UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE ASTRONOMÍA

SUPER MASSIVE BLACK HOLES AND THE CENTRAL REGION IN ACTIVE GALACTIC NUCLEI

TESIS PARA OPTAR AL GRADO DE DOCTOR EN CIENCIAS, MENCIÓN ASTRONOMÍA

JULIÁN ESTEBAN MEJÍA RESTREPO

PROFESOR GUÍA:
PAULINA MARÍA LIRA TEILLERY

MIEMBROS DE LA COMISIÓN:
KONRAD TRISTRAM
LEONARDO JAIME BRONFMAN AGUILÓ LUIS EDUARDO CAMPUSANO BROWN
MANUEL ALEJANDRO ARAVENA AGUIRRE
VALENTINO GASTÓN GONZÁLEZ

SANTIAGO DE CHILE AGOSTO 2017

RESUMEN DE LA TESIS PARA OPTAR AL GRADO DE DOCTOR EN CIENCIAS, MENCIÓN ASTRONOMÍA

AGUJEROS NEGROS SUPERMASIVOS Y LA REGION CENTRAL EN NUCLEOS ACTIVOS DE GALAXIAS

En este trabajo presento un estudio de la región central de galaxias activas orientado a mejorar las estimaciones de masas de agujeros negros supermasivos distantes y a dilucidar las propiedades del gas en sus cercanías. En el primer capítulo intruduzco brevemente los conceptos básicos y presento los descubrimientos más relevantes así como las grandes problemáticas asociadas al objeto de estudio de esta tesis.

A continuación, en el segundo capítulo presento un estudio orientado a mejorar las calibraciones actuales para medición de masas de agujeros negros supermasivos distantes usando líneas de emisión características de la región de líneas anchas tales como $\mathrm{H} \alpha, \mathrm{H} \beta$ y Mg ii $\lambda 2798$ (de bajo nivel de ionización) y Civ $\lambda 1549$ (de alto nivel de ionización). La novedad de este trabajo radica en el uso de observaciones espectrales simultáneas de las líneas de emisión a recalibrar lo que evita posibles efectos de variabilidad en la emisión de los cuásares estudiados. Lo anterior es posible gracias a las observaciones de 39 cuásares a redshift ~ 1.55 mediante el uso del espectrógrafo XShooter del telescopio VLT cuya gran cobertura espectral permite el mapeo simultáneo de las líneas de emisión antes mencionadas. Además de presentar nuevas calibraciones, los resultados indican que las líneas de baja ionización proveen estimaciones de masa más confiables que las basadas en C iv $\lambda 1549$.

En el tercer capítulo, estudio la posibilidad de mejorar las estimaciones de masa usando Civ $\lambda 1549$ mediante algunos métodos propuestos en la literatura además del método propuesto en el segundo capítulo de esta tesis. Todos estos métodos se basan en correlaciones encontradas usando muestras pequeñas de menos de 100 objetos. Para cuantificar la solidez estadística de éstos aquí se usa la base de datos de cuásares del Sloan Digital Sky Survey de la cual se extrajo una muestra de cerca de 30000 objetos. Los resultado encontrados sugieren que todos los métodos actualmente sugeridos tienen un efecto muy limitado en el mejoramiento de las estimaciones de masas usando C iv $\lambda 1549$.

Finalmente, en el cuarto capítulo estudio el efecto de la distribución del gas de la región de líneas anchas en la estimación de masas. Lo anterior es posible gracias a la comparación entre masas obtenidas por el método ya descrito y masas estimadas mediante el ajuste del modelo estándar del disco de acreción al espectro de emisión de este. Los resultados sugieren una fuerte dependencia del cociente de ambas estimaciones de masa con el ancho observado de las líneas de emisión.

SUMMARY OF THESIS FOR THE DEGREE OF DOCTOR OF PHYLOSOPHY IN ASTRONOMY

SUPER MASSIVE BLACK HOLES AND THE CENTRAL REGION IN ACTIVE GALACTIC NUCLEI

Here I present an in-depth study of the central region of active galactic nuclei oriented to improve current mass estimation methods of distant super massive black holes and to infer the physical properties of the gas in their vicinity. In the first chapter I briefly introduce the basic concepts and present the most relevant discoveries and problematics associated to the central topic of this thesis.

Then, in the second chapter, I present new calibrations of the so called single epoch black hole mass estimation method. This method uses emission lines from the broad line region such as the $\mathrm{H} \alpha, \mathrm{H} \beta$ and Mg ii $\lambda 2798$ low ionization lines, and the C iv $\lambda 1549$ high ionization line. The novelty of this work is the usage of simultaneous observations of these emission lines that prevents from possible variability effects. The latter was possible thanks to the observations of 39 quasars a $z \sim 1.55$ using the X-Shooter spectrograph of the VLT telescope whose wide spectral coverage allows simultaneous mapping of the aforementioned emission lines. In addition to presenting new calibrations, the results of this study indicate that low ionization lines provide more accurate mass estimations than C IV $\lambda 1549$ as it was suggested by previous studies.

In the third chapter, I examine the possibility of improving current C IV $\lambda 1549$ based mass estimates of super-massive black holes by testing the performance of some methods proposed in the literature, including a method proposed in this thesis. All these methods are based on correlations found using small samples of less than 100 objects. In order to quantify the statistical robustness of these methods, in this work I use the Sloan Digital Sky Survey quasar database out of which I extracted a sample of nearly 30000 objects. The results suggest that the methods studied here have a very limited effect on the improvement of C IV $\lambda 1549$-based mass estimations.

Finally, in the fourth chapter, I study the effect of gas distribution of the broad line region on mass estimations. This is possible thanks to the comparison between masses obtained from the single epoch method and those obtained from the fitting the accretion disc spectral energy distribution to standard accretion disk models. The results indicate a strong dependence of the ratio between both mass estimates with the observed width of the broad emission lines.

Acknowledgements

En primer lugar agradezco a mi profesora y asesora Paulina Lira por las discusiones científicas de gran valor para este trabajo así como por su apoyo, guía y oportunidades dadas a lo largo de mi doctorado. Hago de igual manera un reconocimiento especial al excelente e intachable trato humano recibido de su parte. Agradezco también enomermente a mis co-asesores Benny Trakhtenbrot y Hagai Netzer cuyo aporte fue indispensable para llevar a cabo este trabajo. De igual manera, agradezco a mi comité de tesis por sus comentarios y críticas constructivas que ayudaron en la cristalización de este proyecto. Extiendo también mis agradecimientos a los profesores del departamento que aportaron directa o indirectamente a mi formación así como a todos los funcionarios que le dan vida a Calán.

Agradezco además a todos mis compañeros de posgrado en especial a Alessandro, Felipe, Paula y Thomas con los cuales tuve más cercanía durante estos años. Por supuesto, ofrezco un agradecimiento singular a mi amigos Ángel y Sebastián quienes empezaron conmigo esta aventura doctoral y han sido un gran apoyo en diversos momentos durante mi estadía en este hermoso país. De igual manera hago un reconocimiento a mis más grandes amigos: Carolina, Catalina, Catherine, Cornelio, Daniel, David Felipe, José David, Laura, Mauricio, Malory y Xiomara quienes de una u otra manera estuvieron presentes durante todo este proceso.

Estas últimas líneas quiero regarlárselas a las personas más importantes en mi vida a quienes adoro y admiro profundamente: a mi gran amor, Elizabeth, a mis padres, Margarita y Reinel, a mi hermana, Erika y a mis más cercanos familiares. A Eli le agradezco inmensamente su compañía, apoyo incondicional y amor profundo que han hecho de esta zigzagueante travesía un camino mucho más amable de recorrer. A mis padres les agradezco el apoyo sin reparos, el amor único e ilimitado que sólo ellos pueden ofrecerme y por haber hecho de la educación una prioridad en nuestra crianza. A mi hermana le agradezco por su gran ejemplo como científica, su cariño, sus palabras de aliento y por haberme regalado la inmensa felicidad de ser tío de nuestro consentido y adorado Tomás. ¡Gracias familia!.

El trabajo de esta tesis fue financiado por "CONICYT-PCHA/doctorado Nacional para extranjeros/2013-63130316".

Table of Contents

1 Introduction 1
1.1 Active Galactic Nuclei 1
1.2 AGN Diversity 3
1.3 Black Hole Masses 3
1.4 This Thesis 6
2 Single epoch super massive black hole masses estimations: recalibra- tion and analysis 8
2.1 Introduction 8
2.2 Sample, Data and Analysis 13
2.3 Spectral Decomposition 16
2.3.1 Continuum Emission 16
2.3.2 Blended iron lines 19
2.3.3 Emission Line Measurements 19
2.4 Results and Discussion 21
2.4.1 Local versus global continuum measurements 21
2.4.2 Luminosity Correlations 27
2.4.3 Line widths and line offsets 31
2.4.4 Black Hole Mass estimators 35
2.4.5 The C IV line as a Black Hole mass estimator 40
3 Can we improve C iv-based single epoch supermassive black hole mass estimations? 44
3.1 Introduction 44
3.2 Samples, Data and Analysis 47
3.2.1 Large Samples 49
3.2.2 Small Samples 49
3.2.3 Line and continuum measurements 50
3.3 Results 53
3.3.1 SDSS DR7Q and DR12Q samples 53
3.3.2 Small Samples 57
3.3.3 Resampling tests 59
3.4 Discussion 60
4 Nuclear gas distribution effect on the mass determination of distant supermassive black holes 62
4.1 Introduction 62
4.2 Results and Discussion 64
4.3 Methods 69
4.3.1 Sample description 69
4.3.2 \quad Estimating M_{BH} 69
4.3.3 f as a function of line width 74
4.3.4 Inclination as the source of the $f-\mathrm{FWHM}_{\mathrm{obs}}$ correlation 75
4.3.5 Radiation pressure effects 81
5 Conclusions 84
Appendix 87
A Complementary information to Chapter 2 87
A. 1 Demonstrating the quality of X-Shooter spectra 87
A. 2 New UV iron emission template 87
A. 3 Emission line constraints 89
A. 4 Comparison of Observed Emission Line Profiles 89
B Complementary information to Chapter 3 93
B. 1 Fitting Procedure, measurements and BALQSO exclusion 93
B. 2 Sample comparison 95
B.2.1 Large sample remarks 95
B.2.2 Small sample remarks 96
B. 3 Principal Component analysis 96
C Accretion disc models 98
C. 1 Thin accretion disc model 98
C. 2 Black hole mass and accretion rate determination 98
C. 3 Bayesian SED-Fitting Procedure. 100
Bibliography 102

Chapter 1

Introduction

1.1 Active Galactic Nuclei

It is widely accepted that the majority of galaxies host a super-massive black hole (SMBH) at their centres. The study of local-quiescent galaxies has exhibit a strong correlation between their SMBH mass (M_{BH}) and their bulge stellar dispersion (σ_{\star} i.e., the $M_{\mathrm{BH}}-\sigma_{\star} ;$ Ferrarese \& Merritt, 2000). This connection suggests co-evolution of the assembly of the host galaxy and the growth of the SMBH. During their growing phases, SMBHs experience several episodes of active accretion of material. We call "Active galaxies" or "active galactic nuclei" (AGN) those galaxies whose SMBHs are undergoing one of these accretion episodes.

UV and optical AGN radiation corresponds to the emission from an accretion disc (AD) funnelling matter onto a SMBH that converts a large amount of gravitational energy into radiation (Shakura \& Sunyaev, 1973). The high density material ($n_{\mathrm{H}} \gtrsim$ $10^{9} \mathrm{~cm}^{-3}$) close to the AD is photo-ionized by the strong AD radiation field and present large peculiar velocities of thousands of kilometres per second associated to Keplerian motion around the SMBH. As a result of electron recombination this material leaves an imprint of very broad emission lines in the observed spectra. This material is usually referred to as the broad line region (BLR). This region extends up to the dust sublimation radius which is the distance at which dust no longer evaporates and survives the AD radiation field. Starting at this radius, an obscuring structure of dust and gas is found which is usually referred to as the dusty torus. In spite of this common name, its geometry, dynamics and associated covering factor is still largely unknown (e.g. Stalevski et al., 2016). Furthermore, it is still unclear whether the torus properties depend on the luminosity, redshift, or the evolutionary state of host galaxies.

Further away from the SMBH , the dynamics are dominated by the host galaxy rather than by the SMBH. As a consequence, the typical velocities associated to that gas are only a few hundred of kilometres per second. The gas facing the AD is also photo-
ionized by the AD radiation field. As a product of recombination, narrow emission lines are formed and determine the commonly called narrow line region (NLR).

AGN activity can also be characterized by the collimated ejection of material at relativistic speeds, which is observed in about 10% of objects. Better studied at radio wavelengths, these structures are known as radio-jets. In Figure 1.1.1 I show an schematic representation of an active galaxy with a central SMBH of $10^{8} M_{\odot}$ showing the typical physical scales associated to each of its components.

There are three key parameters of AGN activity. First, the SMBH mass (M_{BH}). Second, the mass accretion rate (\dot{M}) that is often described by the ratio of the bolometric luminosity (L) to the Eddington luminosity $\left(L / L_{\text {Edd }}\right)$. Finally, the SMBH angular momentum (J) that is usually represented by the dimensionless spin parameter $a_{*}=J /\left(G M^{2} / c\right)$ and which settles the innermost limit of the accretion disc. According to its definition, a_{*} can take all values between -1 and 1 where both limiting values are measured with respect to the AD direction of rotation and are respectively associated to maximally counter-rotating and co-rotating SMBHs. These three properties, M_{BH}, \dot{M} and a_{*} jointly determine the AGN bolometric luminosity.

The role of the black hole spin is crucial in AGN activity. Particularly, a_{*} determines the innermost stable circular orbit (ISCO) which sets the internal boundary of the AD. Because of this boundary, a_{*} also regulates (1) the maximum temperature of the AD emission, (2) the shape of the bluest region of the AD spectral energy distribution (SED) and (3) the efficiency (η) of radiative energy extraction in terms of the total amount of in-falling mass (i.e. $\eta \equiv L /\left(\dot{M} c^{2}\right)$). The difference of the energy output between maximally counter-rotating and co-rotating SMBHs is dramatic with associated efficiencies of $\eta=0.038$ and $\eta=0.32$, respectively. In most studies a value of $\eta=0.1$ is adopted as a canonical AD efficiency.

Different observational features distinguish AGN from inactive galaxies. In particular, for galaxies to be classified as AGN, they should meet at least one of the following properties:

- Contain a compact central region that emits electromagnetic radiation far beyond the luminosity than would be expected from a stellar system of similar size.
- Show clear evidence of non-stellar continuum emission at their center.
- Show strong broad an/or narrow emission lines whose line ratios cannot be explained by stellar radiation fields.
- Show variability of their continuum and line emission.
- Show intense ($\gtrsim 10^{42} \mathrm{erg} \mathrm{s}^{-1}$) hard X-ray emission ($\gtrsim 10 \mathrm{KeV}$).
- Show strong and/or collimated radio emission.

