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In this paper we propose an automatic volcano event detection system based on Hidden Markov Model (HMM)
with state and event durationmodels. Since different volcanic events have different durations, therefore the state
and whole event durations learnt from the training data are enforced on the corresponding state and event du-
ration models within the HMM. Seismic signals from the Llaima volcano are used to train the system. Two types
of events are employed in this study, Long Period (LP) and Volcano-Tectonic (VT). Experiments show that the
standard HMMs can detect the volcano events with high accuracy but generates false positives. The results
presented in this paper show that the incorporation of duration modeling can lead to reductions in false positive
rate in event detection as high as 31% with a true positive accuracy equal to 94%. Further evaluation of the false
positives indicate that the false alarms generated by the systemweremostly potential events based on the signal-
to-noise ratio criteria recommended by a volcano expert.
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1. Introduction

Active volcanoes are continuously monitored to observe the under-
lying volcano-seismic activities. Each volcano-seismic activity or event
is associated to a source process and gives an insight into the current
state of the volcano that could potentially be used as precursors of an
eruption. Automatically detecting (or classifying) these events has
gained importance because of the growing need tomonitor a high num-
ber of active volcanoes, in addition to providing an efficient, consistent
and reliable machine-based framework.

HiddenMarkovModels (HMMs) can be a powerful and efficient tool
that has therefore also been usedwithinmultiple applications (Rabiner,
1989). Among others, multiple HMM based volcano-seismic event and
earthquake detection and classification techniques have been proposed
in recent years (Ohrnberger, 2001; Alasonati et al., 2006; Gutiérrez et al.,
2006, 2009; Benítez et al., 2007; Beyreuther et al., 2008, 2012;
hatti),
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Beyreuther and Wassermann, 2008, 2011; Ibáñez et al., 2009; Bicego
et al., 2013). From the volcanology point of view, HMM is a very conve-
nient method because it can offer a mathematical framework to model
signals that are composed of non-stationary events. Gutiérrez et al.
(2006), and later Ibáñez et al. (2009), presented an HMM based classi-
fication system for volcanoevents recorded at Stromboli and Etna volca-
noes. Data was used from field surveys of years 1997 and 1999. The
authors conclude that the recognition system is very efficient but ac-
knowledged that for an improved performance reliable labeling by an
expert is vital. Benítez et al. (2007) proposed a classification system de-
veloped based on the seismic events recorded during the 1994–1995
and 1995–1996 surveys at the Deception Island Volcano, Antarctica.
The events included volcano-tectonic earthquakes, long period events,
and volcanic tremor. The authors claimed that the system provides a
classification accuracy of 90% and is suitable for real-time operation.
The system was also tested on another data set, mainly with LP events,
observed during the 2001–2002 field survey, and an accuracy of around
95%was achieved. In Beyreuther et al. (2008), HMMswere employed to
detect and classify volcano-tectonic or tectonic earthquakes in continu-
ous seismic data. HMMs were built for events and noise with the HTK
software. In the implementation two classifierswere running in parallel,
one containing all models of events and noise, and another one with
only noise models. Valuable information for the seismological analyst
to evaluate the detections was provided by using confidence measure.
Beyreuther and Wassermann (2008) proposed the use of Discrete Hid-
den Markov Modeling (DHMM) for the detection of small to medium
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Fig. 1. Three state left-to-right HMM without state skip transition to model LP and VT
events.
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size earthquakes. The seismic signals were recordedwith three stations
of the Bavarian Earthquake Service. The performance of their algorithm
was compared with a recursive LTA/STA detector, within a continuous
one-month period. The detection ratewas 81% and 90% for the proposed
scheme and the LTA/STA respectively, in 69 earthquakes. A drawback
when using DHMMs, compared to continuousHMMs, is that time series
of real-valued feature vectors have to be converted to discrete valued
time series via a vector quantization step as DHMMs are only capable
to evaluate discrete symbol sequences. Also, continuous HMMs are
more flexible than DHMM. Beyreuther and Wassermann (2011) pro-
posed to use Hidden semi-Markov Models (HSMMs) applied to earth-
quake detection and classification. HSMMs extend the double
stochastic HMMs by integrating a more realistic duration of the target
waveforms.When using ordinary HMMs the probability of the duration
for a single part in the HMM (called state) is an exponentially decaying
function in time which is an unrealistic representation for the duration
of earthquake classes or speech units (Oura et al., 2008). HSMMs use the
more realistic Gaussians as state duration probability distributions.
State transition probabilities and distributions are estimated jointly
and automatically by an Expectation Maximization (EM) algorithm.
Weighted Finite State Transducers (WFSTs) were built for the classifica-
tion as the standardViterbi algorithmcannot be employedbecause it re-
lies strongly on the intrinsic HMM design. Detection and classification
process using this approach was extremely slow (1/2 h CPU time for
1 h data). To avoid this problem, Beyreuther et al. (2012) employed an
HMM based system detection with state clustering where states con-
taining similar Gaussians are tied together according to a given metric.
By doing so, a more efficient HMM detection was achieved when com-
pared with HSMM. This methodology was used for detection of anthro-
pogenically induced earthquakes and earthquake classification at Mt.
Merapi volcano, Indonesia. This approach also incorporates minimum
state duration similarly to the HSMM technique. However, the maxi-
mum state duration is not restricted. The HMM topology is limited to
self-transitions and transitions to the next state. State transition proba-
bilities anddistributions are estimatedby an EMalgorithmas in the pre-
vious paper. Studying volcano San Cristóbal, Nicaragua, Gutiérrez et al.
(2009) proposed an HMM based automatic volcano event detection
and classification system. Data of over 600 h from field survey February
to March 2006 was used and the events therein were manually labeled
by an expert. They report a classification accuracy of around 80%. Bicego
et al. (2013) proposed a newHMMbased classification technique by en-
hancing the HMMs with a generative embedding scheme. The genera-
tive embedding uses the models to map signals into a vector space
called the generative embedding space. In such a space, any discrimina-
tive vector-based classifier (e.g. kernel-based SVMs) can be applied. Ex-
periments were performed on pre-triggered signals recorded at Galeras
Volcano in Colombia, and indicated that the proposed approach gener-
ally performs better than the standard HMM scheme.

