Tabla de contenido

Re	esum	en	i
Ag	grade	ccimientos	ii
Ta	bla o	le contenido	iii
Ín	dice	de Tablas	\mathbf{v}
Ín	dice	de Figuras	x
1.	Intr	oducción	1
	1.1.	El terremoto de Iquique M_w 8.2 del 2014 \ldots \ldots \ldots \ldots \ldots \ldots	1
	1.2.	Objetivos de la tesis	6
		1.2.1. Objetivos principales	6
		1.2.2. Objetivos específicos	6
		1.2.3. Estructura de la tesis \ldots	7
2.	Base	e de datos de tsunamis	9
	2.1.	Registros de tsunami y procesamiento de datos	9
3.	Mod	delos directos de fuente sísmica para la propagación de tsunamis	18
	3.1.	El modelo NEOWAVE	18
	3.2.	Cálculo de la deformación	20
	3.3.	Modelos de fuente finita	23
4.	Inve	ersión del deslizamiento cosísmico usando datos de tsunami	29
	4.1.	Introducción al proceso de inversión	29
	4.2.	Formulación y fundamentos del método	29
	4.3.	Teoría Shallow-Water o de agua poco profunda	35
	4.4.	Sistema matricial para la inversión	39
	4.5.	Selección de los datos a invertir	41

	4.6.	Elecci	ón del factor regularizador α	44
	4.7.	Result	ado final de la inversión y discusión	47
5.	Esce	enarios	s de tsunami para el norte de Chile	52
	5.1.	Introd	ucción	52
	5.2.	Model	os de fuente sísmica para escenarios de tsunami	55
	5.3.	Gener	ación de una distribución heterogénea de deslizamiento	60
	5.4.	Magni	tud de momento sísmico para los segmentos de falla	63
	5.5.	Escena	arios de tsunami para el norte de Chile	70
		5.5.1.	Evento magnitud M_w 8.9 en el segmento completo	70
		5.5.2.	Evento magnitud M_w 8.7 en la parte centro-norte del segmento \ldots	71
		5.5.3.	Evento magnitud M_w 8.7 en la parte centro-sur del segmento	73
		5.5.4.	Evento magnitud M_w 8.5 en el segmento norte	74
		5.5.5.	Evento magnitud M_w 8.5 en el segmento central	75
		5.5.6.	Evento magnitud M_w 8.5 en el segmento sur $\ldots \ldots \ldots \ldots$	76
6.	Con	clusio	nes	78
	6.1.	Perspe	ectivas y desarrollos futuros	79
Bi	bliog	rafía		81

Índice de Tablas

2.1.	Nombre y localización de las estaciones utilizadas para el estudio del tsunami	
	asociado al terremoto de Iquique M_w 8.2	11
4.1.	Modelo 1D de estructura de velocidades usado para el norte de Chile (Delouis et al., 2007)	32

Índice de Figuras

1.1.	Sismicidad reportada por el CSN durante el mes de Enero del 2014. \ldots .	2
1.2.	Sismicidad reportada por el CSN durante el mes de Febrero (izquierda) y	
	Marzo (derecha) del 2014. \ldots	3
1.3.	Sismicidad reportada por el CSN durante el mes de Abril (izquierda) y Mayo	
	(derecha) del 2014	4
1.4.	Comportamiento en latitud como función de los días previos y posteriores al terremoto principal de Iquique.	4
1.5.	Terremoto de Iquique 2014 y sismicidad posterior. Extraído de la página web	
	del USGS (Hayes, 2014)	5
2.1.	Esquema de funcionamiento de una boya DART, obtenido de la WEB del	
	N.D.B.C. http://www.ndbc.noaa.gov/	10
2.2.	Ubicación de las 13 estaciones utilizadas para el estudio del t sunami. \ldots .	11
2.3.	Registro en bruto obtenido a partir del mareógrafo ubicado en la localidad de	
	Antofagasta. La variación de altura corresponde a la medición por sobre el	
	nivel medio del mar para cada estación	12
2.4.	Registros de la estación Antofagasta procesados con un filtro paso-alto para	
	remover el efecto de la marea. Notar que los efectos de mareas ya no están	
	presentes	13
2.5.	Registro en bruto de la estación DART32401. Las amplitudes corresponden al	
	espesor de la columna de agua bajo la boya y sobre el sensor	14
2.6.	Registro de la estación DART32401 procesados con un filtro paso-alto. Notar	
	que los efectos de las mareas ya no están presentes. \ldots \ldots \ldots \ldots \ldots	15
2.7.	Registros procesados de los 10 mare ógrafos. El tiempo 0 corresponde al instante	
	de inicio del terremoto de Iquique	16
2.8.	Registros procesados de las 3 boyas DART. El tiempo 0 corresponde al instante	
	de inicio del terremoto de Iquique	17

