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PACS 05.65.+b – Self-organized systems

Abstract – The constitutive relations of a dense granular flow composed of self-propelling fric-
tional hard particles are investigated by means of DEM numerical simulations. We show that the
rheology, which relates the dynamical friction μ and the volume fraction φ to the inertial num-
ber I , depends on a dimensionless number A, which compares the active force to the confining
pressure. Two liquid/solid transitions —in the Maxwell rigidity sense— are observed. As soon as
the activity is turned on, the packing becomes an “active solid” with a mean number of particle
contacts larger than the isostatic value. The quasi-static values of μ and φ decrease with A. At a
finite value of the activity At, corresponding to the isostatic condition, a second “active rigidity
transition” is observed beyond which the quasi-static values of the friction vanishes and the rhe-
ology becomes Newtonian. For A > At, we provide evidence for a highly intermittent dynamics
of this “active fluid”.

Copyright c© EPLA, 2016

Introduction. – Self-locomotion displays fascinating
collective properties originating from the interplay be-
tween individual self-propulsion and interactions among
individuals in the group [1]. Since the pioneering work
of Vicsek et al. [2], a large number of statistical physics
models were created to render the emergence of collective
motion, essentially based on an interplay between order-
ing processes reflecting microscopic interactions and dis-
ordering effects stemming from noise [3]. However, these
models based on kinetic equations for particle motion do
not necessarily lead to a clear mechanical picture. In some
instances such as collections of individuals in cognitive
interactions, mechanical concepts may not be relevant
to capture the essence of self-organisation. The mechan-
ical perspective is however essential to understand, for
example, the dynamics of externally agitated or self-
propulsive granular systems [4–6], active colloids sedi-
mentation [7], the rheology of swimming micro-organisms
suspensions [8–11] or the collective dynamics of eukariotic
cell forming tissues [12,13].

There has been recently considerable effort to under-
stand such systems in the light of statistical mechanics
approaches and decipher the role of activity, i.e., the
possibility to transfer energy and momentum from the

microscopic level via self-propulsion of particles up to the
macroscopic scale [14]. Conceptually, these systems pose
deep questions on the extension to active matter of equi-
librium or close to equilibrium concepts such as effective
temperature or pressure [15–17]. It was found either from
experiments or particle-based numerical simulations, that
activity has a considerable influence on the macroscopic
output as it may create new states of matter charac-
terised by the emergence of dynamical clusters [18–20],
or large scale collective dynamics [21]. For active colloidal
suspension, the onset of glassy dynamics [22,23] or col-
loidal crystallisation process [24] is deeply affected by self-
propulsion. The presence of autonomous swimmers such
as motile micro-organisms suspended in a fluid also affects
significantly the macroscopic rheology [10,11] and the as-
sociated transport equation [14,25,26].

Dimensional analysis. – In this letter, we investigate
the extension of dry granular flow dynamics to the case
where grains undergo self-propulsion. This is achieved in
practice by exerting an external force of modulus F to the
particles, whose orientation rotates together with that of
the particles. The rheology of the system is measured in
a simple shear flow. Following conventional rheology, one
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may fix the volume fraction φ of particles and impose the
shear rate γ̇. Comparing inertial effects to the active force,
one builds the dimensionless control parameter as

Γ =
ρ1/2d3/2γ̇

F 1/2 , (1)

where d and ρ are the particle size and density. The rhe-
ology is then characterised by the shear stress τ or equiv-
alently the viscosity η = τ/γ̇. In systems presenting a
rigidity transition, it is more convenient to introduce the
inverse of the viscosity, which is a fluidity. As the only pa-
rameters providing mass, length and time scales are F , d
and ρ, the dimensionless fluidity G(φ, Γ) is here defined as

G =
F 1/2ρ1/2d1/2γ̇

τ
, (2)

The very same rheology may, however, be expressed in
a completely different way. Starting from the standard
granular situation (F → 0), the relevant energy scale is
provided by the confining pressure P , which is the control
parameter conjugate of the volume fraction. The shear
rate is then naturally rescaled to form the inertial number:

I =
ρ1/2dγ̇

P 1/2 . (3)

