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A B S T R A C T

Climate change affects consumer expenditures by altering the consumption of and price for electricity. Previous
analyses focus solely on the former, which implicitly assumes that climate-induced changes in consumption do
not affect price. But this assumption is untenable because a shift in demand alters quantity and price at
equilibrium. Here we present the first empirical estimates for the effect of climate change on electricity prices.
Translated through the merit order dispatch of existing capacity for generating electricity, climate-induced
changes in daily and monthly patterns of electricity consumption cause non-linear changes in electricity prices.
A 2 °C increase in global mean temperature increases the prices for and consumption of electricity in
Massachusetts USA, such that the average household’s annual expenditures on electricity increase by about
12%. Commercial customers incur a 9% increase. These increases are caused largely by higher prices for
electricity, whose impacts on expenditures are 1.3 and 3.6 fold larger than changes in residential and
commercial consumption, respectively. This suggests that previous empirical studies understate the effects of
climate change on electricity expenditures and that policy may be needed to ensure that the market generates
investments in peaking capacity to satisfy climate-driven changes in summer-time consumption.

1. Introduction

The effect of energy production and use on climate is studied
extensively. Only recently do studies examine the reverse, the effect of
climate change on energy production and use. These empirical studies
focus on the impact of climate change on electricity consumption (Dell
et al., 2014; Amato et al., 2005; Mansur et al., 2008; Mirasgedis et al.,
2007; Pilli-Sihvola et al., 2010; Rosenthal and Gruenspecht, 1995;
Ruth and Lin, 2006; Sailor, 2001; Véliz, 2014) and assume that
changes in consumption do not affect price. This assumption biases
previous studies because a shift in demand alters the market equili-
brium for quantity and price, and the magnitude of these effects
depends on the price elasticities of both demand and supply. To
evaluate this bias, one study computes the effect of climate change
on electricity expenditures assuming an exogenous increase in elec-
tricity price (Deschênes and Greenstone, 2011). Here, we present the
first empirical estimates for the effect of climate-induced changes in
electricity consumption on electricity prices and measure their effects
on expenditures in the US state of Massachusetts.

Massachusetts is a good case study because the state’s wholesale
market was restructured so that hourly electricity prices correspond to

the marginal cost of supply (Joskow, 2008). Conversely, hourly
consumption does not depend on price because neither residential
nor commercial customers are charged the real-time price of their
consumption. Econometrically, this allows us to identify the supply
equation independently of the hourly relation between price and
consumption in the demand equation.

In Massachusetts, real-time hourly locational marginal prices are
the sum of 1) the marginal cost of providing the last block of electricity
(real-time energy component), 2) the congestion cost of providing
electricity to a specific zone (real-time congestion component), and 3)
the electricity lost by moving it from the point of production to
consumption (real-time marginal loss component). As such, locational
marginal price reflects the zonal supply-demand equilibrium.

On the supply side, electricity is generated by dispatching capacity
in merit order, from the least to most expensive marginal operating
cost. Peaking units have operating costs that are several times greater
than base and intermediate load generating units and therefore operate
only during hours of very high consumption (often the hottest and most
humid). This generates a non-linear relation between hourly prices and
hourly consumption (Karakstani and Bunn, 2008; Kaufmann and Vaid,
2016). To illustrate, the all-time highest equilibrium quantity in the
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Northeastern interconnected system occurs on August 2, 2006, when a
50% increase in the quantity of electricity consumed, relative to its off
peak level, raised the hourly price by 400% relative to the lowest off
peak price within the same day (temperature reached 37 °C; relative
humidity reached 65%, WeatherSpark (2014) and Weather
Underground (2014)).

Climate models forecast that global mean temperature will increase
2 °C (relative to the 1976–2005 climatology) between 2044 and 2070,
depending on the general circulation model used, (Table A.1). Higher
temperatures and more frequent heat waves in summer and less
frequent cold episodes in winter (Beniston and Stephenson, 2004;
Fischer et al., 2012) change monthly use such that summer-time
consumption of electricity rises while winter-time consumption de-
clines. We expect that winter-time reductions will be smaller than the
summer-time increases because Massachusetts consumers generate a
large portion of their space heating with natural gas or distillate oil.

Furthermore, climate models forecast that night-time temperatures
will warm relative to day-time temperatures (Hartmann et al., 2013;
Vose et al., 2005). This effect is particularly noticeable in winter, when
the night-time minimum temperature in the Northern Hemisphere
increases 0.099 °C per decade faster than the day-time maximum
temperature. The resultant reduction in the diurnal temperature range
(DTR) changes the daily pattern such that summer night-time con-
sumption rises faster than day-time consumption.

Our paper quantifies the effect of climate change on electricity
expenditures in Massachusetts. To do so, we simulate the electricity bill
for a typical residential and commercial consumer. Bills are computed
using hourly forecasts of consumption and price. We choose the 2044–
2070 time frame based on the period by which the 2 °C will be
achieved. We find that a 2 °C increase in global mean temperature
increases electricity expenditures by the average Massachusetts resi-
dential and commercial customer by about 12% and 9% respectively.
Most of these increases are caused by higher prices for electricity.
These results suggests that previous analyses understate the impact of
climate change on electricity expenditures.

These results, and the methods used to obtain them, are described
in five sections. The Section 2 “Methodology” describes the data and
methodology used to generate forecasts for electricity consumption,
electricity prices, and electricity expenditures. The Section 3 “Results”
present the empirical results related to these consumption, price, and
expenditure forecasts. These results are described in the Section 4
“Discussion”. Finally, conclusions and policy relevance and implica-
tions of this study are discussed in the Section 5 “Conclusions and
Policy Implications”.

2. Data and methodology

2.1. Data

To forecast electricity consumption, we compile observations for
monthly cooling and heating degree hours and monthly observations
for electricity consumption, electricity price, income, and employment.
We construct monthly cooling and heating degree hours using hourly
wet and dry bulb temperature, respectively. Observed temperature is
obtained from the Weather Service of Amesbury, Massachusetts, and is
measured at Boston Logan International Airport. We use this station
because measurements from weather stations located in Western and
Central Massachusetts are not available. Even if these measurements
were available, their proximity to Logan airport suggests that their
weather measurements share the same stochastic trend, which is the
basis for the cointegrating relation between monthly electricity con-
sumption and weather-related variables.

Monthly observations of electricity sales (in GWh) to (and revenues
from) the residential, commercial, and industrial sectors are obtained
from Form EIA-826 Monthly Electric Utility Sales and Revenue Survey
(U.S. EIA, 2016). We compute the average monthly electricity price for

sectors by dividing monthly revenues by monthly electricity sales.
Prices are deflated with the Consumer Price Index All Urban
Consumers (base year 2009). The same data are used to deflate
observations for quarterly state personal income (in millions of dollars)
for Massachusetts, which are obtained from the U.S. Bureau of
Economic Analysis. Monthly observations for state personal income
are created by using the same value for all months in a quarter. Data
from the U.S. Bureau of Labor Statistics are used to measure monthly
employment (thousands of employees) by the commercial and indus-
trial sectors in Massachusetts.

