilibrium existence in sequential economies with infinite horizon. In the absence of credit risk,

uniform impatience and exogenous transversality conditions are required to guarantee equilibrium

existence in economies with short-lived assets (cf., Hernández and Santos (1996), Magill and

Quinzii (1994), Levine and Zame (1996)). In addition, when assets live for more than one

period, generic existence of equilibrium has been shown by Hernández and Santos (1996) and

Magill and Quinzii (1996).

In a seminal work Araujo, Páscoa and Torres-Mart́ınez (2002) prove that collateralized asset

markets endogenously avoid Ponzi schemes and, therefore, uniform impatience and exogenous

3A function f : Rn+ → R is strongly quasi-concave if f(λx+ (1− λ)y) > min{f(x), f(y)}, for any λ ∈ (0, 1) and

(x, y) ∈ Rn+ × Rn+ such that f(x) 6= f(y).
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transversality conditions are not required to guarantee equilibrium existence. Furthermore, in

collateralized security markets with long-lived loans it is possible to show that equilibrium always

exists, as the scarcity of physical collateral induces endogenous upper bounds on short-sales (see

Araujo, Páscoa and Torres-Mart́ınez (2005, 2011)).

In our framework, with incomplete financial participation, endogenous liquidity contractions

and general prepayment mechanisms, we are also able to show equilibrium existence under mild

conditions on preferences and endowments.

Theorem 2. Under Assumptions (H2)-(H4), suppose that an infinite horizon economy E satis-

fies:

(H5) For any h ∈ H, the utility function satisfies Uh((cξ)ξ∈D) =
∑
ξ∈D

uhξ (cξ), where kernels

uhξ : RL+ → R+ are continuous, strictly concave, and strictly increasing.

(H6) For any h ∈ H, Uh((Ŵξ)ξ∈D) is finite, where Ŵξ := (Y c
ξ + Y r

ξ )Ŵξ− +
∑
h∈H

whξ and Ŵξ0 :=∑
h∈H

whξ0 .

(H7) For each ξ ∈ D and j ∈ K(ξ−), Aξ,j and Bξ,j depend only on prices until period tξ.
4

(H8) For any ξ ∈ D and j ∈ J(ξ) there exists h ∈ H+
j (ξj) such that,

lim
cµ�0, ‖cµ‖→+∞

uhµ (cµ) = +∞, ∀µ > ξ.

Then, there is an equilibrium where both N 6= 0 and q 6= 0.

Assumption (H5) and (H6) are common in the infinite horizon general equilibrium literature.

The separability of the utility function allows to approximate the economy with finite horizon

truncations. The second assumption is crucial to obtain an equilibrium allocation as a limit

of equilibria in finite horizon economies. Assumption (H7) complements (H3), avoiding the

dependence of coupons and prepayment costs on infinite streams of prices.

Assumption (H8) is not considered in previous equilibrium existence results with collateralized

asset markets (see Araujo, Páscoa, and Torres-Mart́ınez (2002, 2005, 2011)). Its objective is to

guarantee the existence of upper bounds on security prices.5

4That is, their domain is given by the set Pξ :=
∏

µ∈D:ξ≥µ

(
RL+ × RK(µ)

+ × RR(µ)
+

)
. The continuity property is

relative to the Euclidean topology on Pξ.
5Essentially, investors could liquidate long positions at nodes where security prices were high enough, obtaining

resources to buy huge commodity bundles. However, this strategy should not induce utility levels over those

compatible with the availability of commodities. For these reasons, when (i) the utility level can increase without

12



To deepen our understanding of (H8), let us consider a particular case. Given a continuous,

strictly concave and strictly increasing function u : RL+ → R+ define U : RD×L+ → R+ ∪ {+∞}

by

U((cξ)ξ∈D) =
∑
ξ∈D

βtξρ(ξ)u(cξ),

where (βt)t≥0 are strictly positive discount factors and ρ(ξ) > 0 is the probability to reach node

ξ ∈ D, which satisfies ρ(ξ) =
∑

µ∈ξ+ ρ(µ) and ρ(ξ0) = 1. Hence, we can specify a wide variety

of functional forms for u satisfying (H5) and (H8), for instance quasi-linear, Coob-Douglas, and

CES functions.

Furthermore, if we fix a consumption plan c̃ := (c̃ξ)ξ∈D ∈ RD×L+ such that U(c̃) is finite, then

for any δ ∈ (0, 1) and ξ ∈ D, Assumption (H8) implies that there exists a bundle ζ(ξ, δ) ∈ RL+
such that, ∑

η∈D\D(ξ)

βtηρ(η)u(c̃η) + βtξρ(ξ)u(c̃ξ + ζ(ξ, δ)) +
∑
η>ξ

βtηρ(η)u(δc̃η) > U(c̃),

where D(ξ) denotes the sub-tree with root ξ. In other words, (H8) ensures that at any node a

reduction of future consumption can be compensated with an increase of the current consump-

tion, which is a type of impatience. However, the bundle required to compensate a reduction of

future consumption is not necessarily uniform across nodes, or bounded by a fixed multiple of

the aggregated endowment. Hence, (H8) differs from the uniform impatience conditions, which

are joint requirements on preferences and endowments imposed in general equilibrium models

with sequential trade to avoid Ponzi schemes (cf. Hernandez and Santos (1996, Assumption C.3),

Magill and Quinzii (1996, Assumptions B2 and B4), or Páscoa, Petrassi and Torres-Mart́ınez

(2010, Assumption 2)).

We illustrate the difference between uniform impatience and (H8) with an example. Assume

that individual endowments are uniformly bounded from above and away from zero, i.e., there

exists (e, e) ∈ R2
++ such that, for any (h, ξ) ∈ H ×D we have, e ≤ whξ,l ≤ W h

ξ,l ≤ e, ∀l ∈ L. In

addition, following the notation above, suppose that for any t ≥ 0, βt = 1
(1+tξ)2

. Then, Páscoa,

Petrassi, and Torres-Mart́ınez (2010, Proposition 1) and the example given by Moreno-Garćıa

and Torres-Mart́ınez (2012, page 133) guarantee that uniform impatience is not satisfied by U ,

although it satisfies (H5), (H6) and (H8).

an upper bound (Assumption (H8)); (ii) preferences are continuous (Assumption (H5)); and (iii) agents are

restricted to demand consumption in compact sets—as in our truncated economies—it follows that security prices

are bounded (see Lemma 5 for further details).
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4. An Example of the Prevalence of Negative Equity Loans

The objective of this section is to show an example of the occurrence of negative equity loans

in equilibrium. It is a simple setting, where there is no uncertainty. However, it shows how the

generality of our model can be applied in simple cases to study particular issues.