This paper studies the Llaima volcano, one of the biggest by volume
in Chile and one of the most active volcanoes in South America. The
seismo-volcanic events considered in this study are: Long Period (LP),
consisting in transient, volumetric signals; and, Volcano-Tectonic (VT),
corresponding to ordinary earthquakes in the brittle rock within a vol-
canic edifice or in the crust beneath it. As will be shown later, duration
distribution depends on the volcano events. As a consequence, duration
models could provide useful complementary information to increase
the accuracy in the volcano event detection problem. In this paper we
therefore propose an HMM based volcano event detection system en-
hancedwith durationmodeling. This approach allows introducingmin-
imum and maximum duration of HMM states. Furthermore, minimum
and maximum duration constraints of the whole volcano event are
also incorporated. Moreover, to reduce false events that may be detect-
ed at a frequency higher than true volcano event rate, a penalization is
applied to every volcano activity detected. Finally, to reduce the compu-
tational load, the Viterbi algorithm, which is a very efficient scheme for
HMMdecoding (i.e. to find the optimal sequence ofmodel and states for
a given recorded signal), was adapted to incorporate the state and event
duration constraints, and the penalization to new detected events. It is
worth highlighting that the approach and analysis presented in this
paper have not been applied to the problem of volcano event detection
in the specialized literature.

2. Introduction to hidden Markov models

An HMM is composed of a sequence of states that can model non-
stationary signals. HMMs are a finite state machine defined by three set
of parameters: a) transition probabilities between states; b) observation
probabilities in each state; and, c) initial probabilities for each state. In
this research, volcano events are modeled using tree states to represent
their dynamics. Fig. 1 shows an example of an HMM with 3 states S1, S2
and S3. The first state models the beginning of the event signal, whilst
the second and third states model the middle and end of the event,
respectively.

2.1. Transition probabilities

As explained in more detail later, the recorded signal is divided in
short-termwindows, andwithin eachwindow a set of features are esti-
mated (i.e. feature extraction). The set of features estimated for each
window is denominated frame. Each frame t is represented by a feature
vector denoted asOt. Given anHMM, the current statemay change from
one frame to the following one, and the probability for changing to state
j from state i is given by the transition probability aij. In this way, transi-
tions from one state to another can be allowed by setting the corre-
sponding transition probabilities to a positive number. In contrast, if a
transition probability is set to zero, the corresponding transition is for-
bidden. The allowed state transitions are drawn as arcs in the model.
In the HMM of Fig. 1, given a state i, only state transitions to the same
state i or the state i + 1 are possible. This topology is known as left-
to-right without state skip transition.

2.2. Observation probabilities

Given anHMM, to each state Si corresponds anobservation probabil-
ity, Pr(Ot |Si,λ). In this research, the observation probability is modeled
with a probability density function represented by a Gaussian Mixture
Model (GMM) composed of G Gaussians. The observation probability
is defined as:

Pr Ot jSi;λð Þ ¼ ∑G
g¼1φg;i;λ � ℵ Ot ;μg;i;λ;∑g;i;λ

� �
ð1Þ

where λ denotes the HMM (LP, VT, or noise), G is the number of Gauss-
ians per state, ℵ(⋅;μ,Σ) is a multivariate Gaussian with mean vector μ
and covariance matrix Σ:

ℵ O;μ;Σð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þn Σj j

q e−
1
2 O−μð ÞTΣ−1 O−μð Þ ð2Þ

where n is the dimensionality of O, and φg , i ,λ are the weights of the
Gaussians.
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2.3. Initial probabilities

Another parameter that defines anHMM is the vector of initial prob-
abilities for each state π = (π2, π2,… πNS

), where NS is the number of
states within the HMM. Vector π represents the probability distribution
on the initial state, i.e. the probability of the state allocated to the first
frame within a given HMM. In this paper, the first frame within an
HMM is assigned to the first state in the HMM. For the HMM in Fig. 1,π = (1,0,0).

