
Web Semantics: Science, Services and Agents on the World Wide Web 41 (2016) 9–29
Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: www.elsevier.com/locate/websem

LDQL: A query language for the Web of Linked Data✩

Olaf Hartig a,∗, Jorge Pérez b

a Department of Computer and Information Science (IDA), Linköpings Universitet, SE-581 83 Linköping, Sweden
b Department of Computer Science, Universidad de Chile & Chilean Center for Semantic Web Research, Beauchef 851, Santiago - 8370456, Chile

a r t i c l e i n f o

Article history:
Received 31 March 2016
Received in revised form
15 August 2016
Accepted 15 October 2016
Available online 29 October 2016

keywords:
Linked Data
Query language
Foundations
SPARQL
Queries

a b s t r a c t

The Web of Linked Data is composed of tons of RDF documents interlinked to each other forming a huge
repository of distributed semantic data. Effectively querying this distributed data source is an important
open problem in the Semantic Web area. In this paper, we propose LDQL, a declarative language to query
Linked Data on the Web. One of the novelties of LDQL is that it expresses separately (i) patterns that
describe the expected query result, and (ii) Web navigation paths that select the data sources to be used
for computing the result. We present a formal syntax and semantics, prove equivalence rules, and study
the expressiveness of the language. In particular, we show that LDQL is strictly more expressive than all
the query formalisms that have been proposed previously for LinkedData on theWeb.We also study some
computability issues regarding LDQL. We first prove that when considering the Web of Linked Data as a
fully accessible graph, the evaluation problem for LDQL can be solved in polynomial time. Nevertheless,
when the limited data access capabilities of Web clients are considered, the scenario changes drastically;
there are LDQL queries for which a complete execution is not possible in practice. We formally study this
issue and provide a sufficient syntactic condition to avoid this problem; queries satisfying this condition
are ensured to have a procedure to be effectively evaluated over the Web of Linked Data.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

In recent years an increasing amount of structured data has
been published and interlinked on the World Wide Web (WWW)
in adherence to the Linked Data principles [1]. These principles
are based on standard Web technologies. In particular, (i) the
Hypertext Transfer Protocol (HTTP) [2] is used to access data,
(ii) HTTP-based Uniform Resource Identifiers (URIs) [3] are used as
identifiers for entities described in the data, and (iii) the Resource
Description Framework (RDF) [4] is used as data model. Then, any
HTTP URI in an RDF triple presents a data link that enables software
clients to retrieve more data by looking up the URI with an HTTP
request. The adoption of these principles has lead to the creation
of a globally distributed dataspace: theWeb of Linked Data.

The emergence of the Web of Linked Data makes possible
an online execution of declarative queries over up-to-date data
from a virtually unbounded set of data sources, each of which
is readily accessible without any need for implementing source-
specific APIs or wrappers. This possibility has spawned research

✩ This paper is an extended and revised version of Hartig and Pérez (2015).
∗ Corresponding author.

E-mail address: olaf.hartig@liu.se (O. Hartig).

http://dx.doi.org/10.1016/j.websem.2016.10.001
1570-8268/© 2016 Elsevier B.V. All rights reserved.
interest in approaches to query the Web of Linked Data as if it
was a single (distributed) database. For an overview on techniques
proposed to execute queries over Linked Data on the WWW refer
to [5].

While there does not exist a standard language for expressing
such queries, a few options have been proposed in the research
literature. In particular, a first strand of research focuses on
extending the scope of the RDF query language SPARQL [6] such
that an evaluation of SPARQL queries over Linked Data on the
WWW has a well-defined semantics [7–11]. A second strand
of research focuses on navigational languages [12,13]. Although
these approaches have different motivations, a commonality of
all these proposals is that the definition of query-relevant regions
of theWeb of Linked Data and the definition of query-relevant data
within the specified regions aremixed ; as a result, in their queries,
users cannot specify one without affecting the other.

The first main contribution of this paper is the proposal of
LDQL, a novel query language for the Web of Linked Data. The
most important feature of LDQL is that it clearly separates query
components for selecting query-relevant regions of the Web of
Linked Data, from components for specifying the query result that
has to be constructed from the data in the selected regions. The
most basic construction in LDQL are tuples of the form ⟨L,Q ⟩where
L is an expression used to select a set of relevant documents,

http://dx.doi.org/10.1016/j.websem.2016.10.001
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2016.10.001&domain=pdf
mailto:olaf.hartig@liu.se
http://dx.doi.org/10.1016/j.websem.2016.10.001

10 O. Hartig, J. Pérez / Web Semantics: Science, Services and Agents on the World Wide Web 41 (2016) 9–29
and Q is a query intended to be executed over the data in these
documents as if they were a single RDF repository. In an abstract
setting one can use several formalisms to express L and Q . In our
proposal, for the former part we introduce the notion of link path
expressions that are a form of nested regular expressions (with
some other important features) used to navigate the link graph of
the Web. For the latter, we use standard SPARQL graph patterns.
Such basic LDQL queries can be combined by using conjunctions,
disjunctions, and projection. To begin evaluating these queries one
needs to specify a set of seed URIs. The language also possesses
features to dynamically (at query time) identify new seed URIs to
evaluate portions of a query. In this paper, we present a formal
syntax and semantics for LDQL and propose some rewrite rules.

As our second main contribution we compare LDQL with four
previously proposed formalisms for querying the Web of Linked
Data: SPARQL under reachability-based query semantics [8], SPARQL
Property Path patterns under context-based semantics [10], SPARQL
under full-Web query semantics [8,10], and NautiLOD [13]. We
formally prove that LDQL is strictly more expressive than every
one of these. That is, we show that for every query Q in any
of the previous languages, one can effectively construct an LDQL
query that is equivalent to Q . Moreover, for every one of the
previous languages, there exists an LDQL query that cannot be
expressed in that language. These results show that LDQL presents
an interesting expressive power.

Our third contribution is a study of computability issues
regarding LDQL. We first study the classical complexity of the
query language; we show that, in a setting in which the Web of
Linked Data is considered as a fully accessible graph, every LDQL
query can be evaluated in polynomial time. In contrast, when
we consider the intrinsic limitations of data access as per the
Linked Data principles, there exists queries for which a complete
execution is not possible in practice. To capture this issue formally,
we define a notion of Web-safeness for LDQL queries. Then, the
obvious question that arises is how to identify LDQL queries that
are Web-safe. Our last technical contribution is the identification
of a sufficient syntactic condition for Web-safeness.

The rest of the paper is structured as follows. Section 2 provides
an overviewof relatedwork. Section 3 introduces a datamodel that
provides the basis for defining the semantics of LDQL. In Section 4
we formally define the syntax and semantics of LDQL and show
some simple algebraic properties. In Section 5 we compare LDQL
with the three mentioned languages, and in Section 6 we focus on
computability issues. Section 7 concludes the paper and sketches
future work.

Preliminary versions of some of the results in this paper
appeared in [14]. The new material added in this version includes
a comprehensive discussion of related work, complete proofs
for all the results (these proofs were not presented in [14]),
detailed translation rules fromprevious query languages for Linked
Data to LDQL, as well as the result on the polynomial classical
complexity of the language (Theorem 9) that was presented only
as a conjecture in [14].

2. Related work

Since its emergence the WWW has attracted research inter-
est in adopting declarative query languages for retrieving infor-
mation from the WWW. In this section we briefly review gen-
eral (i.e., Linked Data independent) query languages for theWWW
and, afterwards, discuss existing query formalisms and languages
designed to query the Web of Linked Data.

We do not compare LDQL with more standard graph navi-
gational languages [15] such as XPath [16], GraphLog [17], and
nSPARQL [18], or the formalisms used in graph database systems
like Neo4j [19] or Sparksee [20], as all of them are designed to
navigate graph data in a centralized scenario in which the graph
is stored locally. An interesting direction for future research is to
explore more expressive ways of navigating graphs, for instance
GraphLog [17], and adapt them as the navigational part of LDQL.

2.1. Early work on Web query languages

Initial work on querying the WWW emerged in the late 1990s.
Florescu et al.’s survey provides an overview on early work in this
area [21]. Most of this work is based on an understanding of the
WWW as a distributed hypertext system consisting of Web pages
that are interconnected by hypertext links.

Query languages proposed and studied in this context can
be grouped into languages to retrieve either specific Web
pages (e.g., W3QL [22,23]), particular attributes of specific Web
pages (e.g., WebSQL [24,25], F-logic [26], Web Calculus [27]), or
particular content within specific Web pages (e.g., WebLog [28],
WebOQL [29], NetQL [30], NALG [31], Squeal [32], HTML-QL [33],
WQL [34]). Common to these languages is the navigational nature
of the queries. That is, each of these languages is based on some
form of path expression that allows users to specify navigation
paths to relevant Web pages. Additionally, the query languages
that belong to the third group possess features to select content
within the relevant pages; hence, these languages are similar in
spirit to LDQL.

However, by using these earlier Web query languages, Web
data can be retrieved only in an unstructured or, at best, semi-
structured form. In contrast, the data considered by LDQL (and by
the other Linked Data related query languages that we discuss in
the following) is structured and query results may combine such
data from multiple separate sources. Another distinctive novelty
of some Linked Data query languages, including LDQL, is that
navigation paths can be specified in terms of data links (as opposed
to ordinary hypertext links).

2.2. SPARQL-based query formalisms for linked data

Live execution of declarative queries directly over the Web
of Linked Data has attracted much attention recently (e.g., [5,11,
35–37]). The majority of existing work on query execution and
optimization approaches proposed in this context assumes that
the queries to be executed are expressed by using the conjunctive
fragment of SPARQL (i.e., SPARQL basic graph patterns). However,
the SPARQL standards do not provide a formal foundation to apply
SPARQL in this context. Nonetheless, SPARQL seems to be a natural
first choice given that Linked Data is based on the RDF data
model and SPARQL is the standard query language for RDF data.
Consequently, multiple proposals exist for adapting the standard
query semantics of SPARQL to provide for well-defined queries
over data that can be accessed as per the Linked Data principles.

Bouquet et al. were the first to provide a formalization for
using SPARQL basic graph patterns (BGPs) as a language for
Linked Data queries [7]. We went a step further and considered
a more expressive fragment of SPARQL [8]. Other BGP-focused
proposals have been published by Umbrich et al. [11] and by Harth
and Speiser [9]. In the following, we describe these proposals
informally.

Bouquet et al. formalized three ‘‘query methods’’ for BGPs [7]:
First, the ‘‘bounded method’’ assumes that queries contain a
specification that enumerates a particular set of documents. The
evaluation of such a query is then restricted to the data in these
documents. Informally, this method corresponds to a restricted
form of the most basic LDQL construction ⟨L,Q ⟩ in which L is
restricted to simply contain a list of pointers to documents and
Q is some BGP. Bouquet et al.’s second method, the ‘‘navigational
method’’, is based on a notion of reachability that assumes a

O. Hartig, J. Pérez / Web Semantics: Science, Services and Agents on the World Wide Web 41 (2016) 9–29 11
recursive traversal of all data links in a queried Web. The result
of a query must be computed by taking into account all data that
can be discovered by starting such a traversal from a designated
document. Thismethod also corresponds to a restricted formof the
most basic LDQL construction ⟨L,Q ⟩; in this case, L is restricted to
be an expression that specifies an exhaustive, recursive traversal,
and Q is some BGP again. For their third method, called ‘‘direct
access method’’, Bouquet et al. assume an oracle that, for any given
query, selects a set of ‘‘relevant’’ documents from the queriedWeb.
Without providing an idea of their notion of relevance in this
context, the authors define an expected query result based on
such a set of relevant documents. Due to the undefined basis of
this definition, this third query method cannot be meaningfully
compared to LDQL (or to any other query formalism).

Instead of focusing on BGPs only, in our earlier work we
considered a more expressive fragment of SPARQL (including the
operators AND,OPT,UNION, and FILTER) for which we introduced
a full-Web query semantics and a family of reachability-based
query semantics [8]. Informally, under the full-Web semantics,
the scope of evaluating SPARQL expressions is all Linked Data on
the queried Web. Based on a formal analysis, we showed that
it is impossible in practice to compute complete query results
under this semantics. The reachability-based semantics address
this limitation by restricting the scope of the evaluation to data
that is reachable by traversing a particular, well-defined set of
data links. The most restrictive version of these reachability-based
semantics resembles Bouquet et al.’s bounded method, and the
least restrictive version resembles the navigational method. For a
comparison between (selected) reachability-based semantics and
LDQLwe refer to Section 5.1 in whichwe show that LDQL is strictly
more expressive than SPARQL under these semantics. Additionally,
in Section 5.3we show that the sameholds for LDQL versus SPARQL
under full-Web semantics.

Umbrich et al. focus on BGPs and define five different query se-
mantics for conjunctive Linked Data queries [11]. The first of these
semantics resembles one of the aforementioned reachability-
based semantics; namely, the cMatch-semantics (cf. Section 5.1).
Umbrich et al.’s other query semantics extend this cMatch-semantics
to ‘‘benefit [from] inferable knowledge’’ [11]. Thus, these extensions
take into account additional RDF triples that can be inferred from
data available on the queried Web. In particular, these query se-
mantics integrate (i) lightweight RDFS reasoning [38] (restricted to
a fixed, a-priori defined set of vocabularies), and (ii) inference rules
for RDF triples with the predicate owl:sameAs [39]. While LDQL, as
presented in this paper, does not provide features for leveraging
inferable knowledge, we consider possible extensions in this di-
rection as a very interesting topic for future research.

Harth and Speiser also focus on BGPs only and propose several
Linked Data related query semantics for them [9]. These semantics
use authoritativeness of data sources to restrict the evaluation
of queries to particular subsets of all data in a queried Web.
Unfortunately, the proposal lacks a proper formal definition of one
of the key concepts for specifying authority restrictions (that is, the
concept of an ‘‘authoritative lookup’’ [9, Definition 10]). Therefore,
it is impossible to discuss Harth and Speiser’s query semantics
in detail or to provide an informed comparison with other query
formalisms or languages such as LDQL.

A common characteristic of all these Linked Data specific
adaptations of SPARQL is that query results are described in terms
of SPARQL patterns that have to be matched against the (virtual)
union of all RDF data from a particular subset of the data sources
on the Web of Linked Data. However, none of these adaptations
provides ameans to explicitly specify this subset of data sources to
be considered. LDQL addresses this limitation.
2.3. Navigational languages for the Web of Linked Data

Instead of trying to adapt SPARQL to express queries over
the Web of Linked Data, some research groups have started to
work on new query languages for Linked Data. To the best of
our knowledge, two such languages have been proposed in the
literature: LDPath [12] and NautiLOD [13]. Both of these languages
are navigational languages tailored to query Linked Data on the
Web. That is, they introduce some form of path expressions based
on which a user may specify navigation paths over the graph
that emerges from the existence of data links between Linked
Data documents on the Web. Hence, these languages are similar
in nature to the first group of the early Web query languages
mentioned in Section 2.1. In the following we briefly describe both
languages.

In LDPath [12], the basic type of path expressions is a ‘‘property
selection’’ that is represented by a URI. Such an expression
selects the object of any RDF triple whose subject is the current
‘‘context resource’’ and whose predicate is the given URI. More
complex LDPath path expressions can be built recursively by
concatenating subexpressions or combining them via a union or
an intersection operator. Additionally, each subexpression may
be associated with a ‘‘path test’’ that represents a condition for
filtering the result of the subexpression. To our knowledge, there
does not exist a formally defined semantics for LDPath. However,
according to Schaffert et al. [12], ‘‘LDPath [...] allows traversal over
the conceptual RDF graph represented by interlinked Linked Data
servers’’. Unfortunately, a precise definition of this graph structure
is missing, and so is a definition of the particular graph that needs
to be considered for evaluating a given LDPath expression. Instead,
the authors informally suggest that ‘‘path traversal transparently
‘‘hops over’’ to other Linked Data servers when needed’’ [12]. Due to
the lack of a formal semantics, we ignore LDPath in the rest of this
paper.

NautiLOD expressions, in contrast, come with a formal seman-
tics [13]. The result of evaluating such an expression is a set of URIs
whose lookup yields a Linked Data document that is the end ver-
tex of some path specified by the expression. The basic building
blocks of NautiLOD expressions are very similar to LDPath. How-
ever, test expressions are more powerful because, in NautiLOD,
those tests are represented using existential, SPARQL-based sub-
queries and, thus, provide the full expressive power of the SPARQL
query language. Informally, a URI in the tested result of the corre-
sponding NautiLOD subexpression passes the test, if the existential
test query evaluates to true over the data that can be retrieved by
looking up this URI. Another interesting feature of NautiLOD are
action subexpressions that can be embedded into a NautiLOD path
expression. Represented actions are then performed as side-effects
of navigating along the specified paths. Such an action may be the
retrieval of data into a local store or the sending of a notification
message [13]. Our proposed language, LDQL, does not provide such
an actions feature (but it would be trivial to add such a feature for
applications designed to leverage it). If we ignore actions and ana-
lyze the expressive power of the navigational core of NautiLOD, we
shall see that it is strictly less expressive than LDQL (cf. Section 5.4).

As an alternative to defining a new language for navigation
over Linked Data, we have recently investigated an approach to
use the property paths feature of SPARQL 1.1 [6, Section 9] as a
navigational language for theWeb of Linked Data [10]. To this end,
we have defined a so-called context-based semantics for property
path expressions that is inspired by the semantics of NautiLOD.
Similar to the navigational core ofNautiLOD, the resulting language
is strictly less expressive than LDQL as we show in Section 5.2.

While LDPath, NautiLOD, and property paths expressions focus
on navigation, our goal with LDQL is to provide a language that
enables users to combine NautiLOD-style navigationwith SPARQL-
style RDF data matching.

12 O. Hartig, J. Pérez / Web Semantics: Science, Services and Agents on the World Wide Web 41 (2016) 9–29
3. Data model

In this section we introduce a structural data model that cap-
tures the concept of a Web of Linked Data formally. As usual
[8–11,13], for the definitions and analysis in this paper, we assume
that the Web is fixed during the execution of any single query.

We use the RDF datamodel [4] as a basis for ourmodel of aWeb
of Linked Data. That is, we assume three pairwise disjoint, infinite
sets U (URIs), B (blank nodes), and L (literals). An RDF triple is a
tuple ⟨s, p, o⟩ ∈ T with T = (U ∪ B) × U × (U ∪ B ∪ L). For
any RDF triple t = ⟨s, p, o⟩ we write uris(t) to denote the set of all
URIs in t .

Additionally, we assume another infinite set D that is disjoint
from U, B, and L, respectively. We refer to elements in this
set as documents and use them to represent the concept of Web
documents from which Linked Data can be extracted. Hence, we
assume a function, say data, that maps each document d ∈ D to
a finite set of RDF triples data(d) ⊆ T such that the data of each
document uses a unique set of blank nodes.

Given these preliminaries, we are ready to define a Web of
Linked Data.

Definition 1. Assume a special symbol⊥ such that⊥ ∉ D . AWeb
of Linked Data is a tuple W = ⟨D, adoc⟩ that consists of the
following two elements:
• D ⊆ D is a set of documents; and
• adoc is a function thatmaps every URI either to a document inD

or to the symbol⊥ (i.e., adoc : U → D∪{⊥}) such that for every
document d ∈ D, there exists a URI u ∈ U with adoc(u) = d.

