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a b s t r a c t

Java access modifiers regulate interactions among software components. In particular,
class modifiers specify which classes from a component are publicly exposed and there-
fore belong to the component public interface. Restricting the accessibility as specified by
a programmer is key to ensure a proper software modularity. It has been said that failing
to do so is likely to produce maintenance problems, poor system quality, and architecture
decay. However, how developers uses class access modifiers or how inadequate access
modifiers affect software systems has not been investigated yet in the literature.

In this work, we empirically analyze the use of class access modifiers across a col-
lection of 15 Java libraries and 15 applications, totaling over 3.6M lines of code. We have
found that an average of 25% of classes are over-exposed, i.e., classes defined with an
accessibility that is broader than necessary. A number of code patterns involving over-
exposed classes have been formalized, characterizing programmers' habits. Furthermore,
we propose an Eclipse plugin to make component public interfaces match with the pro-
grammer's intent.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The need to support modularity in software systems can be traced back to Parnas [1], and encapsulation has been
emphasized by Scott [2] in his seminal book as follows:
“Encapsulation allows the implementation details of an abstraction to be hidden behind a simple interface.”
Many constructs offered by programming languages are designed to manage the accessibility of routines/functions, which
guide code reuse and extensions. The Java language offers rich linguistic constructs to define accessibility of classes. The
accessibility of a class is specified via the absence or the presence of a particular keyword (public, protected, private).
Class access modifiers play an important role in achieving modularity as they regulate inter-module interactions. Despite its
relevance in promoting modularity, the use of accessibility modifiers in Java programs has received scant attention in the
literature. Understanding how developers assign a particular accessibility to their classes is relevant to address several
design aspects that are sensitive to modularity. First, class accessibility reflects assumptions and decisions made by the
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developer: a public class is part of the public interface of its containing package and might be considered as an entry point
by other developers who wish to use the package. For example, public classes are listed in automatically generated Javadoc
documentation and suggested by code completion tools in programming environments. Second, programming environ-
ments (IDEs), such as Eclipse, Netbeans, and IntelliJ assist programmers when creating classes in their projects. Relying on
programming environments is highly important for developers in terms of productivity and quality code. However, current
IDEs sometimes make suboptimal “default” decisions about class accessibility that programmers might be unaware of,
which can have a negative impact on the overall system modularity. Although method accessibility has been the topic of a
number of works [3–5], to the best of our knowledge the usage of class access modifiers has not been yet investigated.
Moreover, this article is a continuation (and an improvement) of a prior study on method accessibility [4].

We have conducted an extensive study on the use of class access modifiers. This article reports our findings from a
collection of 30 Java applications (15 libraries and 15 plain applications). We have identified a code anomaly called class
over-exposure that applies to classes. This anomaly refers to a class that is unnecessarily accessible (to other classes),
therefore we qualify it as being over-exposed. Over-exposed classes might have their accessibility reduced without affecting
the program behavior while increasing the modularity of the system. For example, if a class is accessed from other packages
than its own, the class has to be public. In contrast, if a class C is solely referenced from classes defined in the same package
of C, then C should likely be private to the package. We investigated different aspects of this phenomenon, namely: ratio of
public classes in different types of applications, ratio of over-exposed classes, and evolution of access modifiers of classes
across several program versions, among others. Naturally, it might happen that a class is voluntary exposed to meet future
client requirements. We carefully consider this situation in our analysis.

The article addresses the following research questions:

� RQ1 – Do plain applications declare less public classes than libraries / frameworks? If plain applications exhibit a different
profile than libraries and frameworks, then they should be treated differently in the analysis of over-exposure.

� RQ2 – How many classes are actually over-exposed? Understanding to what extent this code anomaly is present in source
code is important to gauge the severity of the anomaly.

� RQ3 – Do over-exposed classes address future client requirements? A premise to have a public class, with no actual public
usage (yet), is that the class should be used by third-party components in the future. Answering this question can shed
light on whether this expectation is fulfilled.

� RQ4 – Are classes over-exposed since their first implementation, or do they become so over time? This research question is
important to figure out how over-exposed classes evolve over time.

� RQ5 – Do over-exposed classes negatively impact the general software health? Determining whether there is a perceptible
degradation of the overall source code quality is relevant to formulate an adequate response to this phenomena.

Answering the questions above provides a great insight on how developers use access modifiers. We found out that
libraries define more public classes than applications. Also, we observed that applications and libraries/frameworks have on
average more than 25% of their classes over-exposed which could be detrimental for system modularity. Moreover, we
found that around 90% of these classes are over-exposed since their first implementation. Also, we found that most over-
exposed classes defined in libraries are not used by third-party applications. Moreover, we observed that while over-
exposed classes are a latent risk they do not always negatively impact on the software health.

Additionally, in order to assist the detection of over-exposed classes, we have developed an Eclipse plugin that auto-
matically identifies over-exposed classes and makes suggestions to the developer to remove unnecessary class exposure.

The article is structured as follows. Section 2 provides background information about class accessibility in Java. Section 3
analyzes and compares the accessibility modifiers of classes in plain applications and libraries/frameworks. Section 4 defines
the notion of over-exposed class. Section 5 compares the number of over-exposed classes in plain applications and libraries/
frameworks. Section 6 analyzes if over-exposed classes address future client requirements in libraries. Section 7 speculates
on the origin of over-exposed classes and discusses their evolution. Section 8 presents our plugin for dealing with class over-
exposure. Section 9 presents the threats of validity of our study. Section 10 discusses related work. Section 11 gives the
conclusions and outlines future lines of work.
2. Background

This section outlines the terminology used in the article (Section 2.1) and briefly describes the Java class modifiers
(Section 2.2). People familiar with Java class modifiers might safely skip Section 2.2.

2.1. Terminology related to class accessibility

We adopt the following terminology in order to ease the reading of the article. We refer to a non-nested class as a class or
a plain class. We make no difference between a generic and a class since genericity is orthogonal to the concepts we are
dealing with in this article. We refer to a nested class as a class that is syntactically embedded into a parent (static or non-
static) class. A nested non-static class is often referred to as an inner class. We refer to the encapsulating class of an inner
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class C as the class that contains C. For example, in the code public class C1 { private class C {}}, the public class C1 is
encapsulating the private inner class C.

We refer to an accessibility modifier as the syntactical keyword that characterizes the accessibility of a class. Four different
accessibility modifiers are offered by Java (public, protected, default, and private). For example, public is the
accessibility modifier for A in the code public class A {}. The absence of keyword represents the default accessibility.

We refer to application (or plain application) as a bundle of classes distributed to end-users. An application is not meant to
be extended by third party. We refer to library as a bundle of classes designed to be used or extended by applications. We
make no distinction between library and framework, except when relevant.

2.2. Java class accessibility

Class: A Java class can be either public or private in the package that defines it. Java provides two accessibility modifiers
that can be used with a plain class:

� Public – A class definition preceded by the publicmodifier makes the class accessible to all other packages and classes in
the system.

� Default – A class definition that is not preceded by an explicit modifier has the default accessibility, making the class
private to the package. For example, let us consider the class definition package p; class A {}. Class A is accessible only
in package p, and not accessible from other packages. All other classes contained in package p, which may be contained in
the same compilation unit than A or not, may reference A. Note that A is not accessible to sub-packages of p.