Consider a three period economy without uncertainty. There is only one commodity that

depreciates 50% between two successive periods, i.e., Y c
1 = Y c

2 = 0.5. There is a unique credit

contract at the first period, which is characterized by

(C,A1, A2, B1) =

(
5

2
,
1

2
,
1

4
,
11

8

)
.

The credit contract is securitized into an asset that delivers to lenders the payments made by

borrowers. There are two agents, a and b. Agent b is the only that has access to credit, while

agent a is the only that can invest in the security.

Individuals are characterized by,

Ua(x0, x1, x2) = 8
√
x0 + 3

√
x1 + 6

√
x2; (wa0 , w

a
1 , w

a
2) =

(
31

22
, 0,

1

4

)
;

U b(x0, x1, x2) =
√

2816x0 +
√

198x1 +
√

252x2; (wb0, w
b
1, w

b
2) =

(
103

44
,
1

2
, 0

)
.

Taking the commodity price as numeraire, the following set of prices, security payments and

consumption-financial allocations constitutes an equilibrium:

(q0, q1, N1) =

(
9

22
,
1

4
,
1

2

)
;

(xa0, x
a
1, x

a
2, θ

a
0, θ

a
1) = (1, 1, 1, 1, 1);

(xb0, x
b
1, x

b
2, ϕ

b
0) =

(
11

4
,
11

8
,

7

16
, 1

)
.

In this equilibrium agent b pays the coupon of his debt at the second period, although the

loan has negative equity, because the prepayment cost B1 = 1.375 is greater than the depreciated

collateral value Y1C = 1.250.6

Suppose that commodities can be rented at the second period by a unitary price r. Also,

tenants depreciates the commodity more than owners, i.e., a lessor of one unit of commodity at

t = 1 receives Y r
2 < 0.5 units at the last period. Hence, if the rent r and the depreciation rate

(1− Y r
2 ) are relatively high, then agents are not interested in change their financial positions—

reducing investments or closing underwater loans—to enter into the rental market. In fact, under

prices and payments defined above, there is no trade in the rental market when 0.5 < r < (1−Y r
2 ).

6Kuhh-Tucker multipliers are given by (λa0 , λ
a
1 , λ

a
2) = (5.5, 3, 3) and (λb0, λ

b
1, λ

b
2) = (22, 12, 12).
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5. Concluding Remarks

We have developed a dynamic general equilibrium model with asset-backed securities, where

agents can make multiple decisions with respect to their financial obligations: paying, prepaying

or defaulting.

Although our model is very general—in the sense of allowing different payment and prepayment

rules, incomplete financial participation, and rental markets—we were able to prove existence of

equilibrium under mild conditions when trade occurs during a finite number of periods. How-

ever, we have found that in an infinite horizon economy, conditions previously described by the

literature are not sufficient to guarantee existence of equilibrium. Thus, even though collateral

still avoid Ponzi schemes and we do not use debt constrains or transversality conditions to prove

equilibrium, we require a particular kind of impatience in our more general setting to guarantee

existence. It is worth noting that this additional requirement is not related to the incomplete

financial participation present in our model. Indeed, as long as there exist liquidity contractions

in the economy, we would still need Assumption (H8) to guarantee existence of equilibria in the

infinite horizon case.

It has been shown in a numerical example that loans with negative equity is a phenomena

compatible with equilibrium. This example complements the one developed by Iraola and Torres-

Mart́ınez (2013), since we allowed individuals to attain leasing transactions. Thus, even in the

presence of rental markets, borrowers may find optimal to keep short positions.

As a matter of future research, it is relevant to analyze the prevalence of price bubbles in asset

markets. Since bubbles existence results are often conditional on assets being on zero or positive

net supply, this question is interesting in our model because securities emitted in previous periods

appear as assets with endogenously determined positive net supply.
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Appendix A: Equilibrium Existence in Finite Horizon Economies

Let E be an exchange economy with T ∈ N periods. We prove the existence of an equilibrium for E

following a generalized game approach.

For any ξ ∈ D \ DT , let (τξ, νξ) :=

(
(T − tξ) max

j∈K(ξ)
‖Cξ,j‖Σ, max

a∈R(ξ)
‖Mξ,a‖Σ

)
. We restrict prices to

belong to ∆ :=
∏
ξ∈D ∆ξ, where for every ξ ∈ D \DT

∆ξ :=
{

(pξ, qξ, rξ) ∈ RL+ × RK(ξ)
+ × RR(ξ)

+ : ‖pξ‖Σ = 1, qξ ≤ 2τξ(1, . . . , 1), rξ ≤ 2νξ(1, . . . , 1)
}
,

and for every ξ ∈ DT , ∆ξ := {pξ ∈ RL+ : ‖pξ‖Σ = 1}.

The equilibrium definition guarantees that there exists an upper bound Ω := (Ωξ)ξ∈D for market

feasible plans such that, for any ξ ∈ D the vector Ωξ := (Ωξ,x,Ωξ,θ,Ωξ,ϕ,Ωξ,ϕα ,Ωξ,ϕβ ,Ωξ,φ,Ωξ,ψ) satisfies

(Ωξ,x,Ωξ,ϕ,Ωξ,φ) ≥ 2

‖Ŵξ‖Σ,
‖Ŵξ‖Σ

min
j∈J(ξ)

‖Cξ,j‖Σ
,

‖Ŵξ‖Σ
min
a∈R(ξ)

‖Mξ,a‖Σ

 ; 7

(Ωξ,θ,Ωξ,ψ) = 2#H (Ωξ,ϕ,Ωξ,φ) ; (Ωξ,ϕα ,Ωξ,ϕβ ) = 2 max
µ<ξ

Ωµ,ϕ (1, 1).