Function adoc of a Web of Linked DataW = ⟨D, adoc⟩ captures
the relationship between the URIs that can be looked up in this
Web and the documents that can be retrieved by such lookups.
URIs that cannot be looked up, or whose look up does not re-
sult in retrieving a document (even after following HTTP-based
redirection pointers) are mapped to the special symbol ⊥. Here-
after, we write dom⊥̸(adoc) to denote the set of URIs that func-
tion adoc maps to a document (instead of ⊥); i.e., dom⊥̸(adoc) =

{u ∈ U|adoc(u) ≠ ⊥}. For any URI u ∈ U with u ∈

dom⊥̸(adoc) (i.e., any URI that can be looked up in W), docu-
ment d = adoc(u) can be considered the authoritative source
of data for u in W (hence, the name adoc). To accommodate for
documents that are authoritative for multiple URIs, we do not re-
quire injectivity for function adoc . However, we require every doc-
ument d ∈ D to be in the image of function adoc because we con-
ceive documents as irrelevant for aWeb of Linked Data if they can-
not be retrieved by any URI lookup in this Web.

LetW = ⟨D, adoc⟩be aWebof LinkedData.W is said to be finite
if the set dom⊥̸(adoc) is finite. In this paper we assume that every
Web of LinkedData is finite. Given documents d, d′

∈ D and a triple
t ∈ data(d), we say that a URI u ∈ uris(t) establishes a data link
from d to d′, if adoc(u) = d′. As a final concept, we formalize the
notion of a link graph associated toW . This graph has documents in
D as nodes, and directed edges representing data links between
documents. Each edge is associatedwith a label that identifies both
the particular RDF triple and the URI in this triple that establishes
the corresponding data link. These labels shall provide the basis for
defining the navigational component of our query language.

Definition 2. The link graph of a Web of Linked Data W =

⟨D, adoc⟩, denoted by GW , is a directed, edge-labeled multigraph,
GW = ⟨D, EW ⟩, whose set of labeled edges is defined as follows:

EW =

⟨dsrc, (t, u), dtgt⟩⊆ D × (T × U) × D

 t ∈ data(dsrc)

and u ∈ uris(t) and dtgt = adoc(u)

.

For a link graph edge e = ⟨dsrc, (t, u), dtgt⟩, tuple (t, u) is the
label of e. Moreover, we sometimes write e ∈ GW to denote that e
is an edge in the link graph GW .
Example 1. As a running example for this paper we assume aWeb
of Linked Data Wex = ⟨Dex, adocex⟩ that consists of three docu-
ments, Dex = {dM1, dM2, dM3}, The data in these documents are the
following sets of RDF triples:

data(dM3) =

⟨uRevolutions, usequelOf, uReloaded⟩,

⟨uReloaded, uinfluencedBy, uMatrix1⟩

,

data(dM2) =

⟨uReloaded, usequelOf, uMatrix1⟩


,

data(dM1) =

⟨uRevolutions, uinfluencedBy, uMatrix1⟩


.

Moreover, for function adocex we have dom⊥̸(adocex) = {uMatrix1,
uReloaded, uRevolutions, usequelOf} such that

adocex(uMatrix1) = dM1, adocex(uRevolutions) = dM3,

adocex(uReloaded) = dM2, adocex(usequelOf) = dM3.

This Web contains 10 data links. For instance, the RDF triple
⟨uRevolutions, uinfluencedBy, uMatrix1⟩ ∈ data(dM1) with the URI
uRevolutions establishes a data link to document dM3. Hence, the cor-
responding edge in the link graph of Wex is ⟨dM1, (⟨uRevolutions,
uinfluencedBy, uMatrix1⟩, uRevolutions), dM3⟩. Fig. 1 illustrates the link
graph GWex with all 10 edges.

4. Definition of LDQL

This section defines our Linked Data query language, LDQL.
LDQL queries are meant to be evaluated over a Web of Linked
Data and each such query is built from two types of compo-
nents: Link path expressions (LPEs) for selecting query-relevant doc-
uments of the queriedWeb of Linked Data; and SPARQL graph pat-
terns for specifying the query result that has to be constructed from
the data in the selected documents. For this paper, we assume that
the reader is familiar with the definition of SPARQL [6], including
the algebraic formalization introduced in [40,41]. In particular, for
SPARQL graph patterns we closely follow the formalization in [41]
considering operators AND, OPT, UNION, FILTER, and GRAPH, plus
the operator BIND defined in [6].

We begin this section by introducing the most basic concept of
our language, the notion of link patterns. We use link patterns as
the basis for navigating the link graph of a Web of Linked Data.

4.1. Link patterns

A link pattern is a tuple in
U ∪ { _ , +}


×

U ∪ { _ , +}


×

U ∪ L ∪ { _ , +}


with _ and + special symbols not in U, L, or B. Link patterns
are used to match link graph edges in the context of a designated
context URI. The special symbol + denotes a placeholder for the
context URI. The special symbol _ denotes a wildcard that will
drive the direction of the navigation. Before formalizing how link
graph edges actually match link patterns, we show some intuition.
Consider the link graph of Web Wex in Example 1 (see Fig. 1),
and the link pattern ⟨+, p1, _ ⟩. Intuitively, in the context of URI
uA, the edge with label (⟨uA, p1, uB⟩, uB) from document dA to
document dB, matches the link pattern ⟨+, p1, _ ⟩. Notice that in
the matching, the context URI uA takes the place of symbol +, and
uB takes the place of the wildcard symbol _ . Notice that uB also
denotes the direction of the edge that matches the link pattern.
On the other hand, the edge with label (⟨uA, p1, uB⟩, uA) from dA

to dA, does not match ⟨+, p1, _ ⟩; although uB can take the place
of the wildcard symbol _ , the direction of the edge is not to uB.
That is, when matching an edge labeled by (t, u) we require URI
u to be taking the place of a wildcard in the link pattern. When
more than one wildcard symbol is used, the link pattern can be

O. Hartig, J. Pérez / Web Semantics: Science, Services and Agents on the World Wide Web 41 (2016) 9–29 13
Fig. 1. The link graph GWex of our example Web of Linked DataWex .
matchedby edges pointing to the direction of any of theURIs taking
the place of a wildcard. For instance, in the context of uA, the link
pattern ⟨ _ , p2, _ ⟩ is matched by edges ⟨dA, (⟨uB, p2, uC⟩, uB), dB⟩

and ⟨dA, (⟨uB, p2, uC⟩, uC), dC⟩. The next definition formalizes this
notion of matching.

Definition 3. A link graph edgewith label (⟨x1, x2, x3⟩, u)matches
a link pattern ⟨y1, y2, y3⟩ in the context of a URI uctx if the following
two properties hold:

1. there exists i ∈ {1, 2, 3} such that yi = _ and xi = u, and
2. for every i ∈ {1, 2, 3} either yi = + and xi = uctx, or yi = xi, or

yi = _ .

One of the rationales for adopting the notion of a context URI
and the + symbol in our definition of link patterns, is to support
cases in which link graph navigation has to be focused solely on
data links that are authoritative in the following sense: A data
link is authoritative if it is established by a triple in the source
document of the link such that this triple is a statement that uses
a URI for which the source document is the authoritative source
of data. More formally, a data link represented by link graph edge
⟨dsrc, (t, u), dtgt⟩ ∈ GW is called authoritative in a Web of Linked
Data W = ⟨D, adoc⟩ if dsrc = adoc(u′) for some URI u′

∈ uris(t).
For instance, in our example Web (cf. Example 1 and Fig. 1) all
data links are authoritative except for the links established by
the triple ⟨uReloaded, uinfluencedBy, uMatrix1⟩ in document dM3. By using
the symbol + in a link pattern, the navigation can be restricted
to follow only authoritative data links from document dctx =

adoc(uctx), whereas, with the wildcard _ , every data link from dctx

would be followed.

4.2. LDQL queries

The most basic construction in LDQL queries are tuples of
the from ⟨L, P⟩ where L is an expression used to select a set of
documents from the Web of Linked Data, and P is a SPARQL graph
pattern to query these documents as if they were a single RDF
dataset. In an abstract setting, one can use any formalism to specify
L as long as L defines sets of RDF documents. In our proposal we
use what we call link path expressions (LPEs) that are a form of
nested regular expressions [18] over the alphabet of link patterns.
Every link path expression begins its navigation in a context URI,
traverses the Web, and returns a set of URIs; these URIs are used
to construct an RDF dataset with all the documents to be retrieved
by looking up the URIs. This dataset is passed to the SPARQL graph
pattern to obtain the final evaluation of the whole query. Besides
the basic constructions of the form ⟨L, P⟩, in LDQL one can also use
AND,UNION and projection, to combine them. We also introduce
an operatorSEED that is used to dynamically change, at query time,
the seed URI fromwhich the navigation begins. The next definition
formalizes the syntax of LDQL queries and LPEs.

Definition 4. The syntax of LDQL is given by the following
production rules in which lp is an arbitrary link pattern, ?v is a
variable, P is a SPARQL graph pattern (as per [41]), V is a finite set
of variables, and U is a finite set of URIs:

q := ⟨lpe, P⟩ | (SEED U q) | (SEED ?v q) | (qANDq)
| (qUNIONq) | πVq

lpe := ε | lp | lpe/lpe | lpe|lpe | lpe∗
| [lpe] | ⟨?v, q⟩.

Any expression that satisfies the production q is an LDQL query,
any expression that satisfies the production lpe is a link path
expression (LPE), and any LDQL query of the form ⟨lpe, P⟩ is abasic
LDQL query.

Before going into the formal semantics of LDQL and LPEs,
we give some more intuition about how these expressions are
evaluated in a Web of Linked Data W . As mentioned before, the
most basic expression in LDQL is of the form ⟨lpe, P⟩. To evaluate
this expression over W we will need a set S of seed URIs. When
evaluating ⟨lpe, P⟩, every one of the seed URIs in S will trigger a
navigation of link graphGW via the link path expression lpe starting
on that seed. That is, the seed URIs are passed to lpe as context URIs
in which the LPE should be evaluated. These evaluations of lpewill
result in a set ofURIs that are used to construct a dataset overwhich
P is finally evaluated.

Regarding the navigation of link graph GW , the most basic form
of navigation is to follow a single link graph edge that matches a
link pattern lp. When a navigation via a link pattern lp is triggered
from a context URI u, we proceed as follows. We first go to the
authoritative document for u, that is adoc(u), and try to find
outgoing link graph edges that match lp in the context of u (as
explained in Section 4.1). Every one of these matches defines
a new context URI u′ from which the navigation can continue.
More complex forms of navigation are obtained by combining
link patterns via classical regular expression operators such as
concatenation /, disjunction |, and recursive concatenation (·)∗.
The nesting operator [·] is used to test for existence of paths.
When a context URI u is passed to an expression [lpe], it checks
whether GW contains a path from dctx = adoc(u) that matches
lpe. If such a path exists, the navigation can continue from the
same context URI u. The most involved form of navigation is by
using the expression ⟨?v, q⟩with q an LDQL query. To evaluate this
expression from context URI u one first has to pass u as a seed URI
for q and recursively evaluate q from that seed. This evaluation
generates a set of solution mappings, and for every one of these

14 O. Hartig, J. Pérez / Web Semantics: Science, Services and Agents on the World Wide Web 41 (2016) 9–29
mappings its value on variable ?v is used as the new context
URI from which the navigation continues. Finally, note that our
notion of LPEs does not provide an operator for navigating paths
in their inverse direction. The reason for omitting such an operator
is that traversing arbitrary data links backwards is impossible on
the WWW.

To formally define the semantics of LDQL we need to introduce
some terminology. We first define a function datasetW (·) that
from a set of URIs constructs an RDF dataset with all the
documents pointed to by those URIs in W . Formally, given a Web
of Linked Data W = ⟨D, adoc⟩ and a set U of URIs, datasetW (U)

is an RDF dataset (as per [6,41]) that has the set of triples {t ∈

data(adoc(u)) | u ∈ (U ∩ dom⊥̸(adoc))} as default graph.
Moreover, for every URI u ∈ (U ∩ dom⊥̸(adoc)), datasetW (U)

contains the named graph ⟨u, data(adoc(u))⟩.

Example 2. Consider the Web Wex in Example 1 and the set U =

{uRevolutions, uMatrix1} of URIs. Then, datasetWex(U) is the set

datasetWex(U) = {G0, ⟨uRevolutions,G1⟩, ⟨uMatrix1,G2⟩}

with two named graphs, ⟨uRevolutions,G1⟩ and ⟨uMatrix1,G2⟩, such
that

G1 =

⟨uRevolutions, usequelOf, uReloaded⟩,

⟨uReloaded, uinfluencedBy, uMatrix1⟩

, and

G2 =

⟨uRevolutions, uinfluencedBy, uMatrix1⟩


,

and its default graph is G0 = G1 ∪ G2.

In the formalization of the semantics of LDQL, we use the
standard join operator on over sets of solution mappings [6,40].
We also make use of the semantics of SPARQL graph patterns over
datasets as defined in [41]. In particular, given an RDF dataset D,
and a SPARQL graph pattern P , we denote by [[P]]

D the evaluation
of P over dataset D [41, Definition 13.3].

We are now ready to formally define the semantics of LDQL
and LPEs. Given a Web of Linked Data W and a set S of URIs, we
formalize the evaluation of LDQL queries over W from the seed
URIs S, as a function [[·]]

S
W that given an LDQL query, produces a

set of solution mappings. Similarly, the evaluation of LPEs over W
from a context URI u, is formalized as a function [[·]]

u
W that given an

LPE, produces a set of URIs.

Definition 5. Let W = ⟨D, adoc⟩ be a Web of Linked Data. Given
a finite set S ⊆ U, the S-based evaluation of LDQL queries over
W , denoted by [[·]]

S
W , is a set of solution mappings that is defined

recursively as follows:

[[⟨lpe, P⟩]]
S
W = [[P]]

D where D = datasetW


u∈S

[[lpe]]uW


,

[[(SEED U q)]]SW = [[q]]UW ,

[[(SEED ?v q)]]SW =


u∈dom⊥̸(adoc)


[[q]]{u}W on {µu}


where µu = {?v → u},

[[(q1UNIONq2)]]SW = [[q1]]SW ∪ [[q2]]SW ,

[[(q1ANDq2)]]SW = [[q1]]SW on [[q2]]SW ,

[[πVq]]
S
W = {µ | there exists µ′

∈ [[q]]SW such that µ and µ′ are

compatible and dom(µ) = dom(µ′) ∩ V }.

For the semantics of LPEs, given a context URI uctx ∈ U, if
uctx ∈ dom⊥̸(adoc), then the uctx-based evaluation of LPEs overW ,
denoted by [[·]]
uctx
W , is defined recursively as follows:

[[ε]]
uctx
W = {uctx},

[[lp]]uctxW = {u ∈ U | there exist a link graph edge
⟨dsrc, (t, u), dtgt⟩ ∈ GW , with
dsrc = adoc(uctx), that matches lp in the context of uctx},

[[lpe1/lpe2]]
uctx
W = {u ∈ [[lpe2]]

u′

W | u′
∈ [[lpe1]]

uctx
W },

[[lpe1|lpe2]]
uctx
W = [[lpe1]]

uctx
W ∪ [[lpe2]]

uctx
W ,

[[lpe∗
]]
uctx
W = {uctx} ∪ [[lpe]]uctxW ∪ [[lpe/lpe]]uctxW

∪ [[lpe/lpe/lpe]]uctxW ∪ · · · ,

[[[lpe]]]uctxW = {uctx | [[lpe]]uctxW ≠ ∅},

[[⟨?v, q⟩]]uctxW = {u ∈ U | there exists µ ∈ [[q]]{uctx}W

such that µ(?v) = u}.

Moreover, if uctx ∉ dom⊥̸(adoc), then [[lpe]]uctxW = ∅ for every LPE
lpe.

Example 3. Let lpeex be the LPE ⟨ _ , usequelOf, _ ⟩
∗/[⟨ _ , uinfluencedBy,

_ ⟩]. This LPE selects documents that can be reached via arbitrar-
ily long paths of data links with predicate usequelOf and, addition-
ally, have some outgoing data link with predicate uinfluencedBy. For
our example Web Wex and context URI uRevolutions, the LPE selects
documents dM3 = adocex(uRevolutions) and dM1 = adocex(uMatrix1).
More precisely, we have [[lpeex]]

uRevolutions
Wex

= {uRevolutions, uMatrix1}.
Note that document dM2 can also be reached via a usequelOf – path,
but it does not pass the uinfluencedBy – related test.

Example 4. Consider a set of URIs Sex = {uRevolutions} and a
basic LDQL query ⟨lpeex, Bex⟩ whose LPE is lpeex as introduced
in Example 3 and whose SPARQL graph pattern is a basic graph
pattern that contains two triple patterns,

Bex =

⟨?x, usequelOf, ?y⟩, ⟨?x, uinfluencedBy, ?z⟩


.

Given that [[lpeex]]
uRevolutions
Wex

= {uRevolutions, uMatrix1} (cf. Example 3),
the default graph of datasetWex([[lpeex]]

uRevolutions
Wex

) is (cf. Example 2):
⟨uRevolutions, usequelOf, uReloaded⟩, ⟨uReloaded, uinfluencedBy, uMatrix1⟩,

⟨uRevolutions, uinfluencedBy, uMatrix1⟩

.

Then, according to the query semantics, the result of query
⟨lpeex, Bex⟩ over Wex using seeds Sex consists of a single solution
mapping, namely µ = {?x → uRevolutions, ?y → uReloaded, ?z →

uMatrix1}.

Example 5. Consider an LDQL query qex = (SEED ?x

ε,

⟨?x, usequelOf, ?w⟩

) whose subquery is a basic LDQL query that has

a single triple pattern as its SPARQL graph pattern. Additionally,
let q′

ex = ⟨lpeex, Bex⟩ be the basic LDQL query introduced in
Example 4, and let q′′

ex be the conjunction of these two queries;
i.e., q′′

ex = (qexANDq′
ex). By Example 4 we know that [[q′

ex]]
Sex
Wex

=

{µ} with µ = {?x → uRevolutions, ?y → uReloaded, ?z → uMatrix1}.
Furthermore, based on the data given in Example 1, it is easy to see
that [[qex]]

Sex
Wex

= {µ1, µ2} with µ1 = {?x → uRevolutions, ?w →

uReloaded} and µ2 = {?x → uReloaded, ?w → uMatrix1}. For the
Sex-based evaluation of q′′

ex over Wex, the result sets [[qex]]
Sex
Wex

and
[[q′

ex]]
Sex
Wex

have to be joined. Thus, we need to compute {µ1, µ2} on
{µ}, which results in a single mapping

µ′
= µ1 ∪ µ = {?x → uRevolutions, ?w → uReloaded,

?y → uReloaded, ?z → uMatrix1}.

O. Hartig, J. Pérez / Web Semantics: Science, Services and Agents on the World Wide Web 41 (2016) 9–29 15
4.3. Algebraic properties of LDQL queries

As a basis for the discussion in the next sections, we show some
simple algebraic properties. We say that LDQL queries q and q′ are
semantically equivalent, denoted by q ≡ q′, if [[q]]SW = [[q′

]]
S
W

holds for every Web of Linked Data W and every finite set S ⊆ U.
The following two lemmas follow easily from the definition of the
semantics of LDQL.

Lemma 1. The operators AND and UNION are associative and
commutative.