2.4. Feature extraction

In the feature extraction process, the goal is to reduce the data di-
mensionality by converting the sampled waveform into a sequence of
parameter vectors with less redundant information. Accordingly, a re-
corded continuous seismic signal of length equal to T frames, is repre-
sented by a sequence of observation vectors O1 ,O2 ,…OT composed of
representative features of itsmain temporal and spectral characteristics.
The feature extraction process is carried out by arranging the signal into
200–300 sample frames, usually overlapped, by employing a Hamming
window. For each frame, different features are extracted to compose the
observation vector of the frame. Cepstral coefficients (Beyreuther et al.,
2012) and linear prediction filter coefficients (LPC) (Esposito et al.,
2013) are commonly used in feature extraction. LPC are features that
give compressed information about the shape of the spectral envelope
of a signal. They can be used to predict a signal sample through a linear
combination of previous samples. Cepstral coefficients are defined as
the DCT (Discrete Cosine Transform) coefficients obtained from the
log magnitude over the fast Fourier transform (FFT) of the signal. This
feature vector is related to the statistical distribution of the spectral
characteristics of the signal (Ibáñez et al., 2009).

Delta (Δ) and delta–delta (ΔΔ), also known as differential and accel-
eration coefficients, are also usually considered to include temporal evo-
lution of the static features described above, e.g. Cepstral and LPC
coefficients. This time evolution is established on the basis of the first
and second derivatives of the corresponding static features. Δ and ΔΔ
for the static features in frame t are defined as follows:

Δ tð Þ ¼ static features t þ 1ð Þ− static features t−1ð Þ
2

ð3Þ

ΔΔ tð Þ ¼ Δ t þ 1ð Þ− Δ t−1ð Þ
2

ð4Þ

where static_features(t) denotes the corresponding static feature vector
in frame t.

2.5. Training and decoding

After the feature extraction, theHMMparameters for each event and
noise are estimated from a set of training recorded signals. This training
procedure allows us to obtain the parameters that define a representa-
tive model for each defined class of event. For the training process it is
necessary to determine the seismic event classes that will be addressed.
Regarding the type of the volcanic seismic events considered in this
work, it refers to commonly events often observed inmost active volca-
noes (Chouet and Matoza, 2013). These events are associated either to
the dynamics of fluids into the volcano (long period type, LP) or with
the breaking of brittlematerial (volcanotectonic type, VT). For the train-
ing and testing processes, the database stores events chosen by the
human volcano experts from the continuously recorded data. The volca-
no specialists discriminate the events of interest fromother types of vol-
canic signals (not included in this research) and from non-volcanic
signals (like tectonic and environmental noise). LP and VT events of
Llaima volcano were targeted in this study. Features such as the shape
of thewave, envelope, event duration, time difference between primary
(P) and secondary waves (S), frequency content and verification at var-
ious stations with consistent times of arrival, are the criteria usually
employed by the human experts, to discriminate between LP and VT,
and other volcanic and non-volcanic events. Then, we select examples
of seismic events (training data) that can be identified as belonging to
LP and VT classes. The training data set must be large enough to be sta-
tistically representative of the addressed classes. These trained HMMs
are employed in the decoding process. In this context, given a signal re-
corded by a seismic station, decoding corresponds to allocate every
frame in one of the models and states that compose an HMM network
(see subsection 2.2). This network is defined by the interconnection of
all the HMMs that represent the targeted volcano events and back-
ground noise. This HMMnetwork is also determined by the realistic se-
quence of volcano events and noise. The decoding procedure (see
Viterbi algorithm in Section 3.5) is both a detection and classification
procedure because it delivers the most likely sequence of volcano
events and noise. The decoding algorithm used in this research is the
Viterbi algorithm (Viterbi, 1967; Rabiner, 1989; Rabiner and Juang,
1993).

Fig. 2 shows the proposed system architecture. Representative fea-
tures from the training data are extracted and the HMMs are trained.
The Gaussian distributions for the observation probabilities and the
state and event duration parameters are also evaluated from the train-
ing data. In the decoding process, features are extracted from a given
test signal and the optimal alignment is estimatedwith the Viterbi algo-
rithm. The optimal alignment corresponds to the most likely assign-
ment of frames to the states within the HMMs. The different
components of the system are detailed as follows.

2.6. Events and noise model definitions

As mentioned above, LP and VT events of Llaima volcano were ad-
dressed in this study. Based on the dynamics of these events they are
segmented into three sequence of frames, i.e. beginning, middle, and
end. Each segment is allocated to one state within the LP and VT event
HMMs, while only one state is used to model the noise in this paper.
This choice is justified because we are not adopting any consideration
about the stationarity of the background noise. Moreover, the GMM ob-
servation probability is adequate tomodel the diversity of the noise pro-
cess. It is worth highlighting that the proposed method is not limited to
the use of a fixed number of states per event.

