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Abstract

The main contribution of this paper is to discuss the implications
of a ‘soft’ budget constraint on optimal transit fares and subsidies.
We find that the e↵ect of productive ine�ciencies on optimal fares
and subsidy levels depends critically on the way cost reducing e↵ort
enters the cost function and on the institutional environment (as mea-
sured by the ‘tightness’ of the budget constraint faced by operators).
In particular, recognizing that subsidies may have an adverse e↵ect on
productive e�ciency does not necessarily imply that transit subsidies
should be eliminated. Unsurprisingly, there will be a trade-o↵ between
the negative cost e�ciency e↵ects of transit subsidies and the welfare
enhancing allocative e�ciencies related to these subsidies. Under cer-
tain conditions optimal subsidies may be higher when operators face
an intermediate budget constraint than when they face a ‘tight’ bud-
get constraint. We illustrate this last result using a simple numerical
example.

Keywords: transit fares, transit subsidies, cost e�ciency

1 Introduction

Winston (2000) cites evidence that 75% of mass transit subsidies in the US
benefit transit workers (in the form of above market wages) or suppliers of
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capital equipment. Only 25% of this spending benefits users in the form of
lower fares and improved quality of service.

Furthermore, in a comprehensive review of bus-transit operator perfor-
mance, De Berger and Kersten (2008) state that “Cost inflation is to some
extend related to...transit firms’ weak budget constraint due to subsidies”
(page 10). They add that “There appears to be su�cient evidence to con-
clude that subsidies do increase operating costs” (page 12). More recent
studies seem to confirm this result.1

In spite of the numerous empirical studies analyzing the e↵ects of sub-
sidies on operators’ technical and cost e�ciency levels there is scant work
on the welfare implications of this phenomenon on optimal transit fares.
The policy implications emphasized in the literature relate to the privatiza-
tion of transit operators, the competitive tendering of routes and services or
the introduction of more powerful contractual incentives for cost reduction.2

However, there also seems to be the presumption that the mere existence of
ine�ciencies and cost inflation is su�cient to justify significant fare increases
and sharp reductions in transit subsidies. Winston and Shirley (1998) argue
that increasing transit fares would improve net social welfare; the benefits of
lower fiscal deficits would more than compensate for the negative e↵ects of
higher fares on users’ well-being.3

To date no systematic study has been undertaken analyzing the welfare
implications of a ‘soft’ budget constraint on the optimal transit fare or sub-
sidy. The main purpose of this paper is to undertake such an analysis using
a simple theoretical model.

1see for example Nieswand and Walter (2012) for a study of German local bus compa-
nies.

2The review by De Borger and Kersten (2008) seems to confirm that high powered
incentive schemes do reduce bus transit operating costs. However, they find that the
e�ciency e↵ects of ownership structure are mixed. Also, Gagnepain and Ivaldi (2002)
find similar results for risk-sharing contracts for bus operators in France and Dalen and
Gómez-Lobo (2003) for yardstick competition contracts in Norway.

3Parry and Small (2009) in their detailed study of transit fares in Los Angeles, Wash-
ington D.C. and London, argue the opposite. Namely, that increasing transit subsidies
would improve social welfare. However, they recognize that their model does not account
for possible cost inflation e↵ects related to transit subsidies.
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In order to analyze this issue we assume that operating costs depend on
unobservable cost reducing e↵ort. The incentives to undertake such e↵ort will
depend on the budget constraint faced by managers. We model the ‘softness’
of the budget constraint by a cost-sharing rule. When subsidies cover any
operating deficit (an extreme type of ‘soft’ budget constraint), managers will
have low incentives to reduce costs. When subsidies are insensitive to cost
over-runs, then operators face a ‘tight’ budget constraint and cost reducing
e↵ort will be socially optimal.

We find that the e↵ect of cost ine�ciencies on optimal fares and subsidy
levels depends critically on the way cost reducing e↵ort enters the cost func-
tion and on the institutional environment (as measured by the ‘tightness’ of
the budget constraint faced by operators). In particular, recognizing that
subsidies may have an adverse e↵ect on productive e�ciency does not nec-
essarily imply that transit subsidies should be eliminated. Unsurprisingly,
there will be a trade-o↵ between the negative cost e�ciency e↵ects of transit
subsidies and the welfare enhancing allocative e�ciencies related to these
subsidies.