Rescaling F and the shear stress τ using ρ, P and d, one
defined the activity as

A =
F

Pd
, (4)

and one forms the friction coefficient μ(I, A) [27–30],
which replaces G(φ, Γ), as

μ =
τ

P
. (5)

This formulation has proved to be very successful to cap-
ture the rheology of dense granular suspensions when I
is replaced by the viscous number J [31], and to under-
stand the transition from the inertial to the overdamped
viscous regime [32]. Recently this granular point of view
was used to shed new light on the passage between the
colloidal regime near the glassy transition and the viscous
suspension regime near jamming [33]. Here, we investi-
gate its extension to active granular matter: we determine
the constitutive relations and characterise the organisa-
tion processes associated with changes in the rheological
response.

Numerical method. – The rheology of active dry
grains under shear is investigated by means of numeri-
cal simulations (Discrete Element Method), using a mod-
ified LAMMPS code [34]. We consider a two-dimensional
system (fig. 1), constituted of N = 103 circular particles
labeled by an index i, with diameters di randomly chosen
in a flat distribution between 0.8 d and 1.2 d, where d is

0 321-3 -2 -1

Fig. 1: (Color online) Snapshot of the numerical system. Par-
ticles are submitted to contact forces from their neighbours, as
well as an active force �F , oriented along the particle orientation
unit vector and applied at the particle center. The system is
submitted to a confining pressure P and a shear rate γ̇ in the
x-direction. Here the grains are coloured according to the local
value of the distance to isostaticity δZ (eq. (10)), see legend
bar. This picture is from a simulation with an inertial number
I = 10−4 and an active number A = 0.6. Spatio-temporal dia-
grams of fig. 6 are computed from central (y = 0) lines of such
snapshots.

the mean particle size. Such a polydispersity is a compro-
mise ensuring that the sample remains statistically homo-
geneous and does not crystallise when sheared. The mass
density of the particles is denoted as ρ (see footnote 1).
The system is submitted to a steady and uniform shear
rate γ̇ in the x-direction. We call y the transverse direc-
tion. Periodic boundary conditions are used in both x and
y directions (Lees-Edwards conditions), and the shearing
is imposed by deformation of the numerical box.

In the simulations, the contact between two particles i
and j is modelled as harmonic springs with spring con-
stants kn and kt (here we set kt = kn/2) for the normal
and tangential components of the contact force, respec-
tively fn

ij and f t
ij . The contact is frictional with a coeffi-

cient μp = 0.4, and the Coulomb sliding condition ensures
that f t

ij is never larger than μpf
n
ij . Importantly, kn is large

enough to be in the asymptotic rigid limit where results
are independent of its value. In practice, simulations are
performed with kn � 104 P . The coefficient of restitution
of the particles is e = 0.1. We checked that the results are
qualitatively independent of the values of μp and e.

The particle i is not only submitted to contact forces
�fij from its neighbours j, but also to an “active” force

1Note that in refs. [27–29] and in most of the papers dealing with
the μ(I)-rheology of granular flows, ρ is rather defined as m/d2,
where m and d are the mean mass and diameter of the grains. This
slight change of convention leads to a change by a factor

√
π/2 in

the numerical values of I for similar conditions.
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F�ei aligned along its orientation unit vector �ei, which
is attached to the particle and which rotates due to the
torque generated by the contact forces. The dynamics of
the grains, characterised by their position, velocity �u and
angular velocity �ω, is governed by

mi
d�ui

dt
=

∑
j

�fij + F�ei, (6)

Mi
d�ωi

dt
=

d

2

∑
j

�nij × �fij , (7)

where m and M are, respectively, the mass and the mo-
ment of inertia of the particle. �nij is the contact direction
between particles i and j. These equations are integrated
following a velocity-Verlet integrator.

