
This article was downloaded by: [200.89.68.74] On: 11 December 2017, At: 11:28
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Optimal Mechanism Design for a Sequencing Problem with
Two-Dimensional Types
Ruben Hoeksma, Marc Uetz

To cite this article:
Ruben Hoeksma, Marc Uetz (2016) Optimal Mechanism Design for a Sequencing Problem with Two-Dimensional Types.
Operations Research 64(6):1438-1450. https://doi.org/10.1287/opre.2016.1522

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2016, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.2016.1522
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org


OPERATIONS RESEARCH
Vol. 64, No. 6, November–December 2016, pp. 1438–1450
ISSN 0030-364X (print) � ISSN 1526-5463 (online) https://doi.org/10.1287/opre.2016.1522

© 2016 INFORMS

Optimal Mechanism Design for a Sequencing
Problem with Two-Dimensional Types

Ruben Hoeksma
Departamento de Ingeniería Industrial, Universidad de Chile, Santiago, Chile, rubenh@dii.uchile.cl

Marc Uetz
Department of Applied Mathematics, University of Twente, Enschede, Netherlands, m.uetz@utwente.nl

We study the design of mechanisms for a sequencing problem where the types of job-agents consist of processing times and
waiting costs that are private to the jobs. In the Bayes-Nash setting, we seek to find a sequencing rule and incentive com-
patible payments that minimize the total expected payments that have to be made to the agents. It is known that the problem
can be efficiently solved when jobs have single-dimensional types. Here, we address the problem with two-dimensional
types. We show that the problem can be solved in polynomial time by linear programming techniques, answering an open
problem formulated by Heydenreich et al. Our implementation is randomized and truthful in expectation. Remarkably, it
also works when types are correlated across jobs. The main steps are a compactification of an exponential size linear pro-
gramming formulation, and a convex decomposition algorithm that allows us to implement the optimal linear programming
solution. In addition, by means of computational experiments, we generate some new insights into the implementability in
different equilibria.
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1. Introduction and Contribution
This paper addresses Bayesian mechanism design for a
basic sequencing problem that has been introduced by
Heydenreich et al. (2008). The setting is a simple schedul-
ing problem with private data: A number of n clients are
queueing for a service, the service provider needs to com-
pensate all clients for their waiting time, but waiting costs
and service times are private to the clients. This problem is
an abstraction of economic situations, where clients queue
for a single scarce resource, e.g., a specialized operation
theater, where the information on the urgency and dura-
tion to treat each client is private, yet known probabilisti-
cally. A concrete example for the latter that motivates the
present study are waiting lists for medical treatments in the
Netherlands (Kenis 2006). At the same time, the problem
is the private information version of one of the most basic
and classical single machine scheduling problems, namely,
to minimize the total weighted completion time of nonpre-
emptive jobs with weights wj and processing times pj . This
problem is close to trivial from the optimization point of
view, and the optimal sequence is to process the jobs in
order of nonincreasing ratios weight over processing time,
wj/pj , also referred to as Smith’s rule (Smith 1956). How-
ever, once the data wj and pj is private, the solution is less
obvious.

The problem that we solve is this: There are n jobs
with two-dimensional types, namely, a cost per unit wait-
ing time, wj , and a processing time, pj . Jobs need to be
scheduled sequentially and nonpreemptively, and each job
requires monetary compensation for the disutility of wait-
ing. Assuming that we are given probabilistic information
on the possible types of all jobs, we seek to find a se-
quencing rule, along with an incentive compatible payment
rule, that minimizes the total expected payments that have
to be made to the jobs. Here, incentive compatibility refers
to the Bayes-Nash equilibrium. As our main result, we
show that this optimal mechanism design problem with
two-dimensional types can be solved and implemented in
polynomial time. Our approach even allows the types of the
jobs to be correlated. We thereby answer an open question
posed by Heydenreich et al. (2008). Our solution is based
on linear programming, and results in an optimal random-
ized mechanism.

The paper has two major technical contributions. The
first is the compactification of an exponential size linear
programming formulation of the mechanism design prob-
lem. This compactification yields a polynomial size linear
programming relaxation. The second is an algorithm that
allows the translation of the solution of the linear program-
ming relaxation into an actual implementation of the mech-
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anism, that is, a randomization over schedules. To that end,
we reduce the implementation problem to that of computing
the intersection of a line with the single machine schedul-
ing polytope, for which we give a combinatorial O4n2 logn5
algorithm. The implementation problem is thereby solved
in time O4n3 logn5.

Moreover, we present some computational results based
on the linear programming formulation. The primary goal
of these computations is to test and validate hypotheses
on the structure of solutions. Our computations, based on
randomly generated instances, show that optimal mecha-
nisms in the two-dimensional setting do not share several
of the nice properties of the solutions to the single-
dimensional problem: The scheduling rules of optimal
Bayes-Nash incentive compatible mechanisms are not nec-
essarily iia (independent of irrelevant alternatives) and op-
timal Bayes-Nash mechanisms do not necessarily allow an
implementation in dominant strategies. This is in contrast
to the single-dimensional problem, which has these prop-
erties (Duives et al. 2015).

In addition, we address a variation of the problem where
job-agents are also allowed to understate their true process-
ing requirement. For that problem, we derive a purely com-
binatorial solution by showing that the problem effectively
reduces to a stochastic single machine scheduling problem,
which is solved by the stochastic version of Smith’s rule.

2. Related Work
The starting point of this paper is the open problem for-
mulated by Heydenreich et al. (2008, p. 425) who “leave
it as an open problem to identify (closed formulae for) op-
timal mechanisms for the 2-d case.” Here, the “2-d case”
refers to the problem of computing a Bayes-Nash optimal
mechanism for the mechanism design problem with two-
dimensional types, where weights and processing times of
the jobs are private information. The case where types are
single dimensional, and only the weights are private, can
be solved efficiently along the lines of Myerson (1981). We
refer to Heydenreich et al. (2008) and Duives et al. (2015)
for details, and note that they also give structural insights
into the case where types are two dimensional. Yet, the
computational complexity of the optimal mechanism design
problem with two-dimensional types was left open.

Even though we settle the computational complex-
ity of the problem to compute an optimal (randomized)
mechanism, we do not obtain “closed formulae” for its
solution. Our results can therefore be seen in the tradi-
tion of “automated mechanism design” as proposed, e.g.,
by Conitzer and Sandholm (2002) and Sandholm (2003),
since the design of the mechanism itself is based on lin-
ear programming.

There is abundant related work in optimal mechanism
design, starting with the seminal paper by Myerson (1981).
As a matter of fact, problems with single-dimensional types
are considered pretty well understood, and we refer to the

chapter on profit maximization in mechanism design by
Hartline and Karlin (2007). Algorithmic results for prob-
lems with multidimensional types have been obtained more
recently (e.g., Alaei et al. 2012, Cai et al. 2012, Daskalakis
and Weinberg 2012) with a fast-growing literature. We re-
fer to a recent survey by Chawla and Sivan (2014) for an
excellent overview and relevant references for recent ad-
vances in algorithmic Bayesian mechanism design. There is
also a series of recent papers that provide insight into inter-
esting anomalies in multidimensional mechanism design, or
more specifically, multi-item auction problems (e.g., Hart
and Nisan 2014, Hart and Reny 2015).

With respect to recent work on mechanism design with
multidimensional types, our work has some methodologi-
cal similarities with recent work on Bayesian mechanism
design by Daskalakis and Weinberg (2012). They address
a multidimensional, multi-item auction problem, and also
compactify an exponential size linear program by exploit-
ing symmetry in value distributions. Doing that, they derive
approximately optimal, randomized Bayes-Nash mecha-
nisms. Due to implicit informational externalities1 the se-
quencing problem considered here cannot easily be cast in
those terms. Yet, with some additional work, one can ob-
serve that the techniques of Cai et al. (2012) can be applied
also to the problem studied here, and then imply that a
close to optimal Bayesian mechanism can be found in poly-
nomial time. However, those techniques do not lead to an
explicit, polynomial size linear programming model for the
optimal mechanism design problem, which we do provide
here. Moreover, our compactification does not rely on elim-
inating symmetries in value distributions, but rather on the
elimination of what could be called “irrelevant alternatives”
for the optimal randomized mechanism.