Fig. 1 shows the three state left-to-right HMM without state skip
transition adopted for LP and VT events. The HMM topology enforces
the volcano events to go through all the three HMM states, starting in
state 1 and ending in state 3. Observe that jumping from state 1 to
state 3 is forbidden. The absence of volcano-seismic activity is repre-
sented by background noise. In this paper, the background noise is
modeled bymaking use of only one statewhose observation probability
is modeled with a GMM to capture the diversity of the corrupting pro-
cess. Fig. 3 presents the single-state HMM to model noise. As was men-
tioned above, eachHMM λ (i.e. VT, LP, andnoise) is defined by the initial
probabilities of each state, the transition probabilities, and the observa-
tion probability mean vector and covariance matrix. In this paper we
consider that each time an event takes place, the first frame of the
event is allocated to the first state of its corresponding model. By
doing so, the initial state probabilities of LP and VT HMMs are π =
(1,0 ,0), as explained above. Notice that the noise HMM is composed
of only one state. In this paper, we incorporate state duration con-
straints to the transition probabilities of LP and VT HMMs. In the case
of the background noise HMM, no duration restrictions were applied.
This is due to the fact that the training and testing data were generated
by taking 20min signals (10min after and before an event identified by
the volcano experts). In the case of the decoding process, the system
outputs the information concerning the detected events (i.e. one or
more) for each 20 min signal. As a result, the duration statistics for
noise are not representative of the time separation between contiguous
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volcano events. Actually, in a practical scenario, an event may start at
any time (e.g. a few seconds or a few hours after a previous event). Con-
sequently, this noise statistic model for state duration would impose
very loose restrictions.

The observation probabilities are represented by GMMs. Each GMM
is composed of eight Gaussians in this paper. The covariance matrix is
considered diagonal, which is the result of the fact that the features
are considered uncorrelated. The detailed parameter estimation process
is given in Section 3.4.
2.7. Events and noise model network

Each volcano event is associated to an HMM and all the defined
HMMs, including noise, compose the whole HMM network that repre-
sents the possible volcano event sequence as shown in Fig. 4. The transi-
tion probability aiΑ,kΒ corresponds to the probability of going fromstate i in
anHMM(Α), given a frame, to state k in the same or differentHMM(Β) in
the following frame. Transition probability from noise to the first state of
LP and VT events, a1Noise ,1LP

and a1Noise ,1VT
, respectively, are considered as

a1Noise ;1LP ¼ a1Noise ;1VT ¼ 1−a1Noise ;1Noise
2 . Transitions from the last state of LP

and VT events to the single-state of noise are defined by the transition
probabilities a3LP,1Noise

and a3VT,1Noise
, respectively. These probabilities are

evaluated as a3LP,1Noise =1−a3LP ,3LP and a3VT,1Noise
=1−a3VT ,3VT

. According
to the proposed HMM network, any volcano event has to be preceded
and followed by an absence of activity, i.e. background noise. It is not pos-
sible to observe two consecutive volcano eventswithout noise frames be-
tween them. The transition from one state to the next one is defined in
such a way that the next state from noise is always the first state of LP
or VT event HMM. Similarly, after the first state of LP or VT events, the
following frames are allocated in the first or second state of the corre-
spondingHMMaccording to the left-to-rightwithout state skip transition
topology. The transition from the third state within LP or VT HMMcan be
Fig. 3. One state HMM to model noise.
to the same state or to thenoise state/model. For instance, after a periodof
no seismic activity, the volcano can present an LP event, including begin-
ning, middle and end stages. After that, a new periodwithout volcano ac-
tivity takes place. Then, a new event can start. A possible sequence of
states allowed by the HMM network, in Fig. 4, given a sequence of nine
frames could be, for example, as follows:

(Noise model, state 1, frame 1), (Noise model, state 1, frame 2), (LP
model, state 1, frame 3), (LP model, state 2, frame 4), (LP model, state 2,
frame 5), (LP model, state 3, frame 6),( LP model, state 3, frame 7),
(Noise model, state 1, frame 8), (VT model, state 1, frame 9), and so on.

3. The proposed method

LP events are transient, volumetric signals consisting of a brief
broadband onset, followed by a coda of decaying harmonic oscillations
containing pronounced spectral peaks that are independent of azimuth
and distance to the source (Chouet andMatoza, 2013; Zobin, 2012). The
frequency energy for LP is typically located between 0.5–5 Hz (Chouet
andMatoza, 2013). Theworldwide observations of LP show awide var-
iability in temporal durations, which also depends on the specific volca-
no. Themean and standard deviation for the duration of LP events in the
recorded signal database used in this paper is 32.9 ± 10.7 s.