For any agent h ∈ H, let Eh(Ω) be the set of plans (x, θ, ϕ, ϕα, ϕβ , φ, ψ) ∈ Eh such that, for every ξ ∈ D

(xξ,l, θξ,k, ϕξ,j , ϕ
α
ξ,k, ϕ

β
ξ,k, φξ,a, ψξ,a) ≤ Ωξ, ∀(l, k, j, a) ∈ L×Kh(ξ)× Jh(ξ)×R(ξ).

Let N := {N ∈ N : Nξ,j ≤ ‖Cξ,j‖Σ, ∀ξ > ξ0, ∀j ∈ K(ξ−)}.

The generalized game G(Ω) is defined by:

(P1) Given prices and payments (π,N) ∈ ∆×N , each agent h ∈ H chooses zh ∈ Γh(π,N)∩Eh(Ω) in

order to maximize the utility function Uh.

(P2) Given (zh)h∈H ∈
∏
h∈H

Eh(Ω), a player chooses (pξ0 , qξ0 , rξ0) ∈ ∆ξ0 to maximize

pξ0
∑
h∈H

(
dhξ0(zhξ0)− whξ0

)
+

∑
j∈J(ξ0)

qξ0,j

 ∑
h∈H+

j (ξ0)

θhξ0,j −
∑
h∈H−j

ϕhξ0,j

+ rξ0
∑
h∈H

(φhξ0 − ψ
h
ξ0).

(P3) For every intermediate node ξ ∈ D̊, given (zh)h∈H ∈
∏
h∈H

Eh(Ω) a player chooses a vector of prices

(pξ, qξ, rξ) ∈ ∆ξ to maximize

pξ
∑
h∈H

(
dhξ (zhξ )−Wh

ξ (zhξ−)
)

+
∑
j∈J(ξ)

qξ,j

 ∑
h∈H+

j (ξ)

θhξ,j −
∑
h∈H−j

ϕhξ,j



+
∑

j∈K(ξ−)

qξ,j

 ∑
h∈H+

j (ξ)

θhξ,j −
∑

h∈H+
j (ξ−)

θhξ−,j

+ rξ
∑
h∈H

(φhξ − ψhξ ).

7Recall that, Ŵξ0 :=
∑
h∈H

whξ0 and, for each ξ > ξ0, Ŵξ := (Y cξ + Y rξ )Ŵξ− +
∑
h∈H

whξ .
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(P4) For every terminal ξ ∈ DT , given (zh)h∈H ∈
∏
h∈H

Eh(Ω) a player chooses pξ ∈ ∆ξ to maximize

pξ
∑
h∈H

(
dhξ (zhξ )−Wh

ξ (zhξ−)
)
.

(P5) For each ξ ∈ D̊ and j ∈ K(ξ−), given
(
π, (zh)h∈H

)
∈ ∆ ×

∏
h∈H

Eh(Ω), a player chooses Nξ,j ∈

[min{Aξ,j(π), pξCξ,j}max{tξj − tξ + 2, 0}, pξCξ,j ] to maximize

−

Nξ,j ∑
h∈H−j

ϕhξj ,j −
∑
h∈H−j

Φhξ,j(z
h
ξ , z

h
ξ− ;π)


2

,

where ξj is the issuing node of contract j.8

(P6) For each ξ ∈ DT and j ∈ K(ξ−), given
(
π, (zh)h∈H

)
∈ ∆ ×

∏
h∈H

Eh(Ω), a player chooses Nξ,j ∈

[min{Aξ,j(π), pξCξ,j}max{tξj − tξ + 2, 0}, pξCξ,j ] to maximize

− (Nξ,j −min{Aξ,j(π), pξCξ,j})2
.

A Cournot-Nash equilibrium of G(Ω) is an allocation
(
π,N, (zh)h∈H

)
∈ ∆×N ×

∏
h∈H

Eh(Ω), which is

individually optimal given the actions of other players.

Lemma 1. Under Assumptions (H1)-(H3), the generalized game G(Ω) has a Cournot-Nash equilibrium.

Proof. From (H1), the objective function Uh is continuous and quasi-concave for all h ∈ H. The upper

hemi-continuity of the correspondences of admissible strategies (π,N) � Γh(π,N) ∩ Eh(Ω) follows from

the continuity of functions (ghξ ; ξ ∈ D), while the lower hemi-continuity is a consequence of the strict

positiveness of the plan (Wh
ξ , ξ ∈ D) (see Assumption (H2)).9 Therefore, for any player h ∈ H, the

correspondence of admissible strategies is continuous, with compact, convex and non-empty values.

The objective functions of the players defined in items (P2)-(P6) are continuous and quasi-concave on

their respective strategies. Furthermore, the correspondences of admissible strategies for these players are

continuous and have non-empty, compact and convex values.

It follows from Berge’s Maximum Theorem that players’ best response correspondences are closed with

non-empty, compact and convex values. Since ∆×N ×
∏
h∈H

Eh(Ω) is compact, convex and non-empty, we

can apply Kakutani’s Fixed Point Theorem to the cartesian product of best response correspondences to

find a Cournot-Nash equilibrium for G(Ω). �

8Notice that, the lower bound of Nξ,j could be positive only at the immediate successor nodes of ξj .
9Given Assumption (H2), for any (π,N) ∈ ∆×N the plan

(
Wh
ξ /2

tξ+1, 0, 0, 0, 0, 0, 0
)
ξ∈D ∈ Eh(Ω) is an interior

point of Γh(π,N). Thus, the correspondence that associates to any (π,N) ∈ ∆ × N the interior of Γh(π,N) ∩

Eh(Ω) relative to Eh(Ω) has non-empty values. Since this correspondence also has an open graph, it is lower-

hemicontinuous. Therefore, (π,N) � Γh(π,N) ∩ Eh(Ω) is lower hemi-continuous because it is the closure of a

lower hemi-continuous correspondence.
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Lemma 2. Under Assumption (H1), let (π,N, (zh)h∈H) be a Cournot-Nash equilibrium of G(Ω).