Also, with respect to the actual implementation of the
mechanism, we acknowledge a close similarity to the
work of Cai et al. (2012), since also there, interim al-
locations need to be translated into randomizations over
mechanisms, in their case, Vickrey-Clarke-Groves (VCG)
allocation rules. But instead of relying on a general sep-
aration oracle and the ellipsoid method, we here explic-
itly solve the underlying decomposition problem by giving
a combinatorial algorithm. This is of independent interest
from the perspectives of mechanism design and polyhedral
combinatorics.

3. Definitions and Preliminary Results
We consider a sequencing problem with n job-agents de-
noted j ∈ N , each owning a job with weight wj and
processing time pj . The jobs need to be sequenced nonpre-
emptively on a single machine, with the interpretation that
wj is job j’s individual cost for waiting one unit of time,
while pj is the time it requires to process job j . In a sched-
ule where job j has start time sj , the job’s individual cost
for waiting sj time units equals wjsj . The type of a job j
is a two-dimensional vector of weight and processing time,
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denoted tj = 4wj1 pj5. If tj is public, the total waiting cost
is well known to be minimized by sequencing the jobs in
order of nonincreasing ratios wj/pj , known as Smith’s rule
(Smith 1956).

In the setting we consider here, weight and process-
ing time are private to the agent that owns the job. There
is, however, a public belief about this private information,
which is

• the types that jobs 11 0 0 0 1 n might have are t =

4t11 0 0 0 1 tn5 ∈ T , and T is known, and
• the probability of the jobs having types t = 4t11 0 0 0 1 tn5

is �4t5, and also � is known.
Hence T = T1 ×· · ·×Tn is the type space of all jobs, and

we refer to the type of one specific job j as tj , with tj ∈

Tj = 8t1
j 1 0 0 0 1 t

mj

j 9, where Tj denotes the set of mj possible
types for this job. Notice that we assume the type space T
to be discrete. If necessary, continuous type spaces could
be approximated by corresponding discretizations. Indeed,
in the words of Vohra (2012, p. 285), “nothing of qualita-
tive significance is lost in moving from a continuous to a
discrete type space.”

We define m 2=
∑

j∈N mj , and note that m¾ n. For a type
tj ∈ Tj , we let wj and pj be the corresponding weight and
processing time, respectively. For convenience, we also use
the notation pj4tj5 and wj4tj5 to denote the processing time
and weight of a job with type tj = 4wj1 pj5, as well as pj4t5
and wj4t5 to denote the processing time and weight of a
job j in type vector t. In subsequent linear programming
formulations, again for convenience, we sometimes add an
index for the specific type i of a given job j . We then use tij
for that type, and often identify i with tij , to avoid excessive
notation.

As usual 4tj1 t−j5 denotes a type vector where tj is the
type of job j and t−j are the types of all jobs except j ,
with t−j ∈ T−j 2=

∏

k 6=j Tk. Generally, we may even allow
correlation across types of different jobs. In that case, for
fixed type tj of job j , we let �4tj5 2=

∑

t−j
�4tj1 t−j5 be

the (unconditional) probability of job j having type tj .
Likewise, let �4t−j5 2=

∑

tj
�4tj1 t−j5. Then, �4tj � t−j5 =

�4tj1 t−j5/�4t−j5 is the conditional probability for job j
having type tj , given t−j is the types of all other jobs. Like-
wise, �4t−j � tj5= �4tj1 t−j5/�4tj5.

For uncorrelated type distributions, the succinct input of
the problem consists of mj types for all jobs j , hence of
m =

∑

j∈N mj pairs of numbers tj = 4wj1 pj5, with corre-
sponding probabilities �4tj5. In that case, the input size of
the problem is of order ä4m5, assuming that each of these
numbers has size O415. For correlated types, the input size
of the problem could be as large as the size of the type
space T , which may be exponential in m. In that case, to
circumvent complicated reasoning about the input size of
the type distribution, we will assume that it is accessed
through oracle queries for any value �4 · 5, conditional or
unconditional, in O415 time.

We assume, like Heydenreich et al. (2008), that the
mechanism designer needs to compensate the jobs for wait-
ing by a payment. We seek to compute and implement a

(direct) mechanism, consisting of a scheduling rule and a
payment rule. More specifically, the mechanism assigns to
any type vector t ∈ T a vector s4t5 that represents the start
times of all jobs in the sequence selected by the mech-
anism, together with a vector of compensation payments
�4t5, with �j4t5 being the payment for job j . Clearly, jobs
may have an incentive to strategically misreport their true
types to receive earlier positions in the sequence and/or
higher compensation payments. The optimal mechanism
that we seek is not welfare maximization, which is equiva-
lent with minimizing the total waiting time. Rather, we seek
a mechanism that minimizes the total payments made to
the jobs. This is the equivalent to the revenue-maximizing
auction of Myerson (1981).

3.1. Modeling Private Processing Times

For the major part of this paper, we assume, like
Heydenreich et al. (2008), that job-agents can misreport
their true processing times pj , but with the restriction that
only larger than the true processing times can be reported
by any job. This assumption is justified in a model where
job-agents need to make sure that they receive at least
their (true) required processing. That means that, effec-
tively, their utility is independent of the actual processing
they receive, as long as it is at least as large as the true pj .
Reporting a processing time smaller than the true process-
ing time would result in leaving the job unfinished and this
results in a zero (or any negative) utility. Hence no job-
agent would ever choose this option. On the other hand,
a job-agent may strategize on reporting a larger than true
processing time if that increases the (expected) utility.

In addition, in Appendix A, we address the alternative
setting where jobs can report processing times smaller than
their true processing time. As before, the underlying as-
sumption is that the utility of a job-agent is independent
of the actual processing time received, in the sense that a
job is satisfied with the claimed processing time. We show
that in this setting, the optimal mechanism is the one that
sequences the jobs in the order of the ratios virtual weight
over expected processing time. Interestingly, this result is
based on the insight that the two-dimensional mechanism
design problem reduces to a single-dimensional problem,
yet with stochastic processing times. The optimal mecha-
nism then follows from the fact that the stochastic single
machine scheduling problem is solved by Smith’s rule, with
processing times replaced by expected processing times
(Rothkopf 1966).

3.2. Incentive Compatibility

For a given mechanism, we denote by Esij and � i
j the ex-

pected start time and payment for job j when he reports to
be of type tij , where the expectation Esij is taken over all
(truthful) reports of other jobs t−j ∈ T−j . Then, the expected
(quasi-linear) utility for job j with true type tij = 4wi

j1 p
i
j5

is exactly
� i

j −wi
jEs

i
j 0
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A mechanism is truthful, or more precisely Bayes-Nash
incentive compatible, if it fulfils the following, linear
constraint

� i
j −wi

jEs
i
j ¾� i′

j −wi
jEs

i′

j 1

for all jobs j and types tij , ti
′

j ∈ Tj such that pj4t
i
j5 ¶

pj4t
i′

j 5. The constraint says that reporting types truthfully
yields higher expected utility than anything else. A schedul-
ing rule for which there exists a payment scheme so that
the resulting mechanism is Bayes-Nash incentive compati-
ble, is called Bayes-Nash implementable. Note that in the
Bayesian setting, payments � i

j are defined per type tij of
any job j , but not for each of the (in general, exponentially
many) vectors of types t ∈ T .

Moreover, we impose (expected) individual rational-
ity, that is, the expected utility of any job should be
nonnegative,

� i
j −wi

jEs
i
j ¾ 00

This constraint makes sure that the optimization problem
under consideration is bounded.

It is interesting to ask if a scheduling rule can even be
implemented in the stronger dominant strategy equilibrium.
Manelli and Vincent (2010) indeed show the equivalence
of Bayes-Nash and dominant strategy implementations for
the case of standard single unit private value auctions. In a
dominant strategy equilibrium, reporting the true type max-
imizes the utility of a job not only in expectation but for
any report t−j of the other jobs, that is,

�j4t
i
j1 t−j5−wi

jsj4t
i
j1 t−j5¾�j4t

i′

j 1 t−j5−wi
jsj4t

i′

j 1 t−j5

for all tij , ti
′

j ∈ Tj and all t−j ∈ T−j . The latter obviously
implies the former, but generally not vice versa (Gershkov
et al. 2013). We comment on dominant strategy imple-
mentations in Section 6, but are mainly interested in the
Bayesian setting.

For the problem considered here, it is known that imple-
mentability is equivalent to monotonicity with respect to
weights.

Theorem 1 (Duives et al. (2015)). A mechanism is
Bayes-Nash implementable if and only if the expected start
times Esij are monotonically decreasing in the reported
weight wi

j .

