Contents

Ag	Agradecimientos i				
No	Notations				
1	Intr	oduction	1		
	1.1	Current energy situation in Chile: Energía2050	1		
	1.2	Solar cells: The three generations	2		
		1.2.1 Thin-film solar cells	2		
		1.2.2 Cadmium telluride solar cells	3		
	1.3	Point defects in solids	4		
		1.3.1 Defect Formation Energies and Concentrations	6		
	1.4	Objectives	6		
	1.5	How to read this thesis	7		
2	Electronic-structure calculations				
	2.1	The one-electron approximation: the many-electron problem	8		
		2.1.1 The Hartree Equations	9		
		2.1.2 The Hartree-Fock Equations	10		
	2.2	Density Functional Theory and the Kohn-Sham Equations	14		
		2.2.1 Exchange and correlation in DFT: Local density, generalized gradient			
		and hybrid approximations	18		
	2.3	Basis set and boundary conditions	20		
	2.4	Pseudopotentials	23		
3	Soli	d state embedding: QM/MM Method	26		
	3.1	Introduction	26		
	3.2	The QM/MM approach	27		
		3.2.1 Classification of QM/MM methods	28		
	3.3	Coupling between QM and MM regions	29		
	3.4	The long-range electrostatic potential	30		
	3.5	Charged QM region	32		
4	Tell	urium vacancy in bulk CdTe			
	(F c	center)	34		
	4.1	Supercell approach	35		
		4.1.1 Methodology	35		
		4.1.2 Geometric relaxation	36		
		4.1.3 Electronic structures	36		

		4.1.4	Formation energies	40		
		4.1.5	Summary	42		
	4.2	QM/M	IM approach	42		
		4.2.1	Methodology	42		
		4.2.2	Geometric relaxation	43		
		4.2.3	Electronic structure	44		
		4.2.4	Formation energies	49		
		4.2.5	Summary	50		
5	Con	cluding	g remarks	53		
\mathbf{A}	Lati	ice pa	rameter optimization	55		
в	En	ergy co	orrections	57		
С	Die	ectric	function	59		
D	GU	LP: Int	teratomic potentials	61		
\mathbf{E}	FHI	-aims:	Computational efficiency and PBC vs. QM/MM	65		
	E.1	HSE06	memory usage and calculation times	65		
	E.2	Compa	$arison against QM/MM \dots \dots$	68		
Bi	Bibliography					

List of Tables

4.1 4.2	Transition levels of intrinsic defect by different methods [5] Formation energies at PBE level with potential alignment and charge-image corrections (in eV). The range of the calculated potential alignment is between	35
	0.02-0.08 eV and the Fermi energy E_F is set at the VBM, i.e5.18 eV from the pristine crystal calculation.	40
4.3	Formation energies corrected from PBE to GW calculation using the band- edge correction (in eV). The second column is the previous result without	
	quasiparticle corrections.	41
4.4	CdTe lattice constant, as well as its static (ε_0) and high-frecuency (ε_{∞}) di- electric constants. Literature data taken from [5] and previous work done in	
	reference [7] compared against our own calculations	42
4.5	Potential alignment for all the charge states (in eV). ΔE_v and ΔE_c are the energy differences with respect to the periodic VBM and CBM respectively.	49
4.6	Formation energies at PBE level with corrections from QM/MM to PBC ap-	50
4.7	Formation energies corrected from PBE to GW calculation (in eV). The second	50
	column is the previous PBE result (Table 4.6)	50
D.1	List of observables and their calculated values (target) using FHI-aims at PBE level. The GULP fitting is represented in the third column. Differences with	
	respect to the target values are shown in the last column	62
D.2	Potential parameters used in this study	62
E.1	Memory usage (Gb) and time in a SCF-calculation using 1 node	66
E.2	Memory usage (Gb) and time in a SCF-calculation using 2 nodes	66
E.3	Memory usage (Gb) and time in a SCF-calculation using 3 nodes	67