Then, for each ξ ∈ D \DT , we have that∑
h∈H

dhξ (zhξ ) ≤
∑
h∈H

Wh
ξ (zhξ−) =⇒ qξ,j < τξ, ∀j ∈ J(ξ);

∑
h∈H

dhξ (zhξ ) ≤
∑
h∈H

Wh
ξ (zhξ−),

∑
h∈H+

j (ξ−)

θ
h

ξ−,j <
∑

h∈H+
j (ξ)

θ
h

ξ,j =⇒ qξ,j < τξ, ∀j ∈ K(ξ−);

∑
h∈H

dhξ (zhξ ) ≤
∑
h∈H

Wh
ξ (zhξ−),

∑
h∈H

φ
h

ξ,a <
∑
h∈H

ψ
h

ξ,a =⇒ rξ,a < νξ, ∀a ∈ R(ξ).

Proof. Fix ξ ∈ D \DT such that
∑
h∈H d

h
ξ (zhξ ) ≤

∑
h∈HW

h
ξ (zhξ−) and assume that, for some j ∈ J(ξ),

pξCξ,j ≤ qξ,j . Assumption (H1) implies that, for any player h ∈ H−j we have ϕhξ,j = Ωξ,ϕ. Otherwise,

player h could increase her utility without any additional cost, by increasing her debt j at node ξ,

consuming the associated collateral, and defaulting on this additional short-position in the successor

nodes.10 Therefore, Ωξ,ϕ ‖Cξ,j‖Σ ≤ ‖Cξ,j‖Σ
∑
h∈H−j

ϕhξ,j ≤
∥∥∥∑h∈H d

h
ξ (zhξ )

∥∥∥
Σ
≤
∑
h∈H ‖Wh

ξ (zhξ−)‖Σ.

Since
∑
h∈H

Wh
ξ (zhξ−) ≤ Ŵξ, we contradict the definition of Ωξ,ϕ. Hence,

∑
h∈H

dhξ (zhξ ) ≤
∑
h∈H

Wh
ξ (zhξ−)

guarantees that qξ,j < pξCξ,j ≤ τξ.

To ensure the second property, notice that for every ξ ∈ D \ {ξ0}, unitary security payments satisfies

Nξ,j ≤ pξCξ,j , ∀j ∈ K(ξ−). Fix a node ξ ∈ DT−1 and j ∈ K(ξ−) such that Xξ,j :=
∑
h∈H+

j (ξ) θ
h

ξ,j −∑
h∈H+

j (ξ−) θ
h

ξ−,j > 0. Then, we have that qξ,j < pξCξ,j . Otherwise, investors on security j at ξ could

increase their utility by reducing this position in ε > 0 units, in order to implement the consumption of

the bundle εCξ,j , where ε > 0 is chosen small enough to ensure that the new consumption is admissible.

Indeed, with this strategy they increase the consumption allocation and receive at any µ ∈ ξ+ the amount

pµCµ,j ≥ Nµ,j .

Analogously, fix ξ ∈ DT−2 and j ∈ K(ξ−) such that Xξ,j > 0. Then qξ,j < 2pξCξ,j , since otherwise

the consumption of the bundle 2Cξ,j would be utility-improving with respect to investing on one unit of

security j at ξ,11 a contradiction with the optimality of (zh)h∈H . Repeating this argument recursively, we

get that for each ξ ∈ D̊ and j ∈ K(ξ−) we have that qξ,j < (T − tξ)pξCξ,j whenever Xξ,j > 0. Therefore,

qξ,j < τξ, ∀ξ ∈ D \DT , ∀j ∈ K(ξ−).

Finally, fix ξ ∈ D\DT and a ∈ R(ξ) such that
∑
h∈H(φ

h

ξ,a−ψ
h

ξ,a) < 0, and suppose that pξMξ,a ≤ rξ,a.

Then, every agent h with ψ
h

ξ,a > 0 might be better off by reducing the lessee position in ε > 0 units and

using those resources to buy the bundle εMξ,a, where ε is small enough to make the new consumption

allocation admissible. This contradicts the optimality of ψ
h

ξ,a. �

10Every player can increase the consumption at ξ, because when
∑
h∈H d

h
ξ (zhξ ) ≤

∑
h∈HW

h
ξ (zhξ−) upper bounds

on consumption allocations are non-binding, i.e., xhξ < Ωξ,x.

11Remember that, Nµ,j ≤ pµCµ,j , ∀µ ∈ ξ+.
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Lemma 3. Under Assumptions (H1) and (H4), any Cournot-Nash equilibrium of G(Ω) induces an equi-

librium for the economy E where both N 6= 0 and q 6= 0.

Proof. Let (π,N, (zh)h∈H) ∈ ∆×N ×
∏
h∈H Eh(Ω) be a Cournot-Nash equilibrium of tG(Ω). Since for

each h ∈ H we have ghξ0(zhξ0 ; (π,N)) ≤ 0, it follows that

pξ0

∑
h∈H

(
dhξ0(zhξ0)− whξ0

)
+

∑
j∈J(ξ0)

qξ0,j

 ∑
h∈H+

j (ξ0)

θ
h

ξ0,j −
∑
h∈H−j

ϕhξ0,j

+ rξ0
∑
h∈H

(φ
h

ξ0 − ψ
h

ξ0) ≤ 0.(1)

Thus, the optimal value of player (P2) objective function is non-positive. Given that πξ0 = (pξ0 , qξ0 , rξ0) ∈

∆ξ0 , we have that
∑
h∈H

(dhξ0(zhξ0) − whξ0) ≤ 0, otherwise the player who chooses prices at ξ0 could make

positive her objective function assigning a non-zero price only to those commodities with a positive

excess of demand, and making asset and rental prices equal to zero. Therefore, given j ∈ J(ξ0) we have∑
h∈H+

j (ξ0) θ
h

ξ0,j −
∑
h∈H−j

ϕhξ0,j ≤ 0. Otherwise, player (P2) would choose qξ0,j = 2τξ0 , which contradicts

Lemma 2. Similarly, given a ∈ R(ξ0) we have
∑
h∈H(φ

h

ξ0,a−ψ
h

ξ0,a) ≤ 0, because in other case it would be

optimal for (P2) to choose rξ0,a = 2νξ0 , which contradicts Lemma 2. Hence, there is no excess of demand

on commodity, financial, and rental markets at the initial node.