Interestingly, under certain circumstances optimal subsidies may be higher
when operators face an intermediate budget constraint than when they face
a ‘tight’ budget constraint. The intuition for this result is that when cost
reducing e↵ort is related to patronage, the second-best transit fares should
be reduced in order to increase demand and thus spur cost reducing e↵ort.
If this e↵ect dominates the direct e↵ect of cost ine�ciency on fares then the
optimal subsidy per passenger will be higher.

In the next section we develop the model where we introduce cost re-
ducing e↵ort in the cost function and specify managers’ objective function.
We then explore the consequences of productive ine�ciencies on fares and
subsidies. Finally, we use a very simple numerical model to illustrate some
of the theoretical results.

In this paper we do not consider distributive issues as a motivation for
transit subsidies.4

4See Estupiñan, Gómez-Lobo, Muñoz-Raskin and Serebrisky (2009) for a discussion of
distributive issues and transit services.

3



2 The Model

Except for the inclusion of a cost of public funds and cost inflation, the
model presented here follows Small and Verhoef (2007, Chapter 4). We
assume that gross consumer surplus (CS)) can be represented by the following
benefit function: CS = B(q

a

, q

p

) where q

a

are the number of trips in private
(automobile) transport and q

p

are the number of trips in public transport.5

2.1 Users

The inverse demand function for each type of travel is the derivative of the
consumer surplus function:
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) as the total cost of private
automobile travel, the total operating cost of the transit system and the to-
tal user costs of public transport, respectively. User cost are related to the
access time, waiting time and in-vehicle time that users have to invest when
traveling in public transport.6 Cost reducing e↵ort (e) a↵ects operating costs
and we will discuss how we model this e↵ect further below.

There are several restrictions that must be taken into account when de-
termining the social optimal quantity of trips in either mode of transport.

5We are implicitly assuming there are no income e↵ects on travel demand.
6We are also assuming with these definitions that there is no interaction between private

and public transport. That is, the cost of private transport is una↵ected by the level of
public transport, and vice-versa. This would be the case when public transport is rail or
bus services o↵ered in specialized segregated corridors (as in BRT systems). Introducing
cost interactions between these two modes would not change anything substantial in the
results below although the notation would be much more cumbersome. See Ahn (2009)
for a model that incorporates such interactions.
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First, users of private transport only perceive the average cost of using
this mode, ac

a

(q
a

) = CT

a

q

a

. As is well known, users will not take into account
the additional costs borne by others when making a decision to use private
transport. This is the classical congestion externality, although it applies also
to accidents or pollution generated by private transport. The social marginal
cost of using private transport is:
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is the marginal social cost of using private transport

and ac
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is the change in the average cost of private transport as the
number of trips in this mode increases.

When deciding to undertake a trip in private transport individuals will
only consider the first term on the right hand side of the above expression
and will not consider the cost they impose on all other users (represented
by q

a

) if their additional trip increases average costs (due for example to
higher congestion). Thus, there is an externality that is not internalized by
individuals, which is equal to the di↵erence between the marginal social cost
of an additional trip in private transport and its average cost:

Ext = mc

a
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)� ac

a

(q
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) = q

a

· ac0
a

. (4)

We can also assume that there are other policies that may help to inter-
nalize externalities generated by private transport. For example, petrol taxes
are common in most countries and this may help to reduce the magnitude of
externalities.7 Therefore, we assume that private transport users also have

7However, as noted by Parry and Small (2005), in so far as externalities are related
to the number of kilometers traveled (as in the case of congestion and accidents), fuel
taxes may not be as e↵ective as they might appear in reducing these externalities. This
is because part of their e↵ect is to change behavior related to vehicle choice (more fuel
e�cient cars for example) rather than the number of trips or kilometers traveled. In
addition, fuel taxes may be a very blunt instrument to control externalities that vary by
local area, time of day and other dimensions.
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to pay a cost of ⌧
a

per trip.

In the above formulation, ⌧
a

can represent fuel taxes or any other policy
that a↵ects private transport users (for example, a congestion tax). How-
ever, in this paper we do not optimize with respect to this variable, but
rather assume it is parametric to the problem. Thus, we assume that polit-
ical obstacles or the time-frame of our analysis preclude the introduction of
congestion charges to solve externalities related to private transport. Further
below we will make some more comments regarding this point.

