TABLA DE CONTENIDO

1.	NTRODUCCIÓN	1
1.1	Objetivos	2
1.2	Hipótesis de Trabajo	2
1.3	Ubicación y accesos	3
2.	MARCO TEÓRICO	4
2.1	Elementos críticos Energéticos (<i>ECE´s</i>)	4
2.2	Epitermales v solubilidad metálica	5
2.3	Texturas microscópicas diagnósticas en cuarzo y calcita	16
2.4	Inclusiones Fluidas	17
2.5	Estudios previos	21
3.	MARCO GEOLÓGICO	23
3.1	Geología Regional	23
3.2	Estatigrafía distrital	24
3.3	Intrusivos	24
3.4	Estructuras v lineamientos	25
3.5		
4.	METODOLOGIA	. 28
4.1	Muestreo y clasificación	28
4.2	Preparación de cortes transparentes rápidos (corte transparente rápido)	29
4.3	Petrografía	29
4.4	Microtermometría	30
4.5	SEM-BSE	31
4.6	Raman	32
4.7	Ablación Laser ICPMS	32
5.	RESULTADOS	35
5.1	Evidencia en terreno	35
5.2	Geoquímica	38
5.3	Petrografía	41
5.4	Petrografía de inclusiones	45
5.5	Microtermometría	50
5.6	Microscopía electrónica de barrido (SEM-BSE)	52
5.7	Raman	53
5.8	Ablación laser ICP-MS	54
6.	DISCUSIONES	. 57
6.1	Geoquímica	57
6.2	Petrografía y Paragénesis	59
6.3	Evolución del fluido	65
6.4	Enriquecimiento metálico	70
6.5	Comparación con otros depósitos	73
7.	CONCLUSIONES	. 75
8.	BIBLIOGRAFÍA	77

ANEXOS	
Anexo A	83
Anexo B	84
Anexo C	85
Anexo D	
Anexo E	92
Anexo F	94
Anexo G	
Anexo H	
Anexo I	
Anexo J	
Апехо К	
Anexo L	
Anexo M	
Anexo N	

ÍNDICE DE FIGURAS

- Figura 2: Esquema generalizado (no a escala) mostrando la estructura, procesos, alteración, tipos de fluidos, entre otros parámetros en la formación de depósitos epitermales. Los epitermales de baja sulfuración se forman a partir de fluidos a profundidades <1.5 km, Ph neutro alcalino y en equilibrio con la roca hospedante a profundidades mayores. Los epitermales de alta sulfuración se forman por un ascenso de volátiles en un ambiente epitermal hasta ser absorbidos por aguas meteóricas, el HCl y SO₂ forman una solución altamente ácida que altera la roca desde el conducto del fluido (White y Hedenquist, 1995). (extraído de Comprubí et al., 2003).
- Figura 4: Solubilidad de plata en función del pH y estado de oxidación (f₀₂). Calculada a una temperatura de 250°C, actividad de azufre as de 0.01, actividad de cloro 0.1. Las áreas de predominio para AgCl² y Ag(HS)² están separadas por la línea vertical oscura en función del pH y estado de oxidación. Las líneas segmentadas representan los campos de predominio de distintas especies de sulfuro. La máxima solubilidad de plata está representada por el circulo amarillo y la solubilidad en ppb se representa en líneas celestes (extraído de Gammons y Barnes, 1989).

- Figura 7: a) Campos de estabilidad con dominancias de especies Ag-Se-S-Na-CI-O-H a 300°C, concentración molal de Ag de 10⁻⁷, concentración molal de Se de 10⁻⁸. Líneas punteadas separa campos con dominancia de especies de S y líneas sólidas separa campos de dominancia de Se. Líneas grises horizontales indican la fugacidad de oxígeno para el buffer de H-M (línea superior) y para el buffer N-NO (línea inferior). Áreas verdes y grises representan las zonas de estabilidad para las fases sólidas de Se-Ag y liquidas de Se nativo (modificado de Akinfiev and Tagirov, 2006). b) Campos de estabilidad para fases sólidas de plata y selenio en función de la temperatura y presión saturada de H₂O (extraído de Akinfiev and Tagirov, 2006).