This implies that, for any h ∈ H, (xhξ0,l, ψ
h

ξ0,a) < (Ωξ0,x,Ωξ0,ψ), ∀(l, a) ∈ L × R(ξ0). Thus, the strict

monotonicity of preferences guarantees that (pξ0 , rξ0) � 0 and ghξ0(zhξ0 ;π) = 0, ∀h ∈ H. Therefore, we

conclude that∑
h∈H

(dhξ0(zhξ0)− whξ0) = 0;(2)

∑
h∈H+

j (ξ0)

θ
h

ξ0,j −
∑
h∈H−j

ϕhξ0,j ≤ 0, qξ0,j

 ∑
h∈H+

j (ξ0)

θ
h

ξ0,j −
∑
h∈H−j

ϕhξ0,j

 = 0, ∀j ∈ J(ξ0);(3)

∑
h∈H

(φ
h

ξ0 − ψ
h

ξ0) = 0.(4)

Conditions (2)-(4) imply that upper bounds on individual plans determined by Ω are non-binding.

Since
∑
h∈H+

j (ξ0) θ
h

ξ0,j −
∑
h∈H−j

ϕhξ0,j < 0 =⇒ qξ0,j = 0, the monotonity of preferences guarantees that

(Nµ,j , qµ,j)µ>ξ0 = 0 when there is excess of demand for credit contract j ∈ J(ξ0) at the initial node.

For any h ∈ H and j ∈ J(ξ0) define

θ̂hξ0,j =

 ϕhξ0,j if (Nµ,j)µ>ξ0 = 0 ∧ (qµ,j)µ≥ξ0 = 0;

θ
h

ξ0,j otherwise.

Since Ωξ0,θ > Ωξ0,ϕ, the modified portfolios (θ̂hξ0 , ϕ
h
ξ0

)h∈H are still feasible, optimal, and satisfy∑
h∈H+

j (ξ0)

θ
h

ξ0,j −
∑
h∈H−j

ϕhξ0,j = 0, ∀j ∈ J(ξ0).(5)
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Furthermore, for any ξ ∈ ξ+
0 , payments (Nξ,j)j∈J(ξ0) chosen by players in (P5) satisfy,

Nξ,j

∑
h∈H−j

ϕhξ0,j =
∑
h∈H−j

Φhξ,j
(
zhξ , ẑ

h
ξ0 ;π

)
, ∀j ∈ J(ξ0).(6)

where for each h ∈ H, ẑhξ0 is obtained from zhξ by replacing θ
h

ξ0 with θ̂hξ0 . Since for every node ξ ∈ ξ+
0 we

have ghξ (zhξ , ẑ
h
ξ0

; (π,N)) = ghξ (zhξ , z
h
ξ0

; (π,N)) ≤ 0, it follows from (5)-(6) that,

pξ
∑
h∈H

(
dhξ (zhξ )−Wh

ξ (ẑhξ0)
)

+
∑
j∈J(ξ)

qξ,j

 ∑
h∈H+

j (ξ)

θ
h

ξ,j −
∑
h∈H−j

ϕhξ,j


+

∑
j∈K(ξ−)

qξ,j

 ∑
h∈H+

j (ξ)

θ
h

ξ,j −
∑

h∈H+
j (ξ−)

θ̂hξ0,j

+ rξ
∑
h∈H

(φ
h

ξ − ψ
h

ξ ) ≤ 0.

Hence, the objective function of (P3) is non-positive in equilibrium. This implies, by analogous arguments

to those made above, that for every node ξ ∈ ξ+
0 we have (pξ, rξ)� 0 and

(xhξ,l, θ
h

ξ,k, ϕ
h
ξ,j , ϕ

α,h
ξ,j , ϕ

β,h
ξ,j , φ

h

ξ,a, ψ
h

ξ,a) < Ωξ, ∀h ∈ H, ∀(l, j, k, a) ∈ L× Jh(ξ)×Kh(ξ)×R(ξ);(7) ∑
h∈H

(
dhξ (zhξ )−Wh

ξ (ẑhξ0)
)

= 0;(8)

∑
h∈H+

j (ξ)

θ
h

ξ,j −
∑
h∈H−j

ϕhξ,j ≤ 0, qξ,j

 ∑
h∈H+

j (ξ)

θ
h

ξ,j −
∑
h∈H−j

ϕhξ,j

 = 0, ∀j ∈ J(ξ);(9)

∑
h∈H

(φ
h

ξ − ψ
h

ξ ) = 0.(10)

We also conclude that for each j ∈ K(ξ0),
∑
h∈H+

j (ξ) θ
h

ξ,j −
∑
h∈H+

j (ξ0) θ̂
h
ξ0,j
≤ 0. Otherwise, (P3) would

choose qξ,j = 2τξ, a contradiction with Lemma 2. Hence,

∑
h∈H+

j (ξ)

θ
h

ξ,j −
∑

h∈H+
j (ξ0)

θ̂hξ0,j ≤ 0, qξ,j

 ∑
h∈H+

j (ξ)

θ
h

ξ,j −
∑

h∈H+
j (ξ0)

θ̂hξ0,j

 = 0, ∀j ∈ K(ξ0).(11)

Given ξ ∈ ξ+
0 , if there exists j ∈ J(ξ) such that

∑
h∈H+

j (ξ)

θ
h

ξ,j −
∑

h∈H−j

ϕhξ,j < 0, then (7) and (9) imply

that qξ,j = 0 and, therefore, the monotonicity of preferences ensures that (Nµ,j , qµ,j)µ>ξ = 0. Also, if for

some k ∈ K(ξ0) we have
∑

h∈H+
j (ξ)

θ
h

ξ,j −
∑

h∈H+
j (ξ0)

θ̂hξ0,j < 0, it follows from (7) and (11) that qξ,j = 0, which

in turn implies that (Nµ,j , qµ,j)µ>ξ = 0.