Nested class: Nested classes are divided into two categories: static and non-static.1 The terminology of Java refers as static
nested classes to the nested classes declared static. Instead, non-static nested classes are called inner classes. The main
difference between them is that instances of inner classes are nested inside an instance of the outer class, whose members
may be accessed either directly or via the “outer this” language construction. This is not the case for static nested classes.

Java provides four accessibility modifiers to regulate the access of nested classes:

� public: the nested class is accessible to any class in any package (as long as the enclosing class accessibility is also
public).

� default (no explicit modifier): the nested class is accessible only within the package of its enclosing class.
� protected: the nested class is accessible by classes defined in the same package and by classes that extend the

enclosing class.
� private: the nested class is accessible by the enclosing class and other nested classes in the same enclosing class.

Additionally, Java allows the definition of classes without a name called anonymous classes that can be declared and
instantiated at the same time. An anonymous class does not have an accessibility since it cannot be accessed. We therefore
exclude anonymous classes from our analysis. Similarly, Java allows the definition of local classes that are nested classes
contained by a block that are not a member of any class. Since local classes cannot declare an access modifier, we exclude
them from our analysis.

Interfaces: An interface in Java is either public or private to its package. To keep our article focused, we exclude interfaces
from our analysis.
3. Analysis of Java applications

This section assesses the distribution of class access modifiers across a collection of 30 Java applications. First, we present
our benchmark (Section 3.1), and then we evaluate how access modifiers are used in practice (Section 3.2).

3.1. Benchmark

Benchmark description: We selected 30 open-source Java systems and measured the use of access modifiers for classes.
These systems and the results of the metrics relevant to our study are listed in the appendix. Some of these systems were
chosen because of their popularity among the community of developers. In addition, these are the same systems that were
subject of our previous research study of methods accessibility [4]. The appendix lists all the software versions to let others
easily reproduce our study. Additionally, the datasets2 and the processing code3 used to conduct the experiments are
available for download. A total of 15 of these systems are libraries or frameworks while the remaining 15 are plain
1 http://docs.oracle.com/javase/tutorial/java/javaOO/nested.html
2 http://bit.ly/mseFiles
3 http://ss3.gemstone.com/ss/SPIRIT.html (package Spirit-ExhibitionismTests)

http://docs.oracle.com/javase/tutorial/java/javaOO/nested.html
http://bit.ly/mseFiles
http://ss3.gemstone.com/ss/SPIRIT.html


Table 1
Classes analyzed.

Kind of applications #Plain #Static nested #Non-static nested #Total

Libraries/frameworks 13,536 (81.97%) 2173 (13.16%) 804 (4.87%) 16,513
Plain applications 10,550 (77.19%) 1435 (10.5%) 1682 (12.31%) 13,667

Total 24,086 (79.81%) 3608 (11.95%) 2486 (8.24%) 30,180
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Fig. 1. Distribution of plain classes accessibility.
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applications. We distinguish libraries and frameworks from plain application because these two kinds of systems have
different goals. The libraries and frameworks4 are meant to be extended, used, and/or instantiated by an application. On the
contrary, the primary goal of a plain application is not to be extended or used by a third application. As we will verify
subsequently, these differences lead to a different usage of the access modifiers.

Analyzing the benchmark: We used the Moose5 software analysis platform to carry out our analysis. The Java source code
of the 30 systems was obtained from public online archives. All non-Java files were excluded from our analysis. Then, using
Moose, we statically analyzed the source code of the systems. In the cases of systems with unit tests, we included the tests in
our analysis. Specifically, 8 applications and 11 libraries/frameworks contain unit tests. All our measurements are reported
with a precision of 0.01%, meaning that we rounded up the values to the second decimal place.

3.2. Accessibility distribution

Our benchmark totals 30,180 classes and nested classes (Table 1). Non-nested classes defined in libraries represent
81.97% of the classes while this value is 77.19% in plain applications. Nested classes represent the 18.03% (73% of them are
static) and 22.81% (46% of them are static) for libraries and applications respectively.

Given the different goals of libraries and applications (see Section 3.1), and based on RQ1, we hypothesize that appli-
cations declare less public classes than libraries. We analyze the distribution of the different accessibility modifiers for the
classes of the libraries and applications. We distinguish the accessibility for plain classes and nested classes. The results for
each application are listed in Tables A.8 and A.11.

Fig. 1 plots the distribution of plain classes with a given accessibility regarding the total number of plain classes for the 15
applications and 15 libraries (N¼15). Both libraries and applications define more public classes than default ones. On
average, in libraries 11.78% of classes are default and 88.22% are public. In applications, 13.65% of classes are default and
86.35% are public. In order to answer RQ1, we stated the following null hypothesis:

� H10: there is no difference between plain applications and libraries on how frequently they define plain public classes.

First, we tested the data for normality using the Shapiro–Wilks test. Since we found that the data is normally distributed
ðp�value¼ 0:5279Þ, we used the t-test to check if there is a significant difference between the distribution of public classes
4 For the sake of simplicity, the words “library” and “framework” are used indistinctly in the rest of the article.
5 http://www.moosetechnology.org/

http://www.moosetechnology.org/
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Fig. 2. Distribution of nested classes accessibility.
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defined in libraries and plain applications. After testing we rejected H10 with α¼ 0:05 and p�value¼ 0:01031 indicating
that the two distributions are statistically different. We then concluded that libraries have on average significantly more public
classes than plain applications. This confirms our intuition that libraries should expose more classes than applications since
they are designed to be extended by third parties.

Regarding the accessibility defined for nested classes, we distinguish static from non-static nested classes. Fig. 2 plots the
ratio of nested classes with a given accessibility regarding the total number of nested classes.

Unlike the case of non-nested classes, few non-static nested classes are public on average. The public access modifier is
the least used in non-static nested classes in both, libraries (4.8%) and applications (3.26%). These results would indicate that
developers frequently create inner classes manually as internal data structures that are intended to be only used by the
parent class. These values are higher for static nested classes: 25.83% and 14.17% respectively. We define two null-
hypotheses to verify the statistical significance in the data we gathered:

� H20: there is no difference between plain applications and libraries on how frequently they define non-static nested
public classes.

� H30: there is no difference between plain applications and libraries on how frequently they define static nested public
classes.
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We found that in both cases the data deviate from normality using Shapiro–Wilks test (p-values: 1:817�7 and 2:201�9).
For this reason, we use the Mann–Whitney-test to check a statistical difference. This test shows that H20 and H30 cannot be
rejected using a two-tailed test with a probability of error (or significance level) α¼ 0:05. This conclusion is based on the
ranks values calculated by the test: T1 ¼ 238, U1 ¼ 107, U0

1 ¼ 118, T2 ¼ 252:5, U2 ¼ 92:5, U0
2 ¼ 132:5 [6]. This means that

there is no statistical significant difference on how libraries and applications define non-static and static nested public
classes.

Regarding the classes defined as default, we found different values for libraries and applications. 5.29% of the nested non-
static classes defined in libraries are default. This value is higher in applications: 12.62%. When it comes to nested static
classes, they represent the 18.92% in libraries and the 5.79% in applications.