Figura 8: a,b: Especiación y solubilidad del Au y Te en vapor y fluido salino para el sistema
molal do Cl ² do 1, concontración molal do S do O 1, a contro 1, O 1, 1 nnm do
Au 10 ppm do To La línea gris (Figura 7b) os 0.220 (10.0.5) ppm do oro
Au, To ppin de Te. La linea gils (Figura 7b) es 0.320 (T0-0.5) ppin de 010.
Extraido de Grundier et al (2013)
Figura 9: Campos de estabilidad y predominancia para complejos ciorurados, hidroxidos
e hidroxiciorurados de in(III) a 25°C y 1 bar. Extraido de Wood and Samson
(2006)
Figura 10: Superficie de solubilidad de $Sb_2S_{3(s)}$: A. Solución como sulfuro, dependiendo
del pH, temperatura y m_{HS} ; B. Solución como clorurado (pH = 2), dependiendo
de la temperatura y m _{Cl} . Extraído de Obolensky et al (2007)
Figura 11: Resumen de texturas halladas en cuarzo y calcita observadas en ambientes
de tipo epitermal. Estas, pueden ser usadas como guía para detectar la
ocurrencia de ebullición. Modificado de Moncada et al, 2012
Figura 12: Distribución de inclusiones: (P) primarias siguiendo zonas concéntricas,
paralelas a las caras de crecimiento; (S) secundarias, cruzan los cristales en
cualquier dirección20
Figura 13: Tipos de arreglos de inclusiones fluidas dependiendo si estas fueron atrapas
en condiciones de no ebullición, ebullición o evaporación rápida
Figura 14: Mapa geológico del distrito de Chancón, escala 1:30000. Modificado de
Munzenmayer (2002)
Figura 15: Acercamiento al área de estudio (Veta Leona), mostrando la ubicación de la
entrada de las principales labores mineras en esta veta
Figura 16: Metodología de muestreo realizada en la veta Leona
Figura 17: Microscopio Olympus BX53 y Linkam THM-600 de la Universidad de Chile.31
Figura 18: SEM-EDX-CL Quanta 250 de la Universidad de Chile
Figura 19: Raman Jobin Ybon LabRam-HR800 perteneciente a Virginia Tech
Figura 20: LA-ICPMS Agilent 7500ce ICPMS quadruopole mass spectrometer acoplado
a un sistema de ablación GeolasPro Eximer 193-nm ArF laser ablation system.
Pertneciente a Virginia Tech
Figura 21: Evidencia en terreno: a) Sección transversal de la veta con evidencia de dos
brechas hidrotermales (Brecha I y II); b) Muestra superficial mostrando la
coexistencia de estas dos brechas, además del halo de alteración presente en
la porción de la roca correspndiente a la Brecha I. Cpy: calcopirita; Jas: jaspe:
Qtz: cuarzo: Pv: pirita
Figura 22: Evidencia en terreno: a) Muestra en profundidad de la Brecha I y una vetilla
con mineralización de calcopirita en cuarzo: d) Brecha hidrotermal (Brecha I)
con clastos de roca caia y mineralización de calcopirita en la matriz de brecha.
Cpv: calcopirita: Qtz: cuarzo
Figura 23: Contenido medio en la corteza vs análisis en roca total. La recta anaraniada
representa una línea 1:1
Figura 24: geoguímica de especímenes realizada en las labores mineras en profundidad
al interior de la veta Leona mostrando valores para Au, Ag, In, Te y Se 40