In sum, welfare maximization must consider that the number of pri-
vate trips taken is endogeneous and determined by the equality between
the marginal benefit of an additional private trip to its ‘perceived’ marginal
cost for users. That is:
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Second, the number of public transport trips is determined by the equality
between the marginal benefit of an additional trip with the users ‘perceived’
marginal cost:
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where ⌧
p

is the public transport fare and ac

u

p

(q
p

) is the average user cost of
using public transport. As in the case of private transport, users only perceive
the average cost of transit, which is the fare plus the average cost of user time
in this mode, which includes access time, waiting time and in-vehicle time.8

2.2 Managers and operating costs

For operating costs and cost reducing e↵ort, we assume that e 2 [0,1) and
CT

op

p

(q
p

, e) > 0 8 q

p

, e > 0. In addition, we make some standard assumptions:

8Private transport also has an in-vehicle time cost as part of aca(qa). However, as will
be seen further below, in the case of public transport, operational variables will a↵ect time
costs and therefore it makes sense to specify them separately.
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These last conditions imply that e↵ort reduces costs but at a decreasing
rate.

Managers’ face a disutility from exerting e↵ort, equal to � (e). This
disutility is assumed to be strictly convex in e↵ort and in order to guarantee
an interior solution we assume that for zero e↵ort the marginal utility cost
is zero while the marginal cost savings are positive:
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The Manager’s utility function is assumed to be:
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where ✓ is a cost sharing parameter that measures to what extent man-
agers get to keep the savings from cost reducing e↵ort or bare the costs from
not exerting e↵ort. In the regulatory literature this parameter determines
the ‘power’ of the regulatory environment or ‘contract’ and summarizes the
incentives provided to agents. If the operator is private this parameter de-
termines the degree to which the firm is residual claimant to cost savings
or cost over-runs. But the above specification of managers’ utility function
can also accommodate the case of a publicly owned operator run by hired

7



management.

When ✓ is equal to one managers bare the full e↵ects of cost increases
or benefit from all cost reductions. This case reflects a tight budget con-
straint scenario. The other extreme is when ✓ equals zero, in which case
managers are fully compensated for cost overruns but do not benefit from
cost savings. This case reflects a scenario with a very ‘soft’ budget constraint.

T is a lump-sum transfer that the authority must make to managers in
order to guarantee that utility is positive. In other words, we impose an
Individual Rationality constraint on the problem solved further below.

Before continuing it is important to note that we are using the cost shar-
ing rule as a simple way to describe the positive incentives faced by man-
agers. We are not attempting to answer the normative question as to which
cost sharing rule would be optimal. The current perfect information set-up
is too simple to answer that question since a regulator could impose the
first-best e↵ort outcome by specifying a regulatory contract that implies a
non-negative utility level for managers when first-best e↵ort is exerted and
an infinite penalty otherwise. In order to answer the normative question
some asymmetry of information must be introduced in the model. This is
the approach used in the analysis of optimal linear (cost-sharing) schemes
by Schmalensee (1989) or in the more sophisticated optimal menu contracts
approach of Baron and Myerson (1982) and La↵ont and Tirole (1993).9

The first-best e↵ort level, es, is given by the following first order condition:

�
@CT

op

p

@e

(q
p

, e

s) =  0(es) (13)

which may depend on q

p

.

However, the e↵ort actually expended by managers, e⇤, will be the solu-
tion to the following first order condition:

9In the transport economics literature, asymmetric information models have been used
by Dalen and Gómez-Lobo (1996) and Gagnepain and Ivaldi (2002).
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Therefore, actual e↵ort will be lower than the social optimal level when
managers face a soft budget constraint (✓ < 1). When ✓ = 0 managers exert
no cost reducing e↵ort at all and costs are CT

op

p

(q
p

, 0).

2.3 Transit authority

We make the accounting convention that the authorities receive all revenues
and must pay all costs, including payment to managers. The net financial
costs to the authorities, S, is the shortfall between operating costs plus com-
pensation to managers minus revenues:
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These resources have an opportunity cost that is represented by an exoge-
nous parameter �. This is the cost of public funds and implies that in order
to raise $1 of funding through distortionary taxation, there is a deadweight
loss of $� in the economy. We do not give a general equilibrium grounding
to the cost of public funds parameter under the assumption that transit sub-
sidies do not represent a large fraction of public expenditure and thus can
be considered exogenous to this sector.10 This allows us to obtain a simpler
formula for the optimal transit fare and subsidy and is also consistent with
the modern regulatory economics literature (La↵ont and Tirole, 1993).