Forecasts for monthly dry bulb temperature are compiled from
simulations generated by nine circulation models that are run for the
World Climate Research Programme’s (WCRP’s) Coupled Model
Intercomparison Project Phase 5 (CMIP5) multimodel dataset
(Online Appendix Section 1). The models are simulated using the
highest representative concentration pathway (RCP 8.5) defined by the
IPCC for its fifth Assessment Report. The 2 °C rise in global tempera-
ture relative to the 1976–2005 climatology occurs between 2044 and
2070, depending on the climate model used (Table A.1). To calculate a
state-level value for monthly temperature forecasts, we weight the
downscaled temperature forecasts by the share of population in each
climatic zone. These population values are compiled from county data
(U.S. Census Bureau).

To analyze the relation between electricity prices and electricity
consumption, we compile hourly observations for real-time locational
marginal price and electricity consumption (January 1, 2004 –

December 31, 2012) for the three load zones in Massachusetts;
Northeast Massachusetts and Boston (NE/Boston 4008), Western
and Central Massachusetts (WCMA 4007), and Southeastern
Massachusetts (SEMA 4006). We deflate electricity prices using the
Consumer Price Index for 2009. Summary statistics show that con-
sumption and prices vary greatly across space and time (Table A.9).

Finally, to calculate changes in electricity expenditures by repre-
sentative consumers, we compile information about current monthly
charges for basic service, transition energy, and delivery that are paid
by residential and commercial consumers in 2013, which are obtained
from the Department of Public Utilities of Massachusetts.

2.2. Methodology

We estimate the effect of climate change on electricity consumption,
prices, and expenditures in three steps (Fig. 1). First, we use statistical
models to translate the monthly changes in temperature that are
forecast by climate models into monthly changes in electricity con-
sumption, and translate these monthly changes into hourly rates of
electricity consumption using Monte Carlo techniques. Second, we
translate hourly rates of electricity consumption into hourly prices

Fig. 1. General methodology.
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using a statistical model that quantifies the relationship between hourly
prices for and consumption of electricity. Third, we use the hourly
forecasts for price and consumption to compute the effect of climate
driven changes in temperature on electricity expenditures in
Massachusetts. Linking these three steps requires considerable transla-
tional code that is described in the online appendix.

2.2.1. Forecasting electricity consumption

2.2.1.1. Measures for weather-related consumption. The effect of
temperature on weather-related electricity consumption is
represented as follows:

∑CDH = I (T −j) / 24y,m
h=1

N

+ y,m,h

m

(1)

I+=1 if jT >y,m,h , and zero otherwise.

∑HDH = I (j−T )/ 24y,m
h=1

N

+ y,m,h

m

(2)

I+=1 if j > Ty,m,h , and zero otherwise.
in which Nm is the number of hours in any given month, Ty,m,h

corresponds to temperature for hour h in month m of year y, CDH is
cooling degree hours, HDH is heating degree hours, and j is the set
point j={50 °F, 55 °F, 60 °F, 65 °F, 70 °F, 75 °F}. CDH and HDH are
divided by 24 so that the quotients are comparable to standard
measures of CDD and HDD computed from daily temperatures.

The set point j is chosen based on the electricity consumption
model that generates the most accurate out-of-sample forecasts, as
described by Kaufmann et al. (2013). For the residential sector, j is a
dry bulb temperature of 65 °F for CDH and HDH. For the commercial
sector, j is a wet bulb temperature of 50 °F for CDH and a dry bulb
temperature of 50 °F for HDH. The set points for the commercial sector
are increased by 5 °F between 11 p.m. and 4 a.m. for CDH and lowered
by 5 °F between 11 p.m. and 4 a.m. for HDH. These “set backs” proxy
changes in night-time thermostat setting that are designed to reduce
energy use.

2.2.1.2. Monthly electricity use by sector. To evaluate the relation
among weather, socioeconomic variables, and electricity consumption,
we test whether these variables are stationary/nonstationary (Table
A.2) using the MHEGY procedure (Beaulieu and Miron, 1993) and test
whether they cointegrate (Engle and Granger, 1987; Dickey and Fuller,
1979) by analyzing the residual μi,y,m from the following statistical
model:

Eln = ϕ + ϕ CDH + ϕ HDH + ϕ lnI + μmi,y,m 0 1 y,m 2 y, 4 i,y,m i,y,m (3)

in which Ei,y,m is the time series for monthly electricity consumption by
end-use sector i, with i={residential, commercial, industrial}, and Ii,y,m
is state personal income for the residential sector and employment for
commercial and industrial consumers.

Test statistics indicate that the regression residual from Eq. (3) for
electricity consumption by the residential sector is stationary (i.e.
variables cointegrate), but the regression residuals from the equation
for consumption by the commercial and industrial sectors contain a
unit root (Table A.3). Based on these differences, residential electricity
consumption is estimated using a cointegration/error correction model
while the equations for commercial and industrial consumption are
estimated with ordinary least squares (OLS).

The long-run cointegrating relation between residential consump-
tion, weather, and income is estimated with dynamic ordinary least
squares (DOLS) (Stock and Watson, 1993) as follows:

∑
∑ ∑

Iln E = β + β CDH + β HDH + β ln

+ φ ΔCDH

+ λ ΔHDH + ψΔI +η

my,m 0 1 y,m 2 y, 3 y,m

i=−K

K
i y,m−i

i=−K

K
i y,m−i i=−K

K
i y,m−i y,m (4)

in which Δ is the first difference operator (e.g. CDHy,m-CDHy,m-1).
DOLS is used because OLS estimates of cointegrating relations contain
small sample bias and their limiting distribution is non-normal with a
non-zero mean (Stock, 1987). The number of lags and leads (K) is
chosen using the Schwartz Bayesian criterion (Schwarz, 1978). DOLS
results indicate that there is a statistically meaningful relation (p <
0.01) between electricity consumption and income, cooling degree
hours, and heating degree hours (Table A.4). Furthermore, disequili-
brium in the cointegrating relation generates adjustment towards the
equilibrium value for consumption, as indicated by the results of an
error correction model (Online Appendix Section 2).

Monthly consumption of electricity by the commercial and indus-
trial sector is estimated as follows:

E

P

ln = п + п CDH + п HDH + п lnEmpl

+ п ln + ζ + μ

i,y,m 0,i 1,i y,m 2,i y,m 3,i i,y,m

4,i i,y,m y i,y,m (5)

in which Empli,y,m is the number of people employed by end-use sector
i, Pi,y,m is monthly electricity price by end-use sector i, ζy are dummies
for years 2004–2012 to control for patterns across years, and μi,y,m is
the regression residual.

Regression coefficients associated with all independent variables
are positive and statistically significant as indicated by t-tests that are
calculated using robust standard errors (Newey and West, 1987) (Table
A.5). We recognize that this interpretation is undermined by the lack of
cointegration. We argue that the lack of cointegration is likely caused
by the omission of a relevant variable, rather than the lack of a relation
among the variables in the regression, given the strong theoretical
rationale for there to be such a relation and empirical results that
indicate these variables cointegrate when Eq. (5) is estimated using
data from other states (Véliz, 2014).

2.2.1.3. Monthly electricity consumption forecast. We forecast
monthly values for electricity consumption using the values for
cooling and heating degree-days that are generated by the climate
models (Online Appendix Section 3). To generate consistent estimates
for changes in monthly consumption, we compare these values with
those simulated by climate models for a base case scenario that uses the
climatology of the period 1976–2010. This base period is chosen
because it is the last thirty years of the historical CMIP5 GCM
simulations and is the closest representation of the current climate.
It is also the base period that is being used in the upcoming fourth U.S.
National Climate Assessment.