List of Figures

1.2.1 CdTe price per watt and efficiency as a function of time [4]	3
Figure taken from [1]	4
2.1.1 (a) Representation of occupied spin-orbitals (solid lines), in increasing order of energy, for the ground-state of an N-electron system in the Hartree-Fock approximation; virtual spin-orbitals are represented with dashed lines. (b) Representation of an ionized state of the N-electron system, with an electron removed from the occupied spin-orbital ψ_m (and transferred to infinity). (c) Representation of an excited state of the N-electron system, with an electron removed from the occupied spin-orbital ψ_m and transferred to the virtual spin- orbital ψ_{μ} (Image taken from [8])	13
2.2.1 Representation of the Hohenberg-Kohn theorem. Two different ground-state	
2.3.1 Comparison between "Physicist's" and "Chemist's" numerical realization of	16
DFT	21 24
3.1.1 Example of size effects: interaction among the periodic replica of a charged defect using PBC	26
3.2.1 Representation of the embedded-cluster used in the QM/MM calculations: The central QM atoms, represented by the CdTe structure in the center, are surrounded by regions of MM atoms. The MM region is divided into two MM regions called active and fixed MM regions. Only the active MM re- gion is allowed for optimization keeping the fixed region untouched. If it is needed, additional embedding potentials are included around the QM re- gions in the form of atom-centered pseudopotentials. The outer shell of point charges (blue) is fitted to ensure the reproduction of the correct long-range electrostatic potential within the system	20
ciccitostatic potentiai within the system	$\Delta \mathcal{I}$

4.0.1 Conventional 8-atoms unit cell	34
4.1.1 Stable geometries for the Te vacancy with different ionized states. The charge	
represent to the cadmium atoms and the red ones to the tellurium atoms	37
4.1.2 Band structure calculations for the Te vacancy performed with a 512-atoms	
supercell. The red dashed lines indicates the highest occupied level. \ldots	38
4.1.3 PBE total DOS (a) in the ideal CdTe (b) tellurium vacancy with neutral charge	
state and (c) tellurium vacancy with singly positive charge state. The vertical	
dashed line indicates the Fermi level of the ideal CdTe and also the defect	
levels are shown in red and blue colors	39
4.1.4 Wavefunction isosurface for neutral charge state (top panels) and 1+ state	
(bottom panels). (a) level in the bandgap (b) level in the conduction band (c) and (d) levels in the conduction hand, respectively.	20
4.1.5 Formation onorgios as a function of the Formi energy for the To vacancy com	59
puted with 512-atoms supercell in Te-rich conditions (a) PBE formation	
energies with potential alignment and charge-image correction. The vertical	
dashed line indicates the gap at PBE level and (b) GW corrected formation	
energies. The value $E_F = 0$ eV represents the VBM and $E_F = 1.55$ eV the CBM,	
respectively.	41
4.2.1 Cluster model for a tellurium vacancy in bulk CdTe. <i>Left</i> : The quantum region	
is a $Cd_{32}Te_{43}$, where the central atom is the tellurium to be removed. <i>Right</i> :	
The cluster with quantum and classical regions. By colors: yellow correspond	
to PPs, orange correspond to active MM region and blue correspond to fix	
MM region. The red dots surrounding the cluster are adjusted point charges	40
for reproducing the Madelung potential.	43
4.2.2 Stable geometries for the Te vacancy with different follized states. The charge	45
4.2.3 Total density of states (DOS) of the $Cd_{22}Te_{12}$ cluster in vacuum: (a) have	40
OM region (b) cluster embedded in a field of point charges without using	
pseudopotentials to saturate the QM cluster (c) same cluster with nearby MM	
cations replaced by Cd^{2+} norm-conserving pseudopotentials. (d) reference	
calculation using the PBC approach.	46
4.2.4 Comparison of the total density of states (DOS) (described in Sec. 4.2.5)	
with polarization response: Even a relatively small embedded $Cd_{32}Te_{43}$ cluster	
recovers important features from the reference bulk calculation (green color)	
after the potential alignment.	47
4.2.5 PBE total DOS (a) in the ideal CdTe (b) tellurium vacancy with neutral charge	
state and (c) tellurium vacancy with singly positive charge state. The vertical	
dashed line indicates the Fermi level of the ideal Cd1e and also the defect	19
$4.2.6$ Wavefunction isosurface for neutral charge state (top panels) and $1\pm$ state	40
(bottom panels) (a) level in the bandgap (b) level in the conduction band (c)	
and (d) levels in the conduction band, respectively.	48
4.2.7 Diagram of the potential alignment for neutral charge state from QM/MM to	
PBC approach. The red dashed line is the VBM reference and the blue dashed	
line is the CBM reference from the PBC approach.	49
line is the CBM reference from the PBC approach.	49

51
55
66 67 67 69
5 5 6 6 6 6