2.4 Social welfare and optimal fare

With this set-up social welfare is given by the sum of net consumer surplus,
manager’s utility and the net financial costs to the authorities given by (15).
In this last case, these resources must include the cost of public funds since

10Dodgson and Topham (1987), to cite one example, also use a cost of public funds in
their analysis while authors such as Parry and Small (2009) assume a non-distortionary
lump-sum tax to fund transit subsidies. Jara-Dı́az and Gschwender (2009) also introduce
a multiplier but instead of a cost of public funds it is an endogenous Lagrange multiplier
related to the transit system’s financial constraint.
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these transfers have an opportunity cost as discussed above. Social welfare
is thus:
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Social welfare must be maximized with respect to q

a

, q
p

, ⌧
p

, T and e,
taking into account restrictions (5), (6), (12), and ref (14).11

In the Appendix it is shown that the solution to the above optimization
problem leads to the following condition:
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where Ext is the externality caused by private transport and not internalized
by ⌧

a

: Ext = mc

a

(q
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�ac
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(q
a

), | 
p

| is the absolute value of the demand
elasticity of public transport with respect to its fare and D

ap

is the diversion
ratio between car use and public transport. This last parameter measures
how many of the lost (increased) ridership in public transport due to an

11It must be noted that optimal fares and subsidies are closely linked to frequency,
bus size and the network structure. However, in this paper we analyze optimal public
transport fares without going into much detail regarding the particular specification for
operational variables and user time costs in order to describe in a straight forward manner
what the e�ciency justifications are for subsidizing public transport. Implicitly we are
assuming that frequency, bus size and network structure are also optimized in the solution
and included in the operational cost function.
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increase (decrease) in fares go to (come from) the private transport mode.
As private and public transport are substitutes this diversion ratio should
be negative and less than one in absolute value. Finally, de

dq

p

is the change in
e↵ort exerted as transport demand increases and is related to the e↵ect that
e↵ort has on marginal costs:
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The denominator in this last expression is negative so if e↵ort reduces
marginal costs then e↵ort will be increasing in output for a given cost-sharing
parameter.

3 Determinants of the optimal transit fare

There are several cases worth analyzing. If the cost-sharing rule implies a
very ‘tight’ budget constraint (✓ = 1) and there is no cost of public funds
(� = 1) then it is straightforward to verify that the optimal fare formula
collapses to:
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In this case, e↵ort will be first-best and the last two terms of (17) van-
ish. This last expression shows clearly the main e�ciency justifications for
subsidizing public transport. Condition (19) has four terms on the RHS. We
discuss each of them in turn.

The first term is average operating costs. If the optimal fare is equal to av-
erage operating costs then there is no operating deficit nor subsidy required.
Therefore, the last three terms account for adjustments to this break-even
fare.
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The second term is a correction for scale economies in operating costs, as
in in the case of natural monopoly. It is usually considered that there are
no economies of scale in bus service provision but they usually exist for rail
transport. If operators’ cost function do exhibit economies of scale then this
term will be negative (since marginal costs will be lower than average costs)
and transit fares should be adjusted below average operating costs in order
to set fares at the first-best level.

The third term is a correction for economies of scale in user costs. This
adjustment is usually referred to as the ‘Mohring e↵ect’ (Mohring, 1972).
The argument runs as follows: as demand increases transit planners will
provide a denser route structure, higher frequencies, or both, thus reducing
access and waiting times in public transport. Through this mechanism ad-
ditional transit users will reduce user costs for all existing users, implying
that the social marginal time cost is lower than private marginal time cost
(which is equal to average user cost). This positive consumption externality
justifies a Piguovian subsidy and the optimal fare is thus reduced. We will
not go into more detail regarding this term but refer interested readers to
the classical references on this topic: Mohring (1972), Turvey and Mohring
(1975), Jansson (1979) and Jansson (1993).

The fourth term is a correction for the negative externalities caused by
private transport that are not internalized by users.12 If public and private
transport are substitutes then the diversion ratio will be negative and this
last term is also negative. In this case public transport should be optimally
subsidized in a second-best world in order to diminish externalities caused
by private transport. If there is an optimal congestion tax and fuel taxes
are such that accidents and pollution externalities are fully borne by users
then this term disappears. Note also that D

ap

is crucial in this fourth term.
If the diversion ratio is zero —implying that the cross elasticity of demand
for private transport is not responsive to transit fares— then no subsidy can
be justified based on this second-best argument, irrespective of how high are

12Note that if transit is complementary to labor supply then there will be an additional
correction term analogous to the one discussed here due to distortionary income taxation.
In that case, transit fares should be lowered, particularly during peak-periods, in order
to induce higher labor participation and reduce the welfare loss in the economy due to
income taxation. We have ignored this additional argument for transit subsidies in this
paper. For a model that incorporates this issue see Parry and Bento (2001).
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the externalities generated by private transport.