We sum sectoral estimates for the change in monthly electricity
consumption to compute a weighted change in total monthly con-
sumption for Massachusetts (δm) for both day- and night-time
(Table 1; Online Appendix Sections 4 & 5). Without statistical
evidence for the effect of climate on the industrial sector (NREL,
2004), we assume that this sector is unaffected by a changing climate. If
climate change increases residential and commercial electricity con-
sumption, industry’s share of Massachusetts electricity consumption
will shrink.

2.2.1.4. Downscaling monthly forecasts to hourly values. We
downscale monthly forecasts for day- and night-time electricity
consumption into hourly values such that the monthly average of
these hourly changes equals the change in the monthly value (Online
Appendix Section 6). To account for changes in DTR, Monte Carlo
techniques are used to downscale day- and night-time temperatures as
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follows,

E′ = E ∙θm,h
day

m,h
day

m
day

(6)

in which Em,h
day is the electricity consumption for day-time hour h of any

given month m and θm
day is a normally distributed parameter,

θ ~ (μ , σ )m
day

m
day

m
2 , with μm

day equal to the expected value of the ratio
between the projected and the current electricity consumption for each
month (E′ /Em

day
m
day) (Table A.8). To create the hourly values for

electricity consumption in the base case θm
day=1. Without explicit

information for the standard deviation associated with climate-
induced changes in consumption, we assume that the variance is
small (σm

2 =0.1). This assumption is conservative because simulations
indicate that there is a positive relation between variance (σm

2 ) and the
change in electricity expenditures.

A parallel procedure is used to generate hourly values for con-
sumption during night-time hours in the climate change scenario E′m,h

night

and the base case scenario Em,h
night. The entire process is repeated to

generate one hundred experimental data sets for changes in hourly
day- and night-time consumption. Finally, we disaggregate these
hourly consumption changes by zone and sector (Online Appendix
Section 5). Fig. A.1 in the Appendix shows an example of this
downscaling procedure.

2.2.2. Electricity price forecast

2.2.2.1. Estimate the relation between price and
consumption. Forecasts for hourly electricity prices are generated
using statistical models of the relation between the hourly price for
and consumption of electricity during the 2004–2012 sample for each
load zone z as follows:

P = β + β E + β E + β E + ζ + η + γ + μh,z 0 1,z h,z 2,z h,z
2

3,z h,z
3

year month dow h,z

(7)

in which Ph,z is the real-time locational marginal price for electricity in
zone z at hour h, (2009 dollars per MWh), Eh,z is the hourly electricity
consumption (or hourly load) in zone z, (GWh), and μh,z is the
stochastic error term. The model includes dummies for individual
years 2004–2012 (ζyear), months (ηmonth), and days of the week (γdow)
to control for patterns across these time scales. To assess the degree to
which the relation between price and consumption is sensitive to year-

to-year changes, Eq. (7) is estimated with subsamples that include a
single year from the sample period (Table 3). Eq. (7) is estimated using
OLS because all variables are stationary.

Statistical estimates for Eq. (7) are used to generate hourly
estimates of price (and price changes P′h,z) for each of the one hundred
experimental data sets for hourly consumption. We average each set of
8760 annual hourly price forecasts and average this annual value
across the one hundred experimental data sets to generate a single
price change (Table 1). The 90% confidence interval is computed as the
average value ± 1.645×the standard deviation. These values corre-
spond to the 5th and 95th percentiles associated with price changes.

2.2.2.2. Price effect of consumption beyond individual load zones. Eq.
(7) embodies an unstated assumption; Locational marginal price is
determined by conditions solely within the load zone. But ISO-NE
dispatches capacity based on consumption across its service area,
which includes NE/Boston, WCMA, SEMA, Connecticut, Maine, New
Hampshire, Rhode Island and Vermont. We assess the effect of system-
wide consumption on electricity prices within load zones by expanding
Eq. (7) as follows:

P = β + β E + β E + β E +γ E + γ E

+ γ E + ζ + η + γ + μ

h,z 0 1,z h,z 2,z h,z
2

3,z h,z
3

1,z h,ISO−z 2,z h,ISO−z
2

3,z h,ISO−z
3

year month dow h,z (8)

in which Eh,ISO−z is the consumption in the New England
interconnected system minus consumption in zone z. Eq. (8) is
estimated with observations from 2004 to 2012 for each load zone z.
We use Eq. (8) in conjunction with the one hundred sets of hourly
consumption data to generate one hundred sets of hourly estimates of
price changes. For this exercise we hold Eh,ISO−z constant at its sample
value.

2.2.3. Electricity expenditure forecast

2.2.3.1. Change in electricity expenditure forecast for residential
consumers. For residential consumers, climate change affects total
electricity expenditures by altering consumption and the basic service
charge. For 2012 and the median year with global mean temperature
(GMT) increase of 2 °C (year2 °C), we multiply simulated values for
hourly consumption and price and sum their hourly products over the

Table 1
Degree days forecasts and monthly electricity consumption forecasts.

Set point model: CDD65 °F HDD65 °F CDD50 °F HDD50 °F Residential Commercial Total

1976–2005 2 °C 1976–2005 2 °C 1976–2005 2 °C 1976–2005 2 °C 1976–2005 Δ% 2 °C δm,r 1976–2005 Δ% 2 °C δm,c Δ% 2 °C δm

Jan 0 0 1164 975 0 0 699 510 1947 −8.1 2264 −4.1 −4.7
Feb 0 0 1037 715 0 0 613 291 1833 −12.5 2224 −7.0 −7.4
Mar 0 0 799 411 0 103 334 49 1631 −16.5 2095 −1.7 −6.5
Apr 0 0 541 290 0 162 91 3 1429 −11.6 1992 5.5 −1.6
May 0 6 255 51 210 420 0 0 1245 −6.8 2161 9.9 2.0
Jun 18 174 1 0 467 624 0 0 1168 21.3 2410 7.4 10.7
Jul 127 283 0 0 592 748 0 0 1314 37.6 2535 7.3 16.4
Aug 137 377 0 0 602 842 0 0 1431 46.5 2541 11.5 21.3
Sep 125 368 0 0 575 818 0 0 1443 55.4 2521 11.7 24.5
Oct 0 138 348 57 117 546 0 0 1405 21.0 2068 21.9 17.0
Nov 0 0 689 432 0 74 239 56 1537 −8.1 2063 −0.7 −3.1
Dec 0 0 1018 781 0 0 553 316 1839 −11.6 2215 −5.2 −6.3
Total 406 1346 5852 3712 2562 4338 2529 1225 1947 −8.1 2264 −4.1 4.6