The contact stress components are measured as σαβ =
1
2S

∑
ij fα

ijr
β
ij over the surface area S of the cell, where

�rij is the branch vector between the centers of grains i
and j. The shear stress is τ = σxy and the confining
pressure is given by P = σyy. Following the standard ap-
proach in dense granular flows [27–29,31,32], we work at
imposed homogeneous and constant confining pressure P .
We have checked that in the limit of large systems, this is
entirely equivalent to work at imposed volume fraction φ.
In a shear cell with an upper and a lower wall, the baro-
stat directly acts on the dynamics of these walls along the
y-axis. Here, because of the periodic boundary conditions,
the pressure is controlled by the dilatation or shrinking
of the simulation box along the y-direction. Using the
standard Nosé-Hoover algorithm, the barostat dynamics
follows a first order relaxation process, controlled by a re-
laxation time set to a small fraction of the shear time:
Tb = 3.2 · 10−2/γ̇. The numerical factor has been ad-
justed in the passive case (A = 0), in order to recover
the well-established behaviours of dry granular flows at
both small and large shear rate. As there is no reference
fixed wall, the centre of mass of the system is also free
to move and we denote as �vcm its velocity in a fixed ref-
erential. To be physically relevant, particle velocities are
measured with respect to �vcm. In order to prevent the
numerical divergence of vcm, a first-order relaxation dy-
namics, similar to that of the barostat, is applied to the
center of mass of the system to control its location (i.e.,
a “locostat”). It is controlled by a relaxation time here
set to Tl = 8 · 10−4

√
P/ρ/d. Again, the numerical factor

has been empirically adjusted and we have checked that
it does not affect the results within a reasonable range.

Simulations are run for given values of the inertial num-
ber I and of the active number A, in the range 10−4 to
3.2 · 10−1 for I and 0 to 1 for A. After the completion
of the relaxation transient, all macroscopical and micro-
scopical parameters are averaged in the steady and ho-
mogeneous state, over a time of no less than 102/γ̇. The
rheology is presented in the following section. The re-
sults obtained by measuring microscopic quantities, re-
lated to particle orientation and contacts are studied in
next section.
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Fig. 2: Rheology at constant volume fraction φ. (a) Fluidity
G as a function of the dimensionless shear rate Γ for different
values of φ (legends). Data points computed by interpolation
of the pressure-controlled data set. (b) Extrapolated value of
G in the quasi-static limit Γ → 0 as a function of φ. Vertical
dashed line: visualisation of the critical value φt � 0.774.

Rheological curves. – Figure 2 shows the rheology
G(Γ) of the active granular system for different values of φ.
The fluidity presents a maximum (a minimum viscosity)
located at values of Γ slightly smaller than 1. This indi-
cates a cross-over between a shear thinning behaviour in
the regime dominated by the active force and a shear thick-
ening regime when inertia dominates. In the limit of van-
ishing shear rate Γ, the fluidity tends to a constant Gc(φ)
which vanishes above a critical volume fraction φt. Above
φt, the viscosity therefore diverges at Γ → 0, which simply
means that the system behaves as a yield stress fluid. Be-
low φt the viscosity tends to a finite constant at vanishing
shear rate. φ therefore triggers a rigidity transition which
is specific to active granular material. Importantly, the
shear thinning at small Γ is simply the signature of the
existence of a yield stress: if the viscosity diverges at van-
ishing γ̇, then it must decay with γ̇. Reciprocally, in the
limit of large Γ, one recovers the shear thickening regime of
rigid, passive grains for which dimensional analysis shows
that the viscosity must scale as d2γ̇. The existence of a
minimal viscosity is therefore related to the choice of the
parametrisation, which mixes the effect of shear rate and
the effect of the active force.

In order to disentangle these two effects, one needs to
use the second possible parametrisation, where I controls
the shear rate independently of A, which controls the
active force. Although perfectly equivalent, the granular
presentation of the rheology is better suited to the un-
derstanding. As illustrated in fig. 3, the behaviour of the
effective friction μ as well as that of the volume fraction
φ continue to follow the empirical forms proposed for or-
dinary (passive) grains:

μ = μc +
Δμ

1 + I0/I
, (8)