1.2 AGN Diversity

Despite the common physical origin, clear differences are observed in the spectral properties of AGN that conveyed into different sub-classifications. Among all of them, Khachikian \& Weedman (1974) proposed two sub-classes to differentiate the properties of their optical and UV spectra: Type-1 (broad-line) and Type-2 (narrow-line) AGN. On the one hand, Type-1 AGN are characterized by their strong broad emission lines produced in the BLR and intense non-stellar continuum emission from the accretion disc. On top of the broad lines, type-1 AGN exhibit narrower emission lines from ionized material in the NLR. On the other hand, type-2 AGN are characterized by only displaying the narrow emission line component. However, Antonucci \& Miller (1985) observed broad emission lines on the spectrum of the polarized light of NGC1068 that was previously classified as Type-2 AGN. Such polarized light can be interpreted as coming from the nucleus and being scattered into the light of sight of the observer. This observation suggested an unification model where the AD and the BLR are surrounded by a dusty toroidal-like structure, the torus (Antonucci, 1993; Urry \& Padovani, 1995). Under this model, type-1 and type-2 AGN are physically equivalent but are being observed at different line-of-sight inclinations. Specifically, type-2 AGN are objects objects in which our line-of-sight intercepts the torus, which absorbs most of the light coming from the AD and the BLR (an schematic representation of the unification model can be observed in Figure 1.1.1). Even though this model has been successful at explaining the diversity of AGN population, it is still under debate whether the differences between type-1 and type-2 AGN are only caused by an inclination effect, or they can be also associated to, for instance, different evolutionary phases of galaxy evolution (e.g. Satyapal et al., 2014; Del Moro et al., 2016; Ricci et al., 2017).

1.3 Black Hole Masses

The formerly mentioned $M_{\mathrm{BH}}-\sigma_{\star}$ relation suggests that AGN do not only modify their local environment but also their host-galaxy (or vice-versa). As a matter of fact, there is accumulated evidence that AGN activity induces outflows that extend up to kiloparsec scales (e.g. Arav et al., 2013; Borguet et al., 2013). As a result, it is expected that AGN activity plays a key role in galactic-scale feedback and the regulation of star formation processes as the host galaxy evolves. This is supported by the observed coincidence of the peak at $z \sim 2$ of star-formation rate and the AGN density of the universe (Wall et al., 2005). Likewise, the $M_{\mathrm{BH}}-\sigma_{\star}$ relation also indicates that M_{BH} is probably the most relevant parameter connecting SMBH with galaxy evolution. As a consequence, precise and accurate M_{BH} measurements are key for a proper examination of the co-evolution of host galaxies and SMBHs.

In type-1 AGN, a common approach to estimate M_{BH} relies on the assumption that the BLR is in virial equilibrium. In this case, the linewidth ($\Delta W_{\text {obs }}$) of a given emission

Figure 1.1.1: Graphical representation of an AGN with a central SMBH of $10^{8} M_{\odot}$. Credits: C. Zier \& P. L. Biermann. A\&A 396, 91-108 (2002)
line can be used as a proxy for the Keplerian velocity (V_{BLR}) of the BLR line-emitting region around the SMBH. Under these assumptions M_{BH} can be expressed as:

$$
\begin{equation*}
M_{\mathrm{BH}}=G^{-1} R_{\mathrm{BLR}} V_{\mathrm{BLR}}^{2}=f G^{-1} R_{\mathrm{BLR}} \Delta W_{\mathrm{obs}}^{2} \tag{1.1.1}
\end{equation*}
$$

where G is the gravitational constant, $R_{\text {BLR }}$ is the distance from the BLR to the SMBH and f is the virial factor that accounts for the difference between $V_{\text {BLR }}$ and $\Delta W_{\text {obs }}$ which depends on the gas distribution and kinematics of the BLR. Since even in the closest galaxies the BLR cannot be resolved with current capabilities, $R_{\text {BLR }}$ cannot be measured from direct imaging. Fortunately, $R_{\text {BLR }}$ can be estimated using a direct technique named reverberation mapping (RM, e.g., Blandford \& McKee 1982; Peterson 1993). This method traces the light-time delay (τ) between accretion disc continuum flux variations and the subsequent response of the BLR broad emission-line flux. Given that the AD is right next to the $\mathrm{SMBH}, R_{\mathrm{BLR}}$ is simply approximated to $c \tau$, where c is speed of light. As a first order approximation, f is assumed to be constant in all systems and is determined by requiring RM-based masses to agree, on average, with dynamically masses determined from the $M_{\mathrm{BH}^{-}} \sigma_{\star}$ relation in local inactive galaxies (Onken et al., 2004, Graham, 2015, Woo et al., 2015).

Even though RM is a successful technique, it is not useful for M_{BH} determination in large samples. In fact, RM technique has only measured M_{BH} in 63 low-z $(z<0.1)$ type1 AGN (Kaspi et al., 2000, 2005; Bentz et al., 2009, 2013) and only a handful of high-
luminosity, high-redshift sources (e.g. Kaspi et al., 2007, ; Lira et al. 2017, submitted). The main reason for this is the necessity of long term systematic monitoring of objects (of the order of months and even years) to adequately determine $R_{\text {BLR }}$. Furthermore, the typical time scale of line response to continuum variation increases with AGN luminosity and, because of cosmological time dilution, it also increases with redshift. Fortunately, RM campaigns have revealed an underlying direct relationship between the radius of the BLR, R_{BLR}, and the median AGN accretion disc continuum, thus allowing the estimation of $R_{\text {BLR }}$ from a simple continuum flux measurement. This correlation is best calibrated for the $\mathrm{H} \beta$ emission line and the median AGN accretion disc continuum emission at $5100 \AA$ (Kaspi et al., 2000, 2005; Bentz et al., 2009, 2013). The use of this relationship and the cross-calibrations to other broad emission lines (e.g., $\mathrm{H} \alpha, \operatorname{Mg}{ }_{\text {II }} \lambda 2798$ and CIV $\lambda 1549$) has provided the community with a much less expensive procedure that allow M_{BH} estimations in large data samples of type-I AGN using a single optical spectrum for each object and covering a large redshift range $(0 \lesssim z \lesssim 7)$. This indirect technique for M_{BH} determination is called the single epoch (SE) virial method and is widely used to estimate M_{BH} in type-1 AGN (e.g. McLure \& Jarvis, 2002; Greene \& Ho, 2005; Vestergaard \& Peterson, 2006; Vestergaard \& Osmer, 2009, Wang et al., 2009; Trakhtenbrot et al., 2011; Xiao et al., 2011; Shen \& Liu, 2012, Trakhtenbrot \& Netzer, 2012; Park et al., 2013; Mejía-Restrepo et al., 2016).

Regardless of the advantageous possibility to determine M_{BH} in large samples, SE estimations are subject several difficulties. Particularly, one crucial difficulty is the unreliable measurements provided by SE calibrations of the C IV $\lambda 1549$ high ionization line that is used for estimations at $z \gtrsim 2.0$ in optical surveys. The latter is most probably caused by non-virial motion of the C IV $\lambda 1549$ emitting material which is revealed by its largely blueshifted emission with respect to the host galaxy reference frame (up to $5000 \mathrm{~km} \mathrm{~s}^{-1}$, see e.g. Richards et al., 2011). As a consequence, high redshift M_{BH} estimations are highly uncertain, imposing serious complications for the appropriate study of the assembly of the $M_{\mathrm{BH}}-\sigma_{\star}$ relation.

On top of the problematics with SE C IV $\lambda 1549$ based estimations, assuming a constant f is presumably one of the major sources of uncertainties in SE estimations because the gas distribution and dynamics of the BLR might change from object to object. There have been some attempts to unveil possible dependencies of f on the BLR and SMBH observed properties. All these works compare SE mass estimations with masses obtained using the median trend of the $M_{\mathrm{BH}^{-}} \sigma_{\star}$ scaling relation or associated correlations (e.g. Collin et al., 2006; Decarli et al., 2008b; Shen \& Ho, 2014). Some of these works have suggested an anti-correlation between f and the observed full width at half maximum $\left(\mathrm{FWHM}_{\mathrm{obs}}\right)$ of the broad emission lines. This result has been understood as an effect of line of sight inclination due to a planar distribution of the BLR gas. All these works, however, apply the same prescription to all systems, assuming that all objects are well represented by the median trend of the scaling relation used to alternatively derive M_{BH}, and do not take into account the large intrinsic scatter in such relations.

Recently, Capellupo et al. (2015, 2016) improved an alternative method to estimate M_{BH} based on Bayesian SED fitting of the accretion disc. The accretion disc was modelled using the standard Shakura \& Sunyaev (1973) geometrically thin optically thick model with general relativistic and disc atmosphere corrections (Slone \& Netzer, 2012). Each model is defined by its black hole mass, accretion ratio, spin and the intrinsic reddening in the host galaxy. Using this model we successfully reproduced the SED emission in 37 out of 39 objects at $z=1.55$ observed with the X-Shooter spectrograph of the VLT telescope. The advantage of this sample is that, at such redshift, the wide spectral coverage provide by X-Shooter maps a large region of the accretion disk SED that allows a proper modelling of the AD. The relevance of this alternative M_{BH} estimation method is that it only uses information coming from the AD. Hence, these masses are independent of the BLR gas distribution and dynamics. As a consequence, comparing the AD-based with the SE-based black hole masses opens the possibilities to infer the underlying BLR distribution and to uncover possible biases in SE-based estimations.

1.4 This Thesis

The topic of study of this thesis are distant type-1 AGN which are also called quasars. Particularly, I present a thorough study of the central region of quasars aiming to improve current mass estimation methods of distant super massive black holes and to examine the properties of their BLRs. For this purpose, I divide this document in three central topics: (1) determination of new calibrations for SE black hole mass estimation, (2) investigation of the possibility to improve single epoch C IV-based mass estimations and (3) exploration of the effect of the BLR gas distribution on the mass determination of distant supermassive black holes. Below, I provide a short description of the chapters of this thesis.

Chapter 2 is mainly devoted to improve current calibrations of the $\mathrm{SE} M_{\mathrm{BH}}$ estimation method that uses emission lines from the broad line region such as the $\mathrm{H} \alpha, \mathrm{H} \beta$ and Mg iI $\lambda 2798$ low ionization lines, and the C iv $\lambda 1549$ high ionization line. To this end we used the sample of 39 quasars at $z \sim 1.55$ observed by X-Shooter that is described in Capellupo et al. (2015, 2016). The wide spectral coverage provided by X-Shooter allows simultaneous mapping of the aforementioned emission lines and prevents possible variability effects on our calibrations. In addition to new M_{BH} calibrations, I evaluate the effect of continuum placement on the M_{BH} determination and propose a new method oriented to improved C iv $\lambda 1549$-based mass estimations. The results of this study are presented in Mejía-Restrepo et al. (2016)

In Chapter 3, I use the Sloan Digital Sky Survey quasar database (SDSSQ) to test the performance of some methods available in the literature, including the one proposed in Chapter 2, that are intended to improve Civ $\lambda 1549$-based mass estimates. All the proposed methods are based on correlations found using small samples of less
than 100 objects. In comparison, from the SDSSQ data we extracted a sub-sample of nearly 30000 objects. This allows us to perform robust statistical analyses to check the significance and independence from other correlations and conclude on the actual applicability of these methods.

Chapter 4 studies the effect of the unknown BLR gas distribution on the determination of M_{BH} and concludes on the probable BLR distribution causing such effect. This analysis is possible thanks to the comparison between SE-based and AD-based M_{BH} estimations that were obtained using the X-Shooter samples previously described. The results of this work are presented in Mejia-Restrepo et al. (2017, submitted to Nature-Astronomy).

Finally, in chapter 5 I present the summary and most relevant conclusions of this thesis.

Chapter 2

Single epoch super massive black hole masses estimations: recalibration and analysis

The material presented in this chapter is based on the work published in Mejía-Restrepo et al. (2016)

2.1 Introduction

The mass (M_{BH}) of Super Massive Black Holes (SMBHs), along with the SMBH spin $\left(a_{*}\right)$ and accretion rate (\dot{M}), are the fundamental parameters that drive the physical, geometric and kinematic properties of the SMBH environment (e.g. Kaspi et al., 2005; Slone \& Netzer, 2012; Capellupo et al., 2015). $M_{\text {BH }}$ is also known to be correlated with several properties of the host galaxy, suggesting a so-called "co-evolutionary" scenario for the SMBH and stellar component of the host (e.g. Ferrarese \& Merritt, 2000; Häring \& Rix, 2004; Gültekin et al., 2009; Xiao et al., 2011). Therefore, accurate and precise determinations of M_{BH}, across cosmic epochs, are crucial for our understanding of SMBH physics and evolution.

For un-obscured, type-I actively growing SMBHs (active galactic nuclei - AGN), M_{BH} can be estimated from single epoch spectra of several broad emission lines. The method, which was used for many large samples of AGN across cosmic epochs (e.g., Croom et al., 2004, McLure \& Dunlop, 2004, Onken et al., 2004, Fine et al., 2006, Shen et al., 2008; Rafiee \& Hall, 2011; Trakhtenbrot \& Netzer, 2012), is based on a combination of two basic ingredients (Vestergaard, 2002; Peterson et al., 2004). First, reverberation mapping (RM) experiments provide an empirical relation between the BLR size and the AGN continuum luminosity $\left(R_{\mathrm{BLR}}=K^{\prime}\left(\lambda L_{\lambda}\right)^{\alpha}\right.$, with $\alpha \sim 0.5-0.7$; see Kaspi et al. 2000, 2005, Bentz et al. 2009, 2013, and references therein). Second,
the gas in the broad line region (BLR) is assumed to be virialized (as suggested by several empirical studies, e.g., Peterson \& Wandel, 1999; Onken et al., 2004) . After taking the line width of the BLR lines as a natural estimation of the virial velocity of the gas in the BLR (V_{BLR}), one may obtain the mass from the virial relation:

$$
\begin{equation*}
M_{\mathrm{BH}}=f G^{-1} R_{\mathrm{BLR}} V_{\mathrm{BLR}}^{2}=K\left(\lambda L_{\lambda}\right)^{\alpha} \mathrm{FWHM}^{2} \tag{2.2.1}
\end{equation*}
$$

where $K=K^{\prime} G^{-1} f$ and f is a general geometrical function which correct for the unknown structure and inclination to the line of sight. f can be determined experimentally by requiring $\mathrm{RM}-M_{\mathrm{BH}}$ estimations to be consistent, on average, with those predicted from the M_{BH}-bulge stellar velocity dispersion ($M_{\mathrm{BH}}-\sigma_{*}$) relation of local galaxies where M_{BH} have been dynamically estimated (e.g. Onken et al., 2004; Woo et al., 2010; Graham et al., 2011; Graham, 2015, Woo et al., 2015). In this chaper, we assume $f=1$, which is appropriate for the FWHM $M_{\mathrm{BH}}(\mathrm{H} \beta)$ estimates (Woo et al., 2015). However, in addition to the still large uncertainty in this value (50\%), f can also be different for different lines and could even depend on luminosity and/or line properties (e.g. equivalent widths, line offsets FWHM Shen, 2013). We come back to this issue in chapter 4 .

Among the RM-based $R_{\text {BLR }}-L$ relations, the most reliable one is the $R_{\text {BLR }}(\mathrm{H} \beta)-$ L_{5100} relation, which is the only one based on a large number of sources, with $L_{5100} \lesssim$ $10^{46} \mathrm{ergs}^{-1}$. Thus, the M_{BH} determination based on other lines and luminosities at other wavelengths needs to be re-calibrated to match M_{BH} measurements based on $\mathrm{H} \beta$ and L_{5100}. Particularly, Civ $\lambda 1549$, hereafter Civ, (e.g. Vestergaard \& Peterson, 2006, Park et al., 2013), Mg ii $\lambda 2798$, hereafter Mg iI, (e.g. McLure \& Jarvis, 2002; Vestergaard \& Osmer, 2009; Wang et al., 2009; Trakhtenbrot et al., 2011; Shen \& Liu, 2012, Trakhtenbrot \& Netzer, 2012) and H α (e.g. Greene \& Ho, 2005; Xiao et al., 2011; Shen \& Liu, 2012) have been re-calibrated accordingly, and are widely used lines to determine M_{BH} at high redshifts.