The same result holds for dominant strategy imple-
mentability, but then the start times sj4t

i
j1 t−j5 need to be

monotonically decreasing in the reported weight wi
j for all

t−j ∈ T−j . This is a standard result in single-dimensional
mechanism design, see, for instance, the introductory text
by Nisan (2007), but it is also true for the two-dimensional
problem considered here; see Duives et al. (2015, Theo-
rems 1 and 6). With respect to optimal mechanisms, for
the special case where only weights wj are private and pro-
cessing times pj are known, the Bayes-Nash optimal mech-
anism has a simple combinatorial structure. It is Smith’s
rule with respect to virtual instead of the original weights,
i.e., jobs are sequenced in nonincreasing order of the ratios
virtual weight over processing time (Duives et al. 2015).

4. Problem Formulation and
Linear Relaxation

We first set up an integer linear programming formulation
that describes the problem of finding an optimal Bayes-Nash
incentive compatible and individual rational mechanism.
The starting point is an integer linear programming formula-
tion for the scheduling polytope in terms of so-called linear
ordering variables, dkj4t5, with intended meaning

dkj4t5=











1 if for type vector t, we use a schedule

where job k precedes job j ,

0 otherwise0

See also Dyer and Wolsey (1990). The following con-
straints ensure that the linear ordering variables indeed de-
scribe a linear ordering:

djj4t5= 0 ∀ j1 t (1)

dkj4t5+djk4t5= 1 ∀ j1 k1 t j 6= k (2)

djk4t5+dkl4t5¶ 1 +djl4t5 ∀ j1 k1 l1 t (3)

djk4t5 ∈ 80119 ∀ j1 k1 t0 (4)

Here, (3) is the triangle inequality. In terms of these lin-
ear ordering variables, for any given vector of types t, the
corresponding start times of jobs in the sequence corre-
sponding to that linear ordering are linearly expressed as

sj4t5=
∑

k∈N

dkj4t5pk4t51 (5)

recalling that pj4t5 denotes the processing time of job j
in type profile t. Observe that, for a given type vector t,
the vectors s4t5 given by (1)–(5) are vectors of start times
of the jobs. These are the vertices of the well-known sin-
gle machine scheduling polytope (Dyer and Wolsey 1990,
Queyranne 1993), with the only difference that we con-
sider start instead of completion times. The polytope is
exactly the convex hull of all vectors of start times of all
n! job sequences. Here, it will be denoted by Q4t5. It is
well known that the scheduling polytope is a (contra) poly-
matroid, which is easily verified by the transformation to
xj4t5 = pj4t5sj for all j ∈ N . Note that linear optimization
over Q4t5, as well as the separation problem for Q4t5 can
be solved in time O4n25 (Edmonds 1971, Queyranne 1993).

As it will be important for what follows, we next re-
call a well-known linear description of the single machine
scheduling polytope due to Queyranne (1993). To that end,
recall that the variables 4s11 0 0 0 1 sn5 denote the start times
of jobs. We know from Queyranne (1993) that the facial
description of the polytope Q4t5 is given by the following
set of inequalities:

∑

j∈K

pj4t5sj ¾
1
2

(

∑

j∈K

pj4t5

)2

−
1
2

∑

j∈K

pj4t5
2

∀K ⊂N (6)

∑

j∈N

pj4t5sj =
1
2

(

∑

j∈N

pj4t5

)2

−
1
2

∑

j∈N

pj4t5
20 (7)

The last equality excludes schedules with idle time. The
vertices of Q4t5 are exactly the vectors of start times of all
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n! job sequences. Note that Q4t5 is 4n − 15 dimensional.
Therefore, any (inner) point of Q4t5 represents feasible
expected start times of a randomization over (at most n)
schedules, by Carathéodory’s theorem.

Using linear ordering variables now yields the following
mixed-integer linear programming formulation of the opti-
mal Bayesian mechanism design problem. Here, we use the
shorthand notation �i

j 2= �4tij5 for the probability of job j

having type tij . Also, by t 3 tij , we denote all type vectors
t = 4tij1 t−j5 ∈ T .

min
∑

j∈N

∑

tij∈Tj

�i
j�

i
j (8)

s.t. � i
j ¾wi

jEs
i
j ∀j1 i (9)

� i
j ¾� i′

j −wi
j4Es

i′

j −Esij5

∀j1 i1 i′1pj4t
i′

j 5¾pj4t
i
j5 (10)

Esij =
∑

t3tij

�4t−j � t
i
j5sj4t

i
j1t−j5 ∀j1 i (11)

sj4t5=
∑

k∈N

dkj4t5pk4t5 ∀j1 t (12)

djj4t5=0 ∀j1 t (13)

dkj4t5+djk4t5=1 ∀j1k1 t j 6=k (14)

djk4t5¾0 ∀j1k1 t (15)

djk4t5+dkl4t5¶1+djl4t5 ∀j1k1 l1 t (16)

djk4t5∈80119 ∀j1k1 t0 (17)

Note that the only free variables are linear ordering variables
djk4t5 as well as payments � i

j . The variables sj4t5 and Esij
for start times and expected start times, respectively, can be
eliminated. The objective (8) is the total expected payment.
Constraints (9) and (10) are the individual rationality and
incentive compatibility constraints: (9) requires the expected
payment to at least match the expected cost of waiting when
the type is tij , and (10) makes sure that the expected utility
is maximized when reporting truthfully. The values Esij are
also referred to as an interim schedule. Indeed, Esij is the
expected start time of job j given it has (reported) type i.
Observe that the number of variables djk4t5 equals n2 ·�T �,
which due to the size of the type space T may be exponential
in the input size of the problem.

Recall that the vertices of Q4t5 are the solutions s4t5

of (12)–(17). Moreover, a vector of start times s4t5 satis-
fies (12)–(15) if and only if s4t5∈Q4t5; see, for instance,
Queyranne and Schulz (1994, Theorem 4.1). More specif-
ically, via (12), the scheduling polytope Q4t5 is an affine
image of the linear ordering polytope (13)–(16) and its re-
laxation (13)–(15). This important observation is crucial for
what follows, as it allows us to work with the relaxation
(13)–(15) instead of (13)–(16).

4.1. Relaxation and Compactification

A linear relaxation of the optimal mechanism design prob-
lem (8)–(17) is obtained by dropping the last two sets
of constraints (16) and (17). By moving from the ILP
formulation to its LP relaxation, we, in fact, move from
deterministic scheduling rules to randomized ones, which
follows from our previous discussion about the equiva-
lence of (12)–(15) and (6)–(7), as well as the fact that the
scheduling polytope Q4t5 is an affine image of the relax-
ation (13)–(15) via (12).

In what follows, we also combine (11) and (12) into
just one constraint. Note that the single machine schedul-
ing polytope is described exactly by (12)–(15) and in-
deed the triangle inequality, (16), is redundant (Queyranne
1993). This gives us the following formulation for the lin-
ear relaxation:

min
∑

j∈N

∑

tij∈Tj

�i
j�

i
j (18)

s.t. � i
j ¾wi

jEs
i
j ∀j1 i (19)

� i
j ¾� i′

j −wi
j4Es

i′

j −Esij5

∀ j1 i1 i′1pj4t
i′

j 5¾pj4t
i
j5 (20)

Esij =
∑

t3tij

�4t−j � t
i
j5
∑

k∈N

dkj4t
i
j1t−j5pk4t−j5 ∀ j1 i (21)

djj4t5=0 ∀ j1 t (22)

dkj4t5+djk4t5=1 ∀ j1 k1 t1 k 6= j (23)

dkj4t5¾0 ∀ j1 k1 t0 (24)

We now focus on the projection to variables Esij , that is,
vectors Es∈�m that satisfy (21)–(24). These are interim
schedules in the linear relaxation. Let us refer to this pro-
jection as the relaxed interim scheduling polytope. Notice
that, even though it is a linear relaxation, (21)–(24) is still
an exponential size formulation, in general, as it depends
on the size of the type space T . The crucial insight is that
in the linear relaxation, this exponential size formulation
is not necessary. Instead of using dkj4t5, where t∈T , we
propose an LP compactification by restricting to variables

dkj4tj1tk51

where tj and tk are the types of jobs j and k, respectively.
Note what this means: The variable dkj4·5 that describes the
linear order of two jobs j and k in the problem formulation,
now only depends on the types tj and tk of the jobs j and k,
and no longer on the whole type vector t=4t110001tn5.