We observed an interesting fact here: the protected accessibility is rarely used in nested classes despite being heavily
used in methods [4]. Non-static classes represent on average 3.44% of the total number of nested classes in libraries and
4.71% in applications. These values for static classes are 4.87% and 1.61% respectively.

The private accessibility modifier is the most used one with nested classes. Libraries define on average 11.49% of non-
static nested classes and 23.37% of static ones. Plain applications report 33.02% on average of non-static nested classes and
24.83% of static ones.

In summary, to answer RQ1, libraries define more public plain classes than applications. However, libraries and applications
define similar percentages of public nested classes.
4. Class over-exposure

Each class of a Java system is defined with an access modifier. Class accessibilities define the interface of packages. We
have discovered that it frequently happens that a class is over-exposed by having an accessibility greater than the strictly
necessary. We identify this situation as a code anomaly [7] that should be considered by the developer. For instance, let us
consider the situation shown in Fig. 3 from one of our systems. HomeFrameController is a public class that is referenced
solely in the package in which it is defined. Such a class could therefore be default (i.e. private to its package) instead of being
public. We qualify this class as over-exposed since its accessibility is too broad against its usage. By reference we mean
explicit declarations of a class (e.g. declaring a variable of a given class inside a method) but also implicit references to a class
(e.g., method calls involving classes). For example, let us consider a method foo() defined in class A, and a method bar()

defined in class B that returns an instance of A. Given a method in a class C with the invocation new B().bar().foo(), we
say that class C references classes B and A. Note that class B is explicitly referenced while class A is implicitly referenced.

Certainly, there are cases where a class is voluntarily over-exposed by developers. For example, the developer might
want to prepare the system for a likely future evolution, to write a unit test or to enable third-party applications to use the
over-exposed class. We carefully consider this situation in Section 6. In this section, we list the criteria and code patterns for
marking a class as being over-exposed, according to the class type. Remember that these criteria are based on information
provided by a static analysis of the code.

Public plain class: A public plain class C is over-exposed if C is only referenced by classes defined in the same package. The
adequate accessibility is private, using the default accessibility modifier.

Public inner-class: A public inner-class C is over-exposed if:

� C is only referenced by the enclosing class and/or other inner classes defined in the same enclosing class. The adequate
accessibility is private.

� C is only referenced by classes defined in the same package and classes that extend the enclosing class (and at least one is
defined in other package). The adequate accessibility is protected.

� C is only referenced by classes defined in the same package. The adequate accessibility is default.
com.eteks.sweethome3d

HomeFrameController HomeFramePane

SweetHome3D

public
Home Frame Controller{
...
}

class

Fig. 3. Example of over-exposure in class HomeFrameController.
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Default-accessible nested class: A nested class C is over-exposed if C is only referenced by the enclosing class and/or sibling
nested classes (i.e. another nested class in the same enclosing class). The adequate accessibility is private.

Protected nested class: A protected nested class C is overexposed if:

� C is only referenced by the enclosing class and/or other sibling nested classes. The adequate accessibility is private.
� C is only referenced by classes in the same package. The adequate accessibility is default.

Note that Java only permits a class to be protected if it is nested. Non-nested classes cannot be protected.
Private class: A private class (i.e. default accessibility if non-nested and private accessibility if nested class) cannot be

over-exposed since being private to its package is the most restrictive accessibility.
5. Measuring class over-exposure

This section gives our measurements of over-exposure in our benchmark.
Analyzable classes: Not all classes can be considered as over-exposed. In particular, there are two situations in which the

over-exposure of classes cannot be determined:

1. Classes whose accessibility cannot be changed: Anonymous classes do not have an explicit accessibility modifier, thus, its
accessibility cannot be changed. Also, non-nested default classes and nested private classes are in this situation since their
accessibility cannot be reduced.

2. Unreferenced classes: Classes that are not directly referenced by any class (class declaration, field declaration, parameters,
etc.) in the application cannot be determined. This means that we cannot tell whether the class is over-exposed. In this
case, the class could be dead code, used via reflection or solely used by third-party applications. We observed that 30.68%
(5066) of classes in libraries and 17.63% (2409) of classes in applications are not directly referenced by any class.

Libraries: Table 2 shows the results of over-exposure in libraries. The table only shows the results for classes whose
accessibility could be over-exposed (i.e. non-nested default and nested private classes are not shown). While libraries
defined a total of 16,513 classes only 14,790 of them could be over-exposed. From these 14,790 classes, 66.24% of them are
analyzable. The Right accessibility column indicates the number of classes that have an adequate accessibility (i.e., the
accessibility that is strictly necessary). On the contrary, the Over-exposed column indicates the number of classes that fit into
one of the patterns described in Section 4 and whose accessibility can be restricted.

From 9797 analyzable classes, 4433 have an adequate accessibility meaning that 5364 classes are over-exposed. In total,
32.48% (5364 of 16,513) of all the classes defined in libraries are over-exposed (36.27% of the classes that could be over-
exposed). However, it is important to remark that these values should be carefully viewed because the percentage of over-
exposed classes could be over-estimated. For instance, some public classes that are currently invoked only from inside their
packages could have been designed to be invoked by third-party applications.

For the total number of classes, the range of over-exposed classes defined by libraries goes from 8.23% to 53.58%, with an
average of 28.5%, and a standard deviation of 11.81%. After carefully analyzing the source code of the library with the lowest
percentage of over-exposure, JFreeChart (8.23%), we found that it has the highest percentage of non-nested public classes
93.25% (see Table A1). We interpret here that the low number of over-exposed classes of JFreeChart is not an indicator that
developers restricted the access modifiers on purpose but rather that a high number of public classes are called outside their
packages.

Interestingly, we found that 65.4% (806þ388þ207¼1,401 of 2142) of the nested classes that could have an accessibility
broader than necessary are over-exposed (47.06% of the total number of nested classes in libraries). Moreover, 73.89% (3963
of 5364) of the over-exposed classes are plain public classes. This is shown in Table 3 that details the changes that should be
made to restrict the accessibilities of the classes to their minimum necessary. Regarding nested classes, most of the
accessibility of them should be changed to private (10.38% þ3.11% þ7.23%¼20.72%).
Table 2
Over-expose results for libraries/frameworks.

Classes Defined Analyzable Right accessibility Over-exposed

Plain public 12,648 8247 (65.2%) 4284 (33.87%) 3963 (31.33%)
Non-nested default 888 825 825 0
Nested public 1440 918 (63.75%) 112 (7.78%) 806 (55.97%)
Nested default 492 424 (86.18%) 36 (7.32%) 388 (78.86%)
Nested protected 210 208 (99.05%) 1 (0.48%) 207 (98.57%)

Total 14,790 9797 (66.24%) 4433 (29.97%) 5364 (36.27%)



Table 3
Suggested accessibilities for libraries.

Current accessibility Suggested accessibility # of classes over-exposed % of classes over-exposed

Plain public Plain default 3963 73.89
Nested public Nested default 223 4.16
Nested public Nested protected 26 0.48
Nested public Nested private 557 10.38
Nested protected Nested default 40 0.75
Nested protected Nested private 167 3.11
Nested default Nested private 388 7.23

Total 5364 100

Table 4
Over-exposure results for applications.