φ = φc − bI, (9)
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Fig. 3: Rheological constitutive relations at constant confining pressure P . (a) Dynamic friction μ as a function of I for different
values of A (legends). Symbols: numerical data. Solid lines: best fit by eq. (8). (b) Critical friction μc as a function of A.
Vertical dashed line: visualisation of the critical value At � 0.635. Horizontal dashed line: φt = φc(At). Solid line: linear fit
vanishing at At. Inset (c): μ(I) for A = 0.7, 0.8, 0.9 and 1 in log-log axes. Dashed line: linear scaling μ = 7.7I . (d) Volume
fraction φ as a function of I for different values of A (same legend as panel (a)). Solid lines: fit of eq. (9). (e) Critical volume
fraction φc as a function of A. Error bars are smaller than the symbol size.

but where the parameters μc, Δμ, I0, φc and b now vary
with A. A central result is the behaviour of the effec-
tive friction at asymptotically low shear (fig. 3(b)). μc(A)
starts with a plateau μ0

c � 0.26 independent of the active
number, up to A � 0.2. It then decreases down to zero at
a value that can be linearly extrapolated to At � 0.635,
above which it stays close to zero. As expected, the tran-
sition observed using the standard rheological approach
survives the change of parametrisation. Instead of a criti-
cal volume fraction φt, the activity appears to be the con-
trol parameter of the rigidity transition at vanishing γ̇.
At sufficiently small I, friction linearly increases with the
inertial number as μ ∼ μc +aI. The coefficient a = Δμ/I0
is on the order of 2 in the passive case, and increases for
larger A. In the regime A > At, where μ ∼ aI (fig. 3(c)),
the system is thus Newtonian with a kinematic viscosity
ν = τ/(ργ̇) ∼ ad

√
P/ρ which becomes independent of the

activity value. Note that this scaling is identical to that
of a dilute gas, whose thermal velocity is

√
P/ρ (the ideal

gas relation), with a mean free path on the order of ad.
This interpretation is consistent with a correlation length
of the particle velocity found to be on the order of 10 d
(result not shown).

Activity also has an effect on the the critical volume
fraction φc, which decreases with A (fig. 3(d)), i.e., making
the system less dense for larger A, as expected. The shape
of the curve φc(A) is monotonous, starting at φ0

c � 0.812
in the passive case and decreasing with A, with no par-
ticular change of behaviour is encountered around the
value At. Rather, one can observe a more negative slope
above A � 0.45. The factor b in (9) is found essentially
constant, on the order of 0.2. We have finally studied the
normal stress difference δσ = σxx/P − 1, focusing on the
low shear regime (not displayed). This quantity remains
close to zero in the whole range 0 ≤ A ≤ At. Above the
critical value of the active number, it increases in a linear
fashion as δσ = c(A − At), with c � 0.44. As discussed
below, this behaviour can be understood as a consequence
of an orientation ordering of the grains above At: they
tend to align their orientation and velocity vectors along
the x-direction.

Microscopic data. – To complement the macroscopic
rheological laws, we have studied several microscopic
quantities: angular distribution of the particle orientation,
which is aligned with the active force �F , with respect to
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Fig. 4: Most probable angles (in degrees) of the particle ori-
entation vector, which is aligned with the active force �F , with
respect to the x-axis (filled symbols) and with respect to the
orientation of the non-affine velocity (empty symbols), as func-
tions of A. These data point correspond to the quasi-static
limit I → 0. At larger inertial numbers (not displayed), the

angles ( ̂�F , �x)m and (̂�F ,�v)m become almost independent of A,
with respective values around 60◦ and 0◦.

the x-axis and with respect to the particle non-affine ve-
locity �v (fig. 1), as well as the coordination number Z. The
non-affine velocity is computed as the difference between
the particle velocity and the mean profile γ̇y�x. Angle dis-
tributions typically present a sinusoidal shape, from which
an amplitude and a most probable value, which depend on
both inertial and activity numbers, can be extracted. In
fig. 4, we display the variations of the two most probable

angles ( �̂F , �x)m and ( �̂F , �v)m as functions of A, in the quasi-
static limit I → 0. We see that these angles switch from
finite and fairly constant values at small A to zero above
the critical number At. Activity then essentially does not
affect the particle and velocity orientation, up to the tran-
sition where mean values of �F and �v both align along the
x-direction. At larger I, the transition progressively disap-
pears, and the two angles become independent of A, where
the vectors �F and �v align at some angle � 60◦ with re-
spect to the x-direction. Importantly, these alignments are
“weak” in the sense that the fluctuations around the mean
values (i.e., the width of angle distributions) are large.