This restriction reduces the number of dkj -variables to
O4m25, yielding a formulation of size polynomial in m.
Note that this is a polynomial size formulation. Doing
so, we obtain the following formulation for the interim
schedule:

Esij =
∑

k∈N

∑

tk∈Tk

�4tk � tij5dkj4t
i
j1tk5pk4tk5 ∀j1 i (25)
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djj4tj1tj5=0 ∀j1 tj (26)

dkj4tk1tj5+djk4tj1tk5=1 ∀j1k1 tj1 tk1 k 6= j (27)

dkj4tk1tj5¾0 ∀j1k1 tj1 tk0 (28)

The following lemma is the core technical insight of the
main result in this paper.

Lemma 1. The relaxed interim scheduling polytope defined
by (21)–(24) can be equivalently described by (25)–(28).

Proof. Let P be the projection of (21)–(24) to variables
Esij , and P ′ be the projection of (25)–(28) to variables Esij .
It is pretty straightforward to verify that if Es∈P ′, then
Es∈P , simply by letting dkj4t5 2=dkj4tj1tk5 for all t3 tj , tk.
Here, t3 tj , tk denotes all type vectors t in which jobs j
and k have types tj and tk, respectively.

The more interesting step is to show that if Es∈P , then
Es∈P ′. Therefore let Es∈P with corresponding dkj4t5.
Now, define

dkj4tj1tk5=
∑

t3tj 1tk

�4t5

�4tk1tj5
dkj4t51

as the weighted average of the values dkj4t5 for those type
vectors in which jobs j and k have types tj and tk, respec-
tively. Here, following earlier notation, we let �4tk1tj5 2=
∑

t3tk1ti
�4t5 be the probability of jobs k and j having types

tk and tj , respectively. In the uncorrelated case, note that
�4tk1tj5=�4tk5�4tj5. In either case, the so defined values
dkj4tj1tk5 clearly satisfy (26)–(28). Moreover, for all j ∈N
and fixed tij ∈Tj , we get

Esij =
∑

t3tij

�4t−j � t
i
j5
∑

k∈N

dkj4t5pk4t5

=
∑

t3tij

�4t5

�4tij5

∑

k∈N

dkj4t5pk4t5

=
∑

k∈N

∑

t3tij

�4t5

�4tij5
dkj4t5pk4t5

=
∑

k∈N

∑

tk∈Tk

�4tk � tij5
∑

t3tk1t
i
j

�4t5

�4tij5�4tk � tij5
dkj4t5pk4tk5

=
∑

k∈N

∑

tk∈Tk

�4tk � tij5dkj4t
i
j1tk5pk4tk51

which is exactly the right-hand side of (25). �
We conclude with the following theorem.

Theorem 2. Computing an optimal interim schedule
Es∈�m together with optimal payments �∈�n for the
Bayesian mechanism design problem can be done in time
polynomial in the input size of the problem by solving the
compactified linear program (18)–(20), (25)–(28).

Proof. In the case of uncorrelated types, the input size
of the problem is ä4m5. The linear formulation (18)–(20)

together with (25)–(28) has O4m25 variables and O4m25
constraints. Hence, this linear program can be solved in
time polynomial in the input size. For the correlated case,
the formulation is polynomial size too. All we need to set
up the formulation is that the O4m25 values �4tk � tij5 can
be computed in polynomial time. �

Theorem 2 tells us that we can compute optimal
payments and an interim schedule in polynomial time.
However, an important issue remains, Namely, the actual
implementation of the mechanism, and the question if we
did not loose anything on the way by reducing the number
of variables. Before we proceed to show how the optimal
LP solution can be implemented in Section 5, we briefly
discuss the LP relaxation.

4.2. The Compactification and the
Constraint Matrix

We consider a relaxation of the linear ordering polytope
by dropping triangle and integrality constraints. Also, we
have reduced the number of variables from a potentially
exponential number to a polynomial number. It seems that
thereby we are reducing the (number of) feasible mecha-
nisms, because the variables dkj4tj1tk5 only depend on the
types of jobs j and k, while dkj4t5 depends on the whole
type vector t. For deterministic mechanisms, this indepen-
dence is also known as independence of irrelevant alterna-
tives, or iia-property.

Definition 1 (iia). A deterministic scheduling rule is in-
dependent of irrelevant alternatives or iia if the relative
order of two jobs does not depend on anything but the types
of those two jobs, that is, dkj4t5=dkj4tj1tk5 for all t3 tj1tk.
We call a mechanism for which the scheduling rule is iia
an iia-mechanism.

Lemma 1 shows that the compactification is no loss of
generality as far as the linear relaxation is concerned. With
this in mind, a possible interpretation of Lemma 1 would
be that the restriction to iia-mechanisms can be done with-
out loss of generality once randomization is allowed. How-
ever, we did not define what a randomized iia-mechanism
is, and this is not so straightforward. For example, it fol-
lows from Theorem 6 below that the optimal randomized
mechanism cannot be represented as a lottery over deter-
ministic iia-mechanisms. One reason for this is that the
variables dkj in the relaxation, in general, cannot be in-
terpreted as the probability of job k preceding job j . By
definition of the relaxation, neither the vector of variables
dkj4tj1tk5 nor dkj4t5 necessarily lie in the linear ordering
polytope; see, e.g., Fishburn (1992). Hence the interpre-
tation of the optimal randomized mechanism as an iia-
mechanism is problematic.

At this point, it is important to realize that the restriction
to iia-mechanisms is a loss of generality for the determin-
istic optimal mechanism design problem (8)–(17): Duives
et al. (2015) give an instance that shows the existence
of an optimality gap, in general. That is, there exist in-
stances where the optimal deterministic iia-mechanism has
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higher total expected payments than the optimal determin-
istic mechanism; see also Theorem 5 below.

The underlying reason for this effect can be found by
studying the structure of the constraint matrix for both prob-
lems: Recall that in the compacified linear programming
relaxation, the triangle inequality, (16), is redundant. There-
fore it suffices to use inequalities (21)–(24). The result-
ing constraint matrix, (21)–(24) is block diagonal, with one
block for each pair of jobs and types. Furthermore, vari-
ables djk4t5 only play a role in the expected start time of
jobs j and k, but no other job. Therefore it suffices if these
decision variables only depend on the types of those two
jobs. While all this is true for the linear relaxation, the tri-
angle inequality breaks the block diagonal structure of the
constraint matrix, and therefore is necessary for the integer
linear program of deterministic mechanisms. As a result, for
deterministic mechanisms, the decision variables need to be
dependent on the whole type vector t, in general.

5. Implementation of the
Optimal Mechanism

As a consequence of the preceding discussion, the solution
to the compactified linear programming relaxation does not
yet qualify as a solution to the Bayesian mechanism design
problem, because the interim schedule Es does not have an
interpretation as a randomization over schedules. To actu-
ally implement the mechanism, we therefore still need to
compute, for any reported type vector t, the correspond-
ing (randomized) schedule s4t5, so that Es=ET 6s4t57. We
show here that projecting to the space of start time vectors
allows us to do that.

First, observe that for a given solution of the LP relax-
ation and any fixed type vector t=4t110001tn5, we have val-
ues djk4tj1tk5, for each pair of jobs j and k. From these, we
can compute a corresponding vector of start times s4t5 by

sj4t5=
∑

k∈N

dkj4tj1tk5pk4tk5 for all j ∈J 0

Now, s4t5 is a point in the scheduling polytope Q4t5 de-
fined in (6) and (7) and the dimension of Q4t5 is n−1 (if
there are no jobs with zero processing times, at least). It
follows from Caratheodory’s Theorem that s4t5 can be ex-
pressed as the convex combination of at most n vertices of
Q4t5, that is, job sequences. This will be our desired so-
lution to the Bayesian mechanism design problem, as this
allows us to interpret the LP solution, for each reported vec-
tor of types t∈T , as a lottery over at most n job sequences.

For the subsequent discussion, for notational con-
venience, we drop the dependence on the type vec-
tor t. To compute a decomposition à la Caratheodory
we use a well-known approach (Grötschel et al. 1988,
Theorem 6.5.11): Given some point s∈Q, pick an arbitrary
vertex v of Q, and compute the point s′ ∈Q, where the half
line through v and s leaves Q. This point lies on a face(t)
of Q, and we can recurse on that face(t). We call this the

Figure 1. Illustration of one iteration of the GLS
method.

f �

v
s

s�

Note. The point s is a convex combination of the vertex v and the new
point s′, which lies on a lower-dimensional face of the polytope, f ′.

GLS method. One iteration of the GLS method is illustrated
in Figure 1.