VT earthquakes are ordinary earthquakes in the brittle rock within a
volcanic edifice or in the crust beneath it. They are characterized by
sharp, mostly impulsive onsets of P- and S-waves, with typically broad
spectra extending up to 15 Hz (Lahr et al., 1994). VT has close similarity
with tectonic earthquakes and is the result of abrupt frictional slip on
opposing rock surfaces with a double-couple source mechanism
(Chouet and Matoza, 2013). The mean and standard deviation for the
duration of VT events in the recorded signal database used in this
paper is 25.7 ± 14.5 s.

Fig. 5 shows the normalized histograms of the LP and VT event dura-
tions. In Fig. 5 it can be seen that, on average, the LP events have longer
time duration compared to VT signals. Also, the maximum duration of
VT events is higher than the LP ones. Because the duration statistical dis-
tributions of the LP and VT volcano-seismic activities are different, they
could provide useful complementary information to detect them. Simi-
larly, Fig. 6 shows an example of volcano-seismic activity: its time do-
main signal; the label by a volcano expert; and, the spectrogram. We
can see that there are three potential events but only one was labeled
by the expert as a proper volcano-seismic signal, while the other two
events were not labeled because, among other reasons, they present a



Fig. 4. HMM network for volcano events detection.
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too short duration. These events could have been labeled as volcano-
seismic activity if duration constraints were not enforced, indicating
that the volcano experts possibly consider a priori information of the
real volcano event duration in their analysis. This suggests that the in-
corporation of duration restrictions can provide useful information to
improve the accuracy of a system for seismic activity detection.
3.1. State duration constraints

Duration probability distribution of states is not included in the ordi-
nary HMM technique. According to the definition of HMMs, the proba-
bility of staying τ frames in state iΑ can be estimated from the state
transition probabilities as aiΑ ,iA

τ−1·(1−aiΑ ,iA), that results in a geomet-
ric distribution of state duration. In this paper, we incorporate state du-
ration constraints to the transition probabilities in order to model the
information contained in the time durations of LP and VT events. Dura-
tion constraints are incorporated in each state of the LP and VT HMMs
(Fig. 4) according to Yoma et al. (2001). The transition probabilities
aiΑ , iΒ or aiΑ ,kΒ, as explained in Section 3.4.1, are constrained based on
the minimum and maximum state duration τs:

aτsiA; iA ¼
1; ifτs b t min si
0; if τs ≥ t max si
aiA; iA ; otherwise

8<
: ð5Þ
Fig. 5. Normalized histograms of the VT and LP event durations.
aτsiA ;kB ¼
0; ifτs b t min si
1; ifτs ≥ t max si
aiA ;kB ; otherwise

8<
: ð6Þ

where:

in (6), if [iA=1∨2] = NkB = iA+1, where A=B=(LP∨VT.)
in (6), if [iA=3]∧[A=LP∨VT]= N [B=noise∧kB=1]∨ [B=A∧ kB=3]

Here, tmin_si and tmax_si are the minimum and maximum duration
thresholds for state i, respectively, and are computed as tmin_si=
tol_min_s× min_si(τs) and tmax_si= tol_max_s×max_si(τs), where
tol_min_s b1, tol_max_sN1, and min_si(τs) and max_si(τs) are the
minimumandmaximumdurations for state i obtained from the training
data. The constants tol_min_s and tol_max_s introduce a tolerance fac-
tor to the minimum and maximum duration for every state.

3.2. Event duration penalty

In combination with the state duration restrictions, as explained
above, a duration constraint on thewhole volcano event, EDP (event du-
ration penalty) is proposed. EDP is also applied bymaking use of a trun-
cated Gamma probability density function for each event. The following
expression is applicable for both LP and VT events separately:

EDP ¼
−∞; if τe b tmin e
−∞; if τe ≥ tmax e

log k:e−α:τe:τeρ−1� �
otherwise

8<
: ð7Þ

where τe=0,1 ,2 ,… is the duration of events LP or VT in number of
frames; tmin_e and tmax_e are the minimum and maximum duration
thresholds for events LP or VT, respectively, and are estimated as
tmin_e= tol_min_e× min_e(τe) and tmax_e= tol_max_e×max_e(τe),
where tol_min_e b1, tol_max_eN1, and min_e(τe) and max_e(τe) are
the minimum and maximum durations for the event obtained from
the training data. The constants tol_min_e and tol_max_e introduce a
tolerance factor to the minimum and maximum duration for each
event; and αN0, ρN0 and k is a normalizing term. The parameters α
and ρ are estimated by

α ¼ E τeð Þ
Var τeð Þ ð8Þ

ρ ¼ E2 τeð Þ
Var τeð Þ ð9Þ



Fig. 6. Example of a seismic signal labeled by a volcano expert: (a) time domain signal of a volcano event; (b) labeling according to the volcano expert, where label 0 is noise, label 1 is LP,
and label 2 is VT; and, (c) the corresponding spectrogram of the signal.