Lemma 2. Let q1, q2, and q3 be LDQL queries, the following
equivalences hold:

(q1AND(q2UNIONq3))
≡ ((q1ANDq2)UNION(q1ANDq3)) (1)

πV (q1UNIONq2) ≡ (πVq1UNIONπVq2) (2)
(SEED U (q1UNIONq2))

≡ ((SEED U q1)UNION(SEED U q2)) (3)
(SEED ?v (q1UNIONq2))

≡ ((SEED ?v q1)UNION(SEED ?v q2)). (4)

Lemma 1 allows us to write sequences of either ANDor
UNIONwithout parentheses. Our next result shows the power of
the construction ⟨?v, q⟩. In particular, it shows that link patterns
lp, concatenation /, disjunction |, and the test [·], are just syntactic
sugar as they can be simulated by using ε, ⟨?v, q⟩ and (·)∗.

Lemma 3. There exists a polynomial time procedure transL(·) such
that for every link path expression lpe, we have that transL(lpe) is a
link path expression that only uses ε, the construction ⟨?v, q⟩, and
operator (·)∗, and such that for every URI u and Web of Linked
Data W it holds that [[lpe]]uW = [[transL(lpe)]]uW .

Proof. The proof is based on a recursive translation of link path
expressions beginning with link patterns. Let ⟨y1, y2, y3⟩ be a
link pattern. We construct an LPE transL(⟨y1, y2, y3⟩) as follows.
Assume that y1 = _ , then we construct the LDQL query

q1 =

ε, (GRAPH?u (?out, Y2, Y3))


where (i) if y2 = +, then Y2 = ?u, (ii) if y2 ∈ U, then Y2 = y2
and (iii) if y2 = _ , then Y2 = ?y2. And similarly, if (i) y3 = +,
then Y3 = ?u, (ii) if y3 ∈ U, then Y3 = y3 and (iii) if y3 = _ ,
then Y3 = ?y3. By following a similar process, we construct the
LDQL query q2 = ⟨ε, (GRAPH?u (Y1, ?out, Y3))⟩ if y2 = _ , and the
query q3 = ⟨ε, (GRAPH?u (Y1, Y2, ?out))⟩ if y3 = _ . Now consider
an LDQL query q that is the UNION of the above queries for every
yi = _ . Then, the LPE transL(⟨y1, y2, y3⟩) is constructed as

transL

⟨y1, y2, y3⟩


= ⟨?out, q⟩.

As an example, consider the link pattern ⟨+, p, _ ⟩ for which we
obtain:

transL

⟨+, p, _ ⟩


= ⟨?out, ⟨ε, (GRAPH?u (?u, p, ?out))⟩⟩.

Notice that [[⟨+, p, _ ⟩]]
u
W is retrieving all the URIs v such

that in the document pointed by u (which is adoc(u)), there
is a triple of the form ⟨u, p, v⟩. Now, in order to evaluate
[[⟨?out, ⟨ε, (GRAPH?u (?u, p, ?out))⟩⟩]]

u
W we first have to compute

[[⟨ε, (GRAPH?u (?u, p, ?out))⟩]]
{u}
W .

Notice that since ε is used as the LPE in the expression, the URI that
has to be used to construct the dataset to pose the query, is just
u. Thus, we have to compute [[(GRAPH?u (?u, p, ?out))]]

D where
D = {adoc(u), ⟨u, adoc(u)⟩}, from which we obtain all the map-
pings µ = {?u → u, ?out → v} such that ⟨u, p, v⟩ is in adoc(u).
Thus finally, from [[⟨?out, ⟨ε, (GRAPH?u (?u, p, ?out))⟩⟩]]

u
W we

obtain all the mappings {?out → v} such that ⟨u, p, v⟩ is in
adoc(u). Which is the same as what we obtain from [[⟨+, p, _ ⟩]]

u
W .

Along these same lines, it is not difficult to prove that in general
[[transL(⟨y1, y2, y3⟩)]]

u
W = [[⟨y1, y2, y3⟩]]uW .

Before defining the translation in general, we make the
following observation about SPARQL patterns that we use in the
translation. Consider a dataset D = {G0, ⟨u1,G1⟩, . . . , ⟨uk,Gk⟩},
and the graph pattern P = (GRAPH ?u { }). According to the
semantics of SPARQL [6,41] the evaluation of P over D is the set
of mapping {µ1, . . . , µk} such that µi = {?u → ui}. That is, P
retrieves the names (URIs) of the named graphs in the dataset D.

We can now define the translation in general:
• For the case of LPE r = ε, we have transL(r) = ε.
• For the case of LPE r = r1/r2, we have transL(r) = ⟨?v, q⟩

where q is:
⟨transL(r1), (GRAPH?x { })⟩AND


SEED?x ⟨transL(r2),

(GRAPH?v { })⟩


.

• For the case of LPE r = r1|r2, we have that transL(r) = ⟨?v, q⟩
where q is:
⟨transL(r1), (GRAPH?v { })⟩UNION ⟨transL(r2),

(GRAPH?v { })⟩

.

• For the case of LPE r = [r1], we have that transL(r) = ⟨?v, q⟩
where q is:
⟨ε, (GRAPH?v { })⟩ANDπ{?v}


SEED?v ⟨transL(r1),

(GRAPH?x { })⟩


.

• For the case of LPE r = (r1)∗, we have that transL(r) =

(transL(r1))∗.
The general proof proceeds by induction. In the following, we

focus on proving that [[transL(r1|r2)]]
u
W = [[r1|r2]]uW . The proofs for

the other cases are similar.
Assume that u′

∈ [[r1|r2]]uW , then we know that u′
∈

[[r1]]uW ∪ [[r2]]uW . If u′
∈ [[r1]]uW then by induction hypothesis we

know that u′
∈ [[transL(r1)]]uW . Now notice that

[[⟨transL(r1), (GRAPH?v { })⟩]]
{u}
W = [[(GRAPH?v { })]]D ,

where D = datasetW ([[transL(r1)]]uW). Thus, given that u′
∈

[[transL(r1)]]uW , we know that D has a named graph
⟨u′, data(adoc(u′))⟩, which implies that the solution mapping
{?v → u′

} is a solution for [[(GRAPH?v { })]]D , and thus {?v →

u′
} ∈ [[⟨transL(r1), (GRAPH?v { })⟩]]

{u}
W . From this it is straightfor-

ward to conclude that u′
∈ [[transL(r1|r2)]]

u
W . The other direction

is similar.
It is clear that the translation procedure can be implemented

in polynomial time. Just notice that one can do a single bottom-
up pass over the parse tree of the input LPE expression labeling
every node with its corresponding translation. After we finish this
process, the label of the root is the complete translation of the LPE
expression. Moreover, to construct the label of a particular node in
the parse tree we use a single copy of the label of every child node
plus a constant number of symbols, thus, the label of the root is of
linear size w.r.t. the size of the input expression. �

Although not strictly necessary, we decided to keep link
patterns and operators /, |, and [·] because they represent a natural
and intuitive way of expressing navigation paths. We will use this
result later whenwe analyze the complexity of the language. From
the Lemma 3 we directly obtain the following result.

Proposition 1. For every LDQL query q, there exists an LDQL query
q′ s.t. q ≡ q′ and every LPE in q′ consists only of the symbol
ε, the construction ⟨?v, q⟩, and operator (·)∗. Moreover, q′ can be
constructed in polynomial time from q.

16 O. Hartig, J. Pérez / Web Semantics: Science, Services and Agents on the World Wide Web 41 (2016) 9–29
5. Comparison with previous Linked Data query formalisms

In this section, we formally compare the expressive power of
LDQL with previously proposed formalisms to query Linked Data
on the WWW. We focus on the following four approaches as de-
scribed informally in Section 2: SPARQL under reachability-based
semantics [8], SPARQL property path patterns under a context-
based semantics [10], SPARQL under full-Web semantics [8,10],
and NautiLOD [13]. We prove that LDQL is strictly more expres-
sive than every one of them in the following sense: On one hand,
for every query Q in any of these approaches, one can construct
an LDQL query that is equivalent to Q , and on the other hand, for
each of these approaches, there exists an LDQL query that cannot
be expressed using that approach.

5.1. Comparisonwith SPARQL under reachability-based query seman-
tics

In [8] the author introduces a family of reachability-based
query semantics. Based on these semantics, SPARQL graph patterns
can be used as a query language for Linked Data on the WWW.
Similar to how the scope of evaluating the SPARQL part of a
basic LDQL query is restricted to the data of particular documents,
reachability-based semantics restrict the scope of SPARQL queries
to documents that can be reached by traversing a well-defined
set of data links. To specify what data links belong to such a set,
the notion of a reachability criterion is used; that is, a function
c : T × U × P → {true, false} where P denotes the set of all
SPARQL graph patterns (recall from Section 3 that U is the set of
all URIs and T is the set of all RDF triples). Then, given such a
reachability criterion c , a finite set S of URIs, and a SPARQL graph
pattern P , a document d ∈ D is (c, S, P)-reachable in a Web of
Linked Data W = ⟨D, adoc⟩ if at least one of the following two
conditions holds:
1. There exists a URI u ∈ S such that adoc(u) = d; or
2. there exists a link graph edge ⟨dsrc, (t, u), dtgt⟩ ∈ GW such that

(i) dsrc is (c, S, P)-reachable in W , (ii) c(t, u, P) = true, and
(iii) dtgt = d.
Notice how the second condition restricts the notion of

reachability by ignoring all data links that do not satisfy the
given reachability criterion c . Concrete examples of reachability
criteria are cAll, cNone, and cMatch [8], where cAll selects all data
links, and cNone ignores all data links; i.e., cAll(t, u, P) = true and
cNone(t, u, P) = false for all tuples ⟨t, u, P⟩ ∈ T × U × P . In
contrast to such an all-or-nothing strategy, criterion cMatch returns
true for every data link whose triple matches a triple pattern of the
given graph pattern; formally, cMatch(t, u, P) = true if and only if
there exists some solution mapping µ such that µ[tp] = t for an
arbitrary triple pattern tp that is contained in P .

Given the notion of a reachability criterion, it is possible to
define a family of (reachability-based) query semantics for SPARQL.
To this end, let c be a reachability criterion, let S be a finite set
of URIs, and let P be a SPARQL graph pattern. Then, for any Web
of Linked Data W = ⟨D, adoc⟩, the S-based evaluation of P over
W under c-semantics, denoted by [[P]]

R(c,S)
W , is a set of solution

mappings that is equivalent to [[P]]G where G is the RDF graph
that consists of all triples from all documents that are (c, S, P)-
reachable in W .

While there exist an infinite number of possible reachability
criteria, in this paper we focus on cAll, cNone, and cMatch. The
following two results show that LDQL is strictly more expressive
than SPARQL graph patterns under any of these three query
semantics.

Theorem 1. Let c ∈ {cAll, cNone, cMatch}. There exists an LDQL
query q for which there does not exist a SPARQL pattern P such that
[[P]]

R(c,S)
W = [[q]]SW for every Web of Linked Data W and every finite

set S ⊆ U.
Proof. In the proof we use the following basic LDQL query Q (?x)
given by
⟨+, p, _ ⟩, (?x, ?x, ?x)


.

We prove first that the reachability criterion cNone cannot be
used to express Q (?x). On the contrary, assume that there exists
a SPARQL pattern P such that

[[P]]
R(cNone,S)
W = [[Q (?x)]]SW

for every S and W . Let u, u′, a, b be different elements in U that
are not mentioned in P . Consider now aWeb of Linked DataW1 =

⟨D1, adoc1⟩ that consists of two documents, d1 and d2, such that
data(d1) = {(u, p, u′)} and data(d2) = {(a, a, a)}, and such
that adoc1(u) = d1 and adoc1(u′) = d2. Moreover, consider
another Web of Linked Data, W2 = ⟨D2, adoc2⟩, that also contains
document d1, and another document, d3, such that data(d3) =

{(b, b, b)}, and such that adoc2(u) = d1 and adoc2(u′) = d3. First
notice that

[[Q (?x)]]{u}W1
= {{?x → a}} ≠ [[Q (?x)]]{u}W2

= {{?x → b}}.

It is easy to see that [[P]]
R(cNone,{u})
W1

= [[P]]
R(cNone,{u})
W2

. Just notice
that from {u}, by using the cNone criterion, the set of (cNone, {u}, P)-
reachable documents is the same set {d1} in both W1 and W2.
As a consequence, we have that [[Q (?x)]]{u}W1

≠ [[Q (?x)]]{u}W2
but

[[P]]
R(cNone,{u})
W1

= [[P]]
R(cNone,{u})
W2

, which is a contradiction.
To continue with the proof, we now show that the reachability

criterion cAll cannot be used to express Q (?x). To obtain a
contradiction, assume that there exists a pattern P such that

[[P]]
R(cAll,S)
W = [[Q (?x)]]SW

for every S and W . Let u, u′, a, b be different URIs that are not
mentioned in P . Consider now W1 = ({d1, d2, d3}, adoc1) having
three documents with data(d1) = {(u, p, u′)}, data(d2) =

{(a, a, a)} and data(d3) = {(b, b, b)}, and such that adoc1(u) = d1,
adoc1(u′) = d2 and adoc1(a) = d3. Moreover, consider W2 =

({d1, d2, d3}, adoc2)having exactly the samedocuments asW1, and
adoc2(u) = d1, adoc2(u′) = d3 and adoc2(b) = d2. First notice that

[[Q (?x)]]{u}W1
= {{?x → a}} ≠ [[Q (?x)]]{u}W2

= {{?x → b}}.

Now notice that from {u}, the set of (cAll, {u}, P)-reachable
documents in W1 is the set {d1, d2, d3}; d1 is the document
associated to u, d2 is reachable from d1 via the URI u′, and d3 is
reachable from d2 via the URI a. Moreover, the set of (cAll, {u}, P)-
reachable in W2 is also {d1, d2, d3}; d1 is the document associated
to u, d3 is reachable from d1 via the URI u′, and d2 is reachable
from d3 via URI b. Given that the set of (cAll, {u}, P)-reachable
documents is the same in bothW1 andW2, we have [[P]]

R(cAll,{u})
W1

=

[[P]]
R(cAll,{u})
W2

. Given that [[Q (?x)]]{u}W1
≠ [[Q (?x)]]{u}W2

, we obtain our
desired contradiction.

We now consider the case of cMatch, and prove that it cannot be
used to expressQ (?x). To obtain a contradiction, assume that there
exists a SPARQL pattern P such that

[[P]]
R(cMatch,S)
W = [[Q (?x)]]SW

for every S and W . Let u, u′, u′′, a be different URIs that are not
mentioned in P . Consider now W1 = ({d1, d2}, adoc1) with
data(d1) = {(u, p, u′)} and data(d2) = {(a, a, a)}, and adoc(u) =

d1 and adoc(u′) = d2. Moreover, consider W2 = ({d′

1, d
′

2}, adoc2)
with data(d′

1) = {(u′′, p, u′)} and data(d′

2) = {(a, a, a)}, and
adoc(u) = d′

1 and adoc(u′) = d′

2. First notice that

[[Q (?x)]]{u}W1
= {{?x → a}} ≠ [[Q (?x)]]{u}W2

= ∅.

We now prove that [[P]]
R(cMatch,{u})
W1

= [[P]]
R(cMatch,{u})
W2

. Given that
d1 is the document associated to u in W1, we have that d1 is

O. Hartig, J. Pérez / Web Semantics: Science, Services and Agents on the World Wide Web 41 (2016) 9–29 17
(cMatch, {u}, P)-reachable in W1. Similarly, we know that d′

1 is
(cMatch, {u}, P)-reachable in W2. Moreover, given that P does not
mention u, u′ and u′′ wehave that (u, p, u′)matches a triple pattern
in P if and only if (u′′, p, u′) matches a triple pattern in P . Thus
we have that d2 is (cMatch, {u}, P)-reachable in W1 if and only if d′

2
is (cMatch, {u}, P)-reachable in W2. Thus we have only two cases,
either
• {d1} is the set of (cMatch, {u}, P)-reachable documents inW1, and

{d′

1} is the set of (cMatch, {u}, P)-reachable documents inW2, or
• {d1, d2} is the set of (cMatch, {u}, P)-reachable documents inW1,

and {d′

1, d
′

2} is the set of (cMatch, {u}, P)-reachable documents in
W2.

In the first case we have that [[P]]
R(cMatch,{u})
W1

is obtained by

evaluating P over G1 = {(u, p, u′)}, and that [[P]]
R(cMatch,{u})
W2

is
obtained by evaluating P over graph G2 = {(u′′, p, u′)}. Given that
P does not mention u, u′ and u′′, we obtain that the evaluation of
P over G1 is the same as the evaluation of P over G2, which implies
that [[P]]

R(cMatch,{u})
W1

= [[P]]
R(cMatch,{u})
W2

.
In the second case, [[P]]

R(cMatch,{u})
W1

is obtained by evaluating

P over graph G1 = {(u, p, u′), (a, a, a)}, and [[P]]
R(cMatch,{u})
W2

is
obtained by evaluating P over graph G2 = {(u′′, p, u′), (a, a, a)}.
Then, for the same reason as above, we have that the evaluation
of P is the same over G1 and over G2, which implies that
[[P]]

R(cMatch,{u})
W1

= [[P]]
R(cMatch,{u})
W2

. As a consequence, we have

proven that [[P]]
R(cMatch,{u})
W1

= [[P]]
R(cMatch,{u})
W2

, while [[Q (?x)]]{u}W1
≠

[[Q (?x)]]{u}W2
, which is our desired contradiction. �

Theorem 2. Let c ∈ {cAll, cNone, cMatch}. For every SPARQL graph
pattern P there exists an LDQL query q such that [[P]]

R(c,S)
W = [[q]]SW

for every Web of Linked Data W and every finite set S ⊆ U.

Proof. Let P be an arbitrary SPARQL graph pattern, let W =

⟨D, adoc⟩ be an arbitrary Web of Linked Data, and let S be some
finite set of URIs. We prove the theorem by constructing, for each
c ∈ {cAll, cNone, cMatch}, an LPE lpec that allows us to reach all the
URIs representing the documents that are (c, S, P)-reachable in
W . Then, the LDQL query associated that simulates the S-based
evaluation of P is simply ⟨lpec, P⟩.

The definition of lpec for each c ∈ {cAll, cNone, cMatch} is as
follows.

lpecAll is ⟨ _ , _ , _ ⟩
∗,

lpecNone is ε, and
lpecMatch is

⟨?s, q1⟩ | ⟨?p, q1⟩ | ⟨?o, q1⟩ | . . . | ⟨?s, qm⟩ | ⟨?p, qm⟩ |

⟨?o, qm⟩
∗ where ?s, ?p and ?o are fresh

variables (not used in P),m is the number of triple
patterns in P , and for each such triple pattern
tpk (1 ≤ k ≤ m) there exists a subquery qk of the
form ⟨ε, Pk⟩ with a SPARQL pattern Pk that is
constructed as follows: Pk contains the triple pattern
⟨?s, ?p, ?o⟩ and – depending on the form of the
corresponding triple pattern tpk = ⟨sk, pk, ok⟩ – may
contain additional FILTER operators; in particular, if
sk ∉ V , then Pk contains FILTER?s = sk; if pk ∉ V ,
then Pk contains FILTER?p = pk; and if ok ∉ V , then
Pk contains FILTER?o = ok.
For instance, if P = {(a, b, ?x)} then lpecMatch is the
expression

⟨?s, ⟨ε, (?s, ?p, ?o)FILTER(?s = a ∧ ?p = b)⟩⟩ |

⟨?p, ⟨ε, (?s, ?p, ?o)FILTER(?s = a ∧ ?p = b)⟩⟩ |

⟨?o, ⟨ε, (?s, ?p, ?o)FILTER(?s = a ∧ ?p = b)⟩⟩
∗

.