Classes Defined Analyzable Right accessibility Over-exposed

Plain public 9262 7288 (78.69%) 4683 (50.56%) 2605 (28.13%)
Non-nested default 888 825 825 0
Nested public 491 386 (78.62%) 134 (27.29%) 252 (51.32%)
Nested default 657 586 (89.19%) 87 (13.24%) 499 (75.95%)
Nested protected 283 277 (97.88%) 8 (2.83%) 269 (95.05%)

Total 10,693 8537 (79.84%) 4912 (45.94%) 3625 (33.9%)
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While libraries and frameworks are implemented to be extended or used by other applications, they have some dif-
ferences. For example, frameworks have a low number of classes with extension points when compared to the number of
classes of libraries that are meant to be used directly by clients. For this reason, we checked for any statistical difference in
the over-exposed values of libraries and frameworks. Our collection of applications only contains 4 frameworks, namely:
Hibernate, JHotDraw, JUnit, and Struts. The remaining 11 systems are libraries. After checking the normality of the data,
using the Shapiro–Wilks test ðp�value¼ 0:9746Þ, we used the t-test to check for any significant difference. After testing, we
could not reject the hypothesis that libraries and frameworks define different percentages of over-exposed classes (α¼ 0:05
and p�value¼ 0:6038). Thus, we concluded that libraries and frameworks have similar percentages of over-exposed classes.

Applications: Table 4 shows the results of over-exposure for plain applications. The analyzed applications define a total of
13,667 classes from which 10,693 of them that could be over-exposed. From these 10,693 classes, the 79.84% of them are
analyzable.

We found that 26.52% (3625 of 13,667) of all the classes present in applications are over-exposed (33.9% of the classes
that could be over-exposed). The percentage of over-exposed classes found in applications goes from 7.82% to 37.16% with an
average of 25.44% and a standard deviation of 9.73%. In this case, Logisim and Portecle are the applications with the lowest
percentages of over-exposed classes (7.82% and 8.16%). After manually reviewing their source code, we found evidences that
developers carefully restricted access modifiers. Both applications present the highest percentages of non-nested default
classes (24.54% and 35.68%).

Similarly to the case of libraries, 71.85% (2605 of 3625) of the over-exposed classes are plain public classes whose
accessibility should be changed to default (Table 5). Regarding the nested classes, 71.28% (252þ499þ269¼1020 of 1431) of
the classes that could have an accessibility broader than necessary are over-exposed (32.72% of the total number of nested
classes defined in applications). Moreover, as in the case of libraries, most over-exposed nested classes accessibility may be
changed to private (23.65% of the total number of over-exposed classes).

Relationship with over-exposed methods: This article is about class over-exposure. In a previous work [4] we studied over-
exposure for methods. Contrasting these two levels of granularity (class and method) is relevant to understand the cause of
over-exposure. Specifically, we wanted to investigate whether an over-exposed class has more over-exposed methods than
classes with adequate accessibility.

We computed the number of over-exposed methods for each over-exposed and non-nested class. For example, a class
with 9 non-overexposed methods and 1 over-exposed method has a ratio of 10% of method over-exposure. We computed
this metric for each library and plain application. We compare the result with that of non-over-exposed classes. We found
that, on average, over-exposed classes of libraries have 11.38% of over-exposed methods (standard dev. of 3.5%). Non-over-
exposed classes have a ratio of 6.65% over-exposed methods (standard dev. 2.62%). Moreover, we consistently found that in
each library over-exposed classes have around twice the percentage of method over-exposure than non-over-exposed
classes. For plain applications, over-exposed classes have on average 11.11% of over-exposed methods (with a standard
deviation of 4.67%), while non-over-exposed classes have 5.99% of over-exposed methods (standard dev. of 3.54%). Similarly
to the case of libraries, we consistently found that in each application over-exposed classes define twice the number of over-
exposed methods than non-over-exposed classes.



Table 5
Suggested accessibilities for applications.

Current accessibility Suggested accessibility # of classes over-exposed % of classes over-exposed

Plain public Plain default 2605 71.85
Nested public Nested default 97 2.68
Nested public Nested protected 9 0.25
Nested public Nested private 146 4.03
Nested protected Nested default 57 1.57
Nested protected Nested private 212 5.85
Nested default Nested private 499 13.77

Total 3625 100
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The ratios were similar when we analyzed the classes having at least one over-exposed method. In the case of libraries,
50.71% of the over-exposed classes have at least one over-exposed method (with a standard deviation of 11.67%). However,
only 24.64% of the non-over-exposed classes have at least one over-exposed method (with a standard deviation of 9.93%).
We obtained similar results for applications. On average, 46.96% of over-exposed classes have at least one over-exposed
method (with a standard deviation of 11.67%). This value is lower for non-over-exposed classes: 22.68% (with a standard
deviation of 8.34%).

While the percentage of method over-exposure in classes is not really high, over-exposed classes have on average twice
as much over-exposed methods than non-over-exposed classes. We hypothesize that this situation happens because a
percentage of over-exposed classes are prepared to be used by other classes.

Comparison: Overall, we found that around 35% of the analyzable classes in libraries and applications are over-exposed.
For this reason, we answer RQ2 as follows: there is a significant portion of classes over-exposed. Moreover, in both cases more
than 70% of the over-exposed classes found are due to non-nested classes defined as public that should be default. As we
mentioned before, we think that some over-exposed classes in libraries were left on purpose to be extended or used by
other applications. For this reason, we hypothesized that libraries should have more over-exposed classes than plain
applications. A statistical test is necessary to support our claims. First, we tested the data for normality using the Shapiro–
Wilks test. We obtained p�value¼ 0:347940:05 indicating the data is normal. For this reason, we can use Student's t-test to
check for any statistical difference of over-exposed classes in libraries and plain applications. We stated our null hypothesis
as follows:

� H40: libraries have the same proportion of over-exposed classes as applications have.

After testing we can reject H40 with α¼ 0:05 and p�value¼ 7:225�14 indicating that there is enough statistical evidence
to suggest that libraries define more over-exposed classes than applications.

A special case that should be mentioned here is the existence of internal implementation packages. Specifically, Eclipse
has adopted an “internal” naming convention6 in which public classes hosted by a package having “internal” in its name
must not be accessed by clients. That is, classes in this kind of packages should not be considered as over-exposed. We
checked the analyzed systems and found that only 5 of them have packages that follow this convention, namely: Hibernate,
JUnit, Maven, Argo, and FindBugs. However, this convention only appeared in 3.3%, 0.85%, 7.91%, 0.8%, and 0% of the total
number of over-exposed classes found in each system. For this reason, we argue that this situation is not really important for
our analysis.

Incidence of JUnit test on accessibility: We analyzed the incidence of JUnit test on the accessibility of plain classes as it may
introduce a bias. Since classes accessed by tests must be public, this could lead to classes with a broader accessibility than
the one originally intended by the developer. However, classes only called outside their packages by tests are not over-
exposed (their accessibility must be public because they are actually called by a class outside their package). Since we
include tests classes in our analysis, we are not considering these classes as over-exposed.