139S.M. Bhatti et al. / Journal of Volcanology and Geothermal Research 324 (2016) 134–143
where the mean duration, E(τe), the variance, Var(τe), and the min_e
and max_e durations are estimated for every event occurrence ob-
tained from the training data labeled by volcano experts. EDP is ap-
plied as an additive term in the log-likelihood domain when an
observation vector Ot is in the last state of the LP or VT HMM and
Ot+1 jumped to the noise state/model (see the Viterbi algorithm in
Fig. 7. False negatives rate (FN/h) and false positi
Section 3.5). As a result, those alignments where detected volcano
events presents likely durations according to (7) will have higher
log-likelihoods than those alignments where event durations are un-
likely. Consequently, the Viterbi decoding procedure will tend to de-
liver optimal alignments where volcano-seismic signals are likely
according to (7).
ves rate (FP/h) vs new event penalty (NEP).
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3.3. New event penalization

As suggested by Fig. 6, false events may be detected at a rate higher
than true volcano event occurrences. In order to reduce the false event
detection rate in the proposed HMM network shown in Fig. 4, a penali-
zation is applied in the transition from single-state noise model to the
first state of LP or VT events. The new event penalization,NEP, is a scalar
constant and is also applied in the log-likelihood domain.NEP is applied
as an additive term in the log-likelihood domain when an observation
vector Ot is in the noise state/model and Ot+1 jumped to the first state
of the LP or VT HMM (see the Viterbi algorithm in Section 3.5). As a re-
sult, those alignments with a higher number of events will have lower
log-likelihoods than those alignments with just a few detected volca-
no-seismic signal. Consequently, the Viterbi decoding procedure will
tend to deliver optimal alignments with just a few volcano events.

3.4. Training procedure

All the signals, both for training and testing, were labeled by an ex-
pert from The Southern Andes Volcano Observatory (OVDAS), the
state agency that continuouslymonitors over forty active Chilean volca-
noes including Llaima. Each signal was divided in 300-sample windows
overlapped by 50%. Feature vectors were estimated for each window.
For training all the LP and VT event occurrences were uniformly divided
in three non-overlapping segments of feature vectors that were allocat-
ed to state 1, 2, and 3 sequentially. In contrast, all the feature vectors for
noise were assigned to the single-state noise HMM. The statistics re-
quired to estimate all the HMMs parameters are computed with the
frames in each state. The training method used to build the HMMs for
each class is the expectation maximization algorithm, EM, to estimate
the optimal parameters of the Gaussian mixture models that represent
the observation probabilities (Huang et al., 1990). The Gaussian distri-
butions and the state and event duration parameters were computed
from the training data.

3.4.1. Ordinary transition probabilities
The ordinary HMM state transition probabilities are estimated ac-

cording to Yoma et al. (2005):

aiΑ ;iA ¼ 1−
1

Ei τs½ � ð10Þ

aiΑ ;kΒ ¼

1−aiΑ ;iA ; if i ¼ 1;2 for Α ¼ LP ∨ VT;
k ¼ iþ 1 for Β ¼ A;
and if i ¼ 3 for Α ¼ LP ∨ VT;
k ¼ 1 for Β ¼ noise

1−aiΑ ;iA
2

; if i ¼ 1 for Α ¼ noise;

k ¼ 1 for Β ¼ LP ∨ VT

8>>>>>>>>><
>>>>>>>>>:

ð11Þ

where Ei[τs] is the expected value of the duration of the i-th state in a
given model in the training signals.

3.4.2. Training of observation probabilities
The number of Gaussians, G in (1), was made equal to eight. All the

Gaussian mixture parameters were trained by using the EM algorithm
with the frames allocated to the corresponding state (McLachlan and
Peel, 2000).

3.4.3. State/event duration parameters estimation
Minimum and maximum state duration, required by (5) and (6),

and minimum, maximum, mean and standard deviation of event dura-
tion, required by (7), are estimated by using the frames allocated to all
the states and event occurrences in the training data. In the case of the
single-state noise model, state duration statistics were not estimated.
3.5. Decoding process

To detect events in a testing signal, first the feature set is calculated
for each frame. Then, the optimal alignment is estimated with the
Viterbi algorithm (Huang et al., 1990), described below. The proposed
Viterbi algorithm incorporates transition probabilities that are functions
of state and event duration, and penalization NEP defined above.

3.5.1. Viterbi algorithm with duration modeling
The Viterbi algorithm incorporating state and event duration is sum-

marized above. The likelihood of a state in a model at frame t is repre-
sented by δ, and the corresponding optimal state and model at time
t−1 is denoted by ω; λN=noise HMM, λLP=LP HMM, λVT=VT HMM,
and λLP/VT=LP or VT HMMs within the algorithm description.

4. Experimental setup and system description

Asmentioned before, this paper studies the Llaima volcano. Llaima is
a compound strato-volcano of basaltic to andesite-basaltic composition
and is located in the Araucanía Region (38° 41′S–71° 44′W), on the
western edge of the Andes. Llaima volcano has 9 seismic stations,
which together with other instruments are used to monitor its activity.
In the present study only one station i.e. Laguna Verde (LAV) is consid-
ered. The station is located at −38.700988°; −71.651116, 7 km from
the crater. It is a broadband station, Guralp 6TD of 30s period and only
the Z component is considered, since in most of the events it provides



Table 2
TP rates, FN rates and FP rateswith theH, H+ S,H+S+EViterbi decoding for NEP=27.
Subset2 was used for training and subset1 was employed for testing.