Earlier M_{BH} recalibrations based on $\mathrm{Mg}_{\text {II }}$ and $\mathrm{H} \alpha$ have showed good agreement and low scatter with $\mathrm{H} \beta$-based M_{BH} calibration (Greene \& Ho, 2005; Xiao et al., 2011; Trakhtenbrot \& Netzer, 2012). However, M_{BH} recalibrations using the C IV line are more problematic, compared with those based on lower-ionization lines. First, the correlation between the widths of CIV and the other lines was shown to be weak, or indeed insignificant, and to present a large scatter, in many AGN samples (e.g., Baskin \& Laor, 2005; Netzer et al., 2007; Shang et al., 2007; Shen et al., 2008; Fine et al., 2010; Ho et al., 2012; Shen \& Liu, 2012; Tilton \& Shull, 2013). Moreover, about 40% of the objects have FWHM (CIV) \lesssim FWHM (H β), in contrast to the expectations from RM experiments and the virial assumption, that suggest FWHM (C IV) $\simeq 2 \times$ FWHM (H β) (see detailed discussion in TN12, and additional samples in Ho et al. (2012); Shen \& Liu (2012); Tilton \& Shull (2013)). Second, significant blueshifts of the entire C IV profile (i.e., not necessarily a specific sub-component of the line), reaching several $1000 \mathrm{~s} \mathrm{~km} \mathrm{~s}^{-1}$, are ubiquitously measured in the vast majority of AGN (Richards et al., 2002; Baskin \& Laor, 2005; Shang et al., 2007; Richards et al., 2011; Trakhtenbrot \& Netzer, 2012). Some of these findings were explained either by a disc outflow wind (e.g.

Gaskell, 1982; Sulentic et al., 2007; Richards et al., 2011) or, alternatively, by scattering off an in-falling medium in the innermost C iv-emitting regions, which would produce the C iv blueshifts (e.g. Kallman \& Krolik, 1986; Goosmann \& Gaskell, 2007; Gaskell, 2009; Gaskell \& Goosmann, 2013). Finally, the detailed re-analysis of the RM data for C IV performed by Denney (2012) found that the (narrowest) core of the broad C iv line does not reverberate in response to continuum variability. This implies that the outermost Civ emitting regions may not be virialized, either. All this leads to the conclusion that the simplified models and prescriptions discussed above may be incorrect, or at least incomplete, for some lines.

The M_{BH} determination is also subjected to several uncertainties, related to the limitations of spectral analysis, and/or the need to make several assumptions regarding the universality of some AGN properties. The former includes the blending of neighbouring emission and/or absorption features; incorrect determination of the continuum emission (Shang et al., 2007, hereafter S07); poor statistics due to non-homogeneous or small nature of the sample under study (e.g. Ho et al., 2012); poor data quality (e.g., Denney et al., 2013; Tilton \& Shull, 2013); and measurements obtained from non-simultaneous data (see e.g. Shen \& Liu, 2012; Marziani et al., 2013a). The latter, somewhat more fundamental uncertainties, include non virial gas motion; the orientation of the (generally non-spherical) BLR with respect to the line-of-sight (Runnoe et al., 2014, Shen \& Ho, 2014, Brotherton et al., 2015b); and the extrapolation of the $R_{\text {BLR }}-L$ relations to luminosities which are well beyond the range probed by RM experiments.

There have been many efforts to improve single-epoch M_{BH} determinations, addressing some of the aforementioned limitations (e.g. Greene \& Ho, 2005, Vestergaard \& Peterson, 2006; Fine et al., 2008; Wang et al., 2009; Fine et al., 2010; Xiao et al., 2011; Shen \& Liu, 2012; Trakhtenbrot \& Netzer, 2012; Marziani et al., 2013a; Park et al., 2013; Runnoe et al., 2013; Brotherton et al., 2015a; Zuo et al., 2015). Trakhtenbrot \& Netzer (2012, hereafter TN12) combined Sloan digital sky survey archival data (SDSS; Abazajian et al., 2009) with smaller surveys and samples to improve earlier Mg II-based $M_{\text {BH }}$ prescriptions (e.g., McLure \& Jarvis, 2002; McLure \& Dunlop, 2004, Wang et al., 2009), by assuming virialization of the Mg II emitting clouds. As mentioned above, the TN12 study emphasized the fact that a large fraction of AGN show FWHM (C iv) < FWHM (H β). Marziani et al. (2013a) (hereafter M13) also used SDSS data to perform an Eigenvector 1 analysis (Boroson \& Green, 1992), and to separate the population into "population A" (FWHM (H $\beta)<4000 \mathrm{~km} \mathrm{~s}^{-1}$) and "population B" (FWHM $\left.(\mathrm{H} \beta)>4000 \mathrm{~km} \mathrm{~s}^{-1}\right)$ sources. They suggested that $\mathrm{H} \beta$ - and Mg iI-based M_{BH} estimates in population B sources could be systematically overestimated due to a red-shifted, extremely broad emission component. The study ofsen \& Liu (2012) combined SDSS optical observations of high-z objects $(1.5 \lesssim z \lesssim 2.2)$ with follow up FIRE-IR observations, which allowed them to compare and recalibrate the Civ, Mg II, $\mathrm{H} \beta$ and $\mathrm{H} \alpha M_{\mathrm{BH}}$ relations as well as contrast them with previous calibrations. While they found that FWHM(Mg II) correlates well with the Balmer lines, the FWHM(Civ) does not show such correlations and is not a reliable viral mass es-
timator. The Shen \& Liu (2012) results are however subjected to low quality SDSS data, non homogeneous sample selection and non simultaneous observations. Ho et al. (2012) obtained simultaneous UV, optical and infrared X-Shooter spectra for 7 objects at $1.3 \lesssim z \lesssim 1.6$, resulting in similar conclusions regarding the usability of Mg II-based M_{BH} estimates, and the limitations associated with Civ.

The studies of (Denney et al., 2013, hereafter D13) and Tilton \& Shull (2013) claimed that in spectra of limited S/N and/or spectral resolution, FWHM(C IV) measurements are underestimating the "real" line widths, in objects with strong intrinsic absorption features that cannot be deblended from the emission lines. This would partially explains the TN12 finding that about 40% of the objects shows C IV profiles narrower that $\mathrm{H} \beta$ profiles. However, objects with no evidence of absorption features, and yet "intrinsic" line widths with $\operatorname{FWHM}(\mathrm{Civ})<\mathrm{FWHM}(\mathrm{H} \beta)$ are known to exist (e.g., Corbin \& Boroson, 1996). After correcting for intrinsic C IV absorption, D13 claimed that although FWHM (C IV) still does not correlate well with $\mathrm{FWHM}(\mathrm{H} \beta), \sigma(\mathrm{C}$ IV $)$ shows a strong correlation with $\sigma(\mathrm{H} \beta)$ and can safely be used for C IV based M_{BH} determinations. Based on these results, (Park et al. 2013) obtained high quality data in 39 out of 45 objects of the RM experiments campaign and improved the Vestergaard \& Peterson (2006) Civ-based $M_{\text {BH }}$ estimator based on the $\sigma(\mathrm{Civ})$. Both D13 and (Park et al., 2013) used non homogeneous and multi-epoch samples that could affect their results. In addition, $\sigma_{\text {line }}$ measurements are highly dependent on the continuum determination method (see discussion in (Peterson et al., 2004)).

Recently, Runnoe et al. (2013) (hereafter R13) and Brotherton et al. (2015a) used a sample of 85 low-redshift $(0.03<z<1.4)$ and low-luminosity $\left(43.37<\log L_{5100}<\right.$ 46.45) AGN with quasi-simultaneous UV and optical spectra to propose a method to rehabilitate C IV for M_{BH} determination, based on a correlation that they found between the Si iv+O iv]-Civ line peak intensity ratio and the $\mathrm{H} \beta-\mathrm{C}$ Iv FWHM ratio. This allowed these authors to predict $\operatorname{FWHM}(\mathrm{H} \beta)$ from measurements of the Si IV + O Iv] emission. These studies suggested that this correlation may be driven by the so-called Eigenvector 1.

In this work, we use X-shooter high-quality observations that combines simultaneous UV, optical and infrared spectroscopy of a unique sample of AGN at z~1.55, selected by both their M_{BH} and Eddington ratio, $L / L_{\text {Edd }}$ as described in Capellupo et al. (2015) (hereafter paper I). Selecting objects at this redshift allows simultaneous observations of $\mathrm{H} \alpha, \mathrm{H} \beta, \mathrm{Mg}_{\text {II }}$ and C IV which is optimal for comparing the various mass determination methods. In Paper I, we showed that the accretion-disc continuum of most of the objects (25 out of 30) can be successfully modelled by a geometrically thin, optically thick Shakura-Sunyaev accretion discs (Shakura \& Sunyaev, 1973, hereafter SS73) . The models were taken from Slone \& Netzer (2012) who include several improvements upon the SS73 model, such as GR effects and a detailed treatment of the Comptonization in the disc atmosphere. Paper I shows that most earlier attempts to fit accretion disc (AD) spectra to AGNs failed because of the limited wavelength coverage and/or non-simultaneous observations. The continuation of this work, that includes 9 more

Figure 2.2.1: $\quad M_{\mathrm{BH}}$ vs $L / L_{\text {Edd }}$ using the values we obtained in this chapter. Green stars and magenta diamonds represent the broad absorption line quasars (BALQSO) and the broad-Mg II respectively (as defined in §2.4.3.4) . The magenta dashed vertical line represents $L / L_{\text {Edd }}=0.2$.
sources and a more comprehensive analysis, is described in Capellupo et al. (2016, in prep.), hereafter Paper III) which is published in this volume.

The purpose of the present chapter is to evaluate BH mass measurements based on different emission lines, as derived from our unique sample of X-shooter spectra. We also aim to provide to the community M_{BH} correction factors that do not depend on the exact shape of the underlying continuum. The chapter is structured as follows. In section 2.2 we describe the sample. In section 2.3 we first introduce the local and global thin disc continuum approaches and describe the fitting procedures we follow to model the continuum, emission lines, iron pseudo continuum and Balmer continuum. In section 2.4 we present and discuss the main results and in section 3.4 we list the main conclusions of our work. Throughout this chapter we assume a flat Λ CDM cosmology with the following values for the cosmological parameters: $\Omega_{\Lambda}=0.7, \Omega_{\mathrm{M}}=0.3$ and $H_{0}=70 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$.

Figure 2.2.2: Signal to noise ratios $(\mathrm{S} / \mathrm{N})$ measured at the peaks of each of the main broad emission lines (left), and over the corresponding nearby continuum bands (right), plotted against optical brightness, i_{AB}. The black dashed lines represent, from bottom top, S/N equal to 3, 5, 10 and 20.

2.2 Sample, Data and Analysis

The analysis presented in this chapter is based on a sample of luminous, type-I AGN in a narrow redshift range around $z \simeq 1.55$, for which we have obtained high signal to noise (S / N) single epoch spectroscopic observations using the X-Shooter instrument on the Very Large Telescope. The 39 sources span a range in brightness of $i_{\mathrm{AB}} \sim 16.8-20.9$. The sample selection, data acquisition and reduction for the 30 brightest sources were described in detail in paper I, and information about 9 other sources, obtained in ESO program 092.B-0613, is provided in Paper III. Here we only briefly highlight a few essential aspects.

The sample has been selected from the seventh data release of the SDSS Abazajian et al., 2009) to homogeneously map the parameter space of M_{BH} and $L / L_{\text {Edd }}$. For the purposes of target selection, these quantities were initially obtained by spectral fitting of the $\mathrm{Mg}_{\text {II }}$ broad emission line in the SDSS spectra as part of the large compilation described in TN12. In Figure. 2.2 .1 we show $M_{\text {BH }}$ vs $L / L_{\text {Edd }}$ using updated values calculated in this chapter based on the $\mathrm{H} \alpha$ broad emission line and following the procedure that we describe in section 2.4.4.

At the chosen redshift range of the sample, X-Shooter covers the rest-frame wavelength from about $1200 \AA$ to $9200 \AA$. This broad spectral coverage has allowed us, after correction for Galactic extinction, to successfully model and constrain the observed Spectral Energy distributions (SEDs). As shown in Papers I and III, we obtain sat-
isfactory thin AD model fits to 37 sources, 6 of which require an intrinsic reddening correction for a satisfactory fit. The wide wavelength coverage, together with the homogeneous selection of the sample in the $M_{\mathrm{BH}}-L / L_{\mathrm{Edd}}$ plane, enables us to test the performance of the single epoch black hole mass estimators for the $\mathrm{H} \alpha, \mathrm{H} \beta, \mathrm{Mg}$ II and C Iv lines and estimate the systemic bias induced when the physical SED is unknown.

In Figure 2.2 .2 we show the the signal to noise ratios (S / N) for our X-Shooter spectra, measured at the peaks of each of the main emission lines under study, as well as at the corresponding continuum bands, as a function of i_{AB}. We note that, even in the spectral region which overlaps with the available SDSS spectra, the X-Shooter data provide a significant improvement in terms of S / N and spectral resolution (see an example in Fig. A.A.1, described in appendix \&A.1. All the sources have fairly high $S / N(\gtrsim 20)$ at the peaks of the Mg II and C IV lines and the adjacent continuum bands. However, this is not the case for $\mathrm{H} \alpha$ and $\mathrm{H} \beta$. The continuum bands adjacent to $\mathrm{H} \alpha$ are much noisier. Most of the objects have $S / N<20$, and for those with $i_{\mathrm{AB}}>18.5$, the ratio is below 10. Nevertheless, we are able to obtain reliable $\mathrm{H} \alpha$ line measurement because most objects have fairly high S / N at their $\mathrm{H} \alpha$ line peak (34 out of 39 object have $S / N \gtrsim 20$ and all of them have $S / N \gtrsim 8$). Moreover, the relevant continuum bands around $\mathrm{H} \alpha$ have low levels of contamination from iron or other, unresolved spectral features. Consequently, even a moderate continuum S / N (i.e., $\gtrsim 3$) is enough to have reliable $\mathrm{H} \alpha$ fits. There are however 4 objects where $S / N<3$ and their line measurements, especially their $\operatorname{FWHM}(\mathrm{H} \alpha)$ are somewhat uncertain.

Unfortunately, the $\mathrm{H} \beta$ line measurements are more problematic. In addition to the fact that $\mathrm{H} \beta$ is the weakest of the lines of interest, we can also see from Fig. 2.2 .2 that the relevant continuum band in 21 out of 39 objects have $S / N \lesssim 10$, and 14 of them are actually below $S / N \sim 5$. Near infrared (NIR) telluric absorption is another issue that could also crucially affect $\mathrm{H} \beta$ line measurements. The spectral regions with known low atmospheric transmission in the NIR, between \AA and between $13000 \AA$ to $15000 \AA$ typically translate to rest-frame bands at $4200-4500 \AA$ and $5300-5800 \AA$ at the redshift of the sample. These bands are known to show strong iron emission which are suppressed by such telluric absorption (see the example spectrum in Fig. 2.2.3 around 4400 and $5500 \AA$). The combined effect of the telluric absorption and the limited S / N achieved for the fainter sources severely affects the correct modeling of their iron emission around $\mathrm{H} \beta$. This, in turn, significantly increases the measurement uncertainties related to $\mathrm{H} \beta$, ultimately making $\mathrm{H} \beta$ measurements of faint objects less reliable.

Fortunately, the $\mathrm{H} \alpha$ line shows very similar profiles to $\mathrm{H} \beta$ (e.g. Greene \& Ho, 2005) which is in accordance with the expected radial ionization stratification of the BLR (Kaspi et al., 2000). Based on these results, we can probe several aspects related to the $\mathrm{H} \beta$ line using the more reliable $\mathrm{H} \alpha$ measurements.