Notes: CDD65 °F/HDD65 °F and CDD50 °F/HDD50 °F are computed for monthly electricity consumption models calibrated with dry and wet bulb temperature, respectively. Residential
and commercial electricity consumption is measured in GWh. Residential electricity consumption forecasts are computed with forecasts for CDD65 °F and HDD65 °F for the period 1976–
2005 and holding state personal income constant. Commercial electricity consumption forecasts are computed with forecasts for CDD50 °F and HDD50 °F and holding electricity price and
employment constant. δm,r and δm,c correspond to the estimated changes in monthly consumption for the residential and commercial sectors, respectively. δm,r and δm,c changes are
weighted by the share of monthly average consumption between 1990 and 2010 for the residential (35%), commercial (44%), and industrial (21%) end-use sectors. δm is the weighted
percentage change in total monthly consumption.
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year for each experimental data set. Values for 2012 and year2 °C are
interpolated to generate annual values for intervening years. The net
present value (NPV) of these annual values for the change in residential
electricity expenditures due to climate change are calculated as follows:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )

∑NPV =
∑ P̂ + P̂ × Ê − ∑ P̂ + P̂ × Ê

(1 + r)

z z

r,z y=2012
year2°C

h=1
8760

y,h,z
bs,r′ ds,r

y,h,z
r′

h=1
8760

y,h,z
bs,r ds,r

y,h,z
r

y−2012

(9)

in which P̂ ′
y,h,z
bs,r

is the basic service charge (2009 dollars per kWh) for the

climate change scenario, P̂y,h,z
bs,r

is the basic service charge for the

baseline scenario, Ê ′
y,h,z
r

and Êy,h,z
r

are the hourly residential
consumption forecasts for the climate change and baseline scenario

(kWh), respectively, and P̂y,h,z
ds,r

is the delivery service charge (2009
dollars per kWh). The annual discount rate r is assumed to be 3%
(Deschênes and Greenstone, 2011). Eq. (9) is computed one hundred
times, once for each set of hourly estimates for changes in consumption
and price. We repeat this process nine times, with forecasts derived
from the nine CGM models, to finally compute the average across
NPVs.

The basic service charge P̂y,h,z
bs,r

reflects the wholesale price of

electricity. P̂y,h,z
bs,r

changes in proportion to hourly changes in locational
marginal price (Eqs. (7) or (8)) that are simulated in the climate change
scenario to compute the effect of climate change on the basic service

charge P̂ ′
y,h,z
bs,r

.
The costs of distributing and transmitting of electricity from the

wholesale market to the final consumer is measured by the delivery

service charge, which is computed as P̂z
ds,r

= α × P̂ds,r
y,h,z
bs,r

. αds,r

corresponds to the delivery service charge divided by the basic service
charge paid by a residential customer with rate R-1 and 600 kWh of
monthly consumption (α =0.75ds,r ) (Table A.11) (Department of Public

Utilities, 2014). P̂y,h,z
bs,r

is computed as the average of P̂y,h,z
bs,r

in 2012.

Table 2
Price change forecast and hourly price estimation.

NEBoston WCMA SEMA

∆P̂ 28.8% (28.4, 29.2) 26.1% (25.8,
26.4)

21.4% (21.2,
21.7)

P̂ 61.5 62.5 61.4

mean P′ˆ 79.3 78.9 74.6

sd P′ˆ 0.14 0.11 0.10

∆Ê 5.5% (5.5, 5.6) 5.3% (5.3, 5.4) 5.7% (5.7, 5.8)

Dependent variable: Hourly electricity
price

E 218.786*** 214.724*** 203.166***
(34.661) (48.293) (44.748)

E2 −68.739*** −100.433*** −97.693***

(11.482) (23.512) (24.590)

E3 7.966*** 18.296*** 18.542***

(1.230) (3.709) (4.310)

constant −181.779*** −110.400*** −87.412***
(33.755) (32.006) (25.852)

year==2005 22.795*** 21.680*** 21.037***
(0.465) (0.416) (0.405)

year==2006 4.175*** 4.651*** 3.573***
(0.47) (0.339) (0.32)

year==2007 5.230*** 9.221*** 9.488***
(0.318) (0.307) (0.309)

year==2008 18.408*** 22.728*** 23.703***
(0.4) (0.384) (0.39)

year==2009 −17.573*** −12.547*** −13.104***
(0.289) (0.272) (0.287)

year==2010 −14.531*** −9.134*** −10.030***
(0.339) (0.311) (0.337)

year==2011 −16.892*** −11.337*** −12.790***
(0.318) (0.306) (0.321)

year==2012 −26.645*** −21.133*** −23.665***
(0.316) (0.312) (0.327)

month==2 −7.599*** −7.260*** −7.807***
(0.441) (0.434) (0.45)

month==3 −8.482*** −7.377*** −9.705***
(0.418) (0.405) (0.433)

month==4 −2.588*** −0.904** −4.408***
(0.439) (0.419) (0.442)

month==5 0.692 1.271*** −2.864***
(0.648) (0.475) (0.462)

month==6 −11.070*** −9.065*** −13.138***
(0.499) (0.483) (0.465)

month==7 −19.427*** −14.376*** −22.580***
(0.601) (0.589) (0.586)

month==8 −17.012*** −13.207*** −22.141***
(0.524) (0.467) (0.486)

month==9 −9.591*** −6.398*** −12.021***
(0.458) (0.447) (0.451)

month==10 −2.236*** −0.052 −4.977***
(0.484) (0.477) (0.484)

month==11 −5.146*** −3.565*** −7.081***
(0.446) (0.435) (0.452)

month==12 −1.203** −0.835* −2.977***

Table 2 (continued)

NEBoston WCMA SEMA

(0.489) (0.48) (0.497)

dayofweek==1 −3.635*** −4.777*** −1.451***
(0.327) (0.299) (0.293)

dayofweek==2 −5.080*** −7.485*** −3.050***
(0.4) (0.309) (0.3)

dayofweek==3 −4.416*** −6.467*** −2.032***
(0.362) (0.327) (0.328)

dayofweek==4 −4.848*** −6.623*** −2.389***
(0.295) (0.284) (0.274)

dayofweek==5 −4.312*** −5.681*** −2.167***
(0.293) (0.278) (0.272)

dayofweek==6 0.929*** 0.507* 0.856***
(0.277) (0.278) (0.273)

observations 78,903 78,903 78,903
adjusted R-squared 0.447 0.519 0.502

Notes: Numbers in brackets for ∆Ê and ∆P̂ show 90% confidence intervals, which are the
5th and 95th percentiles associated with demand and price changes, respectively. E, E2,
and E3 correspond to the linear, quadratic, and cubic hourly electricity demand terms.
*** p < 0.01, ** p < 0.05, * p < 0.1. Robust standard errors in parentheses. All specifica-
tions include year, month and day of the week fixed effects (Equation (A.15)). Electricity
price is measured in $/MWh. Sensitivity of electricity prices to electricity consumption
can be computed by taking the first derivative of the cubic function for price at the
average increase in consumption (∆Ê).
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The effect of climate change on the delivery charge P̂z
ds,r

is unknown
therefore it is held constant over the forecast period. This assumption
is conservative because climate change will increase consumption,

which will increase the infrastructure that is needed to transmit
electricity, which will likely increase distribution charges. Finally, the
changes are averaged across individual residential and commercial

Table 3
Price change forecast and hourly price regressions by year.