Then, for each reachability criterion c ∈ {cAll, cNone, cMatch} with
its corresponding LPE lpec as specified above, we have to show the
following equivalence:

[[P]]
R(c,S)
W = [[⟨lpec, P⟩]]

S
W . (5)

As we have discussed before, and by the definition of the
reachability-based query semantics and the definition of LDQL
query semantics, in order to prove (5) it is sufficient to prove the
following claim.

Claim 1. For each c ∈ {cAll, cNone, cMatch}, the set of all docu-
ments that are (c, S, P)-reachable in W is equivalent to the following
set of documents:

Dc
LPE = {adoc(u) | u ∈ [[lpec]]uctxW for some uctx ∈ S}.

The complete proof of this claim can be found in the Appendix.
We just give here some intuition on why the construction works.

Consider the LPE ⟨ _ , _ , _ ⟩ and a set S of seed URIs. Notice that
from S the LPE ⟨ _ , _ , _ ⟩ allows us to navigate to all the URIs that
arementioned in the documents pointed by the URIs in S. Thus, the
LPE ⟨ _ , _ , _ ⟩

∗
= lpecAll allows one to go from S to the set, say S1,

of all the URIs mentioned in the document pointed by S, and from
there to the set, say S2, of all the URIs mentioned in the document
pointed by S1, and so on. This is exactly the intuition behind the
definition of the (cAll, S, P)-reachable documents, independent of
the pattern P . Similarly, if we consider the LPE ε and a set S of seed
URIs, from S the LPE ε allows us to navigate only to the same URIs
mentioned in S, and thus we do not reach any document besides
the documents pointed by URIs in S. This is exactly the intuition
behind the definition of the (cNone, S, P)-reachable documents,
independent of the pattern P .

For the case of cMatch, let lpem be the following expression
⟨?s, q1⟩ | ⟨?p, q1⟩ | ⟨?o, q1⟩ | . . . | ⟨?s, qm⟩ | ⟨?p, qm⟩ | ⟨?o, qm⟩


where the qi’s are defined as stated in the definition of lpecMatch . If
there is a triple pattern in P , say for example (?x, b, u1), then we
know that there exists i ∈ {1, . . . ,m} such that ⟨?o, qi⟩ is one of
the disjuncts in lpem where qi is

qi = ⟨ε,

(?s, ?p, ?o)FILTER(?p = b ∧ ?o = u1)


⟩.

Now lets focus on qi. If we begin navigating this LDQL expression
from a URI u in S, then, since we stay in u (qi navigates using ε)
we just evaluate the pattern


(?s, ?p, ?o)FILTER(?p = b ∧ ?o =

u1)

in adoc(u), which produces a mapping result if and only

if (?x, b, u1) matches a triple in adoc(u). Moreover, every such
mapping will assign value u1 to variable ?o. Thus the exported
value in expression ⟨?o, qi⟩ would be exactly u1. Generalizing this
example one can show how lpem works: if there is a triple pattern
in P that matches a triple, say t , in any of the documents pointed
by URIs in S, then lpem allows us to navigate to any URI that
is mentioned in t . This is the intuition behind the base case of
the definition of a (cMatch, S, P)-reachable document. Given that
lpecMatch = lpe∗

m we obtain that lpecMatch defines exactly the set of
(URIs pointing to) documents that are (cMatch, S, P)-reachable. The
complete formal proof can be found in the Appendix. �

5.2. Comparison with property paths under context-based query
semantics

Property paths (PPs for short) were introduced in SPARQL 1.1 as
a way of adding navigational power to the language [6]. PPs are a
form of regular expressions that are evaluated over a single (local)
RDF graph; a PP expression is used to retrieve pairs ⟨a, b⟩ of nodes
in the graph such that there is a path from a to b whose sequence

18 O. Hartig, J. Pérez / Web Semantics: Science, Services and Agents on the World Wide Web 41 (2016) 9–29
of edge labels belongs (as a string) to the regular language defined
by the expression. The syntax of PP expressions is given by the
following grammar,1 where p, u1, u2, . . . , uk are URIs.

pe := p | !(u1|u2| · · · |uk) | pe/pe | pe|pe | pe∗.

A PP pattern is defined as a tuple of the form ⟨α, pe, β⟩ where pe is
a PP expression, and α and β are in U ∪ L ∪ V .

In [10] the authors adapted the semantics of PP patterns so that
they can be used to query the Web of Linked Data. The proposed
query semantics is called context-based semantics [10]. To define
this semantics, the authors first introduce the notion of a context
selector for a Web of Linked Data W . This context selector is a
function CW(·) that given a URI u ∈ dom⊥̸(adoc) returns the
RDF triples in data(adoc(u)) that have u in the subject position.
Formally, for every URI u ∈ dom⊥̸(adoc) we have CW(u) =

{⟨s, p, o⟩ ∈ data(adoc(u)) | s = u}. To simplify the exposition,
the authors extended the definition of CW(·) to also handle URIs
not in dom⊥̸(adoc), and literals and blank nodes. For any such RDF
term a they define CW(a) as the empty set.

The context-based semantics for PPs over the Web of Linked
Data in [10] is a bag semantics that follows closely the semantics
for PPs defined in the normative semantics of SPARQL 1.1 [6].
Hence, both semantics use a procedure, the ArbitraryLengthPath
procedure [6], to define the semantics of the (·)∗ operator. It was
shown in [42] that for sets semantics, the normative semantics
of PPs can be defined by using standard techniques for regular
expressions. To make the comparison with LDQL, in this paper
we adapt the context-based semantics for PPs presented in [10]
by following the techniques in [42], and consider only sets of
mappings. To this end, we define a function [[·]]

ctxt
W that, given a

PP-pattern, returns its evaluation under context-based semantics
over the Web of Linked Data W . In the definition, for a solution
mapping µ and an RDF term α, we use the notation µ[α] with the
following meaning: µ[α] = µ(α) if α ∈ dom(µ), and µ[α] = α
in the other case. Similarly, µ[⟨s, p, o⟩] = ⟨µ[s], µ[p], µ[o]⟩. The
recursive definition is as follows.

[[(α, p, β)]]
ctxt
W = {µ | dom(µ) = {α, β} ∩ V and

µ[⟨α, p, β⟩] ∈ CW (µ[α])}

[[(α, !(u1| · · · |uk), β)]]
ctxt
W = {µ | dom(µ) = {α, β} ∩ V

and there exists a URI p such

that µ[⟨α, p, β⟩] ∈ CW (µ[α]) and p ∉ {u1, . . . , uk}}

[[(α, pe1/pe2, β)]]
ctxt
W = π{α,β}∩V


[[(α, pe1, ?v)]]

ctxt
W

on [[(?v, pe2, β)]]
ctxt
W


[[(α, pe1|pe2, β)]]

ctxt
W = [[(α, pe1, β)]]

ctxt
W ∪[[(α, pe2, β)]]

ctxt
W

[[(α, pe∗, β)]]
ctxt
W = {µ | dom(µ) = {α, β} ∩ V and

µ[α] = µ[β] ∈ terms(W)} ∪

[[(α, pe, β)]]
ctxt
W ∪[[(α, pe/pe, β)]]

ctxt
W

∪ [[(α, pe/pe/pe, β)]]
ctxt
W ∪ · · · .

A PP-based SPARQL query [10] is an expression formed by
combining PP-patterns using the standard SPARQL operatorsAND,
UNION,OPT, FILTER and so on, following the standard semantics
for these operators [41].

We next show that there exists a simple LDQL query that
cannot be expressed by using the full expressive power of PP-based
SPARQL queries under context-based semantics. We also show

1 In [10] the reverse path construction ˆpe is also considered. We do not consider
it here as the formof navigation of these reverse paths does not represent a traversal
of the link graph.
that every PP pattern can be simulated by an LDQL query, which
essentially shows that PP-based SPARQL queries can be captured
by LDQL queries combined with standard SPARQL operators.

Theorem 3. There exists an LDQL query that cannot be expressed
as a PP-based SPARQL query under context-based semantics. That is,
there exists an LDQL query q for which there does not exist a PP-based
SPARQL query P and set of URIs S such that [[P]]

ctxt
W = [[q]]SW for every

Web of Linked Data W.

Proof. We will show that the LDQL query Q given by
SEED {u}


⟨+, p, _ ⟩, (?x, ?x, ?x)


,

with u, p ∈ U, cannot be expressed by PPs under context-
based semantics. On the contrary, assume that there exists a PP-
based SPARQL query P and a set of URIs S such that for every Web
of Linked DataW , we have:

[[P]]
ctxt
W = [[Q]]

S
W .

Let u′
∈ U be an arbitrary URI such that u′

≠ u. Consider
now a Web of Linked Data W1 = ⟨D1, adoc1⟩ that consists of
two documents, d1 and d2, such that data(d1) = {(u, p, u′)} and
data(d2) = {(a, a, a)}, and such that adoc(u) = d1 and adoc(u′) =

d2. Moreover, consider a Web of Linked Data W2 = ⟨D2, adoc2⟩
that also contains document d1, and another document, d3, such
that data(d3) = {(b, b, b)}, and such that adoc2(u) = d1 and
adoc2(u′) = d3. First notice that for every finite set S ⊆ U we
have that

[[Q]]
S
W1

= {{?x → a}} ≠ [[Q]]
S
W2

= {{?x → b}}.

Notice that CW1(u) = CW2(u) = {(u, p, u′)} and CW1(u′) =

CW2(u′) = ∅. In general, we have that for every term v ≠ u it holds
that CW1(v) = CW2(v) = ∅. This essentially shows that the context
selectors CW1 and CW2 are equivalent. Given that the context-based
semantics is based on context selectors, it is easy to prove that for
every PP-based SPARQL query R we have that [[R]]

ctxt
W1

= [[R]]
ctxt
W2

.
This can be done by induction on the construction of PP-based
SPARQL queries. For example, the evaluation of a base PP-pattern
of the form (v, p, β), with v ∈ U and β ∈ U ∪ V , overW1 is given
by

[[(v, p, β)]]
ctxt
W1

= {µ | dom(µ) = {β} ∩ V and

µ[⟨v, p, β⟩] ∈ CW1(v)},

which is equal to [[(v, p, β)]]
ctxt
W2

since CW1(v) = CW2(v). All the
other cases for the construction of property paths are equivalent.
Moreover, since for the case of property path patterns the evalu-
ation is the same over W1 and over W2, we have that for a gen-
eral PP-based SPARQL query (using operators AND,UNION,OPT,
and so on), the evaluation is also the same. Thus, we have that
[[P]]

ctxt
W1

= [[P]]
ctxt
W2

but also that [[Q]]
S
W1

≠ [[Q]]
S
W2

, which contra-
dicts the fact that [[P]]

ctxt
W = [[Q]]

S
W for everyW . �

Theorem 4. For every PP-pattern ⟨α, pe, β⟩, there exists an LDQL
query q such that for every Web of Linked Data W we have
[[(α, pe, β)]]

ctxt
W = [[q]]∅W .

Proof. We provide a translation scheme from PPs to LDQL. One
major complication is that PPs can retrieve literals and, in general,
values that are not in dom⊥̸(adoc), which are difficult to handle by
LPEs that can only traverse URIs in dom⊥̸(adoc). This complication
will become clear when presenting the details of the translation.

We begin by translating PPs of the form (?x, pe, ?y) for which
both subject and object are variables. Later we explain how to
adapt this translation to the other cases. In the translation we
associate to every PP expression r an LDQL queryQr(?x, ?y)with ?x

O. Hartig, J. Pérez / Web Semantics: Science, Services and Agents on the World Wide Web 41 (2016) 9–29 19
Fig. 2. Rules for translating a PP expression r into an LDQL query Qr (?x, ?y).
and ?y as free variables. The definition of Qr(?x, ?y) is by induction
on the construction of PP expressions. In the construction, all the
variables mentioned, besides ?x and ?y, are considered as fresh
variables. The rules for constructing Qr are shown in Fig. 2.

Claim 2. For every PP pattern of the form ⟨?x, r, ?y⟩ it holds that
[[⟨?x, r, ?y⟩]]

ctxt
W = [[Qr(?x, ?y)]]∅W .

The proof of this claim can be done by induction on the
construction of Qr(?x, ?y). All the details of the induction can be
found in the Appendix. We just mention here some cases to give
enough intuition on why the construction works. Consider the PP
pattern ⟨?x, !(u1| · · · |uk), ?y⟩. In this casewe use rule 2 in Fig. 2 and
the translation is

π{?x,?y}

SEED?x


ε,

(?x, ?p, ?y)FILTER

× (?p ≠ u1 ∧ · · · ∧ ?p ≠ uk)


.

In this LDQL query we are setting variable ?x to the seed URI from
which we start our navigation. Suppose that this URI is u. We then
navigate from u using LPE ε, which means that we stay at the
document pointed by u, that is adoc(u). Finally,with the expression
(?x, ?p, ?y)FILTER(?p ≠ u1 ∧ · · · ∧ ?p ≠ uk)


, we extract the

triples of the from (u, a, b) in adoc(u) such that a is different from
all the URIs u1, . . . , uk. Thus, a mapping µ = {?x → u, ?y →

b} is a solution if there is a triple (u, a, b) in adoc(u) such that
a ∉ {u1, . . . , uk}, which is exactly the context-based semantics of
⟨?x, !(u1| · · · |uk), ?y⟩.

The other interesting case is the PP pattern ⟨?x, r∗

1 , ?y⟩, where
r1 is an arbitrary PP-expression. In this case we use rule 5 in
Fig. 2. The expression r∗

1 can be written as ε|r+

1 and the query
Qr∗1

(?x, ?y) handles ε and r+

1 separately. For the case of ε we use
Qε(?x, ?y), which essentially matches when the values assigned
to ?x and ?y are the same (arbitrary) value. More interesting is
the case of r+

1 . For this case, we first define query Qs(?v) in Fig. 2
given by


⟨ε, (GRAPH?u { })⟩ANDQr1(?u, ?v)


. If we assume that

Qr1(?u, ?v) is correct, then Qs(?v), when evaluated from a seed
URI u, gives as result all the values (which can be URIs or literals)
that are reachable from u by following expression r1 according to
the context-based semantics of PPs. The portion of the query given
by ⟨ε, (GRAPH?u { })⟩ is only ensuring that ?u is always bound
to a URI which is in dom⊥̸(adoc). Now consider the expression
⟨?v,Qs(?v)⟩∗. This expression is essentially repeating several times
Qs(?v); if we start with a seed URI u and we evaluate ⟨?v,Qs(?v)⟩,
we obtain in ?v a URI in dom⊥̸(adoc), say u′, that is reachable from
u by following r1, and by the semantics of the construction ⟨?v, q⟩
in LDQL, this URI u′ is the one used to continue the navigation
afterwards. Thus, ⟨?v,Qs(?v)⟩∗, when evaluated from a seed URI
u, gives the set of all URIs dom⊥̸(adoc) that are reachable from
u following 0 or more copies of r1. Now consider the part of
Qr∗1

(?x, ?y) given by

(SEED?x ⟨⟨?v,Qs(?v)⟩∗, (GRAPH?z { }).

From the discussion above, we note that this query is setting
variable ?x as the seed URI, and variable ?z as the URI reached after
following 0 or more copies of r1 from ?x. Finally, the last part of
Qr∗1

(?x, ?y) is a join with Qr1(?z, ?y), which essentially performs
the last step and retrieves (and stores in ?y) all the values that can
be reached from ?z by following r1. Notice that in this last case
the value assigned to ?y can be an arbitrary URI (not necessarily
in dom⊥̸(adoc)) or even a literal. The detailed proof by induction
can be found in the Appendix.

We have shown how to construct an equivalent LDQL query for
every PP pattern of the form ⟨?x, r, ?y⟩. For PP patterns that do
not have two variables we need a slightly different construction,
in particular for the case in which (·)∗ is used. Consider a PP
pattern ⟨α, r, β⟩ where α is a URI or variable, and β is a URI,
variable, or literal. Then, for the cases (i) r = p ∈ U, (ii) r =

!(u1| · · · |uk), (iii) r = r1/r2, and (iv) r = r1|r2, we construct an
LDQL query Qr(α, β) that is obtained from Qr(?x, ?y) by replacing
all occurrences of ?x by α and all occurrences of ?y by β .

We now consider the case of r = r∗

1 . First, without loss of
generality, we assume that r1 is not of the form (a∗)∗. This is

20 O. Hartig, J. Pérez / Web Semantics: Science, Services and Agents on the World Wide Web 41 (2016) 9–29
possible given that an expression of the form (a∗)∗ is equivalent
to a∗. In this case we also need to use the BIND operator of SPARQL.
The semantics of BIND is very simple and is as follows: for a URI
u the query BIND(uAS?y) binds variable ?y to u, that is the result
consists of a single solution, namely: {?y → u}. To continue with
our construction, for a PP pattern ⟨u, r, ?y⟩ we construct a query
Pu
r (?y) as

⟨ε,BIND(uAS?y)⟩UNION

(SEED{u} ⟨(?v,Qs(?v))∗,

(GRAPH?z { })⟩)ANDQr1(?z, ?y)

.

The part ⟨ε,BIND(uAS?y)⟩ handles the ε case (0 repetitions of r1).
The other part is similar to the case of two variables but fixing the
initial URI to u. For a PP pattern ⟨?x, r, v⟩ we construct a similar
LDQL query Sv

r (?x) as

⟨ε,BIND(vAS?x)⟩UNION

(SEED?x ⟨(?v,Qs(?v))∗,

(GRAPH?z { })⟩)ANDQr1(?z, v)

.

Finally, for a PP pattern ⟨u, r, v⟩ we construct an LDQL query Uu,v
r

as

π∅⟨ε, (BIND(uAS?x)ANDBIND(vAS?y))FILTER(?x = ?y)⟩
UNION


(SEED{u} ⟨(?v,Qs(?v))∗, (GRAPH?z { })⟩)

ANDQr1(?z, v)

.

Finally consider a PP pattern (ℓ, r, β), where ℓ is a literal. For
the cases r = p ∈ U and r = !(u1| · · · |uk) we should translate it
into an unsatisfiable query. One way of obtaining that query is, for
example, with an expression

⟨ε, (BIND(ℓAS?x)ANDBIND(ℓAS?y))FILTER(?x ≠ ?y)⟩. (6)

For the cases r = r1/r2 and r = r1|r2 we follow the same
construction as if ℓ was a URI but with (6) as base case. For the
case of r = r∗

1 , we only have to consider the ε case, as PPs cannot
actually navigate from literal values. Thus, if β is a variable ?y, we
consider the following query

⟨ε,BIND(ℓAS?y)⟩,

and if β is a URI or literal the query is

π∅⟨ε, (BIND(ℓAS?x)ANDBIND(βAS?y))FILTER(?x = ?y)⟩.