The second to fourth term of condition (19) will usually be negative, im-
plying a positive subsidy in the optimal solution. These adjustments to fare
levels are the usual justifications for transit subsidies (see for example, Parry
and Small, 2009).

If � > 0 while still abstracting from incentive e↵ects (✓ = 1) then a new
term appears in the optimal fare equation (the fifth term of (17)). This term
is the typical ‘Ramsey’ inverse elasticity rule for natural monopoly pricing
when there is a cost of public funds. As � increases it reduces the impor-
tance of the adjustment for economies of scale in user costs and the adjust-
ment for externalities generated by private car use. If the authorities impose
the restriction that operating costs must be funded entirely from fares (a
self-funding or zero subsidy condition), then the parameter � is endogenous
and will be equal to whichever value sets the fare level equal to average cost.13

This ‘Ramsey’ adjustment implies that the e�ciency of the tax system
will matter for transit subsidies. In countries where this system is very inef-
ficient or subsidies are expected to be funded from cross-subsidies, then the
optimal transit subsidy will be lower than in countries with more e�cient
funding sources.

The final case is when ✓ < 1. That is, when the cost-sharing rule implies
a soft budget constraint and cost reducing e↵ort is not optimal. In this case
fares will be higher since average cost will be higher as e↵ort is reduced.
However, there is an additional term in the optimal fare equation (last term
of condition (17)). It states that if e↵ort is increasing in output then there is
an additional factor a↵ecting optimal fares that was not present before. All
else constant, it may be e�cient to reduce fares in order to increase demand
and through this mechanism induce more cost reducing e↵ort on the part of
operators.

This last e↵ect implies that under certain circumstances (that will be ex-

13This is the approach taken by Jara-Dı́az and Gschwender (2009) where they show that
a self-funding restriction implies a transit system with lower frequencies and bigger buses
compared to the social optimal levels (assuming no cost of public funds).
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plored in a numerical model further below), subsidies may be higher for some
intermediate value of the cost-sharing parameter compared to the case of a
tight budget constraint. This is an unexpected and counter intuitive result
implying that cost inflation may actually increase optimal subsidies in some
cases.

However, it should be noted that if e↵ort does not have any e↵ect on
marginal costs and only a↵ects fixed costs, the last term of (17) disappears
since the second derivative of the cost function with respect to output and
e↵ort in zero implying that de

dq

p

= 0 from equation (18). In addition, since
e↵ort does not a↵ect marginal costs, the optimal fare is una↵ected by the
cost-sharing parameter in this case.14

It might seem puzzling that in this last case no allowance should be made
to fares to accommodate the higher average costs due to the low e↵ort. The
explanation is somewhat subtle. For a given cost-sharing parameter and as-
suming patronage has no e↵ect on e↵ort, fares will have no e↵ect on the
cost ine�ciency. This ine�ciency will be reflected as higher fixed costs, not
a↵ecting marginal costs. But in this case the optimal fare does not depend
on fixed costs and will only imply that as average costs are higher, the ad-
justment to fares in the second term of (17) is higher without changing the
optimal fare. Another way to look at the same issue is to note that higher
fixed costs should be funded through fares until the deadweight loss associ-
ated with these higher fares equals the cost of public funds. Since the cost of
public funds is exogenous and parametric to the problem, starting from an
optimal fare level an increase in fixed costs due to higher ine�ciency (lower
✓) should be funded through transfers since this is the cheaper option form
an economic perspective.

This last result does not imply that no e↵ort should be made to increase
e�ciency by changing the cost-sharing rule, a point we will discuss in the
conclusions. Rather, for a constant cost-sharing rule nothing is gained by
increasing fares beyond the case whne there is no cost inflation.

14In the regulatory literature this is called the incentive-pricing dichotomy. See La↵ont
and Tirole (1993) for more on this issue.
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4 A simple numerical illustration

In order to illustrate the above ideas in this section we use a very simple
model to solve for the optimal fare and examine how this fare changes as the
cost sharing parameter changes. In particular, we want to show that for some
parameter configurations optimal subsidies actually increase for intermediate
values of the cost sharing parameter.