2004 2005 2006 2007 2008 2009 2010 2011 2012
Dependent variable: Hourly electricity price in NEBoston

∆P̂ 22.4% 34.2% 42.8% 14.0% 18.6% 13.8% 33.6% 36.0% 36.9%

∆P̂ lower bound 21.6% 33.0% 40.4% 13.6% 18.0% 13.4% 32.3% 34.6% 35.7%

∆P̂ upper bound 23.2% 35.5% 45.2% 14.4% 19.1% 14.2% 34.8% 37.3% 38.0%

P̂ 61.5 89.2 68.2 71.2 83.7 44.0 51.8 47.1 36.2

mean P′ˆ 75.3 119.7 97.4 81.2 99.2 50.1 69.2 64.1 49.5

sd P′ˆ 0.3 0.7 1.0 0.2 0.3 0.1 0.4 0.4 0.2

∆Ê 5.3% 5.7% 5.6% 5.4% 5.4% 5.3% 5.7% 5.6% 5.7%

∆Ê lower bound 5.1% 5.5% 5.4% 5.3% 5.2% 5.2% 5.5% 5.4% 5.5%

∆Ê upper bound 5.4% 5.8% 5.8% 5.6% 5.6% 5.5% 5.9% 5.8% 5.9%

E 227.33*** 418.95*** 669.59*** 62.91** 125.22*** 5.58 109.17*** 181.37*** 45.16*
(54.39) (107.82) (139.65) (29.04) (28.40) (25.20) (26.40) (57.17) (23.50)

E2 −73.22*** −130.91*** −213.07*** −12.63 −35.71*** 0.45 −36.40*** −61.53*** −16.11**
(19.67) (36.16) (46.33) (9.43) (9.04) (8.48) (8.63) (18.85) (7.82)

E3 8.66*** 14.52*** 22.98*** 1.55 4.47*** 0.38 4.69*** 7.49*** 2.60***
(2.32) (3.93) (4.98) (1.00) (0.94) (0.93) (0.91) (2.01) (0.84)

adj R-squared 0.37 0.47 0.29 0.55 0.50 0.55 0.48 0.47 0.46
Dependent variable: Hourly electricity price in WCMA

∆P̂ 29.2% 16.0% 42.6% 12.6% 18.4% 17.1% 33.4% 38.7% 39.0%

∆P̂ lower bound 28.1% 15.6% 40.5% 12.3% 17.8% 16.6% 32.1% 37.3% 37.8%

∆P̂ upper bound 30.3% 16.5% 44.8% 13.0% 18.9% 17.7% 34.6% 40.1% 40.3%

P̂ 62.6 88.5 67.5 73.4 84.6 44.8 52.7 48.0 37.1

mean P′ˆ 80.8 102.7 96.3 82.6 100.2 52.5 70.3 66.5 51.6

sd P′ˆ 0.4 0.2 0.9 0.2 0.3 0.2 0.4 0.4 0.3

∆Ê 5.1% 5.5% 5.4% 5.3% 5.2% 5.2% 5.5% 5.4% 5.5%

∆Ê lower bound 5.0% 5.3% 5.2% 5.1% 5.0% 5.0% 5.3% 5.2% 5.3%

∆Ê upper bound 5.3% 5.7% 5.6% 5.4% 5.4% 5.3% 5.7% 5.5% 5.7%

E 520.36*** 138.08*** 882.90*** 24.214 121.35*** 57.708 157.81*** 252.31*** 97.05**
(116.29) (29.38) (229.08) (30.42) (45.40) (38.14) (31.48) (63.40) (48.70)

E2 −244.22*** −43.47*** −409.49*** 3.35 −53.31** −27.27 −80.85*** −136.35*** −52.68**
(58.26) (13.24) (109.50) (14.13) (21.42) (19.27) (15.32) (32.78) (24.13)

E3 40.12*** 6.96*** 64.63*** 0.54 11.46*** 6.43** 15.91*** 26.17*** 11.78***
(9.51) (1.93) (16.99) (2.14) (3.30) (3.17) (2.42) (5.49) (3.87)

adj R-squared 0.41 0.60 0.45 0.57 0.53 0.57 0.53 0.49 0.43
Dependent variable: Hourly electricity price in SEMA

∆P̂ 13.5% 10.5% 34.2% 9.3% 16.7% 10.7% 26.5% 30.1% 32.3%

∆P̂ lower bound 13.1% 10.3% 32.1% 9.1% 16.1% 10.4% 25.5% 28.8% 31.2%

∆P̂ upper bound 14.0% 10.7% 36.4% 9.5% 17.2% 11.0% 27.5% 31.3% 33.4%

P̂ 60.7 85.9 65.7 72.2 85.4 44.5 52.4 47.4 36.7

mean P′ˆ 68.9 94.9 88.2 78.9 99.6 49.3 66.2 61.7 48.5

sd P′ˆ 0.2 0.1 0.9 0.1 0.3 0.1 0.3 0.4 0.2

∆Ê 5.5% 5.9% 5.8% 5.6% 5.6% 5.5% 5.9% 5.8% 6.0%

∆Ê lower bound 5.3% 5.7% 5.6% 5.5% 5.5% 5.4% 5.7% 5.6% 5.8%

∆Ê upper bound 5.6% 6.0% 5.9% 5.8% 5.8% 5.7% 6.1% 6.0% 6.2%

E 101.95** 80.39*** 676.64*** 30.66 226.59*** 6.965 88.86*** 230.12*** 75.79**
(40.55) (25.15) (153.82) (21.36) (29.74) (23.97) (21.82) (74.13) (34.09)

E2 −41.24* −13.81 −347.96*** 7.36 −104.08*** 5.87 −46.08*** −125.39*** −38.92**
(24.33) (13.28) (83.91) (11.39) (16.09) (13.70) (12.05) (41.46) (18.92)

E3 8.47* 1.72 60.58*** −1.19 19.84*** 0.06 10.75*** 24.81*** 9.26***
(4.76) (2.25) (14.63) (1.95) (2.8) (2.51) (2.12) (7.42) (3.33)

adj R-squared 0.36 0.56 0.46 0.55 0.53 0.55 0.5 0.44 0.46

Notes: ∆Ê lower bound and ∆Ê upper bound show 90% confidence intervals, which are the 5th and 95th percentiles associated with electricity consumption changes. ∆P̂ lower bound
and ∆P̂ upper bound are the analogous values for price changes. Robust standards errors in parenthesis. *** p < 0.001, ** p < 0.05, * p < 0.1. All specifications include month and day of
week fixed effects. Electricity price is measured in $/MWh.
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consumers based on the ratio between expenditures added across zones
and the number of residential consumers in Massachusetts (Table 4)
(U.S. Energy Information Administration, 2011a). We compute the
90% confidence intervals for the expenditure forecasts using the 5th
and 95th percentiles of the one hundred estimates for expenditure
changes.

To separate the effects of climate-driven changes in price from the
effects of climate driven changes in consumption (Table 4), we
recompute Eq. (9) under the following assumptions: 1) climate change

alters electricity prices (P̂ ′ ≠ P̂y,h,z
bs,r

y,h,z
bs,r

) but residential electricity con-

sumption is unaffected (Ê ′
y,h,z
r

= Êy,h,z
r

) and 2) climate change does not

affect electricity prices (P̂ ′ = P̂y,h,z
bs,r

y,h,z
bs,r

) but it does alter residential

consumption (Ê ′ ≠y,h,z
r

Êy,h,z
r

).