Figura 25: a) Cuarzo plumoso mostrado a nícoles cruzados (CP) y nicoles paralelos (PPL); b) Cuarzo rompecabeza; c) Cuarzo euhedral; d) Sílica amorfa (cuarzo
coloforme): e) Cuarzo zonal
Figura 26: Fiemplo de mineralización de pirita diseminada en cuarzo rompecabeza 44
Figura 27: a) Evidencia de illita en cuarzo rompecabeza, correspondiente a una muestra
superficial con evidencia de evanoración rápida, h) Evolución de calconirita en
superiidal con evidencia de evaporación rapida. D) Exolución de calcopina en
esialenta lipo masiva
Figura 28: Arregio de Inclusiones Fiuldas A (BC03C) en cuarzo eunedral encontrado en
un especimen a 715 msnm 45
Figura 29: Arreglo de Inclusiones Fluidas B) en cuarzo euhedral encontrado en un
especimen a 560 msnm 46
Figura 30: Arreglo de Inclusiones Fluidas C en cuarzo euhedral encontrado en un
especimen a 625 msnm
Figura 31: Árreglos de Inclusiones Fluidas D (T1.2) con inclusiones ricas en líquido v
presencia de mineralización en esfalerita 48
Figure 32: EIA's D encontrados en zonas de crecimiento de esfalerita ($A \rightarrow B$) A) Arregios
de Inclusiones Eluidas T3A con mineralización, junto a EIA's secundarios con
neeking down P) Arregton de Indusionen Eluiden T2P posterioren oon
necking down. b) Anegios de inclusiones Fluidas 136 postenores, con
mineralizacion
Figura 33: Diagrama T _h vs T _m de los resultados obtenidos de microtermometria en la veta
Leona
Figura 34: SEM-BSE realizado en pirita. a) área detectada en pirita con señales de Fe, S
y Py. b) área detectada en pirita con señales de Fe, Cu, S y Ag. El C detectado
corresponde al metalizado52
Figura 35: Picos obtenidos en Raman en una inclusión de la muestra BC11-T3. Los picos
correspondientes a CO ₂ se encuentran en 1285 y 1387 Qtz; cuarzo, *: no
reconocido
Figura 36: Picos obtenidos con ablación láser correspondientes a inclusiones
socundarias on Arroglas da Inclusionas Eluidas on cuarzo zonal [BC11-T3] [E:
Indución Eluido: Otz: cuerzo
Finne 97. Disco alterida con alterián láran comenciantes a indusion a minerio 50
Figura 37: Picos obtenidos con abiación laser, correspondientes a inclusiones primarias
en Arregios de Inclusiones Fluidas en estalerita [11.2]. IF: Inclusion Fluida; Sph:
Esfalerita56
Figura 38: Diagrama de cajas y bigotes comparativo realizado por stage para 28
elementos. La linea roja representa la ley de corte de Au de 1 ppm
Figura 39: Texturas clave para determinar la paragénesis en cuarzo: 1. Cuarzo
subeuhedral: 2. Silica amorfa (coloforme): 3. Cuarzo plumoso: 4. Cuarzo
rompecabeza 60
Figura 40 [°] Minerales metálicos de mena y ganga más comunes en la veta a)
Coevistencia de nirita, calconirita, esfalerita y galga mas comunes en la vela, a)
coexistencia de pinta, calcopinta, estalenta y galería, b) rextura de disolución
En galeria por estalerita, rextura de exolución de calcopinta en estalenta
rigura 41. Paragenesis de la veta Leona. En esta se representa los tres eventos
principales de mineralización, siendo el segundo el que presento mayor
volumen de mineralización y presencia de metales preciosos

Figura 42: Diagrama de c	ajas y bigotes T _m y T _h ordenados por	stages para los 9 Arreglos
de Inclusiones F	-Iuidas medidos	