Figure 2.2.3: The rest-frame X-Shooter spectrum (top) and main emission line complexes (bottom), over the three X-Shooter bands (UV:left, Optical:middle, Infrared:right), for the source J0143-0056 and the corresponding line fitting using the global thin disc continuum approach. The observed spectrum is shown in black. The best-fitting continuum is shown in gray. The blue lines represent the additional best-fit iron emission. The red lines represent the additional best-fit models for the emission lines. For the sake of comparison we show the SDSS of the source in cyan.

2.3 Spectral Decomposition

In this section we describe the analysis procedures we used to model the X-Shooter spectra and to obtain continuum and line emission measurements. We discuss separately the analysis of emission corresponding to the continuum, the blended iron features, and the emission line components. All the spectral modelling is done by employing the Levenberg-Marquardt algorithm for χ^{2} minimization, using the python based spectroscopic analysis package pyspeckit (Ginsburg \& Mirocha, 2011). The fitting is preformed in the rest frame, after shifting the spectra using the improved SDSS redshifts provided by Hewett \& Wild (2010). We chose to use these redshifts, instead of using the $\left.\mathrm{O}_{\mathrm{III}}\right] \lambda 5007$ line observed within the X-Shooter data, because of the limited quality of the relevant data and modelling of the $\mathrm{H} \beta-\mathrm{O}$ III] $\lambda 5007$ spectral region (see $\S 2.2$) and the weak or absent $\left.\mathrm{O}_{\text {III }}\right] \lambda 5007$ emission in many of our sources.

2.3.1 Continuum Emission

We adopt here two different approaches to account for the continuum emission of the AGN, which we refer to as the local and global (thin disc) continuum approaches. The local continuum attempts to account for the usual approximation of the continuum emission by a single power law when the observed spectrum is limited to a narrow wavelength range. The global thin disc continuum, on the other hand, corresponds to the more physically-motivated AD model, that was obtained through a Bayesian analysis taking advantage of our wide spectral wavelength coverage (see paper I). A comparison of the measurements obtained with both approaches will allow us to quantify the possible bias imposed by ignoring the real SED shape, when wide-enough wavelength coverage is not available.

2.3.1.1 Local continuum approach and Biases

The local continuum approach consists of separately fitting the continuum emission surrounding each of the lines of interest. For every source in the sample, each of these continua is approximated by a single power law, which connects neighbouring spectral windows known to have little line contamination. Our specific choice of such line-free continuum bands rely on several similar works (S07,TN12), and are listed in Table 2.1 .

The most important bias in the local approach is that it commonly uses non real continuum windows that are affected by either (1) weak line emission flux such as the continuum window at $1700 \AA$ that is used for C IV line fitting, (2) iron continuum emission that affects continuum windows around $2600 \AA$ and $3000 \AA$, as well as those around $4650 \AA$ and $5100 \AA$ that are respectively used for Mg II and $\mathrm{H} \beta$ line fitting and finally, (3) the Balmer continuum (BC) emission, at $\lambda<3647 \AA$, which can significantly

Table 2.1: Spectral pseudo-continuum windows used for our line fitting procedure under the local continuum approach. ${ }^{1}$ For each object, we manually adjusted the continuum bands, using the listed wavelength ranges as a reference.

Line Complex	Continuum windows ${ }^{1}-$	
Si IV+O IV]	$1340-1360 \AA$	$1420-1460 \AA$
$\mathrm{C}_{\text {IV }}$	$1420-1460 \AA$	$1680-1720 \AA$
$\left.\mathrm{C}_{\text {III }}\right]_{\mathrm{Mg}} \mathrm{II}$	$1680-1720 \AA$	$1960-2020 \AA$
$\mathrm{H} \beta$	$2650-2670 \AA$	$3030-3070 \AA$
$\mathrm{H} \alpha$	$4670-4730 \AA$	$5080-5120 \AA$

affect Mg II measurements, and to a lesser extent even Civ measurements. All these biases are in the direction of an overestimation of the continuum emission when the local approach is used which will translate into FWHM and line flux underestimation.

An additional bias comes from the shape of the SED, particularly at the turn over of most spectra at around $1000-1500 \AA$ (exact wavelengths depend on BM mass, spin and accretion rate, see Papers I and III). The simple power-law approximation to the SED does not remain valid over this range and may lead to measurement biases of the line profile properties of C IV and Si IV+O IV] $\lambda 1400$ (hereafter Si iv+O IV]). In this chapter we use our AD SED fittings to quantify these biases.

2.3.1.2 Thin disc continuum approach

The global AD approach is based on the best fits from the thin-accretion-disc continuum models obtained for each of the sources in Papers I and III (see also Appendix C.1). For the analysis in this chapter we do not consider the two objects with no satisfactory fits to the thin disc continuum model.

As explained in paper I and III, the SEDs of the AD models used in this work are determined by M_{BH}, the accretion rate (\dot{M}), the spin $\left(a_{*}\right)$ and the inclination of the disc with respect to the line-of-sight (θ). We adopted a Bayesian procedure to fit the thin AD model spectra to the observed X-shooter SEDs. M_{BH} and \dot{M} were taken as priors with Gaussian distributions centred on the observed values, obtained from $\mathrm{H} \alpha$ and L_{6200} measurements (following the procedures described in this chapter), and with standard deviations of 0.3 and 0.2 dex, respectively (see Appendixes C. 2 and C. 3 for further details).

Within the global continuum approach we also consider the BC emission that peaks near the Balmer edge ($3647 \AA$) and gradually decreases towards shorter wavelengths. The Balmer continuum model we used is based on calculations of the photo-ionization code ION (Netzer, 2006) with an H-atom containing 40 levels, solar abundances, hydrogen density of $10^{10} \mathrm{~cm}^{-3}$, column density of $10^{23} \mathrm{~cm}^{-2}$ and ionization parameter of $10^{-1.5}$. The exact shape is insensitive to the exact value of these parameters and the

Figure 2.2.4: An example spectrum and spectral decomposition of one of the sources in our sample, J0143-0056 using the local approach. The top panel presents the restframe X-Shooter spectrum and the overall decomposition. The solid black solid line corresponds to the "thin disc" continuum, while the dashed black line illustrates the addition of the Balmer continuum. We highlight the spectral regions surrounding the most prominent broad emission lines (from left to right: C iv in red, Mg II in green, $\mathrm{H} \beta$ in blue, and $\mathrm{H} \alpha$ in magenta). The bottom panels show in detail the highlighted regions of the top panel as well as the individual local continuum determinations. Continuum fitting is in gray. Continuum plus iron emission fitting is in blue. Continuum plus, iron plus line fitting in red. Observed spectrum is in black.
normalization is done by direct fits to the observations.
An additional contribution to the continuum emission is due to starlight, mostly at wavelengths longer than about $6000 \AA$. For our AGN sample such a contribution is marginal in 32 out of 39 objects and does not severely affect the continuum level and shape of the AGN SED as discussed in paper I and III ($<3 \%$ at $6200 \AA$). For the 7 fainter objects we used the method described in paper III which assumes a template from an 11 Gyr old stellar population to model the host galaxy emission. The scale factor of the template is determined from the ratio of the measured EW ($\mathrm{H} \alpha)$ and the median value of the $\mathrm{EW}(\mathrm{H} \alpha)$ distribution of the 29 brightest objects, as discussed in paper III. The host galaxy contribution is subtracted before the thin disc continuum fitting for those objects which require this correction. We find that in this sub-sample the host galaxy contribution is between 6% and 50% at $6200 \AA$ and smaller than 3% at $3000 \AA$. We also tested several stellar populations in the age range from 1 to 11 Gyr , but we find no significant changes in the corrected spectrum (see paper III for details).

Finally, combining the X-Shooter spectra obtained by three different arms (UV, Optical and NIR) may introduce additional uncertainties. As explained in Paper I, in most cases, the overlap and connection between the VIS and UVB arms are satisfactory, with no need for further adjustments but this is not the case for the VIS-NIR joint, as can be seen for J0043 in Fig. 2.2.3. For several objects, the slope of the VIS arm was adjusted based on comparison to SDSS (see Paper I for more details). We therefore allow our fitting to rescale the global continuum up to 10% in each of the regions covered by each $\operatorname{arm}(1200-2200 \AA, 2200-4000 \AA, 4000-9000 \AA)$ to take into account the arm calibration uncertainties.

2.3.2 Blended iron lines

For an adequate modeling of $\mathrm{H} \beta$ and Mg II line profiles it is crucial to first subtract the iron line emission, originating from a large number of blended features of Fe II and Fe III. Generally, this is done by choosing the best-fit broadened, shifted and scaled empirical iron line template. We constrain line center shifts to be smaller than $1000 \mathrm{~km} \mathrm{~s}^{-1}$ and broadening is constrained to the range $1000-20000 \mathrm{~km} \mathrm{~s}^{-1}$. For the optical region around $\mathrm{H} \beta$ (4000-7000 \AA) we used the iron template from Boroson \& Green (1992). For the UV region around $\mathrm{Mg}_{\text {II }}(1700-3647 \AA)$ we initially used the Tsuzuki et al. (2006) template (hereafter T06). However, the fits obtained using this template was not satisfactory, mainly due to an over-estimation of the continuum emission. We therefore built a new iron template (see Apppendix A. 2 and figure A.A.2) based on the spectrum of I Zw 1 reported by T06, which is a composite of their UV (HST) observation and the optical (KPNO) observation reported by Laor et al. (1997).

One of the main differences between the local and global approaches is that under the local approach different scaling factors for the UV iron template at each side of the Mg ir line are required in order to guarantee an acceptable match to the observed spectrum. The scale factor in the red side of $\mathrm{Mg}_{\mathrm{II}}$ is found to be always larger than the one for the blue side, but by no more than 10%. This type of correction is not needed in the global approach, when the complete continuum model ($\mathrm{AD}+\mathrm{BC}$) is considered. Given that under the local approach the BC cannot be accounted for directly and that the BC is monotonically increasing from 2200 to $3647 \AA$, we suspect that the larger scale factor in the red side of Mg II might be due to the BC and not to intrinsic changes in iron line emission.

2.3.3 Emission Line Measurements

For the emission line modeling we have followed a procedure similar to the one described in TN12 (see their appendix C) and Shang et al. (2007) In short, after removing the continuum emission (following either the local or global approaches) and the iron template, we model the prominent broad emission lines with two broad Gaussian
components. We allow for a range of line widths and shifts for each component, where the FWHM ranges between $1000 \mathrm{~km} \mathrm{~s}^{-1}$ and $10000 \mathrm{~km} \mathrm{~s}^{-1}$ and the line shifts are limited to $+/-1000 \mathrm{~km} \mathrm{~s}^{-1}$ for the $\mathrm{H} \alpha, \mathrm{H} \beta$ and Mg iI lines, while for the C iv line we allowed blue-shifts of up to $-3000 \mathrm{~km} \mathrm{~s}^{-1}$. These different choices are motivated by the findings of several earlier studies (e.g., Vestergaard \& Peterson (2006), S07, R13, Park et al. (2013)). In the case of doublet lines (C IV and Mg II), we used 4 Gaussians, forcing the two broad and two narrower components to have the same profiles and intensity, and the theoretical wavelength separation. We fixed the $\mathrm{Mg}_{\text {II }}$ and C IV doublet intensity ratios to $1: 1$, suitable for optically thick line emission. For each of the $\mathrm{H} \alpha, \mathrm{H} \beta$ and C iv lines we have also included a third Gaussian component when needed to account for the additional emission originating from the narrow line region (NLR). Each of these narrow components are modelled by a single Gaussian profile, their FWHM is constrained not to exceed $1300 \mathrm{~km} \mathrm{~s}^{-1}$, and their line centres are tied to each other, with shifts of $400 \mathrm{~km} \mathrm{~s}^{-1}$, at most. We chose not to include a narrow component in the modeling of the Mg II and C Iv lines (as in, e.g., Wills et al., 1993; Sulentic et al., 2007), since we found no significant difference in the $\mathrm{Mg}_{\text {II }}$ measurements (or fit quality) when trying to include it $\cdot{ }^{1}$ For other, weaker emission lines (including He iı1640, N iv1718, Si III] 1892) we used only a single Gaussian component. These lines are not necessary for the purpose of the present work except for limiting the continuum placement.

All the Gaussian components we used are symmetric and defined by three parameters: peak flux density, FWHM, and central wavelength. We have made several simple, physically motivated simplifying assumptions, in order to minimize the number of free parameters: the Gaussian components of lines of the same species were forced to share an identical width; we have also tied together the relative shifts in the central wavelengths of some lines, based on their laboratory wavelengths; and assume line-intensity ratios for some lines based on their statistical weights (See Appendix A. 3 and Table A. 1 for further details on the different emission line parameters, their assumed ranges, inter-connections and delimitation of the emission line regions). Our line fitting procedure runs separately on each of the main emission line regions, while all the lines in each line region are fitted simultaneously.

Generally, the global (see Figure 2.2.3) and local (see Figure 2.2.4) continuum approaches follow the same line fitting procedures in terms of the number of components per emission line and the way they are tied together. One important difference is that in the global approach, the $\mathrm{C}_{\text {IIII }}$ and C IV line regions are considered a single region and are therefore fitted simultaneously. The reason for this is that under the local approach we take as continuum windows the region around $1700 \AA$ following the same procedure of previous works (e.g., S07, TN12, and references therein). However, this region is usually contaminated by weak emission lines like N IV1718, and consequently the thin disc continuum fit does not allow us to fit CIV and C iir] independently.

In order to account for possible uncertainties in our spectral measurements, we per-

[^0]formed 100 Monte-Carlo realizations for each of the spectra. In each of these realizations, the flux density at each spectral pixel was altered from the observed value by a random, normally distributed value, assuming the corresponding level of noise (i.e., using the noise spectrum). From these sets of best-fit models we extracted, for each emission line, the line width FWHM, the velocity dispersion ($\sigma_{\text {line }}$; following Peterson et al. (2004)), integrated luminosity (L), rest-frame equivalent width (EW), the luminosity at the peak of the fitted profile $\left(L_{\mathrm{P}}\right)$ as well as its corresponding wavelength $\left(\lambda_{\mathrm{P}}\right)$ and the offset of the line center (relative to the laboratory wavelength; Δv). The line offsets were calculated using the flux-weighted central wavelength of the broad line profile:
\[

$$
\begin{equation*}
\Delta v=\left(\int \lambda f_{\lambda}(\text { line }) d \lambda / F(\text { line })-\lambda_{0}\right) c / \lambda_{0} \tag{2.2.2}
\end{equation*}
$$

\]

where f_{λ} (line) is the flux density of the broad line profile at $\lambda ; F$ (line) is the integrated broad line flux, F (line) $=\int f_{\lambda}$ (line) $d \lambda ; \lambda_{0}$ is the laboratory wavelength of the line; and c is the speed of light.

The best-fit values for all these parameters were taken from the medians of the parameter distribution, and the corresponding uncertainties were estimated from the central 68% percentiles. This "re-sampling" approach for the estimation of measurementrelated uncertainties was used in several recent studies of spectral decomposition of AGN UV-optical spectra (e.g., Shen \& Liu, 2012). Based on our experience, such errors reflect the true uncertainties related to measuring emission line profiles, while those provided by the (statistical) spectral fitting procedure itself tend to underestimate the "real" uncertainties.

The measured parameters, and uncertainties, for the most prominent emission lines under the local approach are summarized in Tables 2.2 and 2.3 .