As it was mentioned before, 8 applications and 11 libraries/frameworks of our study contain unit tests. After analyzing
these systems, we found that on average the percentage of plain public classes in libraries that are only referenced outside
their packages by tests is 6.28% (with a standard deviation of 6.15%). The same value was computed for applications and
turned out to be smaller: 2.61% (with a standard deviation of 2.28%). As it was expected, the percentage is higher in libraries,
since libraries define more classes that are only going to be externally referenced by third-party applications (or, in this case,
by tests). Taking into account these results, we can conclude that the incidence of JUnit test on accessibility is small. The
detailed results for each system are listed in Table A10 and A13 in the Appendix.
6 https://wiki.eclipse.org/Naming_Conventions

https://wiki.eclipse.org/Naming_Conventions


Table 6
Analysis of library usage (by external applications).

Library #Applications
analyzed

#Public classes
in library

#Over-exposed pub-
lic classes in library

#Over-exposed public classes
called externally by
applications

#Over-exposed public classes
taking into account applications

Commons-
Compress

7 142 39 8 31

Javassist 7 239 84 15 69
Jericho-HTML 4 65 12 1 11
JFreechart 5 891 41 6 35

Fig. 4. Analysis of the creation of over-exposed public classes.
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6. Analyzing the use of libraries

Since the purpose of a library is to be used by others, it is expected that classes belonging to a library will have an
accessibility broader than necessary. In this case, reducing the accessibility of classes could inhibit external classes from
referencing the class. Thus, it is relevant to measure the number of over-exposed classes when the libraries are used by
external applications. In this way, we expect to answer RQ3 by analyzing whether over-exposed classes address future client
requirements.

We used the following methodology: (i) we identified a number of libraries being relevant to be part of this experiment;
(ii) for each library, we selected a number of applications that use the library; (iii) we measured the number of over-exposed
classes; (iv) we deduced whether over-exposed classes defined in libraries actually met the need of applications using the
libraries.

Among the 15 libraries that are part of our benchmark, we picked up 4 that had a reasonable amount of client appli-
cations. These libraries are Commons-Compress, Javassist, Jericho-HTML, and JFreechart. For each of these libraries, we have
between 4 and 7 client applications. These applications are part of the Maven repository.7 Note that Maven provides
information about applications that use the same version of the library. This information facilitated our identification of
external applications.

Table 6 measures the number of over-exposed classes when considering client applications. For each library, we check if
one or more of their over-exposed public classes found in Section 5 are referenced in the external applications that use
them. Having a class identified as over-exposed in the library that is referenced by an external application means that the
class is not over-exposed in the presence of such an application.

We analyzed 7 external applications that use Commons-Compress. We found that 27.46% (¼39) of the public classes
defined by Commons-Compress were over-exposed (when no external applications are considered). However, after ana-
lyzing the external classes, we found that 8 classes identified as over-exposed are referenced externally. In this way, there
are still 31 classes over-exposed. That is, most over-exposed classes (79.49%) seem not to address client requirements. We
observed that this percentage is similar for the remaining libraries: 82.14%, 91.67%, and 85.37% for Javassist, Jericho-HTML
and JFreechart, respectively. That is, for this sample of applications, most over-exposed classes remain over-exposed even in
the presence of external client applications.
7 http://mvnrepository.com/

http://mvnrepository.com/
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By analyzing these results we can answer RQ3 as follows: Only a small portion of over-exposed classes identified in
libraries address client application usage. However, in order to claim that the values of over-exposure for public classes
defined in libraries are valid, the analysis needs to be extended to a larger number of client applications. This study will be
carried out in future work.
7. Creation and evolution of over-exposed classes

What make developers create so many over-exposed classes? We investigate this non-trivial question by monitoring
over-exposed classes over multiple revisions of software systems. We restricted our analysis to (i) plain applications and (ii)
public classes since public classes concentrate most of the over-exposure. Only one version is available for the Logisim
application, we therefore exclude this application and report the evolution of the 14 remaining applications. We analyzed a
set of versions of each application since the earliest version.
7.1. Creation of over-exposed classes

Specifically, we analyzed if the plain public classes being over-exposed in the last version of each application were
created with the public accessibility modifier. In order to do this, we looked at the version history to find the version in
which an over-exposed class appeared for the first time. Fig. 4 reports the ratio of classes over-exposed in each application
that were created with public accessibility. A total of 13 applications, from the 14 analyzed, have more than 90% of their
over-exposed non-nested classes created as public. Only two applications (Cobertura and Jmol) showed lower values (73%
and 64%). After analyzing these 2 applications, we found that they have a larger number of non-nested default classes than
the other applications at early versions, which could be the cause of these outliers. From a total of 2113 over-exposed classes
analyzed, 2043 were created as public and were over-exposed. We answer to RQ4 (Are classes over-exposed since their first
implementation, or do they become so over time?) affirmatively because 96.69% of the over-exposed public classes have an access
modifier broader than necessary since their creation. This is an interesting fact since many IDEs, such as Eclipse or NetBeans,
use public as the accessibility by default to create classes. While analyzing how the IDEs influence the creation of over-
exposed classes could be interesting to understand the phenomenon, it is out of the scope of this article and it will be
analyzed in future work.
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Fig. 6. A worst-case design structure matrix of Cobertura when considering over-exposed classes (‘X’ means existing dependencies and ‘O’ unnecessary
class exposure).
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7.2. Speculative analysis of evolution of over-exposed classes

Another interesting question is to understand how over-exposed classes will affect the system in the future. With this
goal in mind, we performed a speculative analysis of dependencies for Cobertura. In many Java systems, it is reasonable to
assume that packages reflect architectural components, and thus, we can model the (static) system architecture in terms of
these components and their dependencies. In particular, Fig. 5 shows Cobertura as a DSM (Design Structure Matrix) [8] in
which the rows/columns represent Java packages (i.e., components) of the application (columns names are not shown for
simplicity, they are the same than the rows). Given a cell for components A (row) and B (column), an ‘X’ in the cell means
that there is at least one access from A to B being realized via some class. For example, package coveragedata depends on
(i.e., makes use of classes of) 7 other packages, including check, instrument, and merge. The components shaded in gray are
those in which the over-exposed classes are located.

The resulting matrix8 may be used to assess component modularity, by measuring properties such as propagation cost, density,
or number of cycles, or stability, among others [9]. These metrics were computed with the help of the Lattix DSM9 tool. Propa-
gation cost measures the extent to which a change in one element impacts other elements; and it is a function of the degree of
coupling among elements (computation details can be found in [10]). Propagation cost is an important indicator of a system
overall architectural complexity. This numerical indicator ranges from 0.0 to 1.0. A value close to 0 reflects a good modularization
and low propagation of changes. Conversely, a value close to 1 means that a change in a component can propagate to almost all
components. Cyclicality is a measure of how many components are involved in (at least) a cycle, since cycles are often correlated
with bugs and maintenance problems. The closer cyclicality is to 1.0, the more cycles the system has. Stability, in turn, assesses
how much of the system is affected when a change is made. A systemwith low stability (closer to 0.0) is generally fragile even to
small changes. The density of the DSM is the ratio of the number of dependencies in the matrix and the number of all possible
dependencies. The values of these metrics for Cobertura based on the (actual) DSM are given in Fig. 5.