2.2.3.2. Change in electricity expenditure forecast for commercial
consumers. Climate change affects total expenditures for electricity by
commercial customers by altering consumption, the basic service
charge, and the transition energy charge. These alterations change
the net present value of electricity expenditures by commercial
customers as follows:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )
( )

∑NPV =

∑ P̂ + P̂ + P̂ + P̂ × Ê

− ∑ P̂ + P̂ + P̂ + P̂ × Ê

(1 + r)

z

c,z y=2012

year2°C

h=1
8760

y,h,z
bs,c′

y,h,z
tp,c′

y,h,z
to,c′

z
ds,c

y,h,z
c′

h=1
8760

y,h,z
bs,c

y,h,z
tp,c

y,h,z
toc ds,c

y,h,z
c

y−2012

(10)

in which P̂ ′
y,h,z
bs,c

and P̂y,h,z
bs,c

are the basic service charges to commercial
consumers (2009 dollars per kWh) with and without climate change,
P̂ ′

y,h,z
tp,c

and P̂ ′
y,h,z
to,c

are the transition energy peak and transition energy off-
peak charges (2009 dollars per kWh) for the climate change scenario,

(P̂y,h,z
tp,c

and P̂y,h,z
to,c

are the corresponding values for the base case), Ê ′
y,h,z
c

and Êy,h,z
c

are hourly rates of commercial consumption in the climate

change and baseline scenario, and P̂z
ds,c

is the delivery service charge for
commercial consumers. As done with Eqs. (9) and (10) is computed
one hundred times, once for each set of estimates for hourly estimates
for changes in electricity consumption. Here we also repeat this process
nine times to finally compute the average across NPVs.

The effect of climate change on the basic service charge for

commercial consumers is simulated by changing P̂y,h,z
bs,c

in proportion
to hourly changes in locational marginal price (Eqs. (7) or (8)) for the
climate change scenario. The transition energy peak charge reflects the
difference between the basic service charge and the price paid to

suppliers during the peak period. We compute P̂y,h,z
tp,c

such that it equals

α × P̂tp,c
y,h,z
bs,c

when h is within the peak period (from 9 a.m. to 6 p.m.
from June through September, and from 8 a.m. to 9 p.m. from October
through May), and zero otherwise. αtp,c corresponds to the amount of
the bill paid for transition energy peak divided by the amount of the bill
paid for basic service by a commercial customer with rate G-3, 600 kW
of power, 150,000 kWh of monthly consumption, and 55% of the
consumption within the peak period (α =0. 08tp,c ) (Table A.12)
(Department of Public Utilities, 2014). We compute the transition

peak energy charge for the climate scenario by assuming that P̂y,h,z
tp,c

increases in proportion to changes in locational marginal price.
The transition energy off-peak charge reflects the difference

between the basic service charge and the price paid to suppliers

during the off-peak period. P̂y,h,z
to,c

equals α × P̂to,c
y,h,z
bs,c

when h is within
the off-peak period (all hours not included in the peak period) and
zero otherwise. αto,c corresponds to the amount of the bill paid for
transition off-peak energy divided by the amount of the bill paid for
basic service by a commercial customer with 45% of the consump-
tion within the off-peak period (α =0. 03to,c ) (Table A.12)
(Department of Public Utilities, 2014). We compute the transition
off-peak energy charge for the climate scenario by assuming that
P̂y,h,z

to,c
changes in proportion to changes in locational marginal price.

We assume that P̂z
ds,c

will not be affected by climate change. We

compute P̂z
ds,c

=α × P̂ds,c
y,h,z
bs,c

. αds,c corresponds to the amount of the
bill paid for delivery service divided by the amount of the bill paid
for basic service (α =0.36ds,c ) (Department of Public Utilities, 2014)
(Table A.12). Finally, changes in expenditures are allocated among
commercial consumers based on the ratio of expenditures (summed
across zones) to the number of commercial consumers in
Massachusetts (Nc) (U.S. Energy Information Administration,
2011b). We decompose the changes shown in Table 5 between price
and quantity using the same procedure described for residential
consumers.

2.2.3.3. Sensitivity to real-time pricing information. As climate-
induced increases in consumption raise electricity prices, these
higher prices may dampen the initial increase in consumption.
This reduction would lead to smaller changes in electricity prices
and expenditures. To assess this mechanism for adaptation, we
simulate scenarios in which real time information about electricity
prices is available to consumers. This price information feeds back
on hourly electricity consumption E′h,z

feedback via short-run (hourly)
own-price elasticities of demand (average of 0.102, 0.124, 0.113,
0.105 and 0.096) (Ito, 2014; Faruqui and Sergici, 2011) as follows:

PE′ = E′ + E′ η (P′ − )h,z
feedback

h,z h,z h,z h,z (11)

in which E′h,z is the forecast for zone z at hour h, P′h,z is the hourly
electricity price forecast in zone z at hour h, and Ph,z is hourly

electricity price. These feedbacks, P′h,z
feedback, with E′h,z

feedback are used
with Eq. (11) to generate hourly residential (commercial)
consumption, E ′h,z

r feedback (E ′h,z
c feedback). Finally, the net present value of

Table 4
Expenditure change forecast for residential consumers of electricity.

Δ Price and
Consumption

Δ Consumption only Δ Price only

cost
2 °C

NPV cost 2 °C NPV cost 2 °C NPV

NEBostona 317 2754 99 956 137 1329
[314;
319]

[2732;
2776]

[98; 99] [950;
962]

[135; 139] [1312;
1346]

WCMAa 207 1802 67 645 88 855
[205;
208]

[1789;
1815]

[66; 67] [641;
650]

[87; 89] [845;
865]

SEMAa 158 1395 61 590 61 595
[157;
160]

[1385;
1405]

[61; 61] [586;
594]

[61; 62] [587;
602]

MAb 682 5952 226 2191 286 2779
[677;
687]

[5906;
5996]

[225; 228] [2177;
2205]

[283; 290] [2745;
2813]

MA/Nb 256 2236 85 823 108 1044
[254;
258]

[2219;
2253]

[85; 86] [818;
828]

[106; 109] [1031;
1057]

Annualized
MA/Nr

b
95 35 44
[94; 95] [35; 35] [44; 45]

a Figures are measured in million 2009 dollars.
b Figures are measured in 2009 dollars. Cost estimates for residential consumers are

computed for the following 2 °C scenarios: i) change in demand only; ii) change in price
only; iii) change in both demand and price. The change in price in scenarios ii and iii are
due to changes in the basic service charge. All present value calculations use a 3%
discount rate (Deschênes and Greenstone, 2011).
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electricity expenditures by residential (commercial) consumers is
calculated using Eqs. (9) and (10), and E ′h,z

r feedback (E ′h,z
c feedback) and

P′h,z
feedback.

3. Results

3.1. Electricity consumption

Consistent with the results described by Auffhammer et al. (2017)
the load duration curve (Fig. 2) indicates that warmer summer
temperatures raise summer-time consumption by about 15% whereas
winter-time consumption declines by about 6%. Consistent with the

expected reduction in DTR (Hartmann et al., 2013; Vose et al., 2005),
electricity consumption during summer nights increases 16.6%
whereas summer day-time consumption increases 16.2%.