2.4 Results and Discussion

2.4.1 Local versus global continuum measurements

In this subsection we compare the local and global continuum approaches in order to quantify the possible biases that are introduced when the real underlying shape of the continuum cannot be accurately established. As we will describe below in detail, our main conclusion is that local continuum measurements of FWHMs, continuum luminosities and, consequently, black hole masses present very small but systematic offsets with respect to the corresponding global continuum measurements.
Table 2.2: Monochromatic continuum luminosities ($\lambda L[\lambda]$), line peak luminosity densities (L_{P}) and line offsets (Δv), under the local approach..

Object																								
name	1450	Δ	3000	Δ	5100	Δ	6200	Δ	H α	Δ	Si IV+O IV]	Δ	Civ	Δ	C III]	Δ	C IV	Δ	Mg II	Δ	H β	Δ	H α	Δ
152+0702	46.81	0.01	46.55	0.01	46.11	0.01	46.17	0.01	44.8	0.01	43.15	0.02	43.43	0.01	42.94	0.16	-2452.68	104.71	-97.53	101.35	1042.62	148.83	-79.15	70.63
J0155-1023	46.62	0.01	46.41	0.01	46.13	0.01	46.07	0.01	44.87	0.01	43.17	0.01	43.29	0.01	42.88	0.07	-2294.86	123.19	-139.62	75.73	510.34	86.22	-172.03	90.25
J0303+0027	46.53	0.01	46.36	0.01	46.03	0.01	45.99	0.01	44.79	0.02	43.01	0.02	43.21	0.01	42.49	0.27	-484.41	61.98	157.4	123.36	1094.57	53.3	-386.05	193.83
J1158-0322	46.52	0.01	46.35	0.01	46.08	0.01	45.99	0.01	44.82	0.01	43.02	0.03	43.22	0.01	42.83	0.05	-1775.53	40.87	-4.04	66.53	-1067.76	168.86	-534.82	4.61
J0043+0114	46.46	0.01	46.26	0.01	45.93	0.01	45.89	0.01	44.68	0.01	42.9	0.03	43.11	0.01	42.87	0.06	-2823.52	102.51	-340.23	67.91	-583.57	94.8	-330.63	. 76
J0209-0947	46.56	0.01	46.38	0.01	46.09	0.01	46.01	0.01	44.86	0.01	43.05	0.01	43.47	0.01	42.95	0.03	-1534.54	19.99	-109.47	74.22	668.06	296.98	-328.73	105.64
J0842+0151	46.39	0.01	46.21	0.01	45.79	0.04	45.78	0.02	44.74	0.02	42.97	0.05	43.24	0.01	42.81	0.08	-2393.53	53.53	-249.3	65.66	488.33	346.79	-545.4	222.08
J1002+0331	46.55	0.01	46.29	0.01	45.99	0.01	45.97	0.01	44.83	0.01	42.02	0.39	43.34	0.03	43.27	0.02	-1425.91	67.7	-224.11	84.88	771.98	121.85	127.18	. 02
J0323-0029	46.51	0.01	46.27	0.01	45.95	0.01	45.92	0.01	44.81	0.01	43.03	0.02	43.37	0.01	43.14	0.02	278.52	85.01	-477.62	92.79	674.22	97.41	-141.79	107.94
J0152-0839	46.31	0.01	46.11	0.01	45.83	0.01	45.69	0.01	44.56	0.01	42.7	0.02	43.02	0.01	42.57	0.09	-2152.61	48.73	-245.03	100.87	-523.93	142.87	-512.4	104.87
J0941+0443	46.27	0.01	46.08	0.01	45.79	0.02	45.74	0.01	44.68	0.01	42.73	0.02	43.11	0.01	42.6	0.09	306.62	92.72	-27.67	138.44	-174.21	401.45	-191.83	45.64
J0148+0003	46.4	0.01	46.38	0.01	46.11	0.02	46.07	0.01	44.97	0.01	42.85	0.07	43.05	0.08	42.92	0.06	-933.05	104.45	-60.68	95.14	799.06	63.93	-360.83	64.41
J0934+0005	46.15	0.01	45.92	0.01	45.68	0.01	45.62	0.01	44.43	0.01	42.7	0.02	42.77	0.02	42.62	0.06	-2156.93	71.57	-155.35	80.23	556.3	140.5	-449.29	174.13
J0019-1053	45.89	0.01	45.78	0.01	45.4	0.01	45.39	0.01	44.26	0.01	42.33	0.03	42.79	0.01	42.35	0.09	-571.41	38.73	269.01	71.92	789.89	108.23	725.37	59.2
J0850+0022	45.8	0.01	45.73	0.01	45.52	0.01	45.48	0.01	44.14	0.01	42.8	0.02	42.85	0.02	42.53	0.12	-2754.99	225.22	-41.26	125.73	316.41	196.98	-1044.97	142.74
J0404-0446	45.9	0.01	45.72	0.01	45.62	0.03	45.46	0.02	43.92	0.05	42.79	0.02	42.71	0.01	42.51	0.12	-3440.87	99.7	-214.1	86.61	-435.09	451.73	-560.96	145.65
J1052+0236	45.78	0.01	45.7	0.02	45.44	0.02	45.39	0.02	44.21	0.03	42.14	0.14	42.59	0.06	42.07	0.07	-70.84	116.54	263.36	147.25	1059.5	215.22	475.95	166.7
J0223-0007	45.86	0.01	45.67	0.01	45.32	0.06	45.28	0.05	44.19	0.04	42.4	0.02	42.7	0.01	42.36	0.03	-1568.3	56.19	7.56	99.2	-481.33	692.18	-404.17	271.04
J0240-0758	45.89	0.01	45.76	0.01	45.43	0.02	45.36	0.01	44.32	0.01	42.51	0.02	42.98	0.01	42.53	0.03	-293.37	33.52	185.33	57.24	478.62	212.48	710.93	26.89
J0136-0015	45.80	0.01	45.64	0.01	45.28	0.03	45.2	0.01	44.12	0.02	42.48	0.13	42.59	0.01	42.33	0.04	-2756.36	79.89	-318.27	89.48	656.58	232.12	-648.21	114.67
J0213-1003	46.2	0.01	45.93	0.01	45.64	0.02	45.58	0.01	44.39	0.01	42.98	0.05	42.98	0.01	42.65	0.04	-1739.83	261.66	-27.74	144.11	-360.87	278.85	-666.62	72.89
J0341-0037	45.73	0.01	45.56	0.01	45.3	0.03	45.22	0.03	44.12	0.03	42.39	0.02	42.6	0.01	42.33	0.03	-2330.08	129.88	-222.25	102.02	-840.53	688.41	-536.48	261.4
J0143-0056	45.72	0.01	45.52	0.01	45.18	0.02	45.1	0.04	43.99	0.04	42.35	0.03	42.73	0.01	42.24	0.06	-524.69	40.00	264.87	77.58	396.95	199.42	587.99	149.68
J0927+0004	45.74	0.01	45.51	0.01	45.18	0.02	45.18	0.01	44.04	0.02	42.33	0.03	42.71	0.01	42.17	0.09	486.01	220.26	72.03	72.29	1010.25	278.06	345.72	94.13
J0213-0036	45.64	0.01	45.46	0.01	45.15	0.02	45.12	0.02	44.11	0.01	42.29	0.05	42.86	0.01	42.29	0.04	-643.71	19.59	137.23	103.97	174.78	261.3	27.18	206.44
J1050+0207	45.61	0.01	45.43	0.02	45.12	0.06	44.94	0.03	43.89	0.03	41.89	0.07	42.36	0.03	41.92	0.07	-591.26	218.74	443.37	152.79	122.92	566.2	526.65	337.22
J0948+0137	45.43	0.01	45.3	0.02	45.03	0.04	45.02	0.05	43.96	0.03	42.09	0.11	42.53	0.02	42.13	0.08	-961.26	106.85	176.82	190.95	-62.	414.8	-424.22	354.05
J0042+0008	45.42	0.01	45.21	0.01	44.87	0.05	44.76	0.03	43.67	0.04	41.95	0.2	42.21	0.08	41.81	0.02	-1683.76	138.32	-312.02	99.56	697.42	205.71	26.51	160.33
J1013+0245	45.38	0.01	45.18	0.02	45.08	0.04	45.01	0.03	43.59	0.05	42.03	0.07	42.19	0.01	41.95	0.09	-1110.04	244.02	-113.76	240.13	-1167.31	1020.54	-197.79	213.94
J1021-0027	44.96	0.02	44.97	0.01	44.78	0.05	44.89	0.02	43.88	0.01	42.02	0.04	42.35	0.25	41.83	0.01	206.99	527.72	-219.52	49.35	1100.26	105.14	-925.29	101.62
J0038-0019	45.1	0.01	44.97	0.01	44.78	0.04	44.81	0.02	43.45	0.02	41.51	0.12	42.21	0.05	41.65	0.04	51.63	92.82	18.95	162.72	-647.1	338.03	445.16	83.86
J0912-0040	45.11	0.01	44.93	0.01	44.71	0.12	44.73	0.05	43.44	0.04	41.67	0.14	42.17	0.38	41.58	0.09	-1396.33	110.18	-79.1	162.0	600.7	567.47	-116.43	117.77
J1048-0019	45.09	0.02	44.88	0.01	44.57	0.08	44.32	1.9	43.2	0.25	41.69	0.1	42.22	0.21	41.53	0.06	-322.86	79.87	-190.12	165.63	241.99	335.73	270.64	155.81
J1045-0047	44.92	0.03	44.79	0.02	44.31	0.06	44.43	0.05	43.37	0.03	41.14	0.37	42.02	0.23	41.36	0.07	-990.37	115.71	-37.63	155.99	-158.89	564.79	66.88	89.9
J0042-0011	44.87	0.02	44.77	0.01	44.63	0.07	44.47	0.05	43.06	0.04	41.62	0.09	41.92	0.17	41.37	0.02	-2104.9	83.54	-341.65	209.76	327.91	322.67	-169.64	73.31
J1046+0025	44.97	0.01	44.7	0.02	44.42	0.1	44.41	0.1	42.48	0.12	41.66	0.09	42.07	0.34	41.43	0.05	-1255.21	69.88	-791.01	175.69	-801.5	452.36	-1299.09	125.12
J0930-0018	44.81	0.02	44.66	0.02	44.36	0.97	44.11	0.11	42.95	0.26	41.4	0.25	41.98	0.28	41.38	0.03	-1115.71	371.44	-878.01	115.31	-1023.75	423.79	-996.61	147.11
J1108+0141	46.53	0.01	46.47	0.01	46.2	0.01	46.09	0.01	44.82	0.01	43.1	0.03	42.95	0.02	42.93	0.06	-523.43	73.63	-729.27	47.84	1298.13	19.36	-354.62	45.75
J1005+0245	45.96	0.01	46.05	0.01	45.87	0.01	45.89	0.01	44.74	0.01	42.57	0.13	42.75	0.04	42.79	0.03	-1202.56	828.92	11.81	79.42	1257.99	96.71	126.41	100.23

Table 2.3: Broad line widths and corresponding mass estimates, under the local approach..

[^1]

Figure 2.2.5: Comparison of various line and continuum properties measured under the two general assumptions of local (horizontal axis) and global (vertical axis) SEDs. Top-Left panel: $L(\mathrm{H} \alpha)$ (blue stars), $L_{6200}\left(\right.$ cyan triangles), L_{5100} (yellow triangles), L_{3000} (green squares) and L_{1450} (red dots). The colored solid lines are the best linear fits to the corresponding data. Top-Right panel: $\operatorname{FWHM}(\mathrm{H} \alpha)$ (top-left), FWHM $(\mathrm{H} \beta)$ (top-right), FWHM(Mg II) (bottom-left) and FWHM(C IV) (bottom-right) lines measurements. Bottom-left panel: Same as Top-Right panel but comparing $\sigma_{\text {line }}$ instead of FWHMs (note the much larger scatter in this case). Bottom-right panel: M_{BH} comparison between local and global approaches. In the top-right and bottom-right panels black dashed lines represents the median offset between global and local measurements. In all panels the black solid diagonal line represents the $1: 1$ relation. Points have been color-coded in gray scale by S / N where darker colors correspond to larger S/N.

2.4.1.1 Continuum biases

In figure 2.2 .5 we present the comparison between $L_{\text {local }}$ and $L_{\text {global }}$ (top-left panel) for different chosen wavelengths. We generally find small but systematic offsets between quantities derived via the local versus global approach. We find that the L_{1450}, L_{3000}, L_{5100} and L_{6200} median offsets $\left(\Delta L \equiv \log \left(L_{\text {global }} / L_{\text {local }}\right)\right)$ are typically small $(\lesssim|-0.05|$ dex, see Table 2.4 for details). These offset are consistent with a very subtle overestimation of the continuum emission when the local approach is adopted (see Fig. 2.2.4 for a particular example).

2.4.1.2 Line width biases

The systematic continuum overestimation that we found coming from adopting the local instead of the global approach will naturally lead to systematical FWHM underestimation as can be also seen in Figure 2.2.5 (top-right panel). Indeed, all the relevant line width measurements present small median offsets ($\Delta \mathrm{FWHM} \equiv \log$ $\left.\mathrm{FWHM}_{\text {global }} / \mathrm{FWHM}_{\text {local }}\right)$ smaller than $\lesssim 0.02$ dex as can be seen in Table. 2.4. As mentioned in $\$ 2.2$ the measurements of $\operatorname{FWHM}(\mathrm{H} \beta)$ are more challenging for low S / N and/or objects where most iron emission is suppressed by telluric absorption. This explains the outliers and large uncertainties for some objects in the $\operatorname{FWHM}(\mathrm{H} \beta)_{\text {local }}{ }^{-}$ $\operatorname{FWHM}(\mathrm{H} \beta)_{\text {global }}$ plot. Except for these few outliers, the $\mathrm{FWHM}_{\text {local }}$ measurements of all the emission lines are proportional to, and systematically but slightly smaller than the $\mathrm{FWHM}_{\text {global }}$ measurements.

When we perform the same analysis on the velocity dispersion $\sigma_{\text {line }}$ (see the bottomleft panel in Fig. 2.2.5 we find a large scatter ($\sim 0.14 \mathrm{dex}$) and usually weak, if any, correlations $(P>0.01)$ between the local and global measurements in $\mathrm{H} \alpha, \mathrm{Mg}$ II and Civ. On the other hand, the $\mathrm{H} \beta$ line shows a much tighter correlation $\left(r_{\mathrm{s}}<0.78\right.$, $P=2 \times 10^{-9}$) but the scatter is still very large ($\sim 0.12 \mathrm{dex}$). These results indicate a strong and perhaps non-linear dependency between the measured $\sigma_{\text {line }}$ and the level of its local continuum. As a result $\sigma_{\text {line }}$-based determinations of M_{BH} may be unreliable for data of limited spectral coverage. In particular, such estimates may suffer from higher systematic uncertainties compared to those based on FWHM.

2.4.1.3 Black hole mass biases

In $\S \S 2.4 .4$ we will describe in detail the methods that we follow for M_{BH} calibration using the local and global approaches. The form of the virial mass estimator (see Eqn. 2.2.1) indicates that biases in M_{BH} determinations are mainly driven by the (small) line width biases. This is not the case for the continuum luminosity since one can, in principle, re-calibrate the $R_{\text {BLR }}-L$ relations to use either one of the local or global measured continuum luminosities, thus completely eliminating the systematic

Table 2.4: Median induced offsets when the local approach is used instead of the global approach.