Having an over-exposed (public, non-nested) class C defined in a package means that, in principle, all other packages in the
systemmight access class C. For instance, a developer might have inadvertently created C with a public access modifier, because she
used an IDE with public as the default option. Anyway, from the perspective of modularity, class C can produce a rippling effect in
the system that enables extra dependencies among components. This effect is likely to increase coupling and cycles in the system
[11,12]. Many of these unwanted dependencies might be also not prescribed by the original architecture design. Fig. 6 shows aworst-
8 The matrix can include additional dependency information (e.g., variable access, method calls, etc.), which is not considered in our analysis.
9 http://www.lattix.com

http://www.lattix.com


Table 7
Analysis of evolution of over-exposed classes.

Application #Over-exposed
classes in v1

%Over-exposed classes in
v1 that remain over-
exposed in v2

%Over-exposed classes
in v1 fixed in v2 by
calls

%Over-exposed classes in v1
fixed in v2 by changing the
accessibility

%Over-exposed classes
in v1 deleted in v2

Ant 367 83.11 5.18 0 11.71
Argo 593 37.94 18.72 6.58 36.76
Checkstyle 133 81.95 0 0 18.05
Cobertura 24 75 0 0 25
Findbugs 336 92.86 1.19 0.3 5.65
Freemind 45 71.11 15.56 0 13.33
Jajuk 186 100 0 0 0
JEdit 343 93 1.46 0.88 4.66
JMol 142 13.38 1.41 2.82 82.39
JStock 88 55.68 17.05 0 27.27
PMD 158 96.84 2.53 0 0.63
Portecle 9 88.89 11.11 0 0
SweetHome3D 64 93.75 3.125 3.125 0
TuxGuitar 25 4 0 0 96
Average 69.57 5.55 1.05 23.83
Standard deviation 31.08 6.95 1.91 30.26
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case DSM for such dependencies, inwhich the over-exposed classes of Cobertura end up accessed by all possible components. Under
this scenario, the density of dependencies in the DSM goes from 11% to 58%, which represents a significant coupling increase with
negative effects on system modularity. The over-exposed classes precipitate an increase to 0.89 in the propagation cost (the initial
propagation cost was 0.22), and also lead to a higher cyclicality (the initial value of 0.53 becomes 0.89). The design stability con-
sequently goes down from 76% to 15%, as an indicator of the modularity degradation. Note that the rippling effect (marked by cells
with ‘O’ in the figure) depends on the distribution of the over-exposed classes across components, as well as on the initial inter-
actions (coupling) among the components. Certainly, the average case of degradation might be not as severe as in Fig. 6 (or even
some new dependencies might be justified by architectural rules). For example, in a realistic scenario, the amount of dependencies
caused by over-exposed classes (‘O’) can be lower than in Fig. 6. Thus, the global propagation cost of Cobertura should fluctuate
between 0.22 and 0.89 in an average case. The DSM of Fig. A1 (Appendix) shows an average case of added package dependencies
computed using link prediction techniques from social network analysis.10 Note that the metrics for propagation cost, stability and
cyclicality have moderate values, but higher than those of the initial DSM for Cobertura. Nonetheless, we believe this example is
representative of the risk of having many over-exposed classes as they might hinder system modularity.
7.3. Analysis of evolution of over-exposed classes in history

While the previous analysis shows the latent risk of having over-exposed classes, it is necessary to analyze the evolution
of these classes over time. To do so, we took the first and last versions of the same 14 applications described before. Then,
we identified the over-exposed classes in the first version (v1) and analyzed if they were still over-exposed in the last
version (v2). There are four possible situations, namely:

1. The class remains over-exposed. That is, there were not new references that affected the over-exposure of the class.
2. The class stopped being over-exposed due to a new reference from other class. For example, in the case of a non-nested

public class, a reference from a class defined outside its package. This is the case in which an over-exposed class can
degrade the modifiability of the system.

3. The class stopped being over-exposed because its accessibility was reduced to the minimum necessary.
4. The class was deleted or moved to other package (the latter case cannot be identified automatically since there may be

more than one class with the same name).

Table 7 shows the results. On average only 5.55% of the over-exposed classes in v1 are not over-exposed in v2 because of
new references. Moreover, on average, only 1.05% of the over-exposed classes in v1 are not longer over-exposed in v2
because its accessibility was reduced to the strictly necessary. In fact, most of the over-exposed classes in v1 remain over-
exposed in v2 (69.57%) or were deleted (23.83%). In the cases of JMol and TuxGuitar, which present a high percentage of
deleted classes, we manually analyzed the source code. We observed that more of 90% of the classes were not deleted in v2
but moved to a different package. After manually checking that these were the same classes that existed in v1, we found that
more than 95% of them were still over-exposed.
10 http://be.amazd.com/link-prediction

http://be.amazd.com/link-prediction


Fig. 7. Refactoring suggestion of Cover.
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Also, we analyzed the evolution of over-exposed classes in 5 revisions between the first and last versions. Specifically, we
looked for a pattern in which over-exposed classes in v1 stopped being over-exposed by new references (case 2), but eventually
they were fixed. That is, a developer removed the reference. This situation could mean that the class was not designed to be
accessed with that level of accessibility. We found this pattern in only 3 of 14 applications: Argo (19.73% of the over-exposed
classes of v1), Findbugs (0.3%), and Freemind (2.22%). Then, we conclude that the pattern rarely appears. In fact, from a total of
2513 over-exposed classes found in the first versions of the 14 applications, 2161 of them remain over-exposed (without inter-
mediate changes) until the last version or its deletion (86%). Moreover, when we analyzed the over-exposed classes of v1 that
stopped being over-exposed at least in one of the versions, we found that this situation occurred in only 289 of the classes (11.5%).

Summary: The fact that over-exposed classes remain over-exposed after a number of versions suggests that over-exposed
classes are not a perceived problem. While the accessibility of classes is broader than necessary, the existence of new references
from classes outside the “minimal” accessibility are unusual. In this way, we can answer RQ5 by saying that over-exposed classes do
not usually negatively impact on the software health. That is, over-exposed classes are not a major contributor to the erosion of the
public API and the modularity problems associated to them. This result is interesting because it would indicate that developers are
not usually aware of the implications of access modifiers of classes. However, according to classical textbook on software
encapsulation [13–16], over-exposed classes are a potential problem if they are called from classes outside their intended scope.
This could be specially harmful in libraries since it will introduce incompatibilities in the API [11,12].
8. Automated detection in IDE

With the goal of making developers aware of the existence of over-exposed classes we extended Cover,11 an Eclipse
plugin that detects over-exposed methods, to also detect over-exposed classes. The usage of this plugin would also help to
cope with the degradation symptoms analyzed in Section 7 that might affect system modularity.

The plugin uses the Java Development Tools of Eclipse (JDT) to iterate over all the classes and retrieve the calling classes
for each class of the application. Then, Cover lists the over-exposed classes (structured along packages), and for each over-
exposed class, the plugin indicates the most appropriate accessibility for the current state of the application (Fig. 7). To
determine whether a class is over-exposed we implemented in Cover the patterns described in Section 4.

To evaluate our plugin, we applied it to SweetHome3D,12 one of the applications of our benchmark. We followed five steps:

1. run the application and try out the tutorial;
2. automatically find the over-exposed classes using Cover;
3. reduce the accessibility of each over-exposed class to the one suggested by the plugin (i.e. its strict necessary

accessibility);
4. recompile SweetHome3D;
5. run all the tests and verify that they all pass;
6. run the tutorial and look for odd behavior.