The numerical simulations are not alleged to be realistic or represent the
actual values of a particular transit system. That requires and in-depth em-
pirical study that goes beyond the scope of this paper. Rather, we want to
show that an increase in subsidies as the cost sharing parameter takes inter-
mediate values is a theoretical possibility.

We assume that the cost function is given by:

CT

op

p

(q
p

, e) = k · q↵ · exp��·e (20)

where k > 0 is a scale parameter, ↵ > 0 determines economies of scale in
production and � > 0 determines the cost reducing e↵ects of managerial ef-
fort. Notice that in this specification e↵ort will have an e↵ect over marginal
costs and therefore the last term of (17) does not vanish.

The dis-utility of e↵ort is assumed to be:

 (e) = exp

�·e (21)

where � es a positive parameter.

Demand is assumed to be iso-elastic:

q

p

(⌧
p

) = K · ⌧�⌘

p

(22)
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where K is a scale parameter and ⌘ is the absolute value of the price elasticity
of demand.

As for the Mohring e↵ect, we assume a very simple specification:

(mc

u

p

� ac

u

p

) = M · q�0.5
p

(23)

where M is a positive parameter. This specification implies that user scale
economies decrease at a rate proportional to the square root of demand. This
can be justified by the ‘square root law’ that states that in simple transit
models, frequency should increase at a rate proportional to the square root
of demand. Since waiting times will be inversely proportional to frequency,
then user costs will also decrease proportional to this rate.

The externality e↵ect is set to a fixed value of Ext ·D
ap

= D independent
of demand. Finally, the cost of public funds is a fixed parameter �.15

With the above specifications it is possible to numerically solve for the
optimal fare given di↵erent cost-sharing parameters. Table 1 shows the pa-
rameter values for the first model solved. Figure 1 shows the average cost
and optimal fare for this parameter configuration. It can be seen that as the
cost-sharing parameter decreases, average cost and the optimal fare increase.
However, from Figure 2 it can be seen that the subsidy per trip increases
for intermediate values of the cost-sharing parameter compared to the case
of optimal e↵ort (✓ = 1)., but the total subsidy decreases monotonically as
operators become more ine�cient (Figure 3).

Table 2 shows the parameter values of a very similar model to the first
one, except that parameter � is lowered to 1.0. Thus in this second model
e↵ort is less costly in terms of utility to managers. With this slight change it
can be seen from Figure 4 that average cost and the optimal fare are lower
than in model 1. This is due to the fact that more e↵ort is expended in this
second model and thus average costs and fares are lower. However, it can be
seen from Figure 5 that the optimal subsidy per trip is slightly higher than

15Reasonable values for � are between 0.2-0.4 depending on the tax structure of a country
or city.
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Table 1: Parameter values for numerical model 1

Parameter Value
k 100
↵ 1
� 0.1
� 1.5
K 10,000,000
⌘ 0.7
M -10,000
D -15
� 0.3

in the previous model.

Table 2: Parameter values for numerical model 2

Parameter Value
k 100
↵ 1
� 0.1
� 1
K 10,000,000
⌘ 0.7
M -10,000
D -15
� 0.3

The interesting aspect of the parameter configuration for this second
model is that total subsidy has an inverted U shape as shown in Figure
6. Total subsidies increase for a cost-sharing parameter below one, reaching
a maximum when ✓ is equal to 0.64. This is a direct consequence of the
last term of equation (17) whereby optimal fares should be adjusted in or-
der to increase demand and through this mechanism indirectly increase cost
reducing e↵ort. If this last term is set to zero in this last model then the
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optimal subsidy per trip as well as total subsidy monotonically decrease as
✓ decreases.

5 Conclusion

What we have shown in this paper is that the mere existence of cost inflation
and a soft budget constraint does not imply that transit subsidies should be
eliminated. Recognizing that there may be productive ine�ciencies is not
su�cient to eliminate these subsidies and increase fares. If the cost-sharing
parameter —that measure the ‘tightness’ of the budget constraint— is fixed
then no e�ciency gains will be made through this policy (the ine�ciency
would now be funded through fares rather than government transfers) and
may actually increase ine�ciency if lower output implies less cost reducing
e↵ort on the part of operators.