Line	$\Delta M_{\text {BH }}$ (dex)	Δ FWHM (dex)	ΔL^{1} (dex)	$\Delta L_{\text {line }}$ (dex)
$\mathrm{H} \alpha$	$0.03_{-0.06}^{+0.06}$	$0.015_{-0.015}^{+0.020}$	$0.05_{-0.06}^{+0.04}$	$0.05_{-0.06}^{+0.04}$
$\mathrm{H} \beta$	$0.04_{-0.05}^{+0.09}$	$0.020_{-0.025}^{+0.035}$	$-0.01_{-0.05}^{+0.03}$	$0.03_{-0.05}^{+0.12}$
Mg II	$0.01_{-0.02}^{+0.03}$	$0.010_{-0.010}^{+0.015}$	$-0.03_{-0.02}^{+0.03}$	$0.03_{-0.03}^{+0.03}$
$\mathrm{C}_{\text {IV }}$	$0.05_{-0.03}^{+0.06}$	$0.020_{-0.020}^{+0.025}$	$-0.02_{-0.03}^{+0.02}$	$0.07_{-0.07}^{+0.06}$

biases.
After following the procedure described in $\S \$ 2.4 .4$ and the strict virial assumption $\left(M_{\mathrm{BH}} \propto \mathrm{FWHM}^{2}\right)$ we found that the M_{BH} offsets $\left(\Delta M_{\mathrm{BH}}=\log M_{\mathrm{BH}, \text { global }} / M_{\mathrm{BH}, \text { local }}\right)$ are in very good agreement with our predictions, as can be seen in the bottom-right panel of Figure 2.2 .5 and are smaller than $\lesssim 0.04$ dex (see Table 2.4). From the values listed in Table 2.4 and from a visual inspection of Fig. 2.2 .5 one can conclude that $\mathrm{H} \alpha$, Mg II, and C IV are consistent (within the scatter) with ΔM_{BH} being independent of $M_{\mathrm{BH}} . \mathrm{H} \beta$ is again a bit more complicated, due to the difficulties we mentioned above. However, after removing the low-quality outliers we eventually find $\mathrm{H} \beta$ to be consistent with ΔM_{BH} being independent of M_{BH}. Among all the lines considered here, we find Mg II to be the one showing the smallest biases when following the local approach . This is somewhat surprising, given the several important spectral features (BC, FeII lines) that are influencing this spectral region.

2.4.1.4 Line luminosity biases

Line luminosities are more sensitive to continuum placement than the other quantities we examined. Indeed, we found line luminosity median offsets $\left(\Delta L_{\text {line }}=\right.$ $\left.\log L(\text { line })_{\text {global }} / L(\text { line })_{\text {local }}\right)$ of $0.06_{-0.08}^{+0.08}$ dex $, 0.03_{-0.04}^{+0.06} \mathrm{dex}, 0.02_{-0.08}^{+0.09} \mathrm{dex}$ and $0.05_{-0.06}^{+0.04}$ dex for Civ, Mgir, $\mathrm{H} \beta$ and $\mathrm{H} \alpha$, respectively. Furthermore, we find that the large scatter that is generally found in $\Delta L_{\mathrm{CIV}}, \Delta L_{\mathrm{MgII}}, \Delta L_{\mathrm{H} \beta}$ and $\Delta L_{\mathrm{H} \alpha}$ is due to the fact that these quantities are anti-correlated with continuum luminosity. In particular, the relations between these line luminosity biases and L_{5100} show r_{s} correlation coefficients of $-0.38,-0.44,-0.65$ for $\mathrm{C} \mathrm{IV}, \mathrm{Mg}$ II, $\mathrm{H} \beta$ and $\mathrm{H} \alpha$, respectively. This implies that using the local approach to estimate line luminosities generally leads to an underestimation of the latter, and its effect is larger for low luminosity objects (up to 0.14 dex , or 38%, in the case of Civ).

In summary, the impact of using the local approach to estimate the local luminosities, lines widths and black hole masses when the global continuum is unknown

Figure 2.2.6: local $\mathrm{H} \alpha$ line luminosity (blue), L_{6200} (cyan) L_{3000} (green) and L_{1450} (red) vs $L_{5100}^{\text {local }}$. The color solid lines represent the best linear fits to the corresponding data. Black solid line represents the 1:1 relation.
is found to be small (<0.06 dex) . However, the impact using the local approach to estimate line luminosities is found be luminosity dependent, being stronger for low luminosity objects. The median values of $\Delta \mathrm{FWHM}, \Delta L, \Delta M_{\mathrm{BH}}$, and $\Delta L_{\text {line }}$ that we found are summarized in Table 2.4. Based on the general good agreement between local and global measurements and in order to provide the community with strategies more applicable to observations with limited wavelength coverage, in the analysis that follows is based only on the local measurements, unless otherwise stated.

2.4.2 Luminosity Correlations

Figure 2.2 .6 presents a comparison between L_{5100} and the luminosity indicators most commonly used in the context of M_{BH} estimates. The best-fit parameters of all the correlations can be found in Table 2.5. These relations provide us with the links necessary to connect each luminosity indicator and $R_{\text {BLR }}(\mathrm{H} \beta)$, through the $R_{\mathrm{BLR}}-L_{5100}$ relation obtained from reverberation mapping experiments Kaspi et al., 2000, 2005, Bentz et al., 2009, 2013). For the purposes of the present work, we use the same calibration as in TN12, which is appropriate for sources with $L_{5100} \gtrsim 10^{44} \mathrm{erg} \mathrm{s}^{-1}$:

Figure 2.2.7: FWHMs (top-panels) and $\sigma_{\text {line }}$ (bottom-panels) of the C IV (left) and Mg II (center) profiles found with low quality SDSS data versus those measured in our high quality X-Shooter using the local continuum approach. The right panels shows Civ vs Mg iI line widths measured with SDSS data. Red solid line shows the 1:1 relation and red dashed line represents FWHM $(\mathrm{CIV})=\sqrt{3.7} \mathrm{FWHM}(\mathrm{Mg}$ II). Red dots represent objects with noticeable absorption features while yellow dots are objects with SDSS incomplete profiles. It can be seen that C IV profiles with strong absorption features artificially populate the zone where FWHM (C IV) $<$ FWHM ($\mathrm{Mg}_{\mathrm{II}}$).

Table 2.5: Best fit power law parameters to the following relations: ${ }^{a} L_{5100}^{\text {local }}=A L_{\text {local }}^{\gamma}$, ${ }^{b} L_{5100}^{\text {local }}=A L_{\text {global },}^{\gamma}{ }^{c} L_{\text {global }}=A L_{\text {local }}^{\gamma}$.

	$L_{5100}^{\text {local }}$	vs $L_{\text {local }}{ }^{a}$	$L_{5100}^{\text {local }}$	vs	$L_{\text {global }}{ }^{b}$	$L_{\text {global }}$ vs $L_{\text {local }}{ }^{c}$
	γ	A	γ	A	γ	A
$\mathrm{L}(\mathrm{H} \alpha)$	1.04	4.73	1.09	3.59	0.94	1.32
L_{6200}	0.98	1.23	0.94	1.57	0.96	1.28
L_{5100}	1	1	0.89	1.61	1.15	0.60
L_{3000}	0.92	0.67	0.91	0.77	1.01	0.88
L_{1450}	0.88	0.56	0.87	0.64	1.02	0.87

$$
\begin{equation*}
R_{\mathrm{BLR}}(\mathrm{H} \beta)=538\left(\frac{L_{5100}}{10^{46} \mathrm{erg} \mathrm{~s}^{-1}}\right)^{0.65} \text { lt-days } \tag{2.2.3}
\end{equation*}
$$

As shown in Fig. 2.2 .6 the $L(\mathrm{H} \alpha)-L_{5100}$ relation shows a larger scatter than those involving UV continuum luminosities $\left(L_{1450}-L_{5100}\right.$ and $\left.L_{3000}-L_{5100}\right)$. This may therefore contribute to an increased uncertainty in $L(\mathrm{H} \alpha)$-based determinations of M_{BH}. This is not surprising, given the expected range of conditions in the BLR. Consequently, we also investigate use of L_{6200} as an alternative to $L(H \alpha)$. As can be seen in Fig. 2.2.6 (cyan inverted triangles) the $L_{6200}-L_{5100}$ relation shows an even smaller scatter than L_{1450} and L_{3000}. This is particularly the case for objects with $L_{5100} \gtrsim 10^{45} \mathrm{erg} \mathrm{s}^{-1}$, where host galaxy contribution is negligible.
$L_{1450}-L_{5100}$ and $L_{3000}-L_{5100}$ luminosity correlations are supra-linear, in the sense of showing $L \propto L_{5100}^{\beta}$ and $\beta>1$ (see first column of Table 2.5 and note that $\beta=\gamma^{-1}$). This has been noted earlier by Vanden Berk et al. (2004) but is in contrast to Shen \& Liu (2012) who found consistency with $\beta=1$ in the sample of high luminosity quasars $\left(L_{5100}\left[\mathrm{erg} \mathrm{s}^{-1}\right]>10^{45.4}\right)$.

While there are various correlations with $M_{\mathrm{BH}}(\mathrm{H} \alpha)$ and L / L_{Edd} (measured from $\mathrm{H} \alpha$) that can, perhaps, explain these differences, it is important to note that our sample is by no means complete. It was chosen to sample the high-L $\mathrm{z}=1.55$ AGN population by giving equal weight to a group of sources with the same M_{BH} and $L / L_{\text {Edd }}$ (see paper I). Hence, the relationship found here should be checked in a larger and complete sample that represents the entire AGN population.

Figure 2.2.8: FWHM (top) and σ (bottom) comparisons between different lines in the local continuum approach as indicated in the inserts of each panel (line1 vs line2). The black solid lines represents the $1: 1$ relation. The black dashed line represents FWHM $(\mathrm{CIV})=\sqrt{3.7} \mathrm{FWHM}($ line $)$. The yellow dashed line represents FWHM $(\mathrm{CIv})=\sqrt{3.7} \mathrm{FWHM}(\mathrm{H} \beta)$ after rescaling the FWHM of each line to $\mathrm{FWHM}(\mathrm{H} \beta)$ using the median value of $\mathrm{FWHM}(\mathrm{H} \beta) / \mathrm{FWHM}$ (line). Red dashed lines represent previous scaling relations ($\mathrm{FWHM}(\mathrm{H} \beta)$ vs $\mathrm{FWHM}\left(\mathrm{Mg}_{\mathrm{II}}\right)$ from TN12, and FWHM $(\mathrm{H} \beta)$ vs $\mathrm{FWHM}(\mathrm{H} \alpha)$ from Greene \& Ho (2005)). Blue dashed lines represent the best fit after assuming $\operatorname{FWHM}(\mathrm{H} \beta) \propto \mathrm{FWHM}(\mathrm{H} \alpha) \propto \mathrm{FWHM}(\mathrm{Mg}$ II $) \propto \mathrm{FWHM}(\mathrm{C}$ Iv $)$. Points are color-coded in gray scale by the S / N of the continuum bands around $\mathrm{H} \beta$ where darker colors translates into larger S / N. Broad absorption lines quasars (BALQSO, green stars) and the broad-Mg II objects (magenta diamonds, see \$2.4.3.4) are the main sources of discrepancies of the C IV and Mg II FWHMs when compared to the $\mathrm{H} \alpha$ and $\mathrm{H} \beta$ FWHMs.

2.4.3 Line widths and line offsets

2.4.3.1 Comparison with SDSS data

At the redshift range of our sample, the archival SDSS spectroscopy covers both the C iv and Mg ir lines in 29 out of 39 objects. ${ }^{2}$ In Figure. A.A. 1 we show an example of the SDSS and X-Shooter spectra in the overlapping region. Comparing SDSS and Xshooter data allow us to test the effects of having only survey-grade data, with limited S / N and spectral resolution, on the measurement of line widths. To this end, we used our Civ and $\mathrm{Mg}_{\text {II }}$ fitting code for the lower quality archival SDSS DR7 spectra. In Fig. 2.2.7 we compare the FWHM (top-panels) and $\sigma_{\text {line }}$ (bottom-panels) values of the C iv and Mg it lines obtained from the SDSS data, with those obtained from our higher quality spectra under the local approach. We also show the Spearman correlation coefficients and corresponding P-values in each panel.

We find that SDSS-based FWHM(Civ) for objects with absorption features which are unresolved in the SDSS data (4 out of 29 objects, red symbols), or those with partially-observed profiles because of the limited SDSS wavelength coverage (5 out of 29, yellow symbols) result in FWHM measurements which are systematically different from those obtained from the higher quality data. Specifically, while unresolved $a b$ sorption features are likely to result in a systematic underestimation of FWHM(C iv), by about $50 \pm 10 \%$, incomplete profiles are likely to lead to a systematic overestimation of FWHM(CIV), by about $40 \pm 20 \%$. This result was found in previous works (e.g. Denney et al., 2013; Park et al., 2013; Tilton \& Shull, 2013) and could explain, to some extent, the over-population of narrow C IV objects that is reported in TN12. The Mg if line does not generally show strong absorption features. Indeed, we find that the SDSS-based FWHM(Mg II) measurements are generally consistent with our higher quality $\mathrm{FWHM}\left(\mathrm{Mg}_{\mathrm{II}}\right)$ measurements with the exception of five objects. Of these 5 objects, three have very low S / N, one has an incomplete profile, and one shows signs of absorption.

Looking into the corresponding comparison with $\sigma_{\text {line }}$ (bottom panels of Fig. 2.2.7), we generally find that sources with absorption features or incomplete profiles do not stand out from the "normal" population. The entire sample shows considerable scatter when comparing the SDSS and X-Shooter line measurements and show less signifcant correlations than the FWHM (top panels of Fig. 2.2.7). For σ (Mg II), we find the SDSS measurements to be systematically broader than our $\sigma_{\text {X-Shooter }}$ (Mg II) estimations, and the scatter is larger than the one in the FWHM comparison. For σ (Civ), there is a large dispersion (0.2 dex) between SDSS and X-Shooter measurements, that could be caused by the high sensitivity of $\sigma_{\text {line }}$ measurements to continuum placement.

We conclude that the usage of $\sigma_{\text {line }}$ to measure line width in data of limited quality introduces significant scatter. For such data, the use of FWHM is preferred, especially

[^2]Table 2.6: Line width ratios and correlations. For each pair of lines, we list median values and scatter of $\mathrm{Q} \equiv \log (F W H M$ (line1) $/ F W H M(l i n e 2))$ and the Spearman correlation coefficients betweenFWHM (line1) and FWHM (line2). We tabulate these quantities for both the complete sample (under the local approach), and after excluding the five broad-MgII and the two BALQSO.

line1	$-\mathrm{H} \alpha-\mathrm{No} \mathrm{Broad-Mg} \mathrm{II}$						$\longrightarrow \text { All Objects }{ }^{\text {a }}{ }^{-\mathrm{Mg} \mathrm{II}-}-\text { No Broad- } \mathrm{Mg} \mathrm{II}^{\mathrm{b}}-$						IV					
								All Ob	$\mathrm{s}^{\text {a }}$,	r						
	Q	scatter	$r_{\text {s }}$	Q	scatter	$r_{\text {s }}$							Q	scatter	$r_{\text {s }}$			
H α				\ldots			0.13	0.08	0.69	0.13	0.07	0.81	-0.12	0.14	0.48	-0.11	0.10	0.72
Mg II	-0.13	0.08	0.69	-0.13	0.07	0.81	-0.26	0.10	0.50	-0.25	0.10	0.55
H β	0.03	0.07	0.81	0.04	0.07	0.77	0.15	0.10	0.69	0.16	0.08	0.88	-0.10	0.17	0.31	-0.09	0.13	0.44

for the $\mathrm{Mg}_{\text {II }}$ line. In addition, the absorption features often seen in the Civ line necessitate the use of high-quality spectra, in order to resolve and properly account for these features, even if one uses FWHM instead of $\sigma_{\text {line }}$.