The correctness of the complete translation for PP patterns of the
form ⟨α, r, β⟩ can be proved along the same lines as for the case of
PP pattern ⟨?x, r, ?y⟩. �

5.3. Comparison with SPARQL under full-web query semantics

In addition to the aforementioned reachability-based semantics
and the context-based semantics, the authors of [8] and of [10]
define a full-Web semantics for answering SPARQL queries over a
Web of Linked Data. By this semantics, a SPARQL pattern has to be
evaluated over the union of all the triples in all the documents in a
Web of Linked Data. As shown by the authors in [8], this semantics
ismostly of theoretical interests as there cannot exist a system that
guarantees to compute it using an algorithm that both terminates
and returns complete query results. Nonetheless, in this section
we show that LDQL is powerful enough to capture this full-Web
semantics.

Let W = ⟨D, adoc⟩ be a Web of Linked Data and consider the
set GAll of RDF triples constructed as

GW
All =


d∈D

data(d).

The evaluation of a SPARQL graph pattern P overW under full-Web
semantics is defined as the evaluation of P overGAll according to the
normative SPARQL semantics [8,10]. Formally, let DW
All be the RDF

dataset that contains GW
All as the default graph and no named graph.

Recall that given an RDF dataset D, and a SPARQL graph pattern P ,
we denote by [[P]]

D the evaluation of P over dataset D. Thus, the
evaluation of P overW under full-Web semantics is just [[P]]

DW
All .

The next two results show that LDQL is strictly more expressive
than SPARQL graph patterns under full-Web semantics. That is,
not only is LDQL powerful enough to capture full-Web semantics
of SPARQL queries (Theorem 5), there also exists an LDQL query
that cannot be expressed as a SPARQL pattern under full-Web
semantics (Theorem 6).

Theorem 5. For every SPARQL graph pattern P there exists an LDQL
query q such that for every Web of Linked Data W, it holds that
[[P]]

DW
All = [[q]]{uctx}W , where uctx is an arbitrary URI.

Proof. Webegin by constructing an LPE lpeAll that provides access
to all documents in an arbitrary Web of Linked Data W =

⟨D, adoc⟩. To this end, first consider the LDQL query QAll(?v)
defined as

QAll(?v) = (SEED?v ⟨ε, { }⟩).

Essentially, this query considers all possible URIs in dom⊥̸(adoc),
and binds each of them to variable ?v as follows. Operator SEED
first defines a navigation from an arbitrary URI, say u. Then, the
subquery ⟨ε, { }⟩ navigates from u by using LPE ε; thus, it stays in
the document d = adoc(u), and evaluates the empty pattern { }

over data(d). Therefore, themapping {?v → u} is in [[QAll(?v)]]
{uctx}
W

for every possible URI u ∈ dom⊥̸(adoc), where uctx is an arbitrary
URI.

Then,we define LPE lpeAll as lpeAll = ⟨?v,Qall(?v)⟩.Now let uctx

be an arbitrary URI not mentioned in P . By the semantics of LPEs,
we have that

[[lpeAll]]
uctx
W = [[⟨?v,QAll(?v)⟩]]

uctx
W

=

u ∈ U | there exists µ ∈ [[QAll(?v)]]

{uctx}
W

such that µ(?v) = u


= dom⊥̸(adoc).

Recall that for every document d ∈ D, there exists a URI u ∈ U
such that adoc(u) = d. Consequently, lpeAll provides access to
all documents in a Web of Linked Data. Formally we have that
D′

= datasetW

[[lpe]]uctxW


is a dataset that has GW

All as default graph
and ⟨uctx,GW

All⟩ as named graph. Notice that the only difference
between D′ and DW

All is the named graph ⟨uctx,GW
All⟩.

Consider now the LDQL query q = ⟨lpeAll, P ′
⟩ where P ′

is obtained from P by replacing every sub pattern of the form
(GRAPH?x R) by an unsatisfiable pattern Pun. Notice that by the
semantics of LDQL we have [[q]]{uctx}W = [[P ′

]]
D′

. It is not difficult
to show that [[P ′

]]
D′

= [[P]]
DW

All . In particular, it is clear that every
sub pattern of P that is not of the form (GRAPHu R) or (GRAPH?x R)
has the sameevaluationunder datasetsD′ andDW

All as bothdatasets
have the same default graph. For the case of a pattern of the form
(GRAPHu R), in both datasets the evaluation of the pattern is the
empty set because the only named graph has uctx as name (where
uctx can be selected to be different from u). Finally, for the case of
a pattern of the form (GRAPH?x R), in dataset DW

All the evaluation
is clearly empty (as there is no named graph in DW

All), which is
exactly the evaluation of Pun in dataset D′. Thus, we have shown
that [[P ′

]]
D′

= [[P]]
DW

All and thus [[q]]{uctx}W = [[P]]
DW

All . �

Theorem 6. There exists an LDQL query q for which there does not
exist a SPARQL graph pattern P and set S of URIs such that [[q]]SW =

[[P]]
DW

All for every Web of Linked Data W.

O. Hartig, J. Pérez / Web Semantics: Science, Services and Agents on the World Wide Web 41 (2016) 9–29 21
Proof. LetW = ⟨D, adoc⟩ be aWeb of Linked Data and let u and u′

be two URIs such that u ∈ dom⊥̸(adoc) and u′
∉ dom⊥̸(adoc).

Consider now another Web of Linked Data W ′
= (D′, adoc ′)

such that D = D′, and adoc ′ is almost exactly adoc , with the
only difference that u′

∈ dom⊥̸(adoc ′), u ∉ dom⊥̸(adoc ′), and
adoc ′(u′) = adoc(u). Notice that DW

All = DW ′

All as in both Webs the
documents (and thus the data) are the same. This implies that for
every SPARQL pattern P we have that the evaluation of P under
full-Web semantics overW is the same as overW ′.

Now consider the LDQL query q = (SEEDu′
⟨ε, { }⟩). It is

clear that under W ′ the evaluation of q gives as result a set
containing the empty mapping. On the other hand, the evaluation
of q overW gives the empty set as there is no document associated
with u′. Therefore, q is not expressible in SPARQL under full-Web
semantics, as every pattern P gives the same resultwhen evaluated
under full-Web semantics over W and W ′, respectively, while q
gives different results. �

A final comment is in order. In our definition of LDQL we
have considered as a base case the construction ⟨lpe, P⟩ where
P is a SPARQL 1.0 graph pattern. In the full-Web semantics
mentioned in [10], the authors consider PP-based SPARQL queries,
that is, SPARQL 1.1 graph patterns constructed by combining PP-
patterns using the standard SPARQL operators AND,UNION,OPT,
and FILTER (cf. Section 5.2). Thus, to completely capture the full-
Web semantics in [10] we should also allow SPARQL 1.1 graph
patterns in the base case of LDQL. Similarly, in [43] (which is an
extended version of [10]) a reachability-based semantics for PP-
based SPARQL 1.1 patterns is proposed. This semantics can also be
captured in our framework by just considering SPARQL1.1 patterns
in the base case of LDQL expressions and using the construction
shown in Section 5.1. We have decided to use only SPARQL 1.0
patterns in our core language as it already has the necessary
features that we needed in the expressiveness results, namely the
operators AND,UNION,GRAPH, and so on. Nevertheless, we stress
that, in practice, any version of SPARQL patterns (either 1.0, 1.1, or
even subsequent versions) can be plugged into the LDQL base case.

5.4. Comparison with NautiLOD

NautiLOD is a navigation language to traverse Linked Data on
the WWW and to perform actions (such as sending emails) during
the traversal [13]. We compare LDQL with the navigational core of
NautiLOD, which excludes action rules and represents the output
of a navigation as a set of URIs,which is called ‘‘NautiLOD semantics
returning set of nodes’’ in [13]. It should be noticed that [13]
introduces alternative semantics, called ‘‘NautiLOD semantics
returningWeb fragments’’, in which queries can essentially output
the portion of the Web that was traversed while evaluating the
expression, including URIs and links. The idea of retrieving Web
fragments is very interesting and we think that it can also be
adapted to LDQL. We leave such an adaptation, as well as a full
comparison with the Web-fragment semantics of NautiLOD, for
future work.

The syntax of NautiLOD expressions (without actions) is given
by the following grammar (where p ∈ U and P is a SPARQL
graph pattern).

ne := p | pˆ | ⟨ _ ⟩ | ne/ne | ne|ne | ne∗
| ne[(ASKP)]

In termsof our datamodel,2 the semantics ofNautiLODexpressions
that returns sets of URIs over aWeb of Linked DataW = ⟨D, adoc⟩

2 In [13], all URIs have an assigned set of RDF triples (which may be empty).
Hence, the authors implicitly assume that every URI is in dom⊥̸(adoc). In our
data model one can have URIs not in dom⊥̸(adoc). Hence, to properly capture the
semantics of NautiLOD in terms of our data model we have to introduce conditions
of the form ‘‘u′

∈ dom⊥̸(adoc)’’.
from URI u ∈ dom⊥̸(adoc) is defined recursively as follows.

[[p]]
u
W = {u′

| ⟨u, p, u′
⟩ ∈ data(adoc(u))}

[[pˆ]]
u
W = {u′

| ⟨u′, p, u⟩ ∈ data(adoc(u))}

[[⟨ _ ⟩]]
u
W = {u′

| ⟨u, p, u′
⟩ ∈ data(adoc(u)) for some p ∈ U}

[[ne1/ne2]]
u
W = {u′′

| u′′
∈ [[ne2]]

u′

W for some

u′
∈ [[ne1]]

u
W ∩ dom⊥̸(adoc)}

[[ne1| ne2]]
u
W = [[ne1]]

u
W ∪ [[ne2]]

u
W

[[ne∗
]]
u
W = {u} ∪ [[ne]]

u
W ∪ [[ne/ne]]

u
W ∪ [[ne/ne/ne]]

u
W ∪ · · ·

[[ne[(ASKP)]]]
u
W = {u′

| u′
∈ [[ne]]

u
W ∩ dom⊥̸(adoc) and

[[P]]data(adoc(u′)) ≠ ∅}

We next compare the expressive power of LDQL and NautiLOD.
Notice that the evaluation of a NautiLOD expression is a set of URIs,
whereas the evaluation of an LDQL query is a set of mappings.
Thus, to state our results formally we compare NautiLOD with
LDQL queries that have a single free variable. Let q(?x) be an LDQL
query with ?x as free variable. We say that q(?x) and a NautiLOD
expression ne are equivalent if for every Web of Linked Data W =

⟨D, adoc⟩ and every pair of URIs u, u′ such that u ∈ dom⊥̸(adoc), it
holds that u′

∈ [[ne]]
u
W if and only if {?x → u′

} ∈ [[q(?x)]]{u}W .

We first prove that LDQL is strictly more expressive than
NautiLOD. Recall that NautiLOD can only express paths; a
combination of such paths via SPARQL operators is not allowed.
Thus, it is easy to prove that NautiLOD cannot express operators
such as SEED,AND, orUNION, which are allowed natively in LDQL.
However, in this paper we make a stronger claim: Instead of
using the mentioned operators, we will prove that there exists
a basic LDQL query that cannot be represented using NautiLOD
expressions.

Theorem 7. There exists a basic LDQL query Q (?x) with ?x as free
variable that does not use SPARQL operators (AND,OPT,UNION, and
so on) nor the operator SEED, and for which there does not exist a
NautiLOD expression ne such that [[n]]

u
W = [[Q (?x)]]{u}W for everyWeb

of Linked Data W = ⟨D, adoc⟩ and URI u ∈ dom⊥̸(adoc).

Proof. Consider the LDQL query Q (?x) given by
⟨+, p, _ ⟩, (?x, ?x, ?x)


with p ∈ U. Now assume that there exists a NautiLOD expression
n such that

[[n]]
v
W = [[Q (?x)]]{v}

W

for everyWeb of LinkedDataW and v ∈ dom⊥̸(adoc). Let u, u′, a, b
be different URIs in U that are not mentioned in n. Consider
now a Web of Linked Data W1 = ⟨D1, adoc1⟩ that consists of
two documents, d1 and d2, such that data(d1) = {(u, p, u′)}
and data(d2) = {(a, a, a)}, and such that adoc(u) = d1 and
adoc(u′) = d2. Moreover, consider another Web of Linked Data,
W2 = ⟨D2, adoc2⟩, that also contains document d1, and another
document, d3, such that data(d3) = {(b, b, b)}, and such that
adoc(u) = d1 and adoc(u′) = d3. First notice that

[[Q (?x)]]{u}W1
= {{?x → a}} ≠ [[Q (?x)]]{u}W2

= {{?x → b}}.

We now prove that [[n]]
u
W1

= [[n]]
u
W2

, which is a contradiction. To
prove this, we show that for every subexpression e of n, and for
every possible URI v, it holds that [[e]]

v
W1

= [[e]]
v
W2

. First notice
that for both Webs, dom⊥̸(adoc1) and dom⊥̸(adoc2) contain only
two URIs, namely, u and u′. Thus, we only have two reason for the
cases in which v = u or v = u′. We proceed by induction.

22 O. Hartig, J. Pérez / Web Semantics: Science, Services and Agents on the World Wide Web 41 (2016) 9–29
• Assume that e = r ∈ U. Given that in W1 and W2 the URI u is
associatedwith the same document (document d1), then [[r]]

u
W1

= [[r]]
u
W2

. Moreover, given that r ≠ a and r ≠ b (recall that n
does not mention a or b), we have that [[r]]

u′

W1
= [[r]]

u′

W2
= ∅.

• Assume that e = rˆ with r ∈ U. Exactly the same argument as
the above case applies.

• Assume that e = ⟨ _ ⟩. For the same reason as in the above two
cases we have that [[r]]

u
W1

= [[r]]
u
W2

. Now consider [[⟨ _ ⟩]]
u′

W1
.

Then, we have that URI v is in [[⟨ _ ⟩]]
u′

W1
if and only if there

exists some p such that (u′, p, v) ∈ data(adoc(u′)), but the
only triple in data(adoc(u′)) is (a, a, a) and since a ≠ u′ we
have that [[⟨ _ ⟩]]

u′

W1
= ∅. For a similar reason we obtain that

[[⟨ _ ⟩]]
u′

W2
= ∅, completing this part of the proof.

• The cases (i) e = r1/r2, (ii) e = r1|r2, and (iii) e = r∗ follow from
the base cases proved above.

• Assume e = r[(ASKP)]. By definition we have that

[[r[(ASKP)]]]vW = {v′
| v′

∈ [[r]]vW ∩ dom⊥̸(adoc) and
[[P]]data(adoc(v′)) ≠ ∅}.

By the induction hypothesis we have that [[r]]vW1
= [[r]]vW2

for
v = u, u′. Thus, we only need to prove that the evaluation of P
is always the same. Given that data(adoc(u)) is the same docu-
ment inW1 andW2, we have that for u the property holds. Now
consider [[P]]data(d2) and [[P]]data(d3) with data(d2) = {(a, a, a)}
and data(d3) = {(b, b, b)}. Recall that P does not mention a or
b, thus we have that ifµ ∈ [[P]]d2 then themappingµ′ obtained
from µ by replacing every occurrence of a by b, is in [[P]]d3 ,
and vice versa. Thus, we have that [[P]]d2 = ∅ if and only if
[[P]]d3 = ∅. This proves that [[r[(ASKP)]]]vW1

= [[r[(ASKP)]]]vW2
for v = u, u′.

We have finished the proof that [[n]]
u
W1

= [[n]]
u
W2

, which
contradicts the fact that n is equivalent to Q (?x). �

Theorem 8. For every NautiLOD expression ne, there exists an LDQL
query Q (?x), with ?x a free variable, that is equivalent to ne; that
is, for every Web of Linked Data W = ⟨D, adoc⟩ and every u ∈

dom⊥̸(adoc), we have [[n]]
u
W = [[q]]{u}W .

Proof. The outlook of the proof is as follows. The proof beginswith
a simple translation that replaces every p ∈ U in a NautiLOD
expression by a link pattern ⟨+, p, _ ⟩. For instance, the expres-
sion p1/p∗

2 is translated into ⟨+, p1, _ ⟩/⟨+, p2, _ ⟩
∗. The transla-

tion of ⟨ _ ⟩ and of [(ASKP)] needs the LPE construction ⟨?v, q⟩. The
complete translation poses several other complications. In partic-
ular, the last step of NautiLOD expressions must be translated by
using a SPARQL pattern and not an LPE. For this we use the follow-
ing property. Given a regular expression r that does not generate
the empty word, one can always write r as r1/a1| · · · |rk/ak where
the ai’s are base symbols of the alphabet. Thus, we can translate r
by using LPEs to translate the ri’s as outlined above; next, translate
the ai’s by using a method similar to the proof of Theorem 4, and
finally use UNION for |.

For the complete proof we proceed by an induction that
shows how to translate every possible NautiLOD expression. The
translation consists of two parts. We first define the following
function transN(·) that, given a NautiLOD expression, produces an
LPE.

transN(p) = ⟨+, p, _ ⟩

transN(pˆ) = ⟨ _ , p, +⟩

transN(⟨ _ ⟩) =

?x,


ε, (GRAPH?u (?u, ?p, ?x))


transN(n1/n2) = transN(n1)/transN(n2)

transN(n1|n2) = transN(n1)|transN(n2)

transN(n∗) = transN(n)∗

transN(n[(ASKP)]) = transN(n)/[(?x, ⟨ε, (GRAPH?x P)⟩]
Before presenting the complete translations, we prove the
following result. Let n be a NautiLOD expression, then for every
Web of Linked Data W = ⟨D, adoc⟩ and URIs u, v ∈ dom⊥̸(adoc)
we have that

v ∈ [[n]]uW if and only if v ∈ [[transN(n)]]{u}W .

The proof is by induction on the construction of the NautiLOD
expression.

• For the case of p ∈ U we have that

[[p]]uW = {u′
| (u, p, u′) ∈ data(adoc(u))}.

Notice that v ∈ dom⊥̸(adoc) and v ∈ [[p]]uW , if and only if
there is a link from document adoc(u) to document adoc(v)
that matches ⟨+, p, _ ⟩. This happens, if and only if v ∈

[[⟨+, p, _ ⟩]]
{u}
W , which is what we wanted to prove.

• The case for pˆ is similar but using ⟨ _ , p, +⟩.
• The case for ⟨ _ ⟩. Note that v ∈ [[⟨ _ ⟩]]

u
W if and only if

there exists a p ∈ U such that (u, p, v) ∈ data(adoc(u)).
On the other hand, we have that v ∈ [[transN(⟨ _ ⟩)]]

{u}
W =

[[

?x,


ε, (GRAPH?u (?u, ?p, ?x))


]]

{u}
W if and only if v ∈

[[π?x(GRAPH?u (?u, ?p, ?x))]]D where D is the dataset that
is given as D = {data(adoc(u)), ⟨u, data(adoc(u))⟩}. Thus,
v ∈ [[transN(⟨ _ ⟩)]]

{u}
W if and only if there exists p such that

(u, p, v) ∈ data(adoc(u)). This proves the desired property.
• For the case of an expression n1/n2, we have that URI v in

dom⊥̸(adoc) is in [[n1/n2]]
u
W if and only if there exists a URI

v′
∈ dom⊥̸(adoc) such that v′

∈ [[n1]]
u
W and v ∈ [[n2]]

v′

W .
Then, we can apply or induction hypothesis and obtain that
v ∈ [[n1/n2]]

u
W if and only if v′

∈ [[transN(n1)]]
{u}
W and v ∈

[[transN(n2)]]
{v′

}

W , and thus v ∈ [[transN(n1/n2)]]
{u}
W .