3.2. Electricity prices

Statistical results for Eq. (7) indicate that electricity prices increase
non-linearly with consumption. For all sample periods (Tables 2 and
3), the regression coefficients associated with the linear (β >01,z ),
squared (β <02,z ), and cubed (β >03,z ) values of hourly electricity
consumption are statistically different from zero (p < 0.01) and Eq.
(7) is able to account for 29–60% of the hourly variation in electricity
prices. Consistent with merit order dispatch, the turning points are
imaginary, which implies that prices always increase with consump-
tion, albeit slowly at intermediate rates of consumption (Kaufmann and
Vaid, 2016).

When translated through Eq. (7), changes in consumption increase
the average annual price of electricity for the three Massachusetts load
zones 21.4–28.8% (Table 2). The largest price increase occurs in
NEBoston (4008) because consumption increases by the largest
amount and because prices are more sensitive to electricity consump-
tion. These results are robust to the sample used to estimate Eq. (7)
(Table 3). For the three zones, the results indicate that price increases
with consumption, with the exception of years 2007 and 2009 for the
SEMA zone.

These results change little if we account for the effects of consump-
tion beyond the load zone (Eq. (8)). The price change is relatively
unaffected in load zones with higher levels of demand (e.g. NEBoston
and WCMA) (Table A.10). Conversely, prices decline in the SEMA zone,
which consumes the smallest quantity of electricity. Here, local prices
are dominated by consumption increases beyond the load zone, which
are eliminated by holding use beyond the SEMA load zone constant.

3.3. Electricity expenditures

The change in climate that is associated with the high emission
scenario increases the net present value of electricity expenditures by
residential and commercial customers by $5952 million (90% con-
fidence interval $5906–$5996) and $5069 million (90% confidence
interval $5018–$5117) (2009 dollars) respectively between 2013 and
the median year with GMT increase of 2 °C (Tables 2, 3). These
increases represent a $2236 (90% confidence interval $2219–$2253)
and a $13,499 (90% confidence interval $13,364–$13,628) increase in
the bill for an average residential and commercial customer. That
translates into an annualized extra-cost of $95 (90% confidence
interval $94–$95) and $569 (90% confidence interval $564–$575)
per customer, which represents a 12.04% (90% confidence interval
11.95–12.13) and 9.34% (90% confidence interval 9.25–9.43) increase
in their $785 and $6096 annual bill for electricity, respectively.

These increases are caused mainly by higher prices. If we ignore the
effect of climate change on electricity prices (like previous analyses),
the NPV of expenditures by residential and commercial customers
increase by $2191 (90% confidence interval $2177–$2205) and $1024
(90% confidence interval $1010–$1039) million respectively. These
increases represent an annualized extra-cost of $35 (90% confidence
interval $35–$35) and $115 (90% confidence interval $113-$117) per
customer. Conversely, eliminating the effect of climate change on
electricity consumption, but retaining its effect on electricity prices,
higher prices increase the NPV of expenditures by residential and
commercial customers $2779 (90% confidence interval $2745–$2813)
and $3705 (90% confidence interval $3659–$3750) million respec-
tively. This represents an annualized extra-cost of $44 (90% confidence
interval $44–$45) and $416 (90% confidence interval $411–$421) per
customer.

Table 5
Expenditure change forecast for commercial consumers of electricity.

Δ Price and
Consumption

Δ Consumption only Δ Price only

cost
2 °C

NPV cost 2 °C NPV cost 2 °C NPV

NEBostona 242 2394 44 450 172 1781
[240;
245]

[2369;
2418]

[44; 45] [444;
456]

[170; 174] [1759;
1804]

WCMAa 158 1560 30 309 111 1144
[157;
160]

[1545;
1574]

[30; 31] [304;
313]

[109; 112] [1131;
1157]

SEMAa 113 1115 26 266 75 779
[111;
114]

[1104;
1126]

[26; 27] [262;
270]

[74; 76] [769;
789]

MAa 513 5069 101 1024 358 3705
[508;
518]

[5018;
5117]

[99; 102] [1010;
1039]

[353; 362] [3659;
3750]

MA/Nb 1367 13,499 268 2728 952 9866
[1353;
1380]

[13,364;
13,628]

[265; 272] [2690;
2767]

[941; 964] [9745;
9986]

Annualized
MA/Nr

b
569 115 416
[564;
575]

[113;
117]

[411;
421]

a Figures are measured in million 2009 dollars.
b Figures are measured in 2009 dollars. Cost estimates for residential consumers are

computed for the following 2 °C scenarios: i) change in demand only; ii) change in price
only; iii) change in both demand and price. The change in price in scenarios ii and iii are
due to changes in the basic service charge, transition energy peak charge, and transition
energy off-peak charge. All present value calculations use a 3% discount rate (Deschênes
and Greenstone, 2011).

Fig. 2. Impact of climate change on the load duration curve constructed with monthly
values. Source: Own construction based on results shown in Table 1.
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4. Discussion

Climate change will affect both electricity consumption and price.
Here, we present the first empirical estimates for the effect of climate
change on electricity prices and quantify its effect on expenditures. We
conclude that previous empirical studies understate the effects of
climate change on electricity expenditures because our results indicate
that higher consumption increases electricity prices and the total bill.
This bias is especially strong because higher prices have a greater effect
on expenditures than climate-related increases in consumption.

Our results carry several caveats. The annualized increase in
electricity bills represents the effect of future changes in climate on
the electric system as currently configured. But on-going and future
changes in the stock of generating capacity and adaptation to climate
change by producers and consumers will dampen or exacerbate the
actual effect on expenditures.

The types of and price for fuels used to generate base-load and peak
will change over the forecast horizon. In Massachusetts, economic
incentives are increasing the fraction of electricity generated by
renewable resources (from 2.6% to 5.2% during the 2004–2012 sample
period) and this will likely dampen the effect of climate change on
electricity prices because generation by renewable sources dampens
summer-time increases in locational marginal price (CAISO, 2013;
NREL, 2004; Kaufmann and Vaid, 2016). Conversely, fuel switching
may have little effect on electricity prices and, therefore, on electricity
expenditures. During the 2004–2012 sample period, the percentage of
electricity generated in Massachusetts using coal and refined petroleum
products declined from 39% to 7% while the percentage generated by
natural gas rose from 45% to 70%. During that same period, the price
of natural gas and coal to electric utilities in Massachusetts varied over
a wide range (decreased by 42% for natural gas and increased by 9% for
coal – FERC (2007), U.S. Energy Information Administration (2012)).
Despite these changes, the sample period used to estimate the relation
between hourly consumption and price has little impact on estimates
for the effect of climate change on electricity prices (Table 3).
Nonetheless, quantifying the sensitivity of climate-driven electricity
expenditures estimates to changes in the generation technology and
fuel price is a priority for future research.

The degree to which adaptation to climate change will reduce the
effect of climate change on electricity prices and expenditures is
uncertain. Price increases and total expenditures may be smaller if
higher prices induce consumers to reduce consumption. We assess this
mechanism for adaptation by recalculating the climate-induced
changes in consumption with short-run (hourly) own-price elasticities
of demand (Eq. (11)). The degree to which these price feedbacks reduce
consumption depends on whether consumers have real-time informa-
tion about electricity prices and whether they use this information to
optimize electricity consumption (Eq. (11)). If residential (and com-
mercial) consumers have complete or partial access to real time
information about electricity prices, electricity expenditures rise 5.0
(2.9) percent and 8.5 (6.1) respectively, instead of the 12 (9) percent
increase in the base-case, which implicitly assumes that consumers do
not react to climate induced increases in electricity prices (Tables
A.13–A.16).