For any h ∈ H and j ∈ K(ξ) define

θ̂hξ,j =

 ϕhξj ,j if (Nµ,j)µ>ξ = 0 ∧ (qµ,j)µ≥ξ = 0;

θ
h

ξ,j otherwise.
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Since Ωξ,θ > Ωξ,ϕ, the financial position (θ̂hξ , ϕ
h
ξ )h∈H is feasible, optimal, and satisfy∑

h∈H+
j (ξ)

θ̂hξ,j −
∑
h∈H−j

ϕhξ,j = 0, ∀j ∈ J(ξ);
∑

h∈H+
j (ξ)

θ̂hξ,j −
∑

h∈H+
j (ξ0)

θ̂hξ0,j = 0, ∀j ∈ K(ξ0).

Following the same argument through the event-tree, we can ensure that (p, r) � 0 and we can

construct modified plans (ẑh)h∈H that are optimal choices for households in G(Ω) and satisfy market

feasibility conditions along the event-tree D.12

Given that commodity prices are strictly positive, both the characteristics of players in (P5)-(P6) and

(H4) imply that for some ξ ∈ D, j ∈ J(ξ) and µ ∈ ξ+ we have Nµ,j ≥ min{Aµ,j(π), pµCµ,j} > 0.

Moreover, since upper bounds on individuals’ admissible plans are non-binding, it follows that qξ,j > 0.

To ensure that (π,N, (ẑh)h∈H) is an equilibrium of E it remains prove that, for every h ∈ H the

allocation ẑh ∈ Eh(Ω) is an optimal choice for agent h in Γh
(
π,N

)
. This property is a direct consequence

of the strong quasi-concavity of functions Uh. Indeed, if there exists z̃h ∈ Γh
(
π,N

)
strictly preferred

to ẑh, then any convex combination of these plans is also strictly preferred to ẑh. Since ẑh belongs to

Γh
(
π,N

)
∩ interior(Eh(Ω)), some of these convex combinations are in Γh

(
π,N

)
∩Eh(Ω), a contradiction

with the optimality of ẑh in the generalized game. Thus, (π,N, (ẑh)h∈H) is an equilibrium of E . �

12Notice that, as financial market feasibility holds, we have that

Nξ,j

∑
h∈H+

j (ξj)

θ̂hξj ,j =
∑
h∈H−j

Φhξ,j

(
ẑhξ , ẑ

h
ξ− ;π

)
, ∀ξ ∈ D̊,∀j ∈ K(ξ−).
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Appendix B: Equilibrium Existence in Infinite Horizon Economies

We construct an equilibrium of the infinite horizon economy E as a limit of equilibria in finite horizon

economies. These truncated economies will have equilibria as a consequence of Theorem 1.

Truncated Economies.

Fix T ∈ N and consider a truncated economy ET where households can consume and trade at nodes

in DT := {ξ ∈ D : tξ ≤ T}. Individual plan spaces (Eh,T )h∈H , the space of prices PT , and the space

of security payments N T are defined as in any finite horizon economy by considering DT as the full

event-tree. In particular, for each h ∈ H, Eh,T is such that assets and rental portfolios are equal to zero

at each terminal node ξ ∈ DT (even though in the original economy E it is not necessarily true).

Given prices (π,N) ∈ PT ×N T , the optimization problem of h ∈ H is defined as:

max
z∈Γh,T (π,N)

∑
ξ∈DT

uhξ
(
chξ (zξ)

)
,

where Γh,T (π,N) is the set of plans zh = (xh, θh, ϕh, ϕα,h, ϕβ,h, φh, ψh) ∈ Eh,T such that

ghξ0(zhξ0 ; (π,N)) ≤ 0;

ghξ (zhξ , z
h
ξ− ; (π,N)) ≤ 0, ∀ξ ∈ DT \ {ξ0};

ϕα,hξ,j + ϕβ,jξ,j ≤ ϕ
α,h
ξ−,j , ∀ξ ∈ D

T \ {ξ0},∀j ∈ Kh(ξ−).

An equilibrium of ET is a tuple (π,N, (zh)h∈H) ∈ PT ×N T ×
∏
h∈H

Eh,T , satisfying individual optimality

and market clearing conditions of Definition 1.

Lemma 4. Under Assumptions (H2)-(H5) and (H7), ET has an equilibrium for any T ∈ N.

Proof. Under Assumption (H5), utility functions for the truncated economy are well defined and satisfy

(H1). From (H7), functions Aξ,j and Bξ,j are continuous on PT for each ξ ∈ DT (ξ0). Thus, when (H2)-

(H5) and (H7) hold, the economy ET satisfies the hypotheses of Theorem 1. �

Asymptotic Equilibria.

In order to find an equilibrium as a limit of truncated economies’ equilibria we need to count with

uniform bounds for plans and prices. Notice that, for any ξ > ξ0, the bounds found on Lemma 2 for the

prices of securities in K(ξ−) are dependent on the time horizon T . For this reason, Assumption (H8) is

key to find appropriate bounds for these prices in the infinite horizon case, as the next lemma shows.
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Lemma 5. Suppose that Assumptions (H2), (H5), (H6) and (H8) hold. Then, there exists (Υµ)µ∈D � 0

such that, for any T ∈ N and for every equilibrium (πT , N
T
, (zh,T )h∈H) of ET we have that

pTξjCξj ,j ≥ q
T
ξj ,j =⇒ qTµ,j < Υµ, ∀µ ∈ DT : µ > ξj ,

where ξj ∈ DT−1 is the emission node of credit contract j.

Proof. Given ξ ∈ DT−1 and j ∈ J(ξ), assume that pTξ Cξ,j ≥ qTξ,j .

Let Ĥ+
j ⊆ H+

j (ξj) be the non-empty set of agents whose preferences satisfy Assumption (H8). Then,

hypotheses (H5)-(H6) imply that

max
h∈Ĥ+

j

∑
η∈DT

uhη
(
chη(zh,Tη )

)
≤ Ξ := max

h∈H

∑
η∈D

uhη(Ŵη) < +∞.