The main policy consequences of our results is that in order to tackle
cost inflation, reforms that increase ✓ must be introduced. Another way to
see this is that if ✓ is not changed then ine�ciencies either remain the same
or increase if cost reducing e↵ort is related to the quantity produced. In
this case, the dilemma is whether these ine�ciencies should be funded from
fares or through subsidies. We have seen that this will depend, on the one
hand, on the cost of public funds and, on the other hand, on the e�ciency
arguments that call for subsidies.

An example may help to illustrate this idea. Lets assume a transit op-
erator is publicly owned. Imposing a tight budget constraint on these types
of companies is not easy since employees’ and managers’ payment structure
may be based on public sector regulations that do not allow for profit mo-
tives or to link salaries to performance or they may have political power that
precludes imposing a tight budget constraint. In this scenario, recognizing
that the operator is ine�cient does not imply that the solution is to raise
fares and lower subsidies. This change will only a↵ect who is paying for these
ine�ciencies but does not do much to reduce operating costs. In fact, ine�-
ciencies may increase if higher fares reduce demand and thereby also reduce
cost reducing e↵ort linked to demand levels. In this case, privatization, com-
petitive tendering or yardstick competition may be the correct policy options
but eliminating subsidies by itself may make matters worse.

18



In this paper we have assumed that the cost-sharing parameter is exoge-
nous. Another possibility is that the potential to receive subsidies a↵ects the
cost-sharing rule. That is, the ✓ parameter in our model could be endogenous
and depend on the possibility of making transfers to operators. Analyzing
this case would require making a welfare comparison between a situation in
which transfers are prohibited and operators must break-even and a situ-
ation in which the authorities can make transfers to operators. There are
many subtle issues that must be addressed with this approach as discussed
in Chapter 15 of La↵ont and Tirole (1993). We leave for further research the
application of this idea to transit services.
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A Derivation of the optimal fare formula

Rearranging equation (16) and using the restrictions, the Lagrange function
for this problem is:
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where !, �, � and µ are the Lagrange multipliers associated with the four
restrictions and as before � es the (exogenous) cost of public funds.

The first-order conditions for this problem are:
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where in the above expressions acu
p

0 is the derivative of the average user cost
of public transport:
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Using (25), (28) and (30) we obtain that:
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where Ext is the externality caused by private transport and not internalized
by ⌧

a
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Using (29), (31) and (32) and inserting them into (26) and rearranging
we obtain:
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Using the expression for ! (equation (35)) and condition (28) and dividing
through by (1 + �) we obtain:

⌧

p

=mc

op

p

+
1

(1 + �)
· (mc

u

p

� ac

u

p

) +
1

(1 + �)
· Ext · B

ap

(ac0
a

� B

aa

)

� �

(1 + �)
· qp · Bpa

· B
ap

(ac0
a

� B

aa

)
+

�

(1 + �)
· q

p

·
�
ac

u

p

0 � B

pp

�

+
1

(1 + �)
· � ·

�
✓ ·

@

2
CT

op

p

@e@q

p

(q
p

, e)
�

(38)

The above condition can be expressed in a more concise way if we in-
troduce the diversion ratio D

ap

which is defined as the ratio of the change
in private car use due to an increase in the public transport fare over the
change in public transport users due to an increase of this fare. Totally
di↵erentiating condition (30) we can see that:

D

ap

=
dq

a

dq

p

=
B

ap

(ac0
a

� B

aa

)
(39)

Thus, we arrive at a simpler expression of the optimal public transport
fare:
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In the above expression | 
p

| is the absolute value of the total elasticity
of public transport with respect to its fare. To see this, totally di↵erentiate
condition (31) with respect to all its arguments:
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Dividing this last expression by dq
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and using the definition of the diver-
sion ratio we obtain:
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Thus, the fourth and fifth terms of condition (38) are equal to:
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from which equation (40) follows.

Finally, from condition (27) and using (29) and (32) it is possible to obtain
the expression for �:
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Inserting this last expression into (40) we obtain:
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where de

dq

p

is how e↵ort changes when transit demand increases and is obtained

by totally di↵erentiating (32):
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Figure 1: Average cost and optimal fare: model 1
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Figure 2: Subsidy per trip: model 1
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Figure 3: Total Subsidy: model 1
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Figure 4: Average cost and optimal fare: model 2
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Figure 5: Subsidy per trip: model 2
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Figure 6: Total Subsidy: model 2
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