TPs per hour FNs per hour FPs per hour

H 2.86 0.14 6.26
H + S 2.84 0.16 4.24
H + S + E 2.84 0.16 4.16

Table 1
TP rates, FN rates and FP rateswith theH, H+ S,H+S+EViterbi decoding for NEP=27.
Subset1 was used for training and subset2 was employed for testing.

TPs per hour FNs per hour FPs per hour

H 2.8 0.2 4.16
H + S 2.8 0.2 3.38
H + S + E 2.8 0.2 3.06
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a better signal-to-noise ratio. The seismo-volcanic events considered in
this study are Long Period (LP) and Volcano-Tectonic (VT), recorded be-
tween 2011 and 2014. The sample rate of the data was 100 Hz.

The identification of each volcanic event, location, duration and clas-
sification was made manually by an OVDAS analyst. The data from the
digital binary SUDS format was exported to the Matlab environment,
and it was segmented by centering a given event by considering
10 min before its start and 10 min after its end. As a result, the length
of each signal is 20 min. A total of 167 signals containing LP events
and 133 signals containing VT events, which gives a total of 100 h of
samples, were used in this study. Experiments are performed on two
subsets of the database where the first half is referred to as subset1
and the second half as subset2. Subset1 contains the first 83 LP and 67
VT events. Subset2 contains the remaining 84 LP and 66 VT events of
the database.

4.1. Feature extraction

Feature extraction procedure was performed as mentioned in
Section 2. Considering that the sampling frequency is 100 Hz, the [0–
50 Hz] bandwidth was divided in 16 uniform bandpass filters. The fea-
tures considered are: five linear prediction filter coefficients (LPC)
(Esposito et al., 2013); twenty Cepstral coefficients (Beyreuther et al.,
2012) estimated with the 16 uniform bandpass filters mentioned
above; and the energy in the 5th wavelet band (1.56–3.125 Hz)
(Curilem et al., 2014) obtained with the wavelet transform using a
Daubechiesmother type five and five decomposition levels. This feature
was computed as the ratio between the sum of the components of the
5th wavelet band over the sum of all the wavelet components (in all
the bands). Finally, thefirst (Δ) and second (ΔΔ) derivatives of the static
features, as defined in (3) and (4), are also estimated. Consequently, the
total number of static features was equal to 26, which combined with Δ
and ΔΔ parameters provide a final feature vector of 78 coefficients.

4.2. Performance metrics

The performance of the proposed HMM based volcano event detec-
tion system is evaluated using “true positives per hour”, “false negatives
per hour”, and “false positives per hour”. The correct detection of a la-
beled event occurrence is considered as a “true positive” (TP). A labeled
event occurrence that is not detected is counted as a “false negative”
(FN), while the detection of an event that was not labeled by the
human expert is termed as a “false positive” (FP).

5. Results and discussion

Three versions of the volcano event detection system based on
Viterbi algorithm are evaluated: ordinary Viterbi algorithm with con-
stant transition probabilitieswithout EDP, termed asH; theViterbi algo-
rithm with state duration constraint according to (5), (6) without EDP,
denoted as H + S; and, the Viterbi algorithm with state duration con-
straint as given in (5), (6) combinedwith EDP as defined in (7), indicat-
ed as H + S + E. Subset1 was used for training and subset2 for testing,
and vice versa. Observe that both EDP and NEP are additive parameters
in the log-likelihood domain in the Viterbi algorithm described above.
All the three versions of the Viterbi algorithm were tuned by varying
the penalty NEP from 0 to 50with a step size equal to 1. Average results
with subset1 and subset2 versus NEP are presented in Fig. 7.

It can be seen in Fig. 7 that the number of FPs/h starts decreasing rap-
idly with the increase in NEP and then converges at high values of NEP
for the H, the H + S, and the H + S + E configurations. However, the
FPs/h curve corresponding to H is always dramatically higher than the
FPs/h curves for H+ S and H+ S+ E. The H+ S+ E gives the best re-
sults in terms of FPs/h as compared to the H and the H + S, while gen-
erally, the H + S also reduces FPs/h as compared to the H version of
Viterbi. For instance, at NEP = 27, the H + S and the H + S + E lead
to a reduction of 27% and 31% in FPs/h as compared with H. This is be-
cause the application of state and event duration constraints restricts
detection of those events that have durations less than the minimum
or greater than the maximum durations obtained from the training
data. On the other hand, the number of FNs/h increases slowly with
the increment in NEP for all the three versions. Also at NEP = 27,
H+ S and H+ S+ E lead to a slight increase of 6% in FNs/h when com-
pared with the baseline H. Observe that the FN/h curve for H + S and
H+S+E are identical. A NEP equal to 27 seems to reduce FP/h dramat-
icallywithout a considerable increment in FN/h for the threemethods. It
is worth highlighting that the state duration constraints applied in the
H + S method lead to the event minimum and maximum duration
bounds, given by the sum of the corresponding minimum and maxi-
mum state durations, respectively. This event duration constraint is
then refined in the H + S + E method leading to a reduction in FP/h
equal to 5% when compared to the H + S method at NEP = 27.