• Cases n1|n2 and n∗ are direct from the definition of NautiLOD
and LDQL.

• For the case of expression n[(ASKP)] we have that v ∈

[[n[(ASKP)]]]uW if and only if v ∈ [[n]]uW , v ∈ dom⊥̸(adoc),
and [[P]]data(adoc(v)) ≠ ∅. On the other hand, we have that v ∈

[[transN(n[(ASKP)])]]
{u}
W if and only if

v ∈ [[transN(n)/[(?x, ⟨ε, (GRAPH?x P)⟩]]]
{u}
W .

This happens if and only if there exists a v′
∈ [[transN(n)]]{u}W

such that v ∈ [[[(?x, ⟨ε, (GRAPH?x P)⟩]]]
{v′

}

W . From this prop-
erty and the semantics of [·] in LDQL, we have that v =

v′ and [[(?x, ⟨ε, (GRAPH?x P)⟩]]
{v}

W ≠ ∅. The last holds if
and only if [[π?x(GRAPH?x P)]]D ≠ ∅, with D the RDF
dataset {data(adoc(v)), ⟨v, data(adoc(v))⟩}. As a consequence,
we have that v ∈ [[transN(n[(ASKP)])]]

{u}
W if and only if v ∈

[[transN(n)]]{u}W and [[P]]data(adoc(u)) ≠ ∅. Applying our induction
hypothesis, we have v ∈ [[n]]uW and [[P]]data(adoc(u)) ≠ ∅, which
is exactly what we needed to prove.

Notice that the hypothesis that v ∈ dom⊥̸(adoc) was funda-
mental to prove the previous result. Nevertheless, the output of a
NautiLOD expression can be a URI not in dom⊥̸(adoc) or even a lit-
eral. So, we need to do a different translation in general. We now
use transN(·) to translate a general NautiLOD expression. Given a
NautiLOD expression n, we have two cases.

Assume first that n, as a regular expression, does not produce
the empty string. Then, by using regular language results, we know
that we can write an equivalent expression n′ of the form

n1/e1 | · · · | nk/ek | m1[(ASKP1)] | · · · | mℓ[(ASKPℓ)]

where every ni andmj is a NautiLOD expression, and every ei is ei-
ther of the form p, or pˆ, or ⟨ _ ⟩. We now are ready to produce an

O. Hartig, J. Pérez / Web Semantics: Science, Services and Agents on the World Wide Web 41 (2016) 9–29 23
LDQL query Qn(?x) that is equivalent to n. The query is constructed
as follows.

Qn(?x) = π{?x}


⟨transN(n1),Q1⟩UNION · · ·UNION

⟨transN(nk),Qk⟩UNION

⟨transN(m1), (GRAPH?x P1)⟩UNION · · ·

UNION⟨transN(mℓ), (GRAPH?x Pℓ)⟩

,

where every graphpatternQi depends on the formof ei (1 ≤ i ≤ k);
that is,
• Qi = (GRAPH?u (?u, p, ?x)) if ei = p,
• Qi = (GRAPH?u (?x, p, ?u)) if ei = pˆ, and
• Qi = (GRAPH?u (?u, ?p, ?x)) if ei = ⟨ _ ⟩.

To prove the correctness of our construction, assume that
v ∈ [[n]]uW . Then, we know that v ∈ [[ni/ei]]uW for some i ∈

{1, . . . , k} or v ∈ [[mi[(ASKPi)]]]uW for some i ∈ {1, . . . , ℓ}. If
v ∈ [[ni/ei]]uW , we know that there exists a URI v′ such that v′

∈

[[ni]]
u
W and v ∈ [[ei]]v

′

W . Notice that, since v ∈ [[ei]]v
′

W , and ei is
either p, or pˆ, or ⟨ _ ⟩ then we know that v′ is in dom⊥̸(adoc).
Thus, we can use our previous result to conclude from v′

∈

[[ni]]
u
W that v′

∈ [[transN(ni)]]
{u}
W . Now, if ei = p, then from

v ∈ [[ei]]v
′

W we conclude that (v′, p, v) ∈ data(adoc(v′)). There-
fore, [[(?u, p, ?x)]]data(adoc(v′)) contains the mapping µ = {?u →

v′, ?x → v} and, thus, µ ∈ [[(GRAPH?u (?u, p, ?x))]]D where
D = {data(adoc(v′)), ⟨v′, data(adoc(v′))⟩}. Given that v′

∈

[[transN(ni)]]
{u}
W , we have that

µ = {?u → v′, ?x → v} ∈ [[⟨transN(ni),Qi⟩]]
{u}
W .

Finally, given that Qn(?x) only keeps the ?x variable, we have that
{?x → v} is in [[Qn(?x)]]

{u}
W , which is what we wanted to show. For

the cases of ei = pˆ and ei = ⟨ _ ⟩, the proof is the essentially the
same.

Now assume that v ∈ [[mi[(ASKPi)]]]uW for some i ∈ {1, . . . , ℓ},
which implies that v ∈ [[mi]]

u
W and [[Pi]]data(adoc(v)) ≠ ∅. By the

semantics of NautiLOD, we have that v is in dom⊥̸(adoc) (other-
wise we could not have been able to evaluate P), and thus we can
apply our result above to obtain that v ∈ [[transN(mi)]]

{u}
W . Now,

given that [[Pi]]data(adoc(v)) ≠ ∅we have that [[(GRAPH?x Pi)]]D ≠ ∅

where D = {data(adoc(v)), ⟨v, data(adoc(v))⟩}. Moreover, for
every mapping µ in [[(GRAPH?x Pi)]]D we have that µ(?x) =

v. All these facts imply that mapping µ′
= {?x → v} is in

[[⟨transN(mℓ), (GRAPH?x Pℓ)⟩]]
{u}
W and, thus, µ′ is in [[Qn(?x)]]

{u}
W ,

which is exactly what we wanted to prove.
If we start by assuming that µ = {?x → v} is in [[Qn(?x)]]

{u}
W ,

then, by following a similar reasoning as above, one concludes that
v ∈ [[n]]uW .

To complete the proof we have to cover the case in which n, as
a regular expression, can produce the empty string. If this is the
case, by applying some classical regular languages properties, one
can rewrite n as ε|n′ with n′ an expression that does not produce
the empty string ε. Thus, we can translate n into the LDQL query
Qn(?x) that is given as follows.

⟨ε, (GRAPH ?x { })⟩UNIONQn′(?x).

Notice that for every u ∈ data(adoc(v)) we have that
[[⟨ε, (GRAPH ?x { })⟩]]

{u}
W results in a single mapping µ = {?x →

u}, which is enough to conclude that n and Qn(?x) are equivalent.
This completes the proof. �

6. Computability

In this section we consider several computability issues
regarding LDQL. We first perform a classical analysis of the
complexity of the evaluation problem for the language. In
particular, we show that, in a setting in which a complete Web
of Linked Data is considered as input, every LDQL query can
be evaluated in polynomial time. Although it is not realistic to
have complete access to the Web of Linked Data in practice, the
theoretical analysis shows that LDQL is comparable in terms of
complexity with classical query languages for graph databases.

We then drop the assumption that one has complete access
to the Web of Linked Data and show that in this more realistic
setting, there exists LDQL queries for which a complete execution
is impossible. We formally study this issue proposing the notion
of Web-safeness for LDQL queries that ensures that a complete
execution of the queries can be performed over the WWW. We
finally provide a syntactic sufficient condition that ensures Web-
safeness.

6.1. Classical complexity analysis

For our classical analysis we consider the following decision
problem that we call the classical evaluation problem for LDQL.
Given a fixed LDQL query q, the input for the problem is a mapping
µ, a finite set S of seed URIs, and a finite Web of Linked Data W =

⟨D, adoc⟩. The output is the answer to the following question: is
µ in [[q]]SW? Notice that we consider the data complexity [44] of
the problem since query q is not considered as part of the input.
In this classical scenario, we assume that we have full access to
W , in particular, that we have access to the elements in the set
dom⊥̸(adoc). The main result is the following.

Theorem 9. The classical evaluation problem for LDQL can be solved
in polynomial time.

Proof. The proof is based on two algorithms Eval (Algorithm 1)
andGet (Algorithm 2) thatwe describe next. In both algorithmswe
make use of a special set Pos(q,W , S) that contains all the possible
solution mappings that are candidates to be in the set [[q]]SW .
Formally, for a given LDQL query q, a Web of Linked Data W =

⟨D, adoc⟩, and a set S of URIs, we have:

Pos(q,W , S) =

µ | dom(µ) ⊆ var(q) and for every ?X ∈ dom(µ)

it holds that µ(?X) ∈ dom⊥̸(adoc) ∪ S ∪ terms(W)

,

where var(q) is the set of all variables that are mentioned in q,
and terms(W) is the set of all the elements in U ∪ B ∪ L that
are mentioned in some documents in W . It is straightforward to
see that to construct all the possible mappings we have to select
for every variable in var(q) either a value in dom⊥̸(adoc) ∪ S ∪

terms(W) or no value at all. Hence, we have:

|Pos(q,W , S)| = (|dom⊥̸(adoc)| + |S| + |terms(W)| + 1)|var(q)|.

Notice that the size of Pos(q,W , S) is polynomial in the size
of W and S when q is considered to be fixed, and can be
constructed in polynomial time by a simple enumeration. We next
prove the correctness of the algorithms, and the polynomial-time
complexity.
Correcteness

Procedure Eval (Algorithm 1) is responsible for checking if a
mapping µ is in [[q]]SW , and proceeds by cases according to the
form of query q. Procedure Get (Algorithm 2) is responsible for
returning all URIs that can be reached from a given URI u following
a given LPE lpe in the Web of Linked Data W . The formal proof of
correctness is by mutual induction between these two procedures
and on the construction of query q (in Eval) and on lpe (in Get).

Procedure Eval is essentially implementing the semantics
of LDQL queries presented in Definition 5. Thus, assuming (as
inductive hypothesis) that Eval is correct for subexpressions of
query q, a straightforward induction argument shows that Eval
is correct for the first five cases (lines 1–19 in Algorithm 1).
The only case that deserves a bit more attention is the case in
which q is of the form ⟨lpe, P⟩ (lines 20–27). For this case we

24 O. Hartig, J. Pérez / Web Semantics: Science, Services and Agents on the World Wide Web 41 (2016) 9–29
Algorithm 1 Eval(µ, q,W , S).
1: if q is of the form (q1UNIONq2) then
2: if Eval(µ, q1,W , S) = true or Eval(µ, q2,W , S) = true

then
3: return true
4: else if q is of the form (q1ANDq2) then
5: for all pairs of mappings µ1 ∈ Pos(q1,W , S) and µ2 ∈

Pos(q2,W , S) do
6: if Eval(µ1, q1,W , S) = true and Eval(µ2, q2,W , S) =

true and µ = µ1 ∪ µ2 then
7: return true
8: else if q is of the form πVq1 then
9: for allmappings µ1 ∈ Pos(q1,W , S) do

10: if Eval(µ1, q1,W , S) = true and µ and µ1 are compatible
and dom(µ) = dom(µ1) ∩ V then

11: return true
12: else if q is of the form (SEED U q1) then
13: if Eval(µ, q1,W ,U) = true then
14: return true
15: else if q is of the form (SEED ?v q1) then
16: for all URIs u ∈ dom⊥̸(adoc) do
17: for allmappings µ1 ∈ Pos(q1,W , {u}) do
18: if Eval(µ1, q1,W , S) = true and µ = µ1 ∪ {?v → u}

then
19: return true
20: else if q is of the form ⟨lpe, P⟩ then
21: rewrite lpe into lpe′ using only ε, ()∗ and the construction

⟨?v, p⟩
22: U := ∅

23: for all u ∈ S do
24: U := U ∪ Get(u, lpe′,W)
25: D := dataset(U)
26: if EvalSPARQL(µ, P,D) = true then
27: return true
28: return false

Algorithm 2 Get(u, lpe,W).

1: if u /∈ dom⊥̸(adoc) then return ∅

2: if lpe is ε then
3: return {u}
4: else if lpe is of the form ⟨?v, q⟩ then
5: X := ∅

6: for all solution mapping µ ∈ Pos(q,W , {u}) do
7: if Eval(µ, q,W , {u}) = true and µ(?v) ∈ U then X :=

X ∪ {µ(?v)}
8: return X
9: else if lpe is of the form r∗ then

10: X := ∅

11: let Q be an empty queue
12: Q .enqueue(u)
13: while Q is not empty do
14: v := Q .dequeue()
15: X := X ∪ {v}

16: for all w in Get(v, r,W) do
17: if w is not in X then Q .enqueue(w)
18: return X

begin by constructing a new expression lpe′ that is equivalent
to lpe but that only uses operators ε, ()∗ and the construction
⟨?v, p⟩. By Proposition 1 we know that this is always possible. The
algorithm proceeds by accumulating in the set U all the URIs that
are reachable from S via lpe′ byusing procedureGet(v, r,W). Then,
from U it constructs the corresponding dataset D and finally uses
EvalSPARQL(µ, P,D) to perform a standard SPARQL evaluation to
check if µ is in the evaluation of pattern P over dataset D. Thus,
assuming (as inductive hypothesis) that procedure Get is correct
for subexpressions of q of the form ⟨lpe, P⟩, we obtain that Eval
is also correct in this case as it is essentially implementing the
semantics for expressions ⟨lpe, P⟩ presented in Definition 5.

To argue about the correctness of Get, first notice that we only
have a few cases. The cases in which lpe is ε or in which u ∉

dom⊥̸(adoc) are trivially correct (these are the base cases of the
mutual induction). For the case in which lpe is of the form ⟨?v, q⟩,
we use the (inductive hypothesis) assumption that Eval is correct
for subexpressions of q. In this caseGet is essentially implementing
the definition of [[⟨?v, q⟩]]

u
W (Definition 5). For the last case, in

which lpe = r∗, first notice that by, Definition 5, we have that
w ∈ [[r∗

]]
u
W if and only if there exists an integer k such that

w ∈ [[rk]]uW , where rk is the expression formed by concatenating
k copies of expression r . Let X be the output of Get(u, r∗,W). We
prove next that w ∈ X if and only if there exists an integer k such
that w ∈ [[rk]]uW , which is enough to prove the correctness of Get.

Let Gr = (V , Er) be the graph such that V = dom⊥̸(adoc) and
(x, y) ∈ Er if and only if y ∈ Get(x, r,W). Notice that algorithm
Get is performing a standard Breadth-First-Search (BFS) procedure
over graph Gr starting from node u (lines 9–18 in Algorithm 2).
Thus, when the procedure terminates, we know that set X stores
all elements in V that are reachable from u following a path in Gr .
Then, we have that w ∈ X if and only if there exists a sequence
v0, v1, . . . , vk such that v0 = u, vk = w and vi ∈ Get(vi−1, r,W).
Given that we can assume (by inductive hypothesis) that Get is
correct for subexpressions of lpe = r∗, we know that vi ∈

Get(vi−1, r,W) if and only if vi ∈ [[r]]vi−1
W . Summing up, we have

thatw ∈ X if and only if there exists a sequence v0, v1, . . . , vk such
that v0 = u, vk = w and vi ∈ [[r]]vi−1

W , which is equivalent to say
that w ∈ [[rk]]uW . We finally conclude that w ∈ X if and only if
there exists a k such that w ∈ [[rk]]uW . This completes the proof of
correctness of Get.
Complexity

We use an inductive argument to show that the complexity of
Eval is polynomial. The induction is on the number of recursive
calls during the execution of the complete procedure. Thus,
assume that for less than N recursive calls, Eval performs in time
proportional to a polynomial w.r.t. the size of W and S (recall
that the query is not considered as part of the input to measure
the complexity). Now, assume that the complete execution of
Eval(µ, q,W , S) performs a total of N recursive calls. We proceed
by cases.

For the case in which q is of the form (q1UNIONq2), the total
time is proportional to the sum of the time for Eval(µ1, q1,W , S)
and Eval(µ2, q2,W , S), and since both perform less that N
recursive calls, by the inductive hypothesis, both are of time
polynomial (w.r.t. W and S). Thus, the complete execution is
polynomial. A similar argument applies when q is of the form
(SEED U q1).

Now consider the case in which q is of the form (q1ANDq2).
In this case we have that the number of calls to Eval (line 6
in Algorithm 1) is 2 × |Pos(q1,W , S)| × |Pos(q2,W , S)|. Notice
that both, |Pos(q1,W , S)| and |Pos(q2,W , S)|, are of polynomial
size w.r.t. W and S, and thus, given that every call to Eval takes
polynomial time, the total time is also polynomial in this case. A
similar argument applies if q is of the form πVq1.

Consider now the case in which q is of the form (SEED ?v q1).
In this case the number of calls to Eval is |dom⊥̸(adoc)| ×

|Pos(q1,W , {u})|, which is polynomial w.r.t.W and S, and thus the
time is also polynomial in this case.

The only case that is left to be analyzed is the case inwhich q is of
the form ⟨lpe, P⟩ (lines 20–27). By Lemma 3 we know that line 21
can be completed in polynomial time. Now notice that in line 25

O. Hartig, J. Pérez / Web Semantics: Science, Services and Agents on the World Wide Web 41 (2016) 9–29 25
the procedure constructs an RDF dataset D from the set U . Given
that U is at most of size |dom⊥̸(adoc)|, then U is of polynomial size
w.r.t. W , and one can construct D in polynomial time (provided
that we have complete access to Web W). Moreover, notice that
EvalSPARQL(µ, P,D) is performing a standard SPARQL graph pattern
evaluation, which we know can be done in polynomial time
w.r.t. the size of D if the pattern P is considered fixed [40]. Hence,
we only need to analyze the time complexity of the loop in line 23.
The loop is executed |S| times and the only important operation is
the call to Get. Thus, to show the polynomial time complexity we
only need to show that Get(u, lpe,W) takes polynomial time.

To this end, we use a similar inductive argument for procedure
Get as used for procedure Eval. Suppose that for less than K
recursive calls, Get performs in polynomial time, and assume that
K recursive calls are performed when executing Get(u, lpe,W).
We proceed by cases. The case in which lpe is ε is trivially
polynomial. For the case in which lpe is of the form ⟨?v, q⟩, the
algorithm performs |Pos(q1,W , {u})| calls to Eval. We know that
|Pos(q1,W , {u})| is polynomial and that the time to execute Eval
is also polynomial, which gives us a polynomial total time. The
last case is if lpe is of the form r∗. In this case, as we argued
when proving the correctness of the procedure, Get is essentially
performing a BFS over the graph Gr = (V , Er) with V =

dom⊥̸(adoc) and Er = {(x, y) | y ∈ Get(x, r,W)}. Thus, the
total time needed to complete this case is proportional to |V | + |E|

multiplied by the timeneeded to access the neighbor of every node,
which in this case is the time needed to execute Get. Finally, since
(i) |V | = |dom⊥̸(adoc)|, (ii) |E| ≤ |dom⊥̸(adoc)|2, and, (iii) by our
induction hypothesis, the time needed to execute Get(v, r,W) is
polynomial (it performs less than K recursive calls), we have that
the total time is also polynomial. This completes the proof of the
complexity of Eval. �

6.2. Web-safeness

In this section we study the ‘‘Web-safeness’’ of LDQL queries,
where, informally,we call a queryWeb-safe if a complete execution
of the query over a Web of Linked Data such as the WWW is
possible in practice (which is not the case for all LDQL queries as
we shall see). To provide a more formal definition of this notion
of Web-safeness we make the following observations. While the
mathematical structures introduced by our data model capture
the notion of Linked Data on the WWW formally (and, thus,
allow us to provide a formal semantics for LDQL queries and
study its expressiveness and classical computational complexity),
in practice, these structures are not available completely for the
WWW. For instance, given that an infinite number of strings
can be used as HTTP URIs [2], we cannot assume complete
information about which URIs are in the set dom⊥̸(adoc) (i.e., can
be looked up to retrieve some document) and which are not.
In fact, disclosing this information would require a process that
systematically tries to look up every possible HTTP URI and,
thus, would never terminate. Therefore, it is also impossible to
guarantee the discovery of every document in the set D (without
looking up an infinite number of URIs). Consequently, any query
whose execution requires a complete enumeration of this set is not
feasible in practice. Based on these observations, we define Web-
safeness of LDQL queries as follows [43].