To efficiently use the GLS method, we only need a way
to efficiently compute the intersection point s′ and a facet
f ′ on which it lies. For general polymatroids, this can be
done with an algorithm described by Fonlupt and Skoda
(2009). For the scheduling polytope, a direct application of
their result leads to an algorithm that runs in time O4n85.

But since we are dealing with the single machine
scheduling polytope and not with general polymatroids, we
can substantially improve on that. This improvement rests
on the following theorem.

Theorem 3. Let Q be the scheduling polytope in start
times induced by the vector of processing times p∈�n

>0.
For given x, y∈�n, y 6=0, the computation of the intersec-
tion of a line L=8x+�y ��∈�9 with Q together with the
facets of Q, which intersect with L, can be done in time
O4n2 logn5.

The algorithm and proof of the theorem is given in Ap-
pendix B. Combined with the GLS method, for any type
vector t and the corresponding vector of start time s4t5, we
can therefore compute a representation of s4t5 as a con-
vex combination of at most n job sequences in computation
time O4n3 logn5.

Theorem 4. A point s in the single machine scheduling
polytope Q can be decomposed into the convex combination
of at most n vertices 4equivalently, permutation schedules5
of Q in time O4n3 logn5.

Proof. Using the GLS method starting with s=s0, the line
intersection algorithm computes an intersection point s1,
and at the same time, a facet of the scheduling polytope
Q on which this intersection point lies. That facet is rep-
resented by some set K1 ⊂N for which inequalities (6)
are tight. Note that these are schedules in which all jobs
in K1 are processed before all jobs in N \K1. To iterate
the procedure on the lower-dimensional face on which s1

lies, the next vertex v1 can be chosen as the schedule in-
duced by the sequence � given by the order of the el-
ements of s1, say, s1

�415¶ ···¶s1
�4n5. That takes O4nlogn5

time. Note that, as v1 and s1 lie on the facet defined by K1,
the next iteration must yield a facet K2 so that either K2 ⊂

K1 or K1 ⊂K2. In other words, the algorithm produces a
sequence of nested sets. Indeed, Queyranne (1993) showed
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that every 4n−k5-dimensional face of Q corresponds one
to one with an ordered partition of N into k sets, that
is a tuple 4N110001Nk5 with Ni∩Nj =� for all i 6= j , i1j ∈

8110001k9, and
⋃k

i=1Ni =N . The interpretation is that in-
equalities (6) are tight for all k nested sets Ki 2=N1 ∪···∪

Ni, i=110001k. Indeed, the intersection point of the kth it-
eration lies exactly on the 4n−k5-dimensional face defined
by the ordered partition that is obtained from the nested
sets K110001Kk. Now, since the dimension is n, and each
iteration takes O4n2 logn5 time by Theorem 3, the claimed
computation time follows. �

We note that a point in the scheduling polytope can, in
fact, be decomposed into a convex combination of at most
n vertices in time O4n25 using another algorithm that we
recently found (Hoeksma et al. 2014). However, in contrast
to what we describe here, that algorithm does not yield the
intersection of the scheduling polytope with a line. There-
fore we believe that the result presented in Theorem 3 is
of independent interest, even though a faster decomposition
algorithm is possible.

6. Computational Results
We have implemented the (integer) linear programming
model discussed in this paper. The main purpose for the
implementation was to verify a number of conjectures
about the relations between implementations in different
equilibria, specifically Bayes-Nash versus dominant strat-
egy, as well as the iia-property. To that end, we generated
and tested the implementations on randomly generated in-
stances, the essence of which is presented here.

6.1. Bayes-Nash and Dominant Strategy
Equilibria and the iia-Property

The following two instances are an outcome of our exper-
iments and encompass some new theoretical insights.

Instance 1. Four jobs with the following type spaces and
corresponding probabilities:

Job 1 w=6 w=7 w=10
p=2 003312 003456 000432
p=7 001288 001344 000168

1

Job 2 w=5 w=8
p=4 000344 008256
p=8 000056 001344

1

Job 3 w=3 w=10
p=8 003825 001275
p=10 003675 001225

1

Job 4 w=3 w=8
p=1 002583 003717
p=6 001517 002183

0

Instance 2. Three jobs with the following type spaces and
corresponding probabilities:

Job 1 w=2
p=1 1

1
Job 2 w=9
p=8 1

1

Job 3 w=1 w=3 w=5
p=5 0024 0002 0016
p=7 0024 0024 0010

0

We summarize our computational experiments in the fol-
lowing theorems.

Theorem 5. Optimal deterministic mechanisms for either
Bayes-Nash or dominant strategy implementations, in gen-
eral, do not satisfy the iia-condition.

Proof. Duives et al. (2015) use Instance 2 to prove this
theorem for optimal Bayes-Nash mechanisms. Indeed, In-
stance 1 shows the same: The optimal deterministic Bayes-
Nash mechanism has a total expected cost of 128.5195.
When enforcing the mechanism to be iia, the total expected
cost becomes 128.5697. Moreover, the optimal determinis-
tic dominant strategy mechanism has a total expected cost
of 128.6151, while that becomes 128.6946 if the mecha-
nism is forced to be iia. �

Corollary 1. The optimal deterministic Bayes-Nash
mechanism is, in the iia and the non-iia case, generally not
implementable in dominant strategies.

Theorem 6. Randomized Bayes-Nash mechanisms per-
form better than deterministic Bayes-Nash mechanisms in
terms of minimal total expected payment. In particular, a
randomized Bayes-Nash implementation cannot, in general,
be decomposed into the convex combination of determinis-
tic Bayes-Nash implementations.

Proof. Instance 2 has an optimal deterministic Bayes-Nash
mechanism with total expected cost 45.0, while the optimal
randomized Bayes-Nash mechanism has total expected cost
44.74625. �

7. Concluding Remarks
Our solution is randomized and truthful in expectation. The
computational complexity to find an optimal deterministic
mechanism remains open. It is not even clear if the corre-
sponding decision problem is in NP.

Another, interesting future path is to analyze the worst-
case gaps between the different types of implementations
that we studied (iia versus non-iia, for example).

Moreover, it would be interesting to get qualitative in-
formation from the linear programming approach that goes
beyond the statements made in Section 6. While we be-
lieve it is interesting to get polyhedral explanations for
phenomena in the design of mechanisms, along the lines
of Section 4.2, it could also work the other way around.
Namely, one might be able to derive qualitative properties
of mechanisms via structural properties of the underlying
mathematical programs.
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Appendix A. When Processing Times Don’t Matter

In none of the technical proofs of the paper was it actually nec-
essary that the reported processing times are at least as large as
the true processing times. Here, we address the case where this
is allowed. The first thing to note is that once this requirement
is relaxed, there is a flaw in the model that needs to be fixed.
Namely, if a job would do this, we cannot ensure that the proposed
allocation is feasible in the sense that each job receives the re-
quired processing: The mechanism designer would not even know
the true required processing of any job. As already explained in
Section 3.1, the natural adaptation of the model if jobs are also
allowed to report smaller than true processing times would be to
assume that jobs just receive the amount of processing they claim.
This boils down to saying that the utility of a job does not depend
on the allocated processing, as long as it is at least as large as the
claimed processing time.

In this section, we show that for this model, the optimal
Bayesian mechanism is very simple. Indeed, we will show how
the problem reduces to a single-dimensional mechanism design
problem, which then boils down to the stochastic single machine
scheduling problem. The latter can be solved by the stochastic
version of Smith’s rule, namely, to process the jobs in nonincreas-
ing order of (virtual) weight over expected processing time. The
optimality of that version of Smith’s rule in the stochastic single
machine setting is well known (Rothkopf 1966).

To describe the optimal mechanism for this case, we need to
recall some of the definitions of Duives et al. (2015). For each
job j , we compute virtual weights as follows. Let Wj and Pj

denote all the weights and processing times, respectively, of job j

in all type vectors t1
j 10001t

mj

j . For notational convenience, assume
that the different weights are indexed according to w1

j ¶ ···¶w
mj

j .
Then, the virtual weights are w̄1

j 2=w1
j , and

w̄i
j 2=wi

j +4wi
j −wi−1

j 5

∑i−1
k=1�4w

k
j 5

�j4w
i
j5

for i=210001mj 1

where �4wi
j5 2=

∑

t3wi
j
�4t5 denotes the probability that job j has

a type with weight wi
j . Moreover, for some fixed weight wi

j ∈Wj ,
denote by Pj4w

i
j5⊆Pj the processing times of job j conditioned

on the weight being wi
j . Here, the intended meaning is that Pj4w

i
j5

are the processing times in job j’s types of the form tij =4wi
j 1·5∈

Tj . Then, let

Epj4w
i
j5 2=

∑

pj∈Pj 4w
i
j 5
�4wi

j 1pj5pj

�4wi
j5

be the expected processing time of a job j conditioned on its
weight being wi

j .
Now, suppose the jobs report types ti110001t

i
n with weights

wi
110001w

i
n. Then, we claim that the optimal Bayesian mechanism

is ordering the jobs nonincreasing in the ratio of virtual weight
over expected (conditional) processing time,

w̄i
j

Epj4w
i
j5
0

The corresponding minimal payment scheme that implements this
scheduling rule can be efficiently computed by shortest path com-
putations in the underlying type graphs, as has been shown by
Duives et al. (2015, Lemma 1).