Results with NEP = 27 for training on subset1 and testing on sub-
set2, and vice versa, are shown in Tables 1 and 2, respectively. It can
be seen from Tables 1 and 2 that there is a significant reduction in FPs
with the H + S and H + S + E methods as compared to the baseline
H configuration. In Table 1, where training is performed on subset1
and testing on subset2, the H, H + S, and H + S + E methods detect
2.8 events per hour corresponding to a detection accuracy of 93.3%
each (140 out of 150 events detected correctly). The H method gener-
ates 4.16 false positives per hour (FPs/h). The H + S, that incorporates
state durationmodel, reduces the false alarm rate to 3.38 corresponding
to a reduction of 19%, while further including the event duration con-
straint, i.e. H+ S+ E, produces 3.06 false alarms per hour, a 26% reduc-
tion when compared with the H scheme. The three methods generate
0.2 false negatives per hour (FNs/h). In Table 2, where training is per-
formed on subset2 and testing on subset1, the results basically follow
the same trend as in Table 1. The H, H + S, and H + S + E methods
achieve detection accuracies of 95.3%, 94.7%, and 94.7%, respectively.
The H method generates 6.26 FPs/h. The H + S scheme achieves 4.24
FPs/h that corresponds to a reduction of 32% when compared with H.
The H + S + E version of the Viterbi decoding delivers 4.16 FPs/h that
corresponds to a reduction of 34% over the method H. The slight reduc-
tion of 0.6% in the true positive rate must be due to the fact that the du-
ration statistics obtained from subset2 are not totally representative of
subset1. However, the reduction in the FP rate in both Tables 1 and 2
is due to the fact that the state and event duration constraints discards
the potential events that do not fulfill the duration criteria based on
the statistics obtained from the training data. On the other hand, the H
method generates 0.14 FNs/h. The H + S and H + S + E schemes
achieve 0.16 FNs/h that corresponds to an increase of 14% when com-
pared with H. This increment of FN/h is much lower than the reduction
on FP/h.



Fig. 8. Example of a signal with a FP: (a) time domain signal of a volcano event; (b) labeling according to the volcano expert, where label 0 is noise, label 1 is LP, and label 2 is VT;
(c) detection delivered by the H + S + E system; and, (d) the corresponding spectrogram of the signal.
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The results in Fig. 7, and Tables 1 and 2 highlight the advantage
achieved due to the introduction of the state and event duration models.
As a further investigation, the FPs that were generated by the proposed
H + S + E system were analyzed by an expert. It was found that most
of the FPs could contain some volcano-seismic activity, as shown in an ex-
ample event in Fig. 8. In Fig. 8, the top row shows the time domain signal,
the second rowdepicts the corresponding label, the third rowdisplays the
detection by the H+ S+ Emethod, and the fourth row shows the spec-
trogram. It can be observed that only one event was labeled by the expert
whereas the second event detected by the system contains energy in sim-
ilar spectral region as seen in the spectrogram. Therefore, based on the
recommendation by experts, a signal-to-noise ratio (SNR) threshold
was used to analyze the FPs to identify the potential volcano-seismic ac-

tivity. The SNR is defined as SNR ¼ maxðjeventsignalðtÞjÞ
meanðjnoiseðnÞjÞ , where event_signal(t)

is the entire event signal in time domain, noise(n) corresponds to the 3 s
signal of noise before the event starts, and |.| is the absolute value. If
SNRN3, the detected event can be considered as a potential volcano
event. Consequently, the FPs generated by H, H + S, and H + S + E
methods with NEP = 27 were evaluated based on the SNR criterion. Ac-
cordingly, it was found that 97% of the false alarms show a SNR greater
than three, and hence they are potential events. This must be due to the
fact that those FP events were detected in the station employed in this
paper but not in the other stations that also monitor Llaima volcano. It
isworthhighlighting that, as a commonacceptedpractice, humanexperts
correlate the information frommore than one station to validate real vol-
cano events.
6. Conclusion

In this paper, an automatic volcano event detection system based on
HMMs together with state and event duration models is proposed. The
system was trained and tested with the volcano-seismic data of the
Llaima volcano. Experiments with data from Llaima volcano with two
types of events, i.e. long period and volcano-tectonic, show that the in-
corporation of state and event durationmodeling can lead to reductions
in false positive rate in event detection as high as 31% with a true posi-
tive accuracy equal to 94%. Further evaluation based on the signal-to-
noise ratio, recommended by a volcano expert, shows that 97% of the
false alarms generated by the proposed system were potential events.
The detection and classification of events bymaking use of the informa-
tion provided by several stations with duration modeling is proposed
for future research.
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