Definition 6. An LDQL query q is Web-safe if there exists an
algorithm that, for any finite Web of Linked Data W = ⟨D, adoc⟩
and any finite set S of URIs, has the following three properties:
1. The algorithm computes [[q]]SW .
2. During its execution, the algorithm looks up only a finite

number of URIs (that is, conceptually, the algorithm invokes
function adoc only a finite number of times).

3. Neither the set D nor the set dom⊥̸(adoc) is required as input
for the algorithm (hence, the algorithm does not require any a
priori information aboutW).
Example 6. Recall the following three LDQL queries as introduced
in Examples 4 and 5:

qex =

SEED?x


ε, ⟨?x, usequelOf, ?z⟩


, q′

ex = ⟨lpeex, Bex⟩,

q′′

ex = (qexANDq′

ex),

where lpeex = ⟨ _ , usequelOf, _ ⟩
∗/[⟨ _ , uinfluencedBy, _ ⟩] and Bex =

{⟨?x, usequelOf, ?y⟩, ⟨?x, uinfluencedBy, ?z⟩}.
For query qex, any URI u ∈ U may be used to obtain a

nonempty subset of the query result as long as a lookup of u
retrieves a document whose data includes RDF triples that match
⟨u, usequelOf, ?z⟩. Therefore, without access to D or dom⊥̸(adoc)
of the queried Web W = ⟨D, adoc⟩, the completeness of the
computed query result can be guaranteed only by checking each
of the infinitely many possible HTTP URIs. Hence, query qex is
not Web-safe. In contrast, although it contains qex as a subquery,
query q′′

ex is Web-safe, and so is q′
ex. Given uRevolutions as seed

URI, a possible execution algorithm for q′
ex may first compute

[[lpeex]]
uRevolutions
W by traversing the queried Web W based on lpeex.

Thereafter, the algorithm retrieves documents by looking up all
URIs u ∈ [[lpeex]]

uRevolutions
W (or simply keeps these documents after

the traversal); and, finally, the algorithm evaluates pattern Bex

over the union of the RDF data in the retrieved documents. If
W is finite (i.e., contains a finite number of documents), the
traversal process requires a finite number of URI lookups only,
and so does the retrieval of documents in the second step; the
final step does not look up any URI. To see that q′′

ex is also Web-
safe we note that after executing subquery q′

ex (e.g., by using the
algorithm as outlined before), the execution of the other (non-
Web-safe) subquery qex can be reduced to a finite number of
URI lookups, namely the URIs bound to variable ?x in solution
mappings obtained for subquery q′

ex. Although any other URI may
also be used to obtain solution mappings for qex, such solution
mappings cannot be joined with any of the solution mappings for
q′
ex and, thus, are irrelevant for the result of q′′

ex.

The example illustrates that there exists an LDQL query that is
not Web-safe. In fact, it is not difficult to see that the argument
for the non-Web-safeness of query qex as made in the example
can be applied to any LDQL query of the form (SEED?x q) where
subquery q is a (satisfiable) basic LDQL query; that is, none of these
queries is Web-safe. However, the example also shows that more
complex queries that contain such non-Web-safe subqueries may
still be Web-safe. Therefore, we now show properties to identify
LDQLqueries that areWeb-safe even if someof their subqueries are
not. We begin with queries of the forms ⟨lpe, P⟩, πVq, (SEED U q),
and (q1UNION . . .UNIONqn).

Proposition 2. A basic LDQL query ⟨lpe, P⟩ isWeb-safe if lpe isWeb-
safe, wherewe call an LPEWeb-safe if either (i) it is of the form ⟨?v, q′

⟩

and the contained LDQL query q′ is Web-safe, or (ii) it is of any form
other than ⟨?v, q′

⟩ and all its subexpressions (if any) are Web-safe
LPEs.

Proposition 3. An LDQL query of the form πVq′ or the form
(SEED U q′) is Web-safe if subquery q′ is Web-safe.

Proposition 4. An LDQL query of the form (q1UNION . . .UNIONqn)
is Web-safe if every subquery qi (1≤ i≤n) is Web-safe.

Proof of Proposition 2. Let q be an arbitrary basic LDQL query
⟨lpe, P⟩ such that lpe is Web-safe. To show that q is Web-safe we
provide Algorithm 3. In line 3 the algorithm calls a subroutine,
ExecLPE (cf. Algorithm 4), that evaluates a given LPE in the context
of a given URI. The correctness of the algorithm and its subroutine
is easily checked. Moreover, a trivial proof by induction on the
possible structure of LPEs can show that for any Web-safe LPE, the
given subroutine looks up a finite number of URIs only. The crux of

26 O. Hartig, J. Pérez / Web Semantics: Science, Services and Agents on the World Wide Web 41 (2016) 9–29
Algorithm 3 Execution of a basic LDQL query ⟨lpe, P⟩ using a set
S of URIs as seed.
1: Φ := a new empty set of URIs
2: for all u ∈ S do
3: Φ := Φ ∪ ExecLPE(lpe, u)
4: G := a new empty set of RDF triples (i.e., an empty RDF graph)
5: N := a new empty set of pairs consisting of a URI and an RDF

graph
6: for all u ∈ Φ do
7: if looking up URI u results in retrieving a document, say d

then
8: G := G ∪ data(d)
9: N := N ∪ {⟨u, data(d)⟩}

10: return [[P]]
⟨G,N ⟩

G // [[P]]
⟨G,N ⟩

G can be computed by using any
algorithm that implements

// the standard (set-based) SPARQL evalu-
ation function[41]

such a proof is twofold: First, the evaluation of LPEs of the form
lpe∗ (lines 20–28 in Algorithm 4) is guaranteed to reach a fixed
point for any finite Web of Linked Data. Second, the evaluation
of LPEs of the form ⟨?v, q⟩ (lines 32–36) uses an algorithm for
subquery q that has the properties as required in Definition 6.
Due to the Web-safeness of the given LPE and, thus, of q, such an
algorithm exists. �

Proof of Proposition 3. First, let q be an LDQL query of the form
πVq′ such that subquery q′ is Web-safe. Due to the Web-safeness
of q′, there exists an algorithm for q′ that has the properties as
required in Definition 6. We may use this algorithm to construct
an algorithm for q; that is, our algorithm for q calls the algorithm
for q′, applies the projection operator to the result, and returns
the set of solution mappings resulting from this projection. Since
the application of the projection operator does not involve URI
lookups, the constructed algorithm for q has the properties as
required in Definition 6. Second, let q be an LDQL query of
the form (SEED U q′) such that q′ is Web-safe. Hence, there
exists an algorithm for q′ that has the properties as required in
Definition 6. Then, showing theWeb-safeness of q is trivial because
the algorithm for q′ can also be used for q. �

Proof of Proposition 4. Let LDQL query q be of the form (q1UNION
. . .UNIONqn) such that every qi (1 ≤ i ≤ n) is Web-safe. Hence,
for every subquery qi, there exists an algorithm that has the
properties as required in Definition 6. Then, the Web-safeness of
query q is easily shown by specifying another algorithm that calls
the algorithms of the subqueries sequentially and unions their
results. �

It remains to discuss LDQL queries of the form (q1AND . . .
ANDqm). Our discussion of query q′′

ex in Example 6 suggests that
such queries can be shown to be Web-safe if all non-Web-safe
subqueries are of the form (SEED?v q) and it is possible to execute
these subqueries by using variable bindings obtained from other
subqueries. A necessary condition for this execution strategy is that
the variable in question (i.e., ?v) is guaranteed to be bound in every
possible solution mapping obtained from the other subqueries.

To allow for an automated verification of this condition we
adopt Buil-Aranda et al.’s notion of strongly bound variables [45].3

3 While we may also adopt Buil-Aranda et al.’s notion of bound variables (not to
be confused with their notion of strongly bound variables), a definition of bound
variables in LDQL queries would be based directly on the boundedness of variables
in SPARQL patterns. Then, it is not difficult to see that the undecidability of verifying
whether a given variable is bound in a given SPARQL pattern [45] would also carry
over to LDQL queries. Therefore, we omit discussing boundedness and use directly
the decidable alternative (i.e., strong boundedness).
To this end, for any SPARQL graph pattern P , let sbvars(P) denote
the set of strongly bound variables in P as defined by Buil-Aranda
et al. [45]. For the sake of space, we do not repeat the definition
here. However, we emphasize that sbvars(P) can be constructed
recursively, and each variable in sbvars(P) is guaranteed to be
bound in every possible solution for P [45, Proposition 1]. To carry
over these properties to LDQLqueries,weuse thenotion of strongly
bound variables in SPARQL patterns to define the following
notion of strongly bound variables in LDQL queries; thereafter, in
Lemma 4, we show the desired boundedness guarantee.

Definition 7. The set of strongly bound variables in an LDQL
query q, denoted by sbvars(q), is defined recursively as follows:

Algorithm 4 ExecLPE(lpe, uctx)
1: if looking up URI uctx results in retrieving a document, say dctx

then
2: if lpe is ε then
3: return a new singleton set {uctx}

4: else if lpe is a link pattern lp = ⟨y1, y2, y3⟩ then
5: lp′ := ⟨y′

1, y
′

2, y
′

3⟩, where ⟨y′

1, y
′

2, y
′

3⟩ is a link pattern
generated from lp such that any occurrence of symbol +

in lp is replaced by URI uctx

6: Φ := a new empty set of URIs
7: for all ⟨x1, x2, x3⟩ ∈ data(dctx) do
8: if (y′

1 = x1 or y′

1 =) and (y′

2 = x2 or y′

2 =) and
(y′

3 = x3 or y′

3 =) then
9: for all i ∈ {1, 2, 3} do

10: if y′

i = and xi is a URI whose lookup retrieves a
document then Φ := Φ ∪ {xi}

11: return Φ

12: else if lpe is of the form lpe1/lpe2 then
13: Φ ′ := ExecLPE(lpe1, uctx)
14: Φ := a new empty set of URIs
15: for all u′

∈ Φ ′ do Φ := Φ ∪ ExecLPE(lpe2, u′) end for
16: return Φ

17: else if lpe is of the form lpe1|lpe2 then
18: Φ1 := ExecLPE(lpe1, uctx); Φ2 := ExecLPE(lpe2, uctx)
19: return Φ1 ∪ Φ2

20: else if lpe is of the form l∗ then
21: Φcur := ExecLPE(ε, uctx)
22: lpe′ := l
23: repeat
24: Φprev := Φcur

25: Φcur := Φcur ∪ ExecLPE(lpe′, uctx)
26: lpe′ := an LPE of the form lpe′/l
27: until Φcur = Φprev

28: return Φcur

29: else if lpe is of the form [lpe′
] then

30: Φ := ExecLPE(lpe′, uctx)
31: ifΦ ≠ ∅ then return a new singleton set {uctx} else return

a new empty set end if
32: else if lpe is of the form ⟨?v, q⟩ then
33: Ω := Exec(q, {uctx}) // where Exec is an arbitrary algorithm

that can be used to compute the
// {uctx}-based evaluation of q over

the queried Web of Linked Data
34: Φ := a new empty set of URIs
35: for all µ ∈ Ω for which ?v ∈ dom(µ) and µ(?v) ∈ U do

Φ := Φ ∪ {µ(?v)} end for
36: return Φ

37: else
38: return a new empty set

O. Hartig, J. Pérez / Web Semantics: Science, Services and Agents on the World Wide Web 41 (2016) 9–29 27
1. If q is of the form ⟨lpe, P⟩, then sbvars(q) = sbvars(P).
2. If q is of the form (q1ANDq2), then sbvars(q) = sbvars(q1) ∪

sbvars(q2).
3. If q is of the form (q1UNIONq2), then sbvars(q) = sbvars(q1) ∩

sbvars(q2).
4. If q is of the form πVq′, then sbvars(q) = sbvars(q′) ∩ V .
5. If q is of the form (SEED U q′), then sbvars(q) = sbvars(q′).
6. If q is of the form (SEED?v q′), then sbvars(q) = sbvars(q′) ∪

{?v}.

Lemma 4. Let q be an LDQL query. For every finite set S of URIs,
every Web of Linked Data W, and every µ ∈ [[q]]SW , it holds that
sbvars(q) ⊆ dom(µ).

Proof. Lemma 4 follows trivially from Definition 7 and [45,
Proposition 1]. �

Given the notion of strongly bound variables, we are now ready
to show the following main result related to the Web-safeness of
LDQL.

Theorem 10. An LDQL query of the form (q1ANDq2AND . . .AND
qm) isWeb-safe if there exists a total order ≺ over the set of subqueries
{q1, q2, . . . , qm} such that for each subquery qi (1 ≤ i ≤ m), it holds
that either (i) qi isWeb-safe or (ii) qi is of the form (SEED?v q)where
q is Web-safe and ?v ∈


qj≺qi

sbvars(qj).

Proof. We prove Theorem 10 based on Algorith 5, which is an
iterative algorithm that generalizes the execution strategy outlined
for query q′′

ex in Example 6. That is, the algorithm executes the
subqueries q1, q2, . . . , qm sequentially in the order ≺ such that
each iteration step (lines 2–17) executes one of the subqueries
by using the solution mappings computed during the previous
step (which are passed on via the sets Ω0, Ω1, . . . , Ωm).

To prove that Algorith 5 has the properties as required in
Definition 6 we have to show that the algorithm is sound and
complete (i.e., for any finite set S of URIs and any Web of Linked
Data W , the algorithm returns [[q]]SW) and that it is guaranteed to
look up a finite number of URIs only. We show these properties
by induction on the m iteration steps performed by the algorithm.
To this end, we assume that the indices as used for the subqueries
q1, q2, . . . , qm reflect the order ≺, that is, subquery q1 is the first
according to ≺, subquery q2 is the second, and so on.

Base Case (m = 1): By the conditions in Theorem 10, the first
subquery (according to ≺) must be Web-safe and, thus, cannot
be of the form (SEED ?v q′). Hence, the algorithm enters the
corresponding else-branch (line 12). Due to the Web-safeness of
q1, there exists an algorithm for subquery q1, say A1, that has the
properties as required in Definition 6. Algorith 5 uses algorithm
A1 to obtain Ωtmp = [[q1]]SW (where W is the queried Web of
Linked Data), which requires only a finite number of URI lookups.
Thereafter, Algorith 5 computes Ω1 = Ω0 on Ωtmp (lines 13–17)
and returns Ω1 (line 18), which does not require any more URI
lookups. Hence, form = 1, the algorithm looks up a finite number
of URIs (if the queried Web of Linked Data is finite). Since Ω0
contains only the empty solution mapping µ∅ (line 1), which is
compatible with any other solution mapping, we have Ω1 = Ωtmp

and, thus, Ω1 = [[q1]]SW .
Induction Step (m > 1): By induction we assume that after

completing the (m–1)th iteration, the algorithm has looked up a
finite number of URIs only and the current intermediate result
Ωm−1 covers the conjunction of subqueries q1, q2, . . . , qm−1; that
is, Ωm−1 = [[(q1ANDq2AND . . .ANDqm−1)]]

S
W . We show that the

mth iteration also looks up a finite number of URIs only and that
Ωm = [[(q1ANDq2AND . . .ANDqm)]]SW .

If subquery qm is Web-safe, it is not difficult to see these
properties: Since qm is Web-safe, there exists an algorithm for qm,
Algorithm 5 Execution of an LDQL query q of the form
(q1ANDq2AND . . .ANDqm) using a finite set S of seed URIs.
Require: m ≥ 1
Require: LDQL query q is given as an array Q consisting of all

subqueries of q such that the order of the subqueries in this
array satisfies the conditions as given in Theorem 10.

1: Ω0 := {µ∅}, where µ∅ is the empty solution mapping; i.e.,
dom(µ∅) = ∅

2: for j := 1, . . . ,m do
3: Ωtmp := a new empty set of solution mappings
4: qj := the j-th subquery in array Q
5: if qj is of the form (SEED ?v q′) then
6: Utmp := a new empty set of URIs
7: for all µ ∈ Ωj−1 do
8: if µ(?v) is a URI then Utmp := Utmp ∪ {µ(?v)} end if
9: for all u ∈ Utmp do

10: Ωtmp := Ωtmp ∪ Exec(q′,{u}) // where Exec denotes an
arbitrary algorithm that can be used to compute

// the {u}-based evalua-
tion of q′ over the queried Web of Linked Data

11: else
12: Ωtmp := Exec(qj, S) // where Exec is an arbitrary algorithm

that can be used to compute
// the S-based evaluation of qj over

the queried Web of Linked Data
13: Ωj := a new empty set of solution mappings
14: for all µ ∈ Ωj−1 do
15: for all µ′

∈ Ωtmp do
16: if µ and µ′ are compatible then
17: Ωj := Ωj ∪ {µjoin}, where µjoin = µ ∪ µ′

18: return Ωm

say Am, that has the properties as required in Definition 6. Hence,
by calling algorithm Am in line 12, Algorith 5 looks up a finite
number of URIs only, and the subsequent join computation in lines
13–17 does not require any more lookups. Moreover, the result of
calling algorithm Am in line 12 is Ωtmp = [[qm]]

S
W and, since the

subsequent join computation returns Ωm = Ωm−1 on Ωtmp, we
have Ωm = [[(q1ANDq2AND . . .ANDqm)]]SW .

It remains to discuss the case of subquery qm being of the form
(SEED ?v q′), where, by the conditions in Theorem 10, subquery
q′ is Web-safe. Hence, there exists an algorithm for q′, say A′, that
has the properties as required in Definition 6. In this case, Algorith
5 first iterates over all solution mappings in Ωm−1 to populate a
set Utmp with all URIs that any of these mappings binds to variable
?v (lines 6–8). Due to the finiteness assumed for all queried Webs
of Linked Data (cf. Definition 6),Ωm−1 is finite. Hence, the resulting
setUtmp contains a finite number ofURIs. Therefore, the subsequent
loop in lines 9–10 calls algorithm A′ a finite number of times and,
thus, themth iteration looks up a finite number of URIs only.