Figura 43: a) Curvas líquido – vapor para salinidades de 2, 5, 10 y 15% en peso NaCl. Las lineas verticales representan las isocoras calculadas para cada Arreglos de Inclusiones Fluidas, mientras que los circulos enumerados representan la secuencia PT mínimas seguidas por el fluido, la dobre flecha indica que no determinaron las condiciones de atrapamiento. Diagrama realizado en base a Wagner y Prub (2002); Duan y Zhang (2006)
Figura 44: Diagrama T _h vs T _m mostrando el camino seguido por el fluido durante su evolución, el que se resume a la derecha. Paréntesis indica número de inclusiones
Figura 45: Diagrama resumen en profundidad mostrando las principales texturas, tipos de inclusiones y concentraciones de los elementos explorados de interés 72
Figura 46: Concentraciones de Au, Ag, In y Se obtenidas por LA-ICPMS para cada Arreglos de Inclusiones Fluidas, ordenadas por la paragénesis,
Figura 47: Comparación de concentraciones de telurio de otros depósitos y Chancón (Modificado de Kelley y Spry, 2016)
Figura 48: Intervalo de interés seleccionado en AMS, para una inclusión fluida
Figure 40. Deckground signal y sample signal ajustados en 74me para en 401 en 610.
Figura 50: Panel de opciones en del AMS
Figura 52: Ablación láser correspondiente a una inclusión del arreglo A-T2 115 Figura 53: Ablación láser correspondiente a una inclusión del arreglo B-T1 116

ÍNDICE DE TABLAS

Tabla 1: Precio promedio en dólares (USD) por libra y producción mundial (toneladas) para indio, telurio, selenio y cobre en el 2016 (U.S. Geological Survey, 2017; BGS, 2017)
Tabla 2: Características y condiciones usadas en el LA-ICPMS. 33
Tabla 3: Principales elementos detectados por geoquímica de roca total en especímenes
de la veta Leona
Tabla 4: Resumen de datos de microtermometría e información anexa. La muestra BC13 corresponde a un Arreglo de Inclusiones Fluidas con únicamente inclusiones ricas en vapor. Cal: calcita, Qtz: cuarzo, Sph: esfalerita, Min: mineralización, Prom: promedio, n: número de inclusiones. msnm: metros sobre el nivel del mar.
Tabla 5: Porcentaje en peso (% en peso) y molar (% mol) semi-cuantitativo para los elementos detectados en Pirita
Tabla 6: Valores promedio obtenidos en diferentes Arreglos de Inclusiones Fluidas para Au, Ag, In, Te y Se. msnm: metros sobre el nivel del mar, LOD: bajo del límite de detección
Tabla 7: Valores promedio de Au, Ag, In, Te y Se en minerales de mena y ganga. LOD: bajo del límite de detección
Tabla 8: Resumen de los valores obtenidos de salinidad (% en peso NaCl eq) y presiones mínimas para cada FIA's. La presión obtenida en BC03C corresponde a la presión efectiva, mientras que en el resto corresponde a la presión mínima estimada
Tabla 9: Datos de microtermometría de otros estudios (Sernageomin y JICA/MMAJ, 1984)
Tabla 10: Resultados de geoquímica en roca total para 62 elementos
Tabla 11: Datos obtenidos en microtermometría. 103
Tabla 12: Tabla resumen de los datos de microtermometría. Muestra BC13 corresponde
a un arreglo de inclusiones fluidas con únicamente inclusiones ricas en vapor.
Altitud: en metros sobre el nivel del mar, Min: presencia de mineralización
presente en las inclusiones, T_h : temperatura de homogenización, T_m :
temperatura de último fundido 104
Tabla 13: Valores de fermi doublet, densidad y presión de CO ₂ en Arreglos de Inclusiones
Fluidas secundarias en cuarzo zonal105
Tabla 14: Datos (ppm) obtenidos en LA-ICPMS en inclusiones fluidas. NM: No Medido en
AMS por alto nivel de ruido, LOD: bajo el límite de detección
Tabla 15: Datos obtenidos en LA-ICPMS en minerales. LOD: bajo el límite de detección (tabla 6 de 6)
Tabla 16: Relación de aporte (% ppm) del host sobre la inclusión. Sph: esfalerita 114