2.4.3.2 Line Offsets

We measured the line offsets with respect to the laboratory wavelengths of $\mathrm{H} \alpha, \mathrm{H} \beta$ and $\mathrm{Mg}_{\mathrm{II}}$. Their absolute values $(|\Delta v|)$ are found to be (within the 16% and 84% percentiles) smaller than $600 \mathrm{~km} \mathrm{~s}^{-1}, 550 \mathrm{~km} \mathrm{~s}^{-1}$ and $250 \mathrm{~km} \mathrm{~s}^{-1}$ respectively.

Many of the observed C IV lines show large negative velocity offsets ($\Delta v \simeq-1200 \pm$ $1000 \mathrm{~km} \mathrm{~s}^{-1}$) suggesting non virial equilibrium of the CIV emitting clouds. This has been noted in numerous earlier publications, (e.g. Shang et al., 2007; Wang et al., 2009; Shen \& Liu, 2012; Trakhtenbrot \& Netzer, 2012; Runnoe et al., 2013; Brotherton et al., 2015a). Moreover, the C IV velocity offsets are anti-correlated with $L / L_{\text {Edd }}\left(r_{\mathrm{s}}=-0.53\right.$, $P=0.0004$), i.e., higher $L / L_{\text {Edd }}$ will translate into bluer line centers (e.g. Marziani et al., 2006; Sulentic et al., 2007). We also find that the much smaller velocity offsets of the $\mathrm{Mg}_{\text {II }}$ lines are also anti-correlated with $L / L_{\mathrm{Edd}}\left(r_{\mathrm{s}}=-0.49, P=0.001\right)$ which is also in agreement with Marziani et al. (2013b). We repeated the analysis using the normalized accretion rate ($\left.\dot{m} \equiv L_{\text {model }} / L_{\text {Edd }}\left[M_{\mathrm{BH}}^{\text {model }}\right]\right)$ taken from the best-fit AD models (to be presented in paper III; see paper I for details). We find that our measured \dot{m}, too, is anti-correlated with Civ velocity offsets ($r_{\mathrm{s}}=-0.49, P=0.001$), however the analogous correlation with Mg II velocity offsets becomes insignificant $(P=0.07)$. These results suggest that $L / L_{\text {Edd }}$ is playing an important role in the line offsets of the Civ profile, while Mg II velocity offsets may involve additional parameters. As explained earlier, the way we selected our sample makes it difficult to make strong statements regarding the entire population of AGN. When the same analysis is done with the Balmer lines, we find no correlation between neither $L / L_{\text {Edd }}$ nor \dot{m} and the Balmer line velocity offsets ($P=0.26$ and $P=0.90$, for $\mathrm{H} \alpha$ and $\mathrm{H} \beta$, respectively). We further confirm earlier results (e.g., Corbin, 1990; Richards et al., 2011) of a significant anti-correlation between the C iv blueshifts and the C iv line strength, EW(Civ) ($r_{\mathrm{s}}=$ $0.43, P=0.006)$, but not with $\mathrm{EW}\left(\mathrm{Mg} \mathrm{II}^{\mathrm{II}}\right)\left(r_{\mathrm{s}}=0.25, P=0.12\right)$.

Several studies investigated the possibility that broad emission lines are gravitationally red-shifted by few hundred to few thousand $\mathrm{km} \mathrm{s}^{-1}$ (e.g. Netzer, 1977; Zheng \& Sulentic, 1990; Popovic et al., 1995; Müller \& Wold, 2006; Tremaine et al., 2014). This effect is enhanced in very broad emission line components (FWHM $\gtrsim 7000 \mathrm{~km} \mathrm{~s}^{-1}$) that are formed close to the BH. In this work we made no attempt to include this in the modelling of the line profiles since we are mainly after the line FWHM which is insensitive to such small variations. We verified, however, that line offset due to this effect are smaller than the general uncertainty and scatter associated with our measurements of the line center velocity.

2.4.3.3 Line width correlations

Figure 2.2 .8 presents a comparison between the widths of some of the broad emission lines in our X-shooter observations, in terms of FWHM (top panel) and line dispersion ($\sigma_{\text {line }}$; bottom panel). For reference, we also illustrate the $1: 1$ relation (black solid line), and a constant scaling of $\mathrm{FWHM}(\mathrm{C} \mathrm{IV})=\sqrt{3.7} \mathrm{FWHM}(\mathrm{H} \alpha, \mathrm{H} \beta, \mathrm{Mg}$ II) (black dashed line). The latter scaling is motivated by the typical ratio of the corresponding BLR sizes for $\mathrm{H} \beta$ and C Iv, as measured in RM experiments, and under the virialized BLR assumption (see detailed discussion in TN12). We have plotted in yellow a dashed line that represents FWHM (CIV) $=\sqrt{3.7}\left\langle\frac{\mathrm{FWHM}(\mathrm{H} \beta)}{\mathrm{FWHM}(\mathrm{H} \alpha, \mathrm{MgII})}\right\rangle \operatorname{FWHM}(\mathrm{H} \alpha, \mathrm{Mg}$ II) to account for the median FWHM ratio between FWHM $(\mathrm{H} \beta)$ and the FWHM of $\mathrm{H} \alpha$ and Mg iI. Finally, we have color coded the points in gray scale by the S / N of the continuum bands around $\mathrm{H} \beta$ where darker colors translates into higher S / N. In Figures A.A.3 and A.A. 4 of the Appendix A.4 we show the normalized $\mathrm{H} \alpha, \mathrm{H} \beta, \mathrm{Mg}$ II and C iv observed line profiles in velocity space to provide the reader with a direct visual comparison of the most prominent emission lines. The large error bars in the $\mathrm{H} \beta$ line widths are due to the low signal to noise and the difficulty of constraining the iron emission around $\mathrm{H} \beta$, because of the telluric absorption (see $\$ 2.2$).

We generally find very good agreement between the FWHMs of $\mathrm{H} \beta$ and $\mathrm{H} \alpha$ (Fig. 2.2 .8 top-left panel). On average, $\operatorname{FWHM}(\mathrm{H} \beta)$ is broader than $\mathrm{FWHM}(\mathrm{H} \alpha)$ by 0.03 dex (see blue dashed line in Fig. 2.2.8), with a scatter of about 0.08 dex. This result is in good agreement with several previous studies, as well as with the scaling relation reported in Greene \& Ho (2005) (see red dashed line in Fig. 2.2.8).

We also find that objects with $\log \operatorname{FWHM}(\mathrm{H} \beta)\left[\mathrm{km} \mathrm{s}^{-1}\right] \leq 3.6\left(\sim 4000 \mathrm{~km} \mathrm{~s}^{-1}\right)$ show $\operatorname{FWHM}(\mathrm{H} \beta)$ slightly narrower than the median trend (i.e. below the blue dashed line in Fig. 2.2.8) by about 0.04 dex (10%). These objects are however fainter and their values are less accurate because of the difficulties with $\mathrm{H} \beta$ measurements. This results is in agreement with Denney et al. (2009a) where they found that the estimated $\operatorname{FWHM}(\mathrm{H} \beta)$ in low quality data $(S / N \lesssim 20)$ is not reliable.

From Fig. 2.2.8 we can also see that there are significant correlations between the FWHMs of: 1) $\mathrm{H} \alpha$ and $\mathrm{Mg}_{\mathrm{II}}$ (scatter of $\sigma_{\Delta}=0.08$ dex), 2) $\mathrm{H} \beta$ and $\mathrm{Mg}_{\mathrm{II}}\left(\sigma_{\Delta}=\right.$
0.10 dex) and 3) $\mathrm{H} \alpha$ and $\mathrm{H} \beta$ ($\sigma_{\Delta}=0.07$ dex) in agreement with several previous works (e.g. Greene \& Ho, 2005; Shang et al., 2007; Wang et al., 2009; Shen \& Liu, 2012, Trakhtenbrot \& Netzer, 2012; Marziani et al., 2013a). Also, FWHM(Mg II) is proportional to and narrower than $\operatorname{FWHM}(\mathrm{H} \beta)$ by 0.16 dex (30%), with a scatter of about 0.08 dex and no dependence on $\operatorname{FWHM}(\mathrm{H} \beta)$. There are however some outliers in these general trends: The two BALQSOs (green dots in Fig. 2.2.8) and 5 objects that show FWHM $(\mathrm{Mg} \mathrm{II}) \gtrsim \operatorname{FWHM}(\mathrm{H} \beta)$ and have high $L / L_{\text {Edd }}(>0.17$, hereafter broadMg irobjects, magenta diamonds in Fig. 2.2.8). These 7 objects and their implications in the FWHM($\mathrm{Mg}_{\text {II }}$)-Balmer lines correlations are further discussed in 2.4.3.4.

From the discussion above it is reasonable to assume that the emissivity weighted Mg II region is more distant from the central BH than the corresponding regions for the $\mathrm{H} \alpha$ and $\mathrm{H} \beta$ lines. On the other hand, both Balmer lines seem to come from the same part of the BLR. As a consequence and based on the FWHM linear correlation among $\mathrm{H} \alpha, \mathrm{H} \beta$ and Mg II , assuming virialization of $\mathrm{H} \beta$ would reasonably imply virialization of Mg II and $\mathrm{H} \alpha$.

The correlations of FWHM(Civ) with the measured FWHM of the other lines are weaker, occasionally insignificant (i.e. $\mathrm{P}>0.01$) and non-linear: 1) $\mathrm{H} \alpha\left(r_{\mathrm{s}}=0.48, \mathrm{P}=\right.$ $0.02, \sigma_{\Delta}=0.14$ dex $\left.), 2\right) \mathrm{H} \beta$ (insignificant, $\mathrm{P}=0.05$) and 3$) \mathrm{Mg}$ II $\left(r_{\mathrm{s}}=0.50, \mathrm{P}=0.001\right.$, $\sigma_{\Delta}=0.10$ dex $)$. This would mean that $\mathrm{FWHM}(\mathrm{C} \operatorname{Iv})$ is not linearly proportional to the FWHM of $\mathrm{H} \alpha, \mathrm{H} \beta$ and Mg II. For example, $\mathrm{FWHM}(\mathrm{C} \operatorname{IV}) \propto \mathrm{FWHM}(\mathrm{H} \alpha)^{1.41 \pm 0.50}$. Moreover, when combining the results of the RM experiments (e.g. Kaspi et al., 2007) with the virial assumption, it is expected that the C iv line would be broader than $\mathrm{H} \beta$, by a factor of about $\sqrt{3.7}$. ${ }^{3}$ In contrast, the vast majority of sources in our sample $(35 / 39 ; 90 \%)$ show FWHM (C IV) $<\sqrt{3.7}$ FWHM $(\mathrm{H} \beta)$ and one third of the sources have $\operatorname{FWHM}(\mathrm{H} \beta)>\mathrm{FWHM}(\mathrm{CIV})$. These results indicate either a non-virialized CIV emission region, or a very different ionization structure for objects with low and high FWHM $(\mathrm{H} \beta)$.

Finally, when we compare the velocity dispersion ($\sigma_{\text {line }}$) between the lines of interest (bottom panels of Fig. 2.2.8) we only find one significant correlation between FWHM(Mg iI) and FWHM(CIV) ($r_{\mathrm{s}}=0.43, \mathrm{P}=0.005$) in the local approach. However, even this correlation does not hold under the global approach ($P=0.36$). Due to the fact that the correlations between the FWHM of different lines are much tighter than the $\sigma_{\text {line }}$ correlations (under both continuum approaches), and the fact that $\sigma_{\text {line }}$ is strongly affected by flux in the line wings, we choose to use the FWHM to estimate M_{BH} in the analysis that follows.

2.4.3.4 Broad-Mg ii and BALQSO objects

As discussed in $\S 2.4 .3$ we found that Mg II profiles are generally and systematically narrower than $\mathrm{H} \alpha$ and $\mathrm{H} \beta$ profiles. However, the top right and top center panels

[^3]of Fig. 2.2 .8 show that around $\log (\operatorname{FWHM}(\mathrm{H} \beta))$ and $\log \left(\operatorname{FWHM}(\mathrm{H} \alpha)\left[\mathrm{km} \mathrm{s}^{-1}\right]\right) \lesssim$ $3.6\left(\leq 4000 \mathrm{~km} \mathrm{~s}^{-1}\right)$ there are a handful of objects (magenta diamonds) that show FWHM (Mg II) \gtrsim FWHM (H $\alpha, \mathrm{H} \beta$) and were noted earlier as "broad-Mg II objects".

Marziani et al. (2013b) and Marziani et al. (2013a) presented a thorough Eigen-vector 1 analysis of the Mg II and $\mathrm{H} \beta$ profiles following Sulentic et al. (2002) from an SDSS selected sample of 680 quasars. Their classification is based on the location of typeI AGN in the $R_{\mathrm{op}}-\mathrm{FWHM}(\mathrm{H} \beta)$ plane where $R_{\mathrm{op}}=L(\mathrm{Fe}$ II $(4750 \AA)) / L(\mathrm{H} \beta)$. They claimed that the so called "Broad-Mg II objects" belong to the extreme population A category (A3 and A4 according the their classification, see Fig. 8 in Marziani et al. (2013a)) and represents about 10% of the total population of high luminosity AGN. These extreme population A objects have narrow $\mathrm{H} \beta$ profiles ($\leq 4000 \mathrm{~km} \mathrm{~s}^{-1}$) and the highest $R_{\text {op }}$ values. They are also among the objects with the highest Eddington ratios and largest velocity offsets. Unfortunately, our difficulties to properly measure the Fe il emission around $\mathrm{H} \beta$ do not allow us to measure R_{op} and test their assumptions. can however compare their $L / L_{\text {Edd }}$ estimates to our $\mathrm{H} \alpha$-based $L / L_{\text {Edd }}$ estimates by applying a bolometric correction as described in TN12. As can be seen in Figure. 2.2 .1 all these objects occupy the top 20 percentile of the $L / L_{\text {Edd }}$ distribution in our sample ($L / L_{\text {Edd }} \geq 0.20$) in agreement with Marziani et al. (2013a). The Broad-Mg II objects in our sample also show relatively large C IV and Mg II velocity blue-shifts (top $\left.20 \%, \Delta v_{\text {Broad-Mg II }}\left(\mathrm{C}_{\text {IV }}\right) \lesssim-2200 \mathrm{~km} \mathrm{~s}^{-1}, \Delta v_{\text {Broad-Mg II }}\left(\mathrm{Mg}_{\text {II }}\right) \lesssim-200 \mathrm{~km} \mathrm{~s}^{-1}\right)$ which is also in agreement with Marziani et al. (2013a). We note however that broad-Mg II objects are not the only ones that meet the mentioned conditions.

As can be seen in Figure 2.2.8, the BALQSOs in our sample show exactly the opposite behavior. They show narrower Mg II profiles than usual. Unfortunately, it is impossible to draw any conclusion based on only two sources.

In Table 2.6 we present the median values and corresponding scatter of the ratio $\mathrm{Q} \equiv \log$ (FWHM (line1) /FWHM (line2)) as well as the Spearman correlation coefficient between the FWHM of the listed lines under two cases: a) including all objects in the analysis and b) excluding the broad- $\mathrm{Mg}_{\mathrm{II}}$ and the BALQSOs from the analysis. It can be seen in Table 2.6 and Fig. 2.2 .8 that after removing these outliers the FWHM correlations becomes tighter (i.e. r_{s} increases) and the Q factors remain almost unchanged. We emphasize that this result is also true for FWHM(CIv)while the correlations between FWHM(Civ) and the FWHM of the Balmer lines approach to linearity after removing such 7 objects. Consequently, for the following M_{BH} analysis we exclude both the 5 Broad-Mg II objects and the two BALQSOs.