3.1.	Deformación horizontal (flechas) y vertical uz generadas por una fuente pun-	
	tual de rumbo 90°, manteo 90°, deslizamiento 0°, momento sísmico escalar	
	$M_o=4,0\cdot 10^{19}[N\cdot m], M_w=6,6, y$ profundidad de $10[km]$ que ocurre dentro	
	de un semi-espacio que se comporta como un sólido de Poisson con densidad	
	$\rho = 3.0[qr/cc]$ v velocidad de onda P, $V_n = 6.8[km/s]$.	21
3.2.	Deformación horizontal (flechas) y vertical <i>uz</i> dentro de un sistema de coorde-	
	nadas geográficas generada por una falla rectangular de $40[km] \cdot 20[km]$ de área	
	v rumbo 350° manteo 20° deslizamiento 90° cuva distribución de deslizamien-	
	to escalar $M = 2.5 \cdot 10^{20} [N \cdot m]$ v profundidad	
	de $15[km]$ que ocurre dentro de un semi-espacio con densidad $a=3.12[ar/cc]$	
	velocidad de onda P $V = 7.0[km/s]$ v velocidad de onda S $V = 3.98[km/s]$	22
33	Región sobre la cual se ubicarán los distintos modelos de desplazamiento elíp-	
0.0.	ticos para calcular la deformación on superficio. La estrella representa el enj	
	contro del terromoto de Iquique	<u> </u>
3 /	Fiemple de una elipse con retación dentre de un plane cartesiane	$\frac{20}{25}$
9.4. 2.5	Distintos modelos de fuente sísmica con distribución elíptica de deslizamien	20
0.0.	bistintos inodeios de luente sistinca con distribución enprica de desizamien- to (izquiorda) y las deformaciones calculadas en la superficie del semiospacio	
	(derecha). Les apparezes estén contrades en el hinocontre (arriba), el sureste	
	del mismo (contro), y el poresto (choio)	26
26	Comparagión entre registres de manégrafes (líness egules) y les obtenides en	20
5.0.	comparación entre registros de mareografos (inteas azues) y los obtenidos con	
	el modelo directo (inteas fojas) para un modelo de fuente elíptica ubicada al	07
97	Comparagión entre registres de les 2 house DAPT (líneas equiles) y les entre	21
J.1.	comparación entre registros de las 5 boyas DART (inteas azules) y los obte-	
	nidos con el modelo formard (ineas rojas) para un modelo de fuente elíptica	00
	al sureste del epicentro	28
4.1.	Modelo del plano de falla rectangular discretizado que se usará para la inver-	
	sión. La estrella representa el epicentro del terremoto de Iquique magnitud ${\cal M}_w$	
	8.2	30
4.2.	Modelos de distribución de desplazamiento cosísmicos obtenidos como resul-	
	tado de inversiones para el terremoto del 1 de Abril de 2014 obtenidos por	
	diversos autores. La estrella representa la ubicación del hipocentro y los auto-	
	res están detallados en la parte superior izquierda.	31
4.3.	Ejemplo de deformación vertical generada por una de las subfallas	33
4.4.	Registros sintéticos de la elevación del agua calculados numéricamente en los	
	10 mareógrafos generados por una de las subfallas	34
4.5.	Registros sintéticos de la elevación del agua calculados en las 3 boyas DART	
	generados por una de las subfallas.	35

4.6.	Esquema de la elevación de la superficie libre η y del fondo marino η_B junto	
	con el espesor de la columna de agua	37
4.7.	Gráfico para la función $y = tanh(x)$ (línea continua) y los errores asociados	
	cuando esta función se aproxima a x y a 1 (líneas segmentadas). También se	
	muestra la escala para D/λ , donde D es la profundidad del agua y λ es la	
	longitud de onda del tsunami (Satake, 1987)	38
4.8.	Sistema matricial para llevar a cabo la inversión de deslizamiento.	40
4.9.	Datos del tsunami del 15 de Noviembre de 2006, en Islas Kuriles, Boya DART	-
	21414. Los círculos y asteriscos representan al registro, donde los primeros	
	corresponden a la primera ola completa u ola líder, v los segundos al resto del	
	registro. La línea continua es el ajuste obtenido por Percival con su modelo.	
	Tomado de Percival et al. (2011) .	42
4.10.	. Registros de boyas DART para el tsunami asociado al terremoto de Iquique.	
	2014. El tiempo de origen corresponde al inicio del evento.	43
4.11.	Registros de boyas DART a utilizar en la inversión. La línea roja indica el final	
	de la serie de tiempo a utilizarse.	43
4.12.	Distintas inversiones y solución de la distribución de desplazamiento cosísmico	
	usando datos de tsunamis obtenidas para distintos valores del parámetro α .	44
4.13.	Eiemplo de curva L (izquierda) y su correspondiente curvatura (derecha) como	
	función del parámetro λ de regularización. Tomado de Hansen (2011).	46
4.14.	Curva L para la inversión de deslizamiento cosísmico del evento de Iguigue, 1 de	
	abril de 2014. La estrella destaca el punto de esquina y el valor correspondiente	
	de α .	46
4.15.	. Resultado final de la inversión, utilizando los registros de las 3 bovas DART a	
	invertir v el valor de α de 0.00286	47
4.16.	. Ajuste de las formas de onda en todas las estaciones y mapa de la deforma-	
	ción vertical asociada al modelo obtenido de la inversión. Las líneas azules	
	corresponden a los registros y las rojas al ajuste del modelo obtenido en la	
	inversión.	48
4.17.	. Posición de estaciones cercanas al plano de falla discreto usado para la inversión.	49
4.18.	. Comparación de formas de onda obtenidas por el sistema matricial lineal (línea	
	continua de color rojo) y las obtenidas al utilizar el modelo de fuente produc-	
	to de la inversión con el programa NEOWAVE, incluyendo no linealidad y	
	dispersión (línea punteada negra).	50
5.1.	Mapa del norte de Chile y sur de Perú mostrando los largos de ruptura estima-	
	dos y años de ocurrencia de mega-terremotos de subducción tanto reportados	
	históricamente como instrumentalmente registrados (Ruiz et al. 2015)	53