On the other hand, Assumption (H8) guarantees that, for any successor node µ > ξj there exists

Θµ,j ∈ RL+ such that, min
h∈Ĥ+

j

uhµ
(

1
2tµ+1W

h
µ + Θµ,j

)
> Ξ.

Fix µ ∈ DT such that µ > ξj . Any agent h ∈ Ĥ+
j can implement the following plan:

(i) At any η ∈ DT , consume 1
2tη+1W

h
η ;

(ii) At node ξj , invest on
min
l∈L

Wh
ξj,l

2
tξj

+1
max
l∈L

Cξj,j,l
units of security j;13

(iii) At node µ, sell the position on security j.

Since this strategy is admissible, the resources that it collects at µ must be lower than the cost of the

bundle Θµ,j , implying

qTµ,j < mµ,j := max
h∈Ĥ−j

2tξj+1
max
l∈L

Cξj ,j,l

min
l∈L

Wh
ξj ,l

‖Θµ,j‖Σ

 .

Defining Υµ = max
k∈K(µ−)

mµ,k, we obtain the result. �

Consider a sequence (πT , N
T
, (zh,T )h∈H)T>0 of equilibria for truncated economies obtained by the

application of Theorem 1. This sequence is uniformly bounded node by node. Indeed, given ξ ∈ D, market

feasibility conditions (2)-(4) in the equilibrium definition guarantee that individual plans ((zh,Tξ )h∈H)T>tξ

are uniformly bounded from above by the upper bound Ωξ that was defined in the proof of Theorem 1.

Commodity prices are bounded by construction and, hence, security payments are bounded too. Financial

and rental prices are bounded as a consequence of Lemmas 2 and 5.

For any h ∈ H and T > 0 define

Gh,T :=
{

(x, θ, ϕ, ϕα, ϕβ , φ, ψ) ∈ Eh,T : ϕαµ,j + ϕβµ,j ≤ ϕ
α
µ−,j , ∀µ ∈ D

T \ {ξ0}, ∀j ∈ K(µ−)
}
.

13Given that pTξ Cξ,j ≥ qTξ,j , this investment can be financed by the available resources after consumption, which

are equal to
(

1− 1

2
tξj

+1

)
pξjw

h
ξj

+ 1

2
tξj

+1 pξjY
c
ξj
Wh

ξ−j
.
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Kuhn-Tucker conditions guarantee that, for every h there are multipliers (γh,Tξ )ξ∈D ≥ 0 such that,

γh,Tξ0 ghξ0(zh,Tξ0 ; (πT , N
T

)) = 0,(12)

γh,Tξ ghξ (zh,Tξ , zh,Tξ− ; (πT , N
T

)) = 0, ∀ξ ∈ DT \ {ξ0},(13)

and, for any z = (zξ)ξ∈DT ∈ Gh,T , where zξ = (xξ, θξ, ϕξ, ϕ
α
ξ , ϕ

β
ξ , φξ, ψξ), we have that

(14)
∑
ξ∈DT

(
uhξ (chξ (zξ))− γh,Tξ ghξ (zξ, zξ− ; (πT , N

T
))
)
≤
∑
ξ∈DT

uhξ (chξ (zh,Tξ )).

Therefore, for any z = (zξ)ξ∈DT ∈ Gh,T

(15)
∑
ξ∈DT

uhξ (chξ (zξ))−
∑
ξ∈DT

γh,Tξ ghξ (zξ, zξ− ; (πT , N
T

)) ≤
∑
ξ∈D

uhξ

(
Ŵξ

)
.

Fix η ∈ DT and consider the plan z̃ = (x̃ξ, 0, 0, 0, 0, 0, 0)ξ∈DT ∈ Gh,T such that

x̃ξ =

 Wh
ξ , when tξ < tη;

0, otherwise.

Evaluating inequality (15) in z̃, it follows that

0 ≤ γh,Tη min
l∈L

Wh
η,l ≤

∑
ξ∈DT :tξ=tη

γh,Tξ pTξW
h
ξ ≤ Uh

(
Ŵ
)
.

Hence, we can define the following uniform upper bounds for the Kuhn-Tucker multipliers,

0 ≤ γh,Tη ≤
max
k∈H

Uk
(
Ŵ
)

min
(k,l)∈H×L

W k
η,l

, ∀T ∈ N, ∀h ∈ H, ∀η ∈ DT .

Therefore, for each ξ ∈ D the sequence (πTξ , N
T

ξ , (z
h,T
ξ , γh,Tξ )h∈H)T>tξ is uniformly bounded. It follows

from Tychonoff’s Theorem that there exists a subsequence (Tk)k>0 ⊆ N such that, for any node ξ ∈ D,

(πTkξ , N
Tk
ξ , (zh,Tkξ , γh,Tkξ )h∈H)Tk>tξ converges to some vector

(
πξ, Nξ, (z

h
ξ , γ

h
ξ )h∈H

)
as k goes to infinity,

where zhξ := (xhξ , θ
h

ξ , ϕ
h
ξ , ϕ

α,h
ξ , ϕβ,hξ , φ

h

ξ , ψ
h

ξ ).

Lemma 6. For any h ∈ H and z = (x, θ, ϕ, ϕα, ϕβ , φ, ψ) ∈ Γh(π,N) we have that,∑
ξ∈DM

(
uhξ (chξ (zξ))− uhξ (chξ (zhξ ))

)
≤

∑
ξ∈D\DM

uhξ

(
Ŵξ

)
, ∀M ∈ N.

Proof. Fix M ∈ N and z ∈ Γh(π,N). Then, there exists k(M) ∈ N such that Tk > M for any k > k(M).

Therefore, for any ξ ∈ DM and k > k(M), if we evaluate the inequality (14) in the plan zh,Tkµ , if µ ∈ DTk \ {ξ};

zξ, otherwise;
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we have that

uhξ (chξ (zξ))− uhξ (chξ (zh,Tkξ )) ≤ γh,Tkξ ghξ (zξ, z
h,Tk
ξ− ; (πTk , N

Tk
)) +

∑
µ∈ξ+

γh,Tkµ ghµ(zh,Tkµ , zξ; (πTk , N
Tk

)).