We have also studied the connectivity of the grains to
their neighbours. We call Z the coordination number,
i.e., the average number of contacts per grain. Following
Maxwell rigidity criterion, we define the distance δZ to
isostaticity as the difference between the number of con-
strains and the number of degrees of freedom (the number
of force components), here in the case of frictional particles
in two dimensions as

δZ = 3 + ζ − Z, (10)

where ζ is the fraction of sliding contacts [35,36]. A system
is “solid”, i.e., rigid, when hyperstatic (δZ < 0) and “liq-
uid” when hypostatic (δZ > 0). It varies from δZ = −3

0.90.60.30.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

Fig. 5: Distance to isostaticity δZ in the quasi-static limit
I → 0 as a function of A. Horizontal dashed line: δZ = 0. Ver-
tical dashed line: visualisation of the critical value At � 0.635.
Error bars are smaller than the symbol size. At larger inertial
numbers (not displayed), δZ becomes almost independent of
A, with a value on the order of 1.5 for A = 1.

(grains with 6 non-sliding contacts) to δZ = 3 (grains
with no contacts). In fig. 5 we show the variation of δZ
with respect to A, in the quasi-static limit I → 0. Start-
ing from δZ � 0 for the passive system, it quickly drops
to a negative constant for the range 0 < A < At, and
then switches to positive values above the critical activity.
Crucially, this change of sign of δZ also occurs at activ-
ity At, where μc vanishes. At larger I (not displayed),
the transition progressively disappears and δZ becomes
almost independent of A.

The time-averaged curves of figs. 3, 4 and 5 do not ren-
der the temporal fluctuations of the system. As the activ-
ity increases, the dynamics of the system becomes more
intermittent. We can for example observe the formation
of “bubbles” with no grains, as well as “clusters” of grains
with large values of δZ (often associated with these bub-
bles), as illustrated in the snapshot displayed in fig. 1. To
further illustrate this dynamics, we show in fig. 6(a), (b)
spatio-temporal diagrams built from juxtaposition of hor-
izontal lines extracted in such snapshots. We clearly see
alternation of periods with positive and negative values
of δZ when the active number is above At. This can be
quantified in computing the histograms of local δZ. As
evidenced in fig. 6(c), it changes from a single-peaked dis-
tribution dominated by negative values for A < At to
a wider double-peaked distribution for A > At, with a
second maximum associated with positive values of δZ.
This peak is around δZ = 2, and its amplitude sharply in-
creases above At (fig. 6(d)) in a way very similar to δZ vs.
A (fig. 5). This corresponds to a larger number of grains
with a single contact, which can be simply interpreted as
self-propelled grains pushing their forward neighbours.

Discussion. – We studied numerically how the rhe-
ology of hard and dry granular packing is modified
by self-propulsive activity of the grains. Under a fixed
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Fig. 6: (Color online) Spatio-tempral diagrams constructed
form horizontal central lines of snapshots such as that in fig. 1,
for A = 0.6 (a) and A = 0.7 (b), i.e., below and above the
transition At � 0.635. The same color code as in fig. 1 is
used. (c) Histograms showing the probability Pr of local δZ,
i.e., computed on each grain. Thick black lines: A = 0.6 (left
axis). Thin red lines: A = 0.7 (right axis). The scales on
these two axes are different to collapse the left parts of the
graphs, so that the excess of grains with δZ � 2 above At

is emphasised. (d) Evolution of the probability to find grains
with δZ � 2 when increasing A. All of these data correspond
to simulations at I = 10−4.

confining pressure, activity decreases the resistance to
shear and the average volume fraction. Importantly, the
mechanism of friction reduction at play here does not rely
on the mediation of a surrounding fluid as for active (di-
lute) suspensions but rather on a mechanism of collective
organisation of the grains under shear. However, drawing
on the unification of (dense) suspension and granular rhe-
ologies in the passive case [31,32], one can expect similar
results for active dense granular suspensions in the vis-
cous regime, and this direction of research is an obvious
continuation of this work.