5.2.	Isosistas VIII de la escala Mercalli Modificada indicando zonas afectadas por el mega-terremoto de 1877. Algunas localidades importantes se muestran como referencia. Extraído do Comto & Pardo (1991)	54
5.3.	a) Geometría adoptada en este trabajo para el contacto sismogénico del seg- mento total que cubre la llamada laguna sísmica del norte de Chile. b), c), d) y e) Comparación de la geometría de la superficie de ruptura en profundidad con la geometría del contacto definido por el modelo <i>Slab</i> 1.0 del USGS (Hayes	01
5.4	et al. 2012) para cuatro perfiles ubicados en la región de laguna sísmica Superficie de falle formada por los segmentos contro y sur de la superficie	57
0.4.	definida inicialmente	58
55	Superficie de falla formada por los segmentos centro y norte de la superficie	00
0.0.	definida inicialmente.	58
5.6.	Superficie de falla formada por el segmento norte de la superficie definida	
	inicialmente.	59
5.7.	Superficie de falla formada por el segmento central de la superficie definida	
	inicialmente	59
5.8.	Superficie de falla formada por el segmento sur de la superficie definida ini-	
	cialmente.	60
5.9.	Ejemplo de deslizamiento estático estocástico. Extraído de Andrews (1980)	61
5.10.	. Realización numérica para una distribución estocástica k^{-2} de un terremoto	
	magnitud M_w 9.0. Arriba se tiene la distribución espacial de deslizamiento,	
	y abajo la amplitud del espectro de Fourier 2D como función del número de	60
E 11	Disconda radial. Extraido de Ruiz et al. (2015).	62
0.11.	Ejempio de distribución espacial de desizamiento estocastica con decamiento espacial h^{-2} para al segmente porte	64
5 1 2	Espectrar λ para el segmento norte	04
0.12.	espectral k^{-2} para el segmento centro	65
5.13.	Eiemplo de distribución espacial de deslizamiento estocástica con decaimiento	00
0.10	espectral k^{-2} para el segmento sur	66
5.14.	Ejemplo de distribución espacial de deslizamiento estocástica con decaimiento	
	espectral k^{-2} para la combinación de los segmentos centro y norte	67
5.15.	. Ejemplo de distribución espacial de deslizamiento estocástica con decaimiento	
	espectral k^{-2} para la combinación de los segmentos centro y sur	68
5.16.	. Ejemplo de distribución espacial de deslizamiento estocástica con decaimiento	
	espectral k^{-2} para la región de laguna sísmica completa	69

5.17. a) Mapa que muestra el dominio de cálculo y las estaciones en donde se calcula	
la elevación del agua. b) Distribución del $\mathit{run-up}$ promedio obtenido a lo largo	
de la costa modeladas para un evento de magnitud M_w 8.9 en el norte de Chile.	71
5.18. a) Mapa que muestra el dominio de cálculo y las estaciones en donde se calcula	
la elevación del agua. b) Distribución del $\mathit{run-up}$ promedio obtenido a lo largo	
de la costa modeladas para un evento de magnitud M_w 8.7 en la parte centro-	
norte del segmento completo.	72
5.19. a) Mapa que muestra el dominio de cálculo y las estaciones en donde se calcula	
la elevación del agua. b) Distribución del $\mathit{run-up}$ promedio obtenido a lo largo	
de la costa modeladas para un evento de magnitud M_w 8.7 en la parte centro-	
sur del segmento completo	73
5.20. a) Mapa que muestra el dominio de cálculo y las estaciones en donde se calcula	
la elevación del agua. b) Distribución del $\mathit{run-up}$ promedio obtenido a lo largo	
de la costa modeladas para un evento de magnitud ${\cal M}_w$ 8.5 en la parte norte	
del segmento completo	74
5.21. a) Mapa que muestra el dominio de cálculo y las estaciones en donde se calcula	
la elevación del agua. b) Distribución del $\mathit{run-up}$ promedio obtenido a lo largo	
de la costa modeladas para un evento de magnitud M_w 8.5 en la parte central	
del segmento completo	75
5.22. a) Mapa que muestra el dominio de cálculo y las estaciones en donde se calcula	
la elevación del agua. b) Distribución del $\mathit{run-up}$ promedio obtenido a lo largo	
de la costa modeladas para un evento de magnitud M_w 8.5 en la parte sur del	
segmento completo.	76

Χ