Adding across nodes on DM we obtain that,

(16)
∑
ξ∈DM

(
uhξ (chξ (zξ))− uhξ (chξ (zh,Tkξ ))

)

≤
∑
ξ∈DM

γh,Tkξ ghξ (zξ, z
h,Tk
ξ− ; (πTk , N

Tk
)) +

∑
µ∈ξ+

γh,Tkµ ghµ(zh,Tkµ , zξ; (πTk , N
Tk

))

 ,

≤
∑

µ∈D:tµ=M+1

γh,Tkµ ghµ(zh,Tkµ , zµ− ; (πTk , N
Tk

))

≤ Λh,TkM+1 :=
∑

µ∈D:tµ=M+1

γh,Tkµ ghµ(zh,Tkµ , 0; (πTk , N
Tk

)) +
∑

µ∈D:tµ=M+1

γh,Tkµ pTkµ whµ,

where the last two inequalities follow from equations (12)-(13), the budget feasibility of the allocation

z = (x, θ, ϕ, ϕα, ϕβ , φ, ψ), and the fact that (pTkµ , pTkµ Cµ,j − qTkµ,j , qTkµ , rTkµ ) ≥ 0 for any µ ∈ DTk , j ∈ J(µ).

On the other hand, given s ≤ Tk, if we evaluate inequality (14) in the plan zh,Tkµ , if µ ∈ DTk , tµ 6= s;

0, otherwise;

the non-negativity of the utility function implies that,

−
∑

µ∈DTk (ξ0):tµ=s

γh,Tkµ ghµ(0, zh,Tkµ− ; (πTk , N
Tk

)) −
∑

µ∈DTk (ξ0):tµ=s+1

γh,Tkµ ghµ(zh,Tkµ , 0; (πTk , N
Tk

))

≤
∑

µ∈DTk (ξ0):tµ=s

uhµ(chµ(zh,Tkµ )), ∀s < Tk;

−
∑

µ∈DTk (ξ0):tµ=s

γh,Tkµ ghµ(0, zh,Tkµ− ; (πTk , N
Tk

)) ≤
∑

µ∈DTk (ξ0):tµ=s

uhµ(chµ(zh,Tkµ )), ∀s = Tk.

Therefore, as equations (12) and (13) guarantee that

−γh,Tkµ ghµ(0, zh,Tkµ− ; (πTk , N
Tk

)) = γh,Tkµ ghµ(zh,Tkµ , 0; (πTk , N
Tk

)) + γh,Tkµ pTkµ whµ,

we have

Λh,Tks ≤
∑

µ∈DTk (ξ0):tµ≥s

uhµ(chµ(zh,Tkµ )) ≤
∑

µ∈D:tµ≥s

uhµ

(
Ŵµ

)
, ∀s ≤ Tk.

This last result and inequality (16) imply that,∑
ξ∈DM

(
uhξ (chξ (zξ))− uhξ (chξ (zh,Tkξ ))

)
≤

∑
µ∈D:tµ≥M+1

uhµ

(
Ŵµ

)
.

Taking the limit in the inequality above when Tk goes to infinity, we conclude that∑
ξ∈DM

(
uhξ (chξ (zξ))− uhξ (chξ (zhξ ))

)
≤

∑
µ∈D:tµ≥M+1

uhµ

(
Ŵµ

)
. �
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Since for each T ∈ N,
(
πTξ , N

T

ξ , (z
h,T
ξ )h∈H

)
ξ∈DT

satisfies market clearing and payment compatibility

conditions (2)-(5) in the equilibrium definition, the limit
(
πξ, Nξ, (z

h
ξ )h∈H

)
ξ∈D also satisfies market clear-

ing conditions. Furthermore, since the functions defining individual choice sets (ghξ ; (h, ξ) ∈ H ×D) are

continuous, it follows that, for any h ∈ H the plan zh := (zhξ ; ξ ∈ D) belongs to Γh(π,N).

To prove the optimality of individual limit plans suppose, by contradiction, that for some h ∈ H there

is a plan z ∈ Γh(π,N) which is strictly preferred to zh. Then, there exists δ > 0 such that,∑
ξ∈D

uhξ (chξ (zξ))−
∑
ξ∈D

uhξ (chξ (zhξ )) ≥ δ.

Thus, there exists N∗ ∈ N such that for any N > N∗,∑
ξ∈DN

uhξ (chξ (zξ))−
∑
ξ∈DN

uhξ (chξ (zhξ )) ≥ δ

2
.

It follows from Lemma 6 that,
δ

2
≤

∑
ξ∈D\DN

uhξ

(
Ŵξ

)
,∀N > N∗.

Since the utility evaluated in the aggregated consumption is finite (Assumption (H6)), taking the limit as

N goes to infinity, we obtain a contradiction. Thus, for any h ∈ H, the plan zh is an optimal choice in

the set Γh(π,N). The strict monotonicity of preferences ensures that (p, r)� 0.

Fix ξ ∈ D, µ ∈ ξ+, and j ∈ J(ξ). The proof of Theorem 1 implies that N
T

µ,j ≥ min{Aµ,j(πT ), pTµCµ,j}

for any T ∈ N. Since
(
πξ, Nξ, (z

h
ξ )h∈H

)
ξ∈D is obtained as a node by node limit of equilibria in truncated

economies, the continuity of coupons ensures that Nµ,j ≥ min{Aµ,j(π), pµCµ,j}.

Finally, it follows from arguments above, the fact that p � 0, and Assumption (H4) that there exists

at least one node ξ ∈ D such that, for some credit contract j ∈ J(ξ) and some immediate successor node

µ ∈ ξ+ we have that Nµ,j > 0. This ensures that qξ,j > 0 as a consequence of Assumption (H5).

Therefore,
(
πξ, Nξ, (z

h
ξ )h∈H

)
ξ∈D is an equilibrium for E where both q 6= 0 and N 6= 0.
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[4] Araujo, A., M.R. Páscoa, and J.P. Torres-Mart́ınez (2005):“Bubbles, Collateral and Monetary Equilibrium,”

working paper, Department of Economics, Pontifical Catholic University of Rio de Janeiro. Available at

http://www.econ.puc-rio.br/pdf/td513.pdf
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