The dependence of the constitutive relations on the
dimensionless parameter representing the active driving
force, is non trivial and two rigidity phase transitions were
observed. First, starting from isostatic conditions char-
acterising a sheared granular packing near jamming, the
packing gets into a state of “active solid” in the sense that
the number of contacts per grain becomes larger than the

0.82

0.78

0.74

0

1

10-4 10-2 100 10-4 10-2 100

Fig. 7: (Color online) (a) Phase diagram showing the hyper-
static (δZ < 0) region (orange zone) in the constant pressure
representation. Above At, the friction coefficient in the limit
I → 0 vanishes (green line). (b) Corresponding diagram in the
constant volume fraction representation. Above φt, the fluidity
in the limit I → 0 vanishes (blue line). The dashed blue curve
corresponds to a maximal fluidity (a minimal viscosity) for a
given φ.

isostatic counting defining the rigidity transition. This
first transition occurs as soon as the activity is turned on.
It is reminiscent of the spontaneous clusterisation [19,20]
or active jamming [37], occurring for active packing in ab-
sence of shear (fig. 7(a)). In the quasi-static limit, the
rheology of this actively jammed state is characterised by
a finite dynamical friction essentially controlled by the
active number A. In this state, the propulsive force is
oriented in average off the flow direction. The dynami-
cal friction coefficient decreases continuously with activ-
ity and vanishes at a finite activity value (At � 0.635)
(fig. 7(a)). Equivalently, when the volume is controlled
rather than the confining pressure, the fluidity at van-
ishing shear rate decreases with φ and vanishes above
φt � 0.774 (fig. 7(b)). The sensitivity of these critical
values with system size and particle properties is to be
systematically investigated.

This second transition occurs at the isostatic point and
beyond it (for A > At or φ < φt), the rheology is that
of an effective Newtonian viscous liquid (fig. 7). Interest-
ingly, below or above the transition, the number of con-
tacts in excess of the isostatic point varies continuously
with the activity but the propulsion direction orientation
seems to undergo a finite jump to almost zero in average.
Even though the effective viscosity of this “active fluid”
seems Newtonian, the contact number dynamics remains
very intermittent alternating “solid” and “liquid” phases
in the rigidity Maxwell sense. In the future it would be
interesting to understand in depth this new type of tran-
sition and the nature of the active states of matter hence
produced.
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108 (2012) 168301.
[25] Cates M. E., Fielding S. M., Marenduzzo D.,

Orlandini E. and Yeomans J. M., Phys. Rev. Lett.,
101 (2008) 068102.

[26] Giomi L., Liverpool T. B. and Marchetti M. C.,
Phys. Rev. E, 81 (2010) 051908.

[27] GdR MiDi, Eur. Phys. J. E, 14 (2004) 341.
[28] da Cruz F., Emam S., Prochnow M., Roux J. N. and

Chevoir F., Phys. Rev. E, 72 (2005) 021309.
[29] Jop P., Forterre Y. and Pouliquen O., Nature, 441

(2006) 727.
[30] Andreotti B., Forterre Y. and Pouliquen O.,

Granular Media: Between Fluid and Solid (Cambridge
University Press) 2013.

[31] Boyer F., Guazzelli E. and Pouliquen O., Phys. Rev.
Lett., 107 (2011) 188301.

[32] Trulsson M., Andreotti B. and Claudin P., Phys.
Rev. Lett., 109 (2012) 118305.

[33] Trulsson M., Bouzid M., Kurchan J., Clément E.,

Claudin P. and Andreotti B., EPL, 111 (2015) 18001.
[34] Plimpton S. J., J. Comput. Phys., 117 (1995) 1;

lammps.sandia.gov.
[35] Agnolin I. and Roux J.-N., Phys. Rev. E, 76 (2007)

061302.
[36] van Hecke M., J. Phys.: Condens. Matter, 22 (2010)

033101.
[37] Henkes S., Fily Y. and Marchetti M. C., Phys.

Rev. E, 84 (2011) 040301(R).

14001-p7