Note that reporting only weights would be sufficient since the
expected processing time and the virtual weights do not depend
on the actual (reported) processing time.

Theorem 7. The Bayesian mechanism design problem where
agents are allowed to report smaller than true processing times
has an optimal solution where the scheduling rule is to sequence
the jobs in nonincreasing ratios of virtual weight w̄i

j over (condi-
tional) expected processing time Epj4w

i
j5.

Proof. Say 4Es1�5 is the interim schedule and payment scheme
of an optimal Bayesian mechanism. Abusing notation a little bit,
let us denote by k and ` two types of a job j , so that tkj =4wi

j 1p
k
j 5

and t`j =4wi
j 1p

`
j 5. That is, k and ` denote two types of a job j

with the same weight wi
j but with different processing times. We

have by incentive compatibility that

�k
j −wi

jEs
k
j ¾�`

j −wi
jEs

`
j for all such tkj 1 t

`
j ∈Tj 0

Since this inequality holds also with k and ` exchanged, we
conclude

�k
j −wi

jEs
k
j =�`

j −wi
jEs

`
j for all such tkj 1 t

`
j ∈Tj 0

In other words, Bayes-Nash incentive compatibility implies that
a job j receives the same expected utility for a given reported
weight wi

j , irrespective of the reported processing time. Note that
this is not necessarily the case once we forbid reporting a smaller
than true processing time, since then, only one of the two inequal-
ities is present.

But we can even say more, namely, we next argue that in the
optimal mechanism, even the expected start time is independent
of the reported processing time. To that end, we take a look at
the payments. Consider the Bayes-Nash incentive compatibility
constraints between types with different weights. We know that
an implementable scheduling rule must satisfy monotonicity with
respect to weights. This follows from Theorem 1, which continues
to hold also for the problem where jobs may understate their true
processing time. (This is not difficult to see when considering the
underlying type graphs.) In particular, it therefore holds that

min
pj∈Pj 4w

i
j 5
Esj4w

i
j 1pj5¾ max

pj∈Pj 4w
k
j 5
Esj4w

k
j 1pj5 ∀wi

j <wk
j 0 (A.1)

In words, a larger weight always yields a smaller expected start
time, and this is true irrespective of the reported processing time.

We next want to express minimal payments for any given im-
plementable scheduling rule. To that end, recall from Duives et al.
(2015) that, for any implementable scheduling rule, the minimal
payment for reporting type tij =4wi

j 1p
i
j5 can be computed by a

shortest path calculation in the type graph. To keep the presen-
tation brief, we refer to (Duives et al. 2015) for further details
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and conclude that the incentive compatible payments fulfill the
following set of inequalities, and the minimal payment for re-
porting type 4wi

j 1p
i
j5 is exactly obtained by the maximum of the

right-hand side in

�j4w
i
j 1p

i
j5 ¾

[mj−1
∑

k=i

wk
j 4Esj4w

k
j 1p

k
j 5−Esj4w

k+1
j 1pk+1

j 55

]

+w
mj

j Esj4w
mj

j 1p
mj

j 50 (A.2)

Here, the sequence of nondecreasing weights wi
j ¶wi+1

j ¶ ···¶
w

mj

j is fixed and exhaustive. Indeed, for the problem considered
here, the only flexibility in expression (A.2) lies in choosing, for
each k>i, some pk

j ∈Pj4w
k
j 5. (This exactly corresponds to choos-

ing different paths in the type graph.)
Now, observe that each term Esj4w

k
j 1p

k
j 5 appears in (A.2) with

as coefficient 4wk
j −wk−1

j 5Esj4w
k
j 1p

k
j 5¾0, and hence the maxi-

mum in the right-hand side of (A.2) is attained when for all k>i,
pk
j equals

pk
j = argmax

pj∈Pj 4w
k
j 5

Esj4w
k
j 1pj50

Therefore the payments of the optimal Bayesian mechanism are
minimal whenever the expression maxpj∈Pj 4w

k
j 5
Esj4w

k
j 1pj5 is min-

imal for each weight wk
j . Here, note that the feasibility of this

independent choice for each k is guaranteed by (A.1). However,
this means that the mechanism is optimal only if Esj4w

k
j 1pj5 is

the same for all pj ∈Pj4w
k
j 5. In other words, for each fixed weight

wk
j , the mechanism assigns the same expected start times for all

pj ∈Pj4w
k
j 5, and by incentive compatibility, also the same pay-

ment for all pj ∈Pj4w
k
j 5.

This means that, for given weight wi
j , the (expected) start time

of a job must be independent of its actual processing time. There-
fore the expected completion time of a job with weight wi

j equals

Esj4w
i
j5+Epj4w

i
j50

In other words, we are effectively left with a single-parameter
Bayesian mechanism design problem, where the processing time
for a job with weight wi

j equals Epj4w
i
j5.

Hence, with no loss of generality, we can define a scheduling
rule and payment rule that only depends on the vector of reported
weights of the jobs. We can now use (A.2), together with the
definition of virtual weights given above, to write the minimal
total expected payment of any implementable scheduling rule as

∑

j∈J

∑

wj∈Wj

�4wj5w̄jEsj4wj50

For a formal proof of the latter, refer to the appendix of Duives
et al. (2015), where we only need to replace processing times
pj by expected (conditional) processing times Epj4w

i
j5. Now, we

have
∑

j∈J

∑

wj∈Wj

�4wj5w̄jEsj4wj5 =
∑

j∈J

∑

wj∈Wj

∑

w3wj

�4w5w̄jEsj4wj5

=
∑

w∈W

�4w5
∑

j∈J

w̄jEsj4wj51 (A.3)

where w=4w110001wn5 denotes a vector of weights for all jobs,
and W is the type space of all weight profiles. Therefore, con-
ditioned on a given vector of reported weights w=4w110001wn5,
the term

∑

j∈J w̄jEsj4wj5 that appears in the right-hand side of
(A.3) is minimized by sequencing the jobs in the order of virtual

weight w̄j over conditional expected processing times Epj4wj5.
Given that we are not allowed to make the sequencing dependent
on the actual reported processing times, this is indeed the best
we can do, and optimality of this sequencing rule follows from
a paper by Rothkopf (1966) on sequencing with random service
times.

We note that the final argument implicitly requires the ra-
tios w̄j/Epj4wj5 to be monotonically increasing in wj , as
otherwise, the scheduling rule is not monotone and thus not im-
plementable. This technical issue, however, is well known to be
fixable by a standard procedure known as ironing. We do not go
into the technical details here, but refer to Myerson (1981) or
Vohra (2011). �

Appendix B. An O4n2 logn5 Line
Intersection Algorithm

We here give the proof of Theorem 3. First, we give a simple
argument that immediately leads to an O4n45 time bound. To start
with, we (re)state a lemma that directly follows from Queyranne
(1993); it shows that the separation problem for the scheduling
polytope can, in fact, be solved by sorting. For convenience of
notation, let us define

g4K52=
1
2

(

∑

j∈K

pj

)2

−
1
2

∑

j∈K

pj
2

to be the right-hand side of (6).

Lemma 2. Let s be a given vector sorted such that s1¶s2 ¶ ···

¶sn. Then, s∈Q if and only if
∑

j∈N pjsj =g4N5 and
∑

j∈Kpjsj ¾
g4K5 holds for all K=8110001k9, k=110001n. In particular, if there
is a set K⊆N that violates (6), then there is a k∈8110001n9 such
that the set K=8110001k9 also violates (6).

We give the proof for the sake of completeness.