For the remaining claim,Ωm = [[(q1ANDq2AND . . .ANDqm)]]SW ,
we first show Ωm ⊆ [[(q1ANDq2AND . . .ANDqm)]]SW . Let
µjoin ∈ Ωm be an arbitrary solution mapping in Ωm. By lines
14–17, there exist two solution mappings, µ and µ′, such that
(i) µ ∈ Ωm−1 with Ωm−1 = [[(q1ANDq2AND . . .ANDqm−1)]]

S
W ,

(ii) µ′
∈ Ωtmp with Ωtmp =


u∈Utmp

[[q′
]]

{u}
W , (iii) µ and

µ′ are compatible, and (iv) µjoin = µ ∪ µ′. Then, we
have µjoin ∈ [[(q1ANDq2AND . . .ANDqm)]]SW and, thus, Ωm ⊆

[[(q1ANDq2AND . . .ANDqm)]]SW .
Finally, we show Ωm ⊇ [[(q1ANDq2AND . . .ANDqm)]]SW . As-

sume a mapping µ∗
∈ [[(q1ANDq2AND . . .ANDqm)]]SW . By Defi-

nition 5, there exist two solution mappings µ∗

1 and µ∗

2 such that
(i) µ∗

1 ∈ [[(q1ANDq2AND . . .ANDqm−1)]]
S
W , (ii) µ∗

2 ∈ [[qm]]
S
W ,

28 O. Hartig, J. Pérez / Web Semantics: Science, Services and Agents on the World Wide Web 41 (2016) 9–29
(iii) µ∗

1 and µ∗

2 are compatible, and (iv) µ∗
= µ∗

1 ∪ µ∗

2 . By our in-
duction hypothesis, we have µ∗

1 ∈ Ωm−1. Then, given lines 14–17,
we have to show that µ∗

2 ∈ Ωtmp where Ωtmp is the set of solu-
tion mappings computed during the mth iteration. Since qm is of
the form (SEED ?v q′), it holds that Ωtmp =


u∈Utmp

[[q′
]]

{u}
W where

Utmp = {u ∈ U | µ(?v) = u for some

µ ∈ [[(q1ANDq2AND . . .ANDqm−1)]]
S
W }.

Hence, to show that µ∗

2 ∈ Ωtmp we show that there exists a URI
u ∈ Utmp such that µ∗

2 is in [[q′
]]

{u}
W . Since µ∗

2 ∈ [[qm]]
S
W , by Defi-

nition 5, solution mapping µ∗

2 binds variable ?v to a URI, say u∗;
i.e., ?v ∈ dom(µ∗

2) and µ∗

2(?v) = u∗ with u∗
∈ U. Further-

more, by Lemma 4 and the condition in Theorem 10 (i.e., ?v ∈
qk≺qm sbvars(qk)), solution mapping µ∗

1 also has a binding for
variable ?v, and, sinceµ∗

1 andµ∗

2 are compatible, these bindings are
the same, that is, µ∗

1(?v) = µ∗

2(?v). Hence, for URI u∗
= µ∗

2(?v)
it holds that u∗

∈ Utmp. Then, by Definition 5, we obtain that
µ∗

2 ∈ [[q′
]]

{u}
W , which shows that µ∗

2 ∈ Ωtmp and, thus, we can con-
clude that Ωm ⊇ [[(q1ANDq2AND . . .ANDqm)]]SW . �

With the results in this section we have all ingredients to
devise a procedure to show Web-safeness for a large number of
queries (including queries that are arbitrarily nested). However,
as a potential limitation of such a procedure we note that
Theorem 10 can be applied only in cases in which all non-Web-
safe subqueries are of the form (SEED?v q). For instance, the
theorem cannot be applied to show that an LDQL query of the form
q1AND(q2UNION(SEED?x q3))


isWeb-safe if ?x ∈ sbvars(q1) and

q1, q2 and q3 areWeb-safe. On the other hand, for the semantically
equivalent query


(q1ANDq2)UNION(q1AND(SEED?x q3))


we can

show Web-safeness based on Theorem 10 (and Propositions 2–4).
Fortunately, we may leverage the following fact to improve the
effectiveness of applying Theorem 10 in the procedure that we aim
to devise.

Fact 1. An LDQL query q is Web-safe if there exists another LDQL
query q′ such that q′ is Web-safe and q and q′ are semantically
equivalent (i.e., q ≡ q′).

As a consequence of Fact 1, we may use the equivalences in
Lemma 2 to rewrite a given query into an equivalent query that
is more suitable for testing Web-safeness based on our results. To
this end, we introduce specific normal forms for LDQL queries:

Definition 8. An LDQL query is in UNION-free normal form if it
is of the form (q1ANDq2AND . . .ANDqm) with m ≥ 1 and each
subquery qi (1 ≤ i ≤ m) is either (i) a basic LDQL query or (ii) of
the formπVq, (SEEDU q), or (SEED ?v q) such that subquery q is in
UNION-free normal form. An LDQL query is inUNIONnormal form
if it is of the form (q1UNIONq2UNION . . .UNIONqn) with n≥1 and
each subquery qi (1≤ i≤n) is in UNION-free normal form.

The following result is an immediate consequence of Lemma 2.

Corollary 1. For every LDQL query, there exists a semantically
equivalent LDQL query that is in UNION normal form.

In conjunction with Fact 1, Corollary 1 allows us to focus on
LDQL queries in UNIONnormal formwithout losing generality. We
are now ready to specify our procedure that applies the results
in this paper to test a given LDQL query q for Web-safeness:
First, by using the equivalences in Lemma 2, the query has to be
rewritten into a semantically equivalent LDQL query qnf that is in
UNIONnormal form ; i.e., qnf = (q1UNIONq2UNION . . .UNIONqn).
Next, the following test has to be repeated for every subquery
qi (1 ≤ i ≤ n); recall that each of these subqueries is in UNION-
free normal form; i.e., qi = (qi1ANDqi2AND . . .ANDqimi

). The test is
to find an order for their subqueries qi1, . . . , q
i
mi

that satisfies the
conditions in Theorem 10. Every top-level subquery qi (1 ≤ i ≤ n)
for which such an order exists, is Web-safe (cf. Theorem 10). If all
top-level subqueries are identified to beWeb-safe by this test, then
qnf is Web-safe (cf. Proposition 4), and so is q (cf. Fact 1).

We conclude the section by pointing out the following
limitation of our results: Even if the given conditions are sufficient
to show that an LDQL query is Web-safe, they are not sufficient for
showing the opposite. It remains an open question whether there
exists a (decidable) property of all Web-safe LDQL queries that is
both sufficient and necessary.

7. Concluding remarks and future work

LDQL, the query language that we introduce in this paper,
allows users to express queries over Linked Data on the WWW.
We defined LDQL such that navigational features for selecting
the query-relevant documents on the Web are separate from
patterns that are meant to be evaluated over the data in the
selected documents. This separation distinguishes LDQL from
other approaches to express queries over Linked Data. We prove
several good properties of LDQL. Regarding expressiveness, we
compare LDQL with previous formalisms and show that LDQL
is strictly more expressive. Regarding complexity, we show that
when the input is assumed to be a full accessible graph, the data
complexity of the language is polynomial, which makes LDQL
comparable with previously proposed graph query languages. We
also study the notion of the Web-safeness property that ensures
that a complete execution of a query is possible even if we consider
the limited data access capabilities of Web clients.

Several topics remain open for future work. One of them is a
theoretical complexity study of query evaluation that takes into
account the limited data access capabilities of Web clients. Such
study should consider a model that captures the inherent way of
accessing the Web of Linked Data via HTTP requests, the overhead
of data communication and transfer, the distribution of data and
documents, etc.

A more practical direction for future research on LDQL is an
investigation of approaches to actually execute LDQL queries.
When implementing a system to this end, a number of data access
specific issues must be taken into account: Some URI lookups
may result in the retrieval of an unforeseeable large set of RDF
triples; response times may vary significantly between different
Web servers; sometimes a URI lookup may take unexpectedly
long. In general, Web servers may exhibit an unexpected behavior.
Furthermore, some servers enforce restrictions on clients such as
serving only a limited number of requests per second. Regarding
the latter it is important to emphasize that any LDQL query
execution system should implement a politeness policy to avoid
overloading servers. In particular, such a system should abide
by the Robots Exclusion Protocol4 and by related extensions of
this protocol that allow Web sites to demand delays between
subsequent requests from the same client. Even for Web sites
that do not provide a robots.txt file, a minimum delay of,
e.g., 500 ms [11,46] should be enforced.

Other issues that may need to be considered for building a
system to execute LDQL queries over an open platform such as
the WWW are coreferences and schema heterogeneity: Although
URIs are used as globally unique identifiers for denoting entities
in Linked Data, different publishers may use different URIs to
denote the same entity. Some of the data about such a coreferenced
entity will be ignored unless the coreference is detected and

4 http://www.robotstxt.org/.

http://www.robotstxt.org/

O. Hartig, J. Pérez / Web Semantics: Science, Services and Agents on the World Wide Web 41 (2016) 9–29 29
resolved. Similarly, Linked Data providers may choose different
RDF vocabularies to represent their data, and these vocabularies
may overlap w.r.t. the classes and properties that they define.
Then, a query expressed in terms of a specific vocabulary must
be rewritten to benefit from data represented using another
vocabulary. Another issue is frequently changing data. In our data
model and proposal we have implicitly assumed that the Web
of Linked Data is static during query execution. However, in an
scenario in which some data changes very frequently in the Web
of Linked Data, one might need to drop this assumption. It would
be interesting and challenging to deal with this dynamic scenario
both from a theoretical and a practical point of view.

As a final, more practical topic that is worth investigating
we refer to the possibility of integrating LDQL and LDQL query
execution with other Web-based interfaces for accessing and
querying Linked Data (such as SPARQL endpoints [47] and Triple
Pattern Fragments [48]). Interesting problems in this context are
related to discovering such interfaces and leveraging them to
achieve an increase in performance.

Acknowledgments

Pérez is supported by the Millennium Nucleus Center for
Semantic Web Research, Grant NC120004, and Fondecyt grant
1140790.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.websem.2016.10.001.

References

[1] T. Berners-Lee, Linked Data, 2006. At http://www.w3.org/DesignIssues/
LinkedData.html.

[2] R. Fielding, J. Gettys, J.C. Mogul, H. Frystyk, L. Masinter, P.J. Leach, T. Berners-
Lee, Hypertext Transfer Protocol – HTTP/1.1, June, 1999.

[3] T. Berners-Lee, R. Fielding, L. Masinter, Uniform Resource Iden-
tifier (URI): Generic Syntax, RFC 3986, Jan. 2005. Online at
http://tools.ietf.org/html/rfc3986.

[4] R. Cyganiak, D. Wood, M. Lanthaler, RDF 1.1 Concepts and Abstract Syntax,
W3C Recommendation, 2014.

[5] O. Hartig, An overview on execution strategies for linked data queries,
Datenbank-Spektrum 13 (2) (2013).

[6] S. Harris, A. Seaborne, E. Prud’hommeaux, SPARQL 1.1 Query Language, W3C
Recommendation, Mar. 2013.

[7] P. Bouquet, C. Ghidini, L. Serafini, Querying theweb of data: A formal approach,
in: Proceedings of the 4th Asian Semantic Web Conference, ASWC, 2009.

[8] O. Hartig, SPARQL for a web of linked data: Semantics and computability, in:
Proceedings of the 9th Extended Semantic Web Conference, ESWC, 2012.

[9] A. Harth, S. Speiser, On completeness classes for query evaluation on linked
data, in: Proceedings of the 26th AAAI Conference, 2012.

[10] O. Hartig, G. Pirrò, A context-based semantics for SPARQL property paths over
the web, in: Proceedings of the 12th Extended Semantic Web Conference,
ESWC, 2015.

[11] J. Umbrich, A. Hogan, A. Polleres, S. Decker, Link traversal querying for a diverse
web of data, Semant. Web J. 6 (6) (2015) 585–624.

[12] S. Schaffert, C. Bauer, T. Kurz, F. Dorschel, D. Glachs, M. Fernandez, The linked
media framework: Integrating and interlinking enterprise media content and
data, in: Proceedings of the 8th International Conference on Semantic Systems,
I-Semantics, 2012.

[13] V. Fionda, G. Pirrò, C. Gutierrez, NautiLOD: A formal language for the web of
data graph, ACM Trans. Web 9 (1) (2015) 5:1–5:43.

[14] O. Hartig, J. Pérez, LDQL: A query language for the web of linked data, in:
Proceedings of the 14th International Semantic Web Conference, ISWC, 2015.

[15] P. Barceló Baeza, Querying graph databases, in: Proceedings of the 32nd
Symposium on Principles of Database Systems, PODS, 2013.

[16] J. Clark, S. DeRose, XML Path Language (XPath), W3C Recommendation, Nov.
1999.
[17] M. Consens, A.O. Mendelzon, GraphLog: a visual formalism for real life
recursion, in: Proceedings of the 9th ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, PODS, 1990.

[18] J. Pérez, M. Arenas, C. Gutierrez, nSPARQL: A navigational language for RDF, J.
Web Semant. 8 (4) (2010) 255–270.

[19] J. Webber, A Programmatic Introduction to Neo4j, in: SPLASH, 2012,
pp. 217–218.

[20] N. Martínez-Bazan, S. Gómez-Villamor, F. Escale-Claveras, DEX: A high-
performance graph database management system, in: ICDEWorkshops, 2011.

[21] D. Florescu, A.Y. Levy, A.O. Mendelzon, Database techniques for the world-
wide web: A survey, SIGMOD Rec. 27 (3) (1998) 59–74.

[22] D. Konopnicki, O. Shmueli, W3QS: A query system for the world-wide web, in:
Proceedings of 21th International Conference on Very Large Data Bases, VLDB,
1995.

[23] D. Konopnicki, O. Shmueli, Information gathering in the world-wide web: The
W3QL query language and the W3QS system, CM Trans. Database Syst. 23 (4)
(1998) 369–410.

[24] G.O. Arocena, A.O. Mendelzon, G.A. Mihaila, Applications of a web query
language, Comput. Netw. ISDN Syst. 29 (8-13) (1997) 1305–1316.

[25] A.O. Mendelzon, G.A. Mihaila, T. Milo, Querying the world wide web, Int. J.
Digit. Libr. 1 (1) (1997) 54–67.

[26] R. Himmeröder, G. Lausen, B. Ludäscher, C. Schlepphorst, On a declarative
semantics forweb queries, in: Proceedings of the 5th International Conference
on Deductive and Object-Oriented Databases, DOOD, 1997.

[27] A.O. Mendelzon, T. Milo, Formal models of web queries, Inf. Syst. 23 (8) (1998)
615–637.

[28] L.V.S. Lakshmanan, F. Sadri, I.N. Subramanian, A declarative language for
querying and restructuring the Web, in: Proceedings of the 6th International
Workshop on Research Issues in Data Engineering, RIDE, 1996.

[29] G.O. Arocena, A.O. Mendelzon, WebOQL: Restructuring documents, databases
and webs, in: Proceedings of the 14th International Conference on Data
Engineering, ICDE, 1998.

[30] T. Guan, M. Liu, L.V. Saxton, Structure-based queries over the world wide web,
in: Proceedings of the 17th International Conference on Conceptual Modeling,
ER, 1998.

[31] G. Mecca, A.O. Mendelzon, P. Merialdo, Efficient queries over web views,
in: Proceedings of the 6th International Conference on Extending Database
Technology, EDBT, 1998.

[32] E. Spertus, L.A. Stein, Squeal: A structured query language for theweb, Comput.
Netw. 33 (1–6) (2000) 95–103.

[33] M. Liu, T.W. Ling, A conceptualmodel and rule-basedquery language forHTML,
World Wide Web 4 (1–2) (2001) 49–77.

[34] W.-S. Li, J. Shim, K.S. Candan, WebDB: A system for querying semi-structured
data on the web, J. Vis. Lang. Comput. 13 (1) (2002) 3–33.

[35] O. Hartig, C. Bizer, J.-C. Freytag, Executing SPARQL queries over the web of
linkeddata, in: Proceedings of the 8th International SemanticWebConference,
ISWC, 2009.

[36] G. Ladwig, D.T. Tran, Linked data query processing strategies, in: Proceedings
of the 9th International Semantic Web Conference, ISWC, 2010.

[37] J. Umbrich, K. Hose, M. Karnstedt, A. Harth, A. Polleres, Comparing data
summaries for processing live queries over linked data, World Wide Web 14
(5–6) (2011).

[38] S. Muñoz, J. Pérez, C. Gutierrez, Simple and efficient minimal RDFS, J. Web
Semant. 7 (3) (2009) 220–234.

[39] M. Schneider, OWL 2 Web Ontology Language, RDF-Based Semantics, second
ed., W3C Recommendation, Dec. 2012.

[40] J. Pérez, M. Arenas, C. Gutierrez, Semantics and complexity of SPARQL, ACM
Trans. Database Syst. 34 (2009).

[41] M. Arenas, C. Gutierrez, J. Pérez, On the semantics of SPARQL, in: Semantic
Web Information Management—A Model-Based Perspective, Springer, 2009,
pp. 281–307. (Chapter 13).

[42] M. Arenas, S. Conca, J. Pérez, Counting beyond a yottabyte, or how SPARQL 1.1
property paths will prevent adoption of the standard, in: Proceedings of the
21th World Wide Web Conference, WWW, 2012.

[43] O. Hartig, G. Pirrò, SPARQL with property paths on the Web, Semantic Web J.
(2017) in press.

[44] M.Y. Vardi, The complexity of relational query languages (extended abstract),
in: Proceedings of the 14th Annual ACM Symposium on Theory of Computing,
1982.

[45] C. Buil-Aranda, M. Arenas, O. Corcho, Semantics and optimization of the
SPARQL 1.1 federation extension, in: Proceedings of the 8th Extended
Semantic Web Conference, ESWC, 2011.

[46] A. Hogan, A. Harth, J. Umrich, S. Kinsella, A. Polleres, S. Decker, Searching and
browsing linked data with SWSE: the semantic web search engine, J. Web
Semant. 9 (4) (2012).

[47] L. Feigenbaum, G.T. Williams, K.G. Clark, E. Torres, SPARQL 1.1 protocol, W3C
Recommendation, Mar. 2013.

[48] R. Verborgh, M. Vander Sande, O. Hartig, J. Van Herwegen, L. De Vocht, B. De
Meester, G. Haesendonck, P. Colpaert, Triple pattern fragments: a low-cost
knowledge graph interface for theweb, J.Web Semant. 37–38 (2016) 184–206.

http://dx.doi.org/10.1016/j.websem.2016.10.001
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://tools.ietf.org/html/rfc3986
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref5
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref11
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref13
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref17
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref18
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref19
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref21
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref23
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref24
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref25
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref27
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref32
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref33
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref34
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref37
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref38
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref40
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref41
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref42
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref43
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref44
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref46
http://refhub.elsevier.com/S1570-8268(16)30047-6/sbref48

	LDQL: A query language for the Web of Linked Data
	Introduction
	Related work
	Early work on Web query languages
	SPARQL-based query formalisms for linked data
	Navigational languages for the Web of Linked Data

	Data model
	Definition of LDQL
	Link patterns
	LDQL queries
	Algebraic properties of LDQL queries

	Comparison with previous Linked Data query formalisms
	Comparison with SPARQL under reachability-based query semantics
	Comparison with property paths under context-based query semantics
	Comparison with SPARQL under full-web query semantics
	Comparison with NautiLOD

	Computability
	Classical complexity analysis
	Web-safeness

	Concluding remarks and future work
	Acknowledgments
	Supplementary data
	References