We successfully conducted this experiment using SweetHome3D. After refactoring the source code, the application
compiled and we did not notice any odd or unexpected behavior when the application was re-run. These steps can be easily
applied to other applications as well. Our refactoring of SweetHome3D is available at https://db.tt/xr9LtZOC. The percentage
of over-exposed classes detected was 16.92% (in accordance with the percentage shown in Table A5).
11 https://sites.google.com/site/santiagoavidal/projects/cover-methods
12 http://www.sweethome3d.com
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http://www.sweethome3d.com


S. Vidal et al. / Computer Languages, Systems & Structures 46 (2016) 1–19 15
9. Threats to validity

The validity of our results depends on factors in the experimental settings. Next, we analyze four kinds of validity threats [6].
Conclusion validity: This threat concerns the statistical analysis of the results. Since we analyzed 30 Java applications we

argue that the statistical power of the results is appropriate. However, we think that the analysis of library usage (Section 6)
could be conducted with more applications to reduce the risk of drawing wrong conclusions.

Internal validity: This threat concerns causes that can affect the independent variable of the experiment without the
researcher's knowledge. Our approach employs static analysis to identify over-exposed classes. For this reason, some lim-
itations imposed by static analysis could bias our result. Specifically, some references to classes could not be identified by
the static analysis algorithm of Moose (e.g. hierarchical relationships and reflective calls). This situation could lead to false
positives due to missing calls or simply to the identification of classes that are not called.

Construct validity: It is concerned with the design of the experiment and the behavior of the subjects. Our main concern are those
over-exposed classes that are intentionally left over-exposed by developers. While these classes are over-exposed they should not be
labeled as such since the intention of the developers was to made them visible to other packages on purpose. However, we found
that the number of public over-exposed classes being used by external applications is probably low (Section 6).

External validity: It is concerned with having a subject that is not representative of the population. We argue that the
number of applications analyzed in the study is large enough to avoid this threat. Moreover, we distinguished and analyzed
separately two kinds of applications: plain applications and libraries/frameworks.
10. Related work

Although other researchers have looked at class accessibility in object-oriented programming, they have not conducted a
detailed empirical study as we report in this article. However, some works had analyzed the use of accessibility modifiers in
classes, methods, and fields.

We previously presented an empirical evaluation of the over-exposed methods with the goal of analyzing their impact on
information hiding and the interfaces of classes [4]. In this work we analyzed the same collection of applications which were
also distinguished between plain applications and libraries/frameworks. However, our previous work was only focused on
over-exposed methods while this work is focused on over-exposed classes. Also, similarly to this work, we previously
analyzed the history of the applications with the goal of understanding the variations in the over-exposed methods. For
these reasons, we think that the current article completes the empirical analysis of over-exposure.

Grothoff et al. [17] present a tool called JAMIT to restrict access modifiers. Differently from us, this work is not focused on
modifiability but in security. Specifically, Grothoff et al. analyze whether a class is confined to the package to which it is
declared. That is to say, they try to guarantee that a reference to a class cannot be obtained outside its package. This
definition is stricter than ours, which has the modifiability goal of restricting the public API of classes/packages. In this
context, Grothoff et al. use the JAMIT tool to report the percentage of classes that could be confinable. However, these values
are not comparable with our over-exposed values because they are not exactly the same. A confinable class must satisfy
some rules that an over-exposed class must not. For example, all methods invoked on a confined class must be anonymous
[17], and all the subtypes of a confined class must be confined [17]. Moreover, differently from us, Grothoff et al. do not
report the necessary refactoring to restrict class accessibility (e.g., change protected accessibility for default accessibility).
Another important issue to mention is that their work do not distinguish between libraries/frameworks and plain appli-
cations as we do. In fact, they mix libraries and plain applications in their benchmark suite. Also, while Grothoff et al.
consider nested classes, they do not distinguish between nested classes with different accessibilities as we do.

Bouillon et al. [3] present a tool that checks for over-exposed methods in Java applications. While it briefly mentions the
classes with an accessibility broader than necessary, it does not make any analysis of them. Similar to ours, their tool
determines the best access modifier by analyzing the references to each method. However, the tool was only tested in some
packages of 4 applications (i.e. the applications were not carefully analyzed). The authors suggest that any over-exposed
method could be the result of the developer's intention of extending the applications, but unlike our study in classes, no
historical analysis is performed.

Müller [18] uses bytecode analysis to detect those access modifiers of methods and fields that should be more restrictive.
However, the work does not describe the algorithm used to detect these situations nor presents case-studies to validate their tool.

Kobori et al. [19] investigated the evolution of over-exposed methods and fields for a set of open-source applications.
Similarly to our analysis of classes, they reported that the change of access modifiers of methods is infrequent. They also
found that the number of over-exposed methods and fields tends to increase in time.

Zoller and Schmolitzky [5] present a tool called AccessAnalysis to detect over-exposed methods and classes by analyzing
the references to them. To measure the usage of access modifiers for types and methods, Zoller and Schmolitzky employ two
software metrics: Inappropriate Generosity with Accessibility of Types (IGAT) and Inappropriate Generosity with Accessi-
bility of Methods (IGAM). IGAT is equivalent to our concept of class over-exposure. To evaluate AccessAnalysis, the authors
report on the analysis of 12 open-source applications. Their findings include that “general access modifiers are often chosen
more generously than necessary”, which is in agreement with our observations. Specifically, Zoller and Schmolitzky
reported results for 5 applications, which we also analyzed with our approach and showed very similar results. For example,
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they reported an over-exposure of 20% for PMD while we reported 20.03%. However, Zoller and Schmolitzky do not analyze
libraries/frameworks nor analyze the creation (and evolution) of the over-exposure phenomenon.

Steimann and Thies [20] highlight the difficulties of carrying out refactoring in the presence of non-public classes andmethods.
The authors formalize accessibility constraints in order to check the preconditions of a refactoring (e.g., moving a class to another
package requires checking whether the accessibility of the class allows its users to still reference it). In particular, the authors
analyze the cases in which a class or a method is moved between packages or classes with the goal of adapting their access
modifiers to preserve the original behavior. They propose the change accessibility refactoring to change the access modifier of a
declared entity. This refactoring recursively changes all the entities that are directly or indirectly related to the refactored entity.
However, the approach presented by these authors does not analyze the detection of the over-exposure in a broad context.
11. Conclusions

Selecting the right accessibility modifiers of classes improves system modularity by avoiding unwanted interactions among
components. We have proposed a code anomaly called class over-exposure to identify classes with an accessibility broader than
necessary. We have empirically measured for a set of 30 applications that around 35% of plain Java public classes are over-exposed.
Moreover, we found that systems define around 87% of their classes as public, with libraries defining more public classes than
applications (RQ1). Also, we found that around 35% of the public classes are over-exposed (RQ2). Additionally, we analyzed the
over-exposed classes of libraries and we determined that most of them are not used by third-party applications (RQ3). We also
found that over-exposed classes often have this condition since its first implementation (RQ4). Finally, we could not find evidence
that over-exposed classes are a major contributor to modularity problems (RQ5).