Proof. Let
â4K52=g4K5−

∑

j∈K

pjsj

be the function that measures the violation of (6). Queyranne
shows that for given s, if K⊆N maximizes the violation â4K5
then lyK if and only if sl¾

∑

j∈Kpj Queyranne (1993, Lem-
mma 5.2). Suppose K is a set that maximizes â4K5. Choose
k such that sk<

∑

j∈Kpj and sk+1¾
∑

j∈Kpj . Then, j ∈K for all
j ∈8110001k9 and jyK for all j ∈8k+110001n9, so K=8110001k9.
Therefore, if there is a set that violates (6), i.e., â4K5>0, then
there is an index k such that the set 8110001k9 maximizes that
violation and thus also violates (6). �

We next describe an algorithm that computes the point where
a half line from x∈Q in direction y∈�n, L=8x+�y ��∈�¾09
leaves the scheduling polytope Q. We also define `4�5 2=x+�y
and assume y 6=0. The simple idea is this: The facet through which
the half-line L leaves polytope Q is given by some subset K so
that (6) ceases to be valid while moving along L in direction y.
Therefore we can enumerate all candidates for such K, and exploit
the fact that, by Lemma 2, for given `=`4�5, all candidate sets
are among the nested sets 8�41510001�4k59, k=110001n, where �
is the induced order of indices such that `�415¶ ···¶`�4n5. This
results in an efficient algorithm, as on L, there are in total at most
O4n25 induced orders � of the components of `4�5.

Lemma 3. The vectors `4�5 on the line L have at most O4n25
different induced orders � of their components.
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Proof. The relative order of `4�5i and `4�5j can change at most
once, as L is a line. �

By Lemma 3, we have no more than O4n25 induced orders on
half-line L, and it is not hard to see that they can all be computed
in O4n35 total time. These O4n25 orders give rise to no more
than O4n35 candidate sets K for the facet through which the half-
line L leaves Q. We can compute the intersection of the facet
induced by K with half-line L in time O4n5, and hence for any
two candidates, we can decide in time O4n5 which of the two
intersections is closer to the given point x∈Q. By this line of
argument, we get an O4n45 time bound for computing a facet on
which the half-line L leaves polytope Q. A slightly more clever
bookkeeping, however, allows to obtain a better computation time.

The idea in improving the computation time is as follows. The
relative order of `4�5i and `4�5j on L can change at most once
for each pair of components i and j . For each such pair i, j

with yi 6=yj , this order changes exactly when the components have
equal value, i.e., at the point `4�4i1j55, where

�4i1j5=
xi−xj

yj −yi
0

For any pair i, j with yi =yj , the relative order of i and j is the
same over the whole line L.

These points divide L into intervals I on which there is a
single induced order � of the components of the vectors `∈ I .
This not only bounds the number of induced orders by O4n25,
it also bounds the total number of distinct nested sets K=

8�41510001�4k59, k=110001n, for all induced orders � , by O4n25.
This is because at `4�4i1j55, only the relative order of i and j

changes. If multiple pairs of components change relative orders in
the same point `4�5, we can treat these separately in the analysis
to obtain the same result. This means that i and j are consecu-
tive in the induced orders of the two intervals incident with the
point `4�4i1j55. Therefore all induced nested sets K for these two
intervals are identical, except for the ones containing i and j .

Each of these induced nested sets K gives rise to one inequality
(6) and for each such set K, for which

∑

j∈Kpjyj 6=0, the line
L intersects the facet defined by (6) for K. Let us denote by
�4K5 the parameter so that `4�4K55 is exactly this intersection
point, and note that �4K5 can be easily computed if L and K

are given. (Note that, if
∑

j∈Kpjyj =0, then the line L and the
hyperplane induced by (6) for K are affinely dependent, and there
is no intersection.) The values �4K5 can now be divided into two
sets: those for which q¾�4K5 for any `4q5∈L∩Q and those
for which q¶�4K5 for any `4q5∈L∩Q. These provide lower
bounds and upper bounds (on the line L) for the intersection of L
and Q, respectively. The largest lower bound, denoted �, and the
smallest upper bound, denoted �̄, exactly yield the intersection of
L with Q.

To see why, note that for every `4�5 with �¶�¶ �̄, (6) holds
for all K that are induced nested sets of vector `4�5. Therefore
we have from Lemma 2 that `4�5∈Q and `4�5∈L by definition.
Also, for any `4�5 with �>�̄=�4K5 for some nested set K, (6) is
violated for K, and thus `4�5yQ. Likewise, for any `4�5 with
�<�, we have `4�5yQ.

The idea is now to compute �̄ and �, together with the corre-
sponding facet inducing nested sets K, by “moving” along L in

the order of sorted values �4i1j5, and updating the nested sets K,
and all other necessary parameters incrementally.

The formal proof of the theorem is given along the lines of
Algorithm 1, which gives the pseudocode for computing the in-
tersection of a line L with the scheduling polytope Q.

Proof of Theorem 3. We annotate the pseudocode in Algo-
rithm 1 and thereby derive the bound on the computation time.
In line 3, the values � and �̄, as well as L and K are initialized.
L is the list of parameters �4i1j5 on which the induced orders
of `4�5 change, and K is a container that contains all necessary
information needed for the nested sets K and incremental updat-
ing in the course of the algorithm. The computation time of this
initialization is O415.

In lines 4–9, the values �4i1j5 are computed and added to
L. In line 11, L is sorted in ascending order. Since there are
at most n4n−15/2 of these values, the sorting can be done in
time O4n2 logn5.

In line 11, �0 is set to the smallest �4i1j5 and in line 12 �

is set to be the order of `4�0 −15. This corresponds to the order
of all `4�5 with �<�0. It can be computed in time O4nlogn5.
Note that, if � is stored as two arrays, one for �4·5 and one for
�−14·5, calling either one requires time O415.

In lines 13–19, all nested subsets K4j5 that are induced
by � are stored in K together with the values P4K4j55,
F 4K4j55, and Y 4K4j55. Note that F 4K4j55−�Y 4K4j55 is ex-
actly equal to â4K4j55 for the point `4�5. Therefore â4K4j55=0
for `4�4K4j555. Computing the values P4K4j55, F 4K4j55, and
Y 4K4j55 is done incrementally in time O415. Since there are at
most O4n5 nested subsets K4j5, computing all of them can be
done in time O4n5.

In line 21, �4K5 is computed such that â4K5=0 for `4�4K55

and the if clause on line 22 determines if (6) for K is satisfied
by points `4�5 for �>�4K5, or by points `4�5 for �<�4K5. In
the former case, �4K5 is an upper bound. In the latter case, �4K5

is a lower bound, which is then updated accordingly in lines 23
or 25. All steps can be performed in time O415, there are O415
computations per subset K and there are O4n5 subsets, therefore
all computations can be done in time O4n5.

In lines 28–50 for each �4i1j5 in ascending order, we first
determine how the order will change, i.e., whether i was before j

or the other way around. Assume the former case, the latter case
is symmetric. Then, K is the �−i-th induced subset of � , i.e., the
subset containing i but not j . K ′ is computed as the new induced
subset and P4K ′5, F 4K ′5, and Y 4K ′5 as the corresponding values.
These replace 4K1P4K51F 4K51Y 4K55 in K, while i and j are
switched in � . Then, the value �4K ′5 is computed and it is again
determined if the upper or the lower bound has to be updated and
this is done accordingly. Again, each step can be performed in
time O415 and there are O415 computations per iteration. There
are O4n25 iterations, therefore all computation can be done in time
O4n25.

If the returned values satisfy �̄<�, then the intersection of Q

and L is empty. Otherwise, the interval between `4�5 and `4�̄5 is
the intersection of Q and L.

The computation time of the algorithm is dominated by the
sorting of the O4n25 values �4i1j5 in line 10. Therefore the to-
tal computation time of the algorithm is O4n2 logn5. We find the
facets at which the line L and the scheduling polytope Q intersect
by repeating lines 13–19 for �̄ and �. �
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Algorithm 1 (Line intersection algorithm)

Input: processing time vector p∈�n
>0, vectors x∈�n and y∈�n, y 6=0.