Conversely, consumers may adapt to a warming climate by using
more air conditioning (Sailor and Pavlova, 2003). This cost is not
included in our statistical models; they implicitly assume the increase
in summer-time use is consumed by operating the existing stock of air
conditioners at higher utilization rates. If we allow the existing stock of
air conditioners to grow by assuming that new 12,000 BTU, 1100 W
window air conditioning units that operate for twelve hours per day
consume all of the May-Sept increase in electricity consumption, which
is simulated by the climate-induced monthly forecast, one in every
three households will require a new unit. These new air conditioners,
whose cost per unit is assumed to be $300, would cost Massachusetts
households an additional $259 million (in 2009 dollars).

Higher electricity prices are likely to spur demand-side manage-
ment, which seeks to reduce consumption during periods of peak
demand. Programs to shave the peak in Massachusetts could reduce
electricity expenditures 17% by 2019 (Faruqui and Sergici, 2011).
These savings could be larger given the changes in the load duration
curve shown in Fig. 2. But as described previously, capturing these
savings would require consumers to have an advanced metering
infrastructure that communicates real-time prices to all electricity
consumers, as opposed to bills that communicate monthly use and
an average price per kWh (Sailor and Pavlova, 2003; U.S. FERC, 2009).

On the supply side, adaptation to the increase skew of the load
curve in Fig. 2 is likely to reduce the price effect relative to the current
configuration of the electrical system. But the size of this reduction is
uncertain. Increases in peak summer-time consumption relative to the
base period imply investments in new peaking capacity. But this new
capacity will operate for only a small fraction of the year. Under these
conditions, the fixed costs of this new capacity will be recovered during
relatively short operating periods, which translates into higher margin-
al generating costs.

Furthermore, the increased skew of the load duration curve in Fig. 2
implies that the transmission grid will be upgraded to carry higher
loads during the summer-time peak. Such upgrades will reduce
congestion costs relative to those embodied in locational marginal
price. But their net effect on electricity expenditures is uncertain
because the cost of upgrading the electricity grid will raise the delivery
service charge, which we assume to remain constant.

5. Conclusion and policy implications

To summarize, our most important result is that climate change in
Massachusetts alters the load duration curve, which raises prices. The
size of this price rise will depend on the degree to which policy makers
can create an environment that prompts generators, the distribution
system, and electricity consumers to adapt. Adaptation can be en-
hanced by policies aimed at electricity supply and consumption. On the
supply side, higher prices can be damped if policy creates a more
certain environment for investment in new peaking capacity. On the
demand size, higher prices can be damped if policy favors energy
conservation measures that reduce and/or reschedule the electricity
used for cooling.

The uncertainty about the effects of climate change on consumption
and prices is especially important in Massachusetts, where the
restructuring of electricity markets changes the way that investments
are made in new capacity. The risks of investments no longer are bourn
by rate-payers; private investors now weigh the costs and benefits.
These costs and benefits are defined by market signals under the
‘energy-only’ design. But analysis indicates that this approach contains
several market failures (e.g. Bidwell and Henney, 2004). Many of these
failures pose challenges to generation adequacy, which may cause
capacity to fall short of the level needed to satisfy demand.

To date, investment decisions regarding new capacity focus on
socioeconomic variables, such as consumption, as influenced by
population and economic growth, and the relative costs of competing
technologies for generating electricity, as influenced by capital and
operating costs. But this analysis adds a new variable to investment
decisions; climate change will increase consumption and alter the load
duration curve. The former has been well documented and has
important implications for the construction of new base-load. But the
skew in the load curve, and the resultant increase in prices described
here imply that peaking capacity must increase faster than base-load.

But the investment in new generating capacity that is stimulated by
the ‘energy-only’ market design is biased in the opposite direction, in
favor of base-load. Risk aversion may limit the provision of peaking
plants (Bidwell and Henney, 2004). The volatility of revenue flows for
peaking units is much greater than the volatility of revenue flows for
base-load units (Olsina et al., 2014). Under these conditions, scarcity
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rents are highly uncertain. This uncertainty reduces investment by risk
averse investors, which leads to less peaking capacity than needed
(Olsina et al., 2014).

To deal with the increased uncertainty about the need for invest-
ment in peaking plants, policy makers who wish to dampen the price
increases that are associated with the increased skew of the load
duration curve may need to look beyond the ‘energy-only’ market
design and consider some form of capacity remuneration mechanisms
(CRM’s). CRMs aim to reduce the uncertainty associated with the
revenue stream from electricity generating capacity, which enhances
market incentives to invest in new capacity. Because climate-induced
price increases are caused by increased summer-time peaks, as
opposed to a general increase in consumption, our analysis suggests
that CRM’s focus on ways to enhance timely investment in peak
capacity. For example, Olsina et al. (2014) describe CRM’s that replace
annual realizations of the stochastic revenue stream earned by each
generating unit during scarcity in an ‘energy only’ market design with
it’s certainty risk neutral equivalent. This change would reduce
financial risk while preserving the efficiency of the energy-only market
design. This is not the only possible approach, but specific suggestions
for the design of CRM’s that would enhance investment in peak load
capacity for Massachusetts is beyond the scope of this analysis.

Generation adequacy also is limited by market failures on the
supply side. Bidwell and Henney (2004) argue that electricity
demand is inelastic because most consumers do not have real-time
information about electricity prices and even if they do, they are
generally not interested in responding to price signals. As described
by our adaptation scenario, higher prices due to summer-time
increases in consumption can be damped only if consumers pay
real-time prices, have real-time information about those prices,
and have non-trivial short-run elasticities.

Rather than rely on heroic assumptions, policy makers may be
able to dampen some of the increase in summer-time electricity
prices if climate induced increases in cooling are satisfied by new
efficient equipment and/or the electricity used for cooling can be
shifted away from the hottest part of the day. To do so, policy
makers may need to change the focus of incentives for utilities to
reduce electricity sales. Currently, the State of Massachusetts
compensates utilities for reduced sales of electricity when those
reductions can be attributed to specific energy conservation mea-
sures. The measures that qualify for such compensation include a
wide variety of end-uses, such as lighting, pumps and fans, and
HVAC equipment.

But this analysis suggests that the effectiveness of dampening
the effect of climate change on electricity consumption and prices
by reducing consumption is not equal across eligible energy
conservation measures. Lighting replacements, and retrofitting
heating systems, pumps, and motors probably will have little effect
on climate-induced increases in electricity prices for Massachusetts
ratepayers. Instead, policy makers may want to alter incentives in
ways that utilities favor investment in new energy efficiency cooling
systems, including variable speed drives, or technologies that shift
the cooling load, such as ice storage. These suggestions are specific
to the analysis of Massachusetts that is presented here. The effects
of climate change on the level and temporal distribution of
electricity consumption (and prices) will vary among states and
therefore, so too would the energy conservation measures that will
be most effective.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.enpol.2017.03.016.
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