As future work we plan to:

� analyze the role of automated mechanisms of IDEs to generate source code in the creation of over-exposed classes;
� monitor programming activity to see how often class accessibility is re-considered by developers in the context of IDEs;
� analyze the effects of classes and methods over-exposed in the degradation of the software architecture (e.g., modularity,

drift and erosion problems);
� extend our analysis of over-exposure to Java interfaces;
� refine our analysis by considering the use of reflection, increasing the number of analyzable classes.
Appendix A

See Fig. A1 and Tables A1–A6.
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Fig. A1. An average-case design structure matrix of Cobertura when considering over-exposed classes (‘X’ means existing dependencies and ‘O’ unne-
cessary class exposure).



Table A1
General information library/frameworks.

Library/framework Version #Classes %PPC %PDC %NPC %NDC %NProC %NPriC

Ant 1.8.3 1507 71.27 1.73 16.39 1.13 1.13 8.36
Commons-Compress 1.4.1 171 81.29 9.36 1.75 1.17 0 6.43
Commons-Primitives 1.0 433 66.05 22.63 0 6.47 3.23 1.62
Dom4J 2.0 158 78.48 10.13 0.63 0.63 4.43 5.69
Hibernate 4.1.3 5555 86.59 2.72 5.02 2.25 0.41 3.0
JavAssist 3.12 347 59.37 11.53 9.51 17.29 0.86 1.44
Jericho-HTML 3.2 164 39.02 35.37 0.61 5.49 0 19.51
JFreeChart 1.0.14 948 93.25 1.79 0.74 3.16 0.74 0.32
JHotDraw 7.0.6 309 85.11 2.27 3.88 0 0 8.74
JUnit 4.10 707 37.77 0.85 55.16 2.12 0 4.1
Log4J 1.2.16 435 71.49 10.11 3.68 3.22 0.23 11.26
Maven 3.0.4 732 82.1 7.79 0.96 3.42 0.41 5.33
Struts 2.3.3 2005 81.05 2.69 8.18 4.19 0.5 3.39
Tomcat 7.0.27 1951 65.91 4.31 10.81 1.33 6.25 11.38
Xalan 2.7.1 1091 64.89 19.62 6.32 5.13 0.27 3.76

Average 1101 70.91 9.53 8.24 3.8 1.23 6.29

PPC: plain public classes; PDC: plain default classes; NPC: nested public classes; NDC: nested default classes; NProC: nested protected classes; NPriC: nested
private classes.

Table A2
Over-exposure information library/frameworks.

Library/framework %OE Classes %OE PPC %OE NPC %OE NDC %OE NProC

Ant 27.87 16.39 9.62 0.8 1.06
Commons-Compress 23.39 21.05 1.75 0.58 0
Commons-Primitives 53.58 45.5 0 4.85 3.23
Dom4J 32.28 26.58 0.63 0.63 4.43
Hibernate 40.32 35.73 2.99 1.21 0.4
JavAssist 40.35 17.0 7.2 15.27 0.86
Jericho-HTML 10.98 6.71 0.61 3.66 0
JFreeChart 8.23 3.9 0.42 3.16 0.74
JHotDraw 34.3 31.07 3.24 0 0
JUnit 16.55 7.21 7.92 1.41 0
Log4J 25.52 19.31 2.76 3.22 0.23
Maven 18.99 14.89 0.55 3.28 0.27
Struts 33.12 21.8 7.03 3.79 0.5
Tomcat 38.54 22.14 9.02 1.13 6.25
Xalan 23.46 12.83 5.68 4.67 0.27

Average 28.5 20.14 3.96 3.18 1.22

OE PPC: over-exposed plain public classes; OE NPC: over-exposed nested public classes; OE NDC: over-exposed nested default classes; OE NProC: over-
exposed nested protected classes.

Table A3
Incidence of JUnit tests in library/frameworks.

Library/framework #PPCT % PPCT

Ant 32 2.98
Commons-Compress 0 0
Commons-Primitives 50 17.48
Hibernate 313 6.51
Jericho-HTML 0 0
JFreeChart 166 18.78
JUnit 20 7.49
Log4J 6 1.93
Maven 32 5.32
Struts 114 7.02
Tomcat 20 1.56

Average 6.28

PPCT: plain public classes only externally referenced by tests.
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Table A4
General information plain applications.

Application Version #Classes %PPC %PDC %NPC %NDC %NProC %NPriC

Argo 0.34 2087 63.82 22.23 0.43 3.45 0.96 9.1
Azureus 4.7.12 2797 81.27 1.07 3.93 1.57 6.65 5.51
Checkstyle 5.5 1029 66.47 17.88 3.89 5.54 0.78 5.44
Cobertura 1.9.4.1 148 83.11 3.38 4.73 1.35 0 7.43
FindBugs 2.0.1 1191 77.41 1.09 5.21 6.63 0.17 9.49
FreeMind 0.9 684 54.82 4.53 7.46 3.36 3.8 26.02
Jajuk 1.9.6 596 82.55 5.2 4.87 2.68 0 4.7
JEdit 5.0 1000 40.7 9.8 8 20.8 0.3 20.4
Jmol 12.2.33 706 59.77 17 1.98 16.57 1.98 2.69
Jstock 1.06 341 71.26 0 6.74 1.76 0 20.23
Logisim 0.0.1-a 1023 35.68 24.54 2.64 2.74 0 34.41
PMD 4.2.6 789 88.97 0.25 2.79 0.38 0.13 7.48
Portecle 1.7 98 42.86 35.71 0 1.02 0 20.41
SweetHome3D 3.5 396 46.21 4.3 2.78 0 1.52 45.2
TuxGuitar 1.2 782 89.13 0.9 0.77 0.13 2.17 6.91

Average 911.13 65.6 9.86 3.75 4.53 1.23 15.03

Table A5
Over-exposure information plain applications.

Application %OE Classes %OE PPC %OE NPC %OE NDC %OE NProC

Argo 23.96 19.6 0.14 3.26 0.96
Azureus 33.75 23.99 1.93 1.25 6.58
Checkstyle 12.73 10.2 1.17 1.26 0.1
Cobertura 37.16 31.08 4.73 1.35 0
FindBugs 32.91 23.85 3.27 5.63 0.18
FreeMind 25.58 16.23 3.51 2.33 3.51
Jajuk 31.21 26.85 2.52 1.85 0
JEdit 35.7 13.0 5.5 16.9 0.3
Jmol 32.86 15.44 0.99 14.73 1.7
Jstock 34.31 29.33 3.52 1.47 0
Logisim 7.82 6.65 0.59 0.59 0
PMD 20.03 18.38 1.14 0.38 0.13
Portecle 8.16 8.16 0 0 0
SweetHome3D 16.92 13.89 1.77 0 1.26
TuxGuitar 28.52 26.09 0.26 0 2.17
Average 25.44 18.85 2.07 3.4 1.12

Table A6
Incidence of JUnit tests in applications.

Library/framework #PPCT % PPCT

Checkstyle 5 0.73
Cobertura 6 4.88
FindBugs 1 0.11
FreeMind 12 3.2
Jajuk 7 1.42
Jstock 0 0
PMD 47 6.7
SweetHome3D 7 3.83

Average 2.61

PPCT: plain public classes only externally referenced by tests.
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