Output: values � and �̄.
�2=−�, �̄ 2=�, L 2= 67, K 2= 67.
for i=1 to n, do

5: for j=1 to i−1 and yj 6=yi, do
�4i1j5 2=4xi−xj5/4yj −yi5
L 2=L+644i1j51�4i1j557

end for
end for

10: Sort L increasing in �4i1j5
�0 2=�4i1j5 of first element of L
� 2=order of `4�0 −15
for j=1 to n, do

K4j5 2=8�41510001�4j59
15: P4K4j55 2=P4K4j−155+pj

F 4K4j55 2=F 4K4j−155+P4K4J −155pj −pjxj
Y 4K4j55 2=Y 4K4j−155+pjyj
K 2=K+64K4j51P4K4j551F 4K4j551Y 4K4j5557

end for
20: for K∈K and Y 4K5 6=0, do

�4K52=
F 4K5

Y 4K5
if F 4K5−4�4K5+15Y 4K5>0, then
�̄ 2=min8�̄1�4K59

else
25: �2=max8�1�4K59

end if
end for
for 4�4i1j514i1j55∈L, do

if �−14i5<�−14j5: then
30: K 2=�−14i5-th element in K

K ′ 2=K\8i9∪8j9
P4K ′5 2=P4K5−pi+pj

F 4K ′5 2=F 4K5−

(

1
2
P4K5−

1
2
p2
i −pixi

)

+

(

1
2
P4K ′5−

1
2
p2
j −pjxj

)

Y 4K ′5 2=Y 4K5−piyi+pjyj
35: else

K 2=�−14j5-th element in K
K ′ 2=K\8j9∪8i9
P4K ′5 2=P4K5−pj +pi

F 4K ′5 2=F 4K5−

(

1
2
P4K5−

1
2
p2
j −pjxj

)

+

(

1
2
P4K ′5−

1
2
p2
i −pixi

)

40: Y 4K ′5 2=Y 4K5−pjyj +piyi
end if
Replace 4K1P4K51F 4K51Y 4K55 in K by 4K ′1P4K ′51F 4K ′51Y 4K ′55
Switch i and j in the order �

�4K ′5 2=
F 4K ′5

Y 4K ′5
45: if F 4K ′5−4�4K ′5+15Y 4K ′5>0, then

�̄ 2=min8�̄1�4K ′59
else

�2=max8�1�4K ′59
end if

50: end for
return �1�̄.
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Endnote

1. That is, the valuation of an agent for a given solution depends
on types of other agents too.

References

Alaei S, Fu H, Haghpanah N, Hartline J, Malekian A (2012) Bayesian
optimal auctions via multi- to single-agent reduction. Proc. 13th ACM
Conf. Electronic Commerce, EC ’12, Vol. 17 (ACM, New York).

Cai Y, Daskalakis C, Weinberg SM (2012) Optimal multi-dimensional
mechanism design: Reducing revenue to welfare maximization.
Proc. 53rd Annual Sympos. Foundations Comput. Sci., FOCS ’12,
Vol. 130–139 (IEEE Computer Society, Washington, DC).

Chawla S, Sivan B (2014) Bayesian algorithmic mechanism design. ACM
SIGecom Exchanges 13(1):5–49.

Conitzer V, Sandholm T (2002) Complexity of mechanism design. Dar-
wiche A, Friedman N, eds. Uncertainty in Artificial Intelligence (UAI
2002) (Morgan Kaufmann, San Francisco), 103–110.

Daskalakis C, Weinberg M (2012) Symmetries and optimal multi-
dimensional mechanism design. Proc. 13th ACM Conference on Elec-
tronic Commerce (ACM, New York), 370–387.

Duives J, Heydenreich B, Mishra D, Müller R, Uetz M (2015) On optimal
mechanism design for a sequencing problem. J. Scheduling 18(1):
45–59.

Dyer ME, Wolsey LA (1990) Formulating the single machine sequenc-
ing problem with release dates as a mixed integer program. Discrete
Appl. Math. 26(2–3):255–270.

Edmonds J (1971) Matroids and the greedy algorithm. Math. Program-
ming 1(1):127–136.

Fishburn PC (1992) Induced binary probabilities and the linear ordering
polytope: a status report. Math. Soc. Sci. 23(1):67–80.

Fonlupt J, Skoda A (2009) Strongly polynomial algorithm for the intersec-
tion of a line with a polymatroid. Cook W, Lovász L, Vygen J, eds.
Research Trends in Combinatorial Optimization (Springer, Berlin),
69–85.

Gershkov A, Goeree JK, Kushnir A, Moldovanu B, Shi X (2013) On
the equivalence of Bayesian and dominant strategy implementation.
Econometrica 81(1):197–220.

Grötschel M, Lovász L, Schrijver A (1988) Geometric Algorithms
and Combinatorial Optimization. Algorithms and Combinatorics
(Springer, Berlin).

Hart S, Nisan N (2014) How good are simple mechanisms for selling
multiple goods? Technical Report DP-666, The Hebrew University
of Jerusalem, Center for Rationality.

Hart S, Reny P (2015) Maximal revenue with multiple goods: Nonmono-
tonicity and other observations. Theor. Econom. 10(3):893–922.

Hartline JD, Karlin A (2007) Profit maximization in mechanism design.
Nisan N, Roughgarden T, Tardos É, Vazirani V, eds. Algorithmic
Game Theory, Chap. 13 (Cambridge University Press, New York),
331–362.

Heydenreich B, Mishra D, Müller R, Uetz M (2008) Optimal mecha-
nisms for single machine scheduling. Papadimitriou C, Zhang S, eds.
Proc. 3rd Internat. Workshop Internet Network Econom., WINE ’08,
Lecture Notes in Computer Science, Vol. 5385 (Springer, Berlin),
414–425.

Hoeksma R, Uetz M (2013) Two dimensional optimal mechanism de-
sign for a sequencing problem. Goemans MX, Correa JR, eds. Proc.
16th Internat. Conf. Integer Programming and Combinatorial Opti-
mization, IPCO ’13, Lecture Notes in Computer Science, Vol. 7801
(Springer, Berlin), 242–253.

Hoeksma R, Manthey B, Uetz M (2014) Decomposition algorithm for
the single machine scheduling polytope. Fouilhoux P, Gouveia L,
Mahjoub A, Paschos V, eds. Combinatorial Optimization (ISCO
2014), Lecture Notes in Computer Science, Vol. 8596 (Springer,
Berlin), 280–291.

Kenis P (2006) Waiting lists in Dutch health care: An analysis from an
organization theoretical perspective. J. Health Organ. Management
20(4):294–308.

Manelli AM, Vincent DR (2010) Bayesian and dominant-strategy im-
plementation in the independent private-values model. Econometrica
78(6):1905–1938.

Myerson RB (1981) Optimal auction design. Math. Oper. Res. 6(1):58–73.
Nisan N (2007) Introduction to mechanism design (for computer scien-

tists). Nisan N, Roughgarden T, Tardos E, Vazirani V, eds. Algorith-
mic Game Theory, Chap. 9 (Cambridge University Press, New York),
209–242.

Queyranne M (1993) Structure of a simple scheduling polyhedron. Math.
Programming 58(1–3):263–285.

Queyranne M, Schulz AS (1994) Polyhedral approaches to machine
scheduling. Technical Report 408/1994, TU Berlin.

Rothkopf MH (1966) Scheduling with random service times. Management
Sci. 12(9):703–713.

Sandholm T (2003) Automated mechanism design: A new application area
for search algorithms. Rossi F, ed. Principles and Practice of Con-
straint Programming (CP2003), Lecture Notes in Computer Science,
Vol. 2833 (Springer, Berlin), 19–36.

Smith WE (1956) Various optimizers for single-stage production. Naval
Res. Logist. Quart. 3(1–2):59–66.

Vohra RV (2011) Mechanism Design—A Linear Programming Approach,
Econometric Society Monographs (Cambridge University Press,
Cambridge, UK).

Vohra RV (2012) Optimization and mechanism design. Math. Program-
ming 134(1):283–303.

Yasutake S, Hatano K, Kijima S, Takimoto E, Takeda M (2011) Online lin-
ear optimization over permutations. Asano T, Nakano S-I, Okamoto
Y, Watanabe O, eds. Algorithms and Computation (ISAAC 2011),
Lecture Notes in Computer Science, Vol. 7074 (Springer, Berlin),
534–543.

Ruben Hoeksma is a postdoctoral researcher at the Universi-
dad de Chile in Santiago de Chile. His research interests are in
combinatorial optimization, specifically algorithmic game theory
and approximation algorithms.

Marc Uetz is a full professor and chair of Discrete Mathemat-
ics and Mathematical Programming at the University of Twente in
the Netherlands. His research is in combinatorial optimization and
algorithmic game theory, with fundamental contributions specif-
ically to the theory of scheduling. He received a Tiburtius prize
(Anerkennungspreis) from the state of Berlin in 2004.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
0.

89
.6

8.
74

] 
on

 1
1 

D
ec

em
be

r 
20

17
, a

t 1
1:

28
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 