2.4.4 Black Hole Mass estimators

In this subsection we present the procedure we use to obtain, and compare, different M_{BH} estimates using the different line and continuum measurements. Our starting point, and the basis for all the following correlations, is the sub-sample of 32 AGN

Figure 2.2.9: Comparisons between different M_{BH} estimates that are derived from different lines as indicated in the inserts of each panel. The black solid line represents the $1: 1$ relation. $\mathrm{H} \alpha$ values were derived using L_{6200}. The dashed black line represents the best fit to previous black hole mass estimators. Points are color-coded in gray scale by the S / N of the continuum bands around $\mathrm{H} \beta$ where darker colors translates into larger S / N. BALQSO and the broad- Mg II objects (see $\$ 2.4 .3 .4$) are the labelled by green stars and magenta diamonds respectively.
obtained by removing from the original sample 5 sources showing large discrepancy between $\operatorname{FWHM}(\mathrm{H} \beta)$ and $\operatorname{FWHM}\left(\mathrm{Mg} \mathrm{II}^{2}\right)$ (see 2.4 .3 .4) and the two BALQSOs in the sample. A major aim is to find a practical strategy that will allow the identification of sources that are not suitable for accurate mass determination based on single line and continuum measurement.

2.4.4.1 $\quad L_{5100}-R_{\text {BLR }}(\mathbf{H} \beta)$ relation and $\mathbf{H} \beta$

Most present-day single epoch mass measurements are based on the $R_{\mathrm{BLR}}(\mathrm{H} \beta)-L_{5100}^{\text {local }}$ relation, established through RM experiments (see 2.1 and Eq 2.2.3). In this case $L_{5100}^{\text {local }}$ is a local estimation of the continuum and $R_{\text {BLR }}$ is obtained from the time lag of the response of the $\mathrm{H} \beta$ line to (optical) continuum variations. This lag is assumed to properly represent the emissivity weighted radius of the broad $\mathrm{H} \beta$ line. M_{BH} is obtained from equation 2.2.1 where both FWHM $(\mathrm{H} \beta)_{\text {local }}$ and $L_{5100}^{\text {local }}$ are obtained using local continuum measurements. These values can be used to obtain the "local" BH mass estimate, $M_{\text {BHlocal }}$. We can then use the expressions derived in $\$ 2.4 .2$, and the various biases between the local and global L_{5100} and FWHM, to derive a global expression for $M_{\mathrm{BH}}(\mathrm{H} \beta)$.

We start by using the local $M_{\mathrm{BH}}(\mathrm{H} \beta)$ expression obtained by TN12. This expression is most appropriate for our intermediate and high luminosity AGN:

$$
\begin{equation*}
M_{\mathrm{BH}}(\mathrm{H} \beta)_{\text {local }}=5.26 \times 10^{6} M_{\odot}\left(\frac{L_{50 c a l}^{\text {local }}}{10^{44} \mathrm{erg} \mathrm{~s}^{-1}}\right)^{0.65}\left(\frac{\mathrm{FWHM}(\mathrm{H} \beta)_{\text {local }}}{10^{3} \mathrm{~km} \mathrm{~s}^{-1}}\right)^{2}, \tag{2.2.4}
\end{equation*}
$$

Obtaining the equivalent global expression is not trivial since we need first to find a relation between $R_{\text {BLR }}$ measured from RM and $L_{5100}^{\text {global }}$ and not simply use the recipe that connects local measurements. However, we do not know $L_{5100}^{\text {global }}$ for the objects targeted by RM campaigns and we have to rely on the scaling relation between $L_{5100}^{\text {local }}$ and $L_{5100}^{\text {global }}$ that we find in this work (see table 2.5). Substituting in Eq. 2.2.3 we get:

$$
\begin{equation*}
M_{\mathrm{BH}}(\mathrm{H} \beta)_{\text {global }}=7.17 \times 10^{6} M_{\odot}\left(\frac{L_{5100}^{\text {global }}}{10^{44} \mathrm{erg} \mathrm{~s}^{-1}}\right)^{0.58}\left(\frac{\text { FWHM }(\mathrm{H} \beta)_{\text {global }}}{10^{3} \mathrm{~km} \mathrm{~s}^{-1}}\right)^{2}, \tag{2.2.5}
\end{equation*}
$$

It is important to note that we have simply re-scaled the empirical $R_{\mathrm{BLR}}(\mathrm{H} \beta)$ vs $L_{5100}^{\text {local }}$ relation to a $R_{\mathrm{BLR}}(\mathrm{H} \beta)$ vs $L_{5100}^{\text {global }}$ relation that is adjusted to predict the same R_{BLR} measurements. Consequently, we do not expect any systematic bias in M_{BH} measurements coming from intrinsic $L_{5100}^{\text {global }}-L_{5100}^{\text {local }}$ biases. The bias between $M_{\mathrm{BH} \text { local }}$ and $M_{\text {BHglobal }}$ are simply the results of the intrinsic differences between the $\mathrm{FWHM}_{\text {local }}$ and $\mathrm{FWHM}_{\text {global }}$ (see 2.4 .1). The small M_{BH} biases that we found are shown in the bottom right set of panels in Figure 2.2.5.

Table 2.7: Virial BH mass calibrations of Equation 2.2.1 $\left(M_{B H}=K\left(L_{\lambda}\right)^{\alpha} F W H M^{2}\right)$ based on different line width and luminosity combinations for 32/39 objects in our sample, calibrated against the $H \beta$ virial mass calibration given in Equation. 2.2.4. ${ }^{a}$ $M_{B H}$ calibration based on local measurements. ${ }^{b} M_{B H}$ calibration based on global measurements. ${ }^{c}$ local $M_{B H}$ calibrations corrected for the small systematic offsets that we found with respect to global $M_{B H}$. Note that the values in this table are valid for L in units of $10^{44} \mathrm{erg} \mathrm{s}^{-1}$ and $F W H M$ in units of $1000 \mathrm{~km} \mathrm{~s}^{-1}$. For these calibration we assume $f=1$ which is appropriate for $F W H M M_{B H}$ estimates.

	Local ${ }^{a}$			global ${ }^{\text {b }}$			Local ${ }_{\text {corr }}^{b}$		
	$\log K$	α	scatter (dex)	$\log K$	α	scatter (dex)	$\log K$	α	scatter (dex)
FWHM(H α), L_{5100}	6.779	0.650	0.16	6.958	0.569	0.19	6.845	0.650	0.16
$\operatorname{FWHM}(\mathrm{H} \alpha), L_{6200}$	6.842	0.634	0.16	7.062	0.524	0.22	6.891	0.634	0.16
FWHM (H α), L ($\mathrm{H} \alpha)$	7.072	0.563	0.18	7.373	0.514	0.23	7.389	0.563	0.18
FWHM(H β), L_{5100}	6.721	0.650	0.00	6.864	0.568	0.00	6.740	0.650	0.00
FWHM(Mg II), L_{3000}	6.906	0.609	0.25	6.955	0.599	0.29	6.925	0.609	0.25
FWHM(C iv), L_{1450}	6.331	0.599	0.33	6.349	0.588	0.38	6.353	0.599	0.33

2.4.4.2 Other lines

In order to calibrate $\mathrm{H} \alpha, \mathrm{Mg}_{\text {II }}$ and C Iv line measurements to match the $M_{\mathrm{BH}}(\mathrm{H} \beta)$ predictions we follow standard procedures (e.g. McLure \& Dunlop, 2004; Vestergaard \& Peterson, 2006; Trakhtenbrot \& Netzer, 2012) that basically rescale $R_{\text {BLR }}\left(L_{5100}\right)$ to $R_{\mathrm{BLR}}\left(L_{\lambda}\right)$ (see Eqn. 2.2.3) and then rescale $\mu(\lambda)$ to $M_{\mathrm{BH}}(\mathrm{H} \beta)$ where $\mu(\lambda)=$ $G^{-1} R_{\text {BLR }}\left(L_{\lambda}\right)$ FWHM (line) ${ }^{2}$.

This approach assumes that M_{BH} scales as FWHM^{2}, which follows from a virialization of the line emitting region. According to the direct proportionality that we found between $\operatorname{FWHM}(\mathrm{H} \beta), \operatorname{FWHM}(\mathrm{H} \alpha)$ and $\operatorname{FWHM}(\mathrm{Mg} \mathrm{II})$ (see 2.4.3), it will be enough to assume virialization of the $\mathrm{H} \beta$ emitting region. We note that several previous studies have instead allowed total freedom to the dependence of M_{BH} on FWHM (e.g., Shen \& Liu, 2012), instead of assuming a virial relation. However, there is no physical motivation for this approach (except perhaps for Civ) apart from the attempt to minimize residuals with regard to $M_{\mathrm{BH}}(\mathrm{H} \beta)$. We focus on identifying those sources which appear to represent the largest deviation from virial equilibrium, and excluding them from the analysis. As explained in $\$ 2.4 .3 .4$, these are the five sources with the largest deviations between $\operatorname{FWHM}(\mathrm{H} \beta)$ and $\mathrm{FWHM}(\mathrm{Mg}$ II), that are mostly small width (FWHM $(\mathrm{H} \beta)<4000 \mathrm{~km} \mathrm{~s}^{-1}$), high $L / L_{\text {Edd }}(\gtrsim 0.17)$ sources, and the two BALQSOs. In such cases $M_{\mathrm{BH}}(\mathrm{H} \alpha)$ and $M_{\mathrm{BH}}(\mathrm{H} \beta)$ are the only methods providing reliable M_{BH} determination.

The results of the rescaled single epoch M_{BH} estimators based on $\mathrm{H} \alpha, \mathrm{H} \beta, \mathrm{Mg}$ II and C iv in $32 / 39$ sources are summarized in Table 2.7 and shown in Figure 2.2.9 where the black solid lines represent the 1:1 relations. We also show the 7 removed sources; BALQSOs in green and objects with discrepant $\operatorname{FWHM}(\mathrm{H} \beta)$ and $\mathrm{FWHM}(\mathrm{Mg}$ II) in magenta.

Figure 2.2 .9 shows that the main sources of scatter in all the M_{BH} relationships in the original sample are the above 7 sources. Removing these objects leaves almost perfect correlations $\left(r_{\mathrm{s}}>0.85, P<10^{-12}\right)$ between mass estimates based on $\mathrm{H} \alpha, \mathrm{H} \beta$ and $\mathrm{Mg}_{\text {II }}$ and even C Iv. In fact, the scatter in $M_{\mathrm{BH}}(\mathrm{H} \alpha)-M_{\mathrm{BH}}\left(\mathrm{Mg}\right.$ II) and $M_{\mathrm{BH}}(\mathrm{H} \alpha)$ M_{BH} (Civ) is reduced from 0.23 to 0.15 dex and from 0.29 to 0.16 respectively for the $L_{6200}-\mathrm{FWHM}(\mathrm{H} \alpha)$ estimates. Unfortunately, it is not easy to identify and remove such objects from a sample where only the C Iv line region is observable. We come back to this issue later in the chapter.

The use of $L(\mathrm{H} \alpha)$ in Xiao et al. (2011), as well as other studies (e.g., Greene \& Ho, 2005), is motivated by the possibility of host-light contribution to L_{6200}, especially in low luminosity (low-redshift) AGN. However, as previously mentioned (\$2.3), most of our objects have negligible host galaxy contamination, and we have accounted for it in the few objects where it is relevant. Thus, we can safely use L_{6200} for $\mathrm{H} \alpha$-based M_{BH} estimates. In table 2.7 we present both $L_{6200}-\mathrm{FWHM}(\mathrm{H} \alpha)$ and $L(\mathrm{H} \alpha)-\mathrm{FWHM}(\mathrm{H} \alpha)$ M_{BH} calibrations.

In Figure 2.2 .9 we also present the best-fit relations that compare our new mass prescriptions with previously published ones (black dashed lines). Particularly we compared our new calibrations with the TN12 Mg II-based calibration, the Xiao et al. (2011) $\mathrm{H} \alpha$-based calibration (an updated version of Greene \& Ho (2005)) and the Vestergaard \& Peterson (2006) C iv-based calibration. We note that these are somewhat simplified comparisons, as a proper analysis of the deviation from each M_{BH} calibration is not straightforward, due to the usage of different f factors; different $R_{\mathrm{BLR}}-L$ relations; assumed cosmology; and even of fitting procedures. Nevertheless, it is evident from the diagram that the deviation from the earlier mass estimates based on CIV are the largest among the three (bottom panel of Fig. 2.2.9).

2.4.4.3 X-Shooter versus SDSS M_{BH} estimates

In Fig. 2.2.10 we compare the M_{BH} estimations using the (lower-S/N) SDSS spectra and (higher S/N) X-Shooter spectra, by plotting $\Delta \log M_{\mathrm{BH}} \equiv \log \left(M_{\mathrm{BH}}(\operatorname{line}) / M_{\mathrm{BH}}(\mathrm{H} \alpha)\right)$ for $\mathrm{Mg}_{\mathrm{II}}$ and Civ versus the S / N of the continuum around $\mathrm{Mg}_{\mathrm{II}}([\mathrm{S} / \mathrm{N}](\mathrm{Mg} \operatorname{II})$). We note that the typical difference between the data sets is $(S / N)_{X S h} \simeq 4 \times(S / N)_{\text {SDSS }}$. As expected (see §2.4.3), objects with unresolved absorption features or incomplete line profiles generally show the largest offsets in mass. Apart from these objects, the scatter in $M_{\mathrm{BH}}(\mathrm{CIV})$ and $M_{\mathrm{BH}}(\mathrm{Mg} \mathrm{II})$ estimates is independent of the S / N. This is not surprising because of the good agreement between X-Shooter- and SDSS-based FWHM(C iv) measurements (see \$2.4.3.1). We conclude that the scatter in Mg II- and C iv-based mass estimates is dominated by intrinsic differences between FWHM(Mg iI)FWHM(CIV) and FWHM(H $\alpha)$ as well as between $L_{5100}-L_{3000}$ and L_{6200}.

Figure 2.2.10: A comparison of M_{BH} estimates from X-Shooter and SDSS spectra. We show the offsets in mass estimates, $\Delta \log M_{\mathrm{BH}} \equiv \log \left(M_{\mathrm{BH}}(\right.$ line $\left.) / M_{\mathrm{BH}}(\mathrm{H} \alpha)\right)$, vs. the S / N of the continuum around Mg II ($[\mathrm{S} / \mathrm{N}](\mathrm{Mg}$ II)) using SDSS (black dots) and X-Shooter (blue diamonds) data for the Mg II (left panel) and C IV (right panel) lines. SDSS data with unresolved absorption features (red dots) or incomplete line profiles (yellow dots) are also shown.

2.4.5 The Civ line as a Black Hole mass estimator

As can be seen in Figure 2.2 .8 and also mentioned in $\S \$ 2.4 .3$, the width of C iv shows only weak correlations (if at all) with the widths of the other lines we study in this chapter. This result together with the significant blue-shifts observed in the C iv line center $(\Delta v=-1200 \pm 1000)$ make mass estimates based on the Civ line significantly more uncertain. However, In high-z objects $(2 \lesssim z \lesssim 5)$ CIV is the only prominent broad emission line that lies within the optical window. It is therefore important to explore possibilities to improve M_{BH} determination by means of CIV. There have been already some attempts in this direction. For instance, Runnoe et al. (2013) and Brotherton et al. (2015a) claim a correlation between the line peak ratio $L_{P}(\mathrm{Si}$ IV +O IV] $) / L_{P}(\mathrm{C}$ IV) and the FWHM ratio FWHM (Civ) /FWHM (H β) driven by Eigenvector 1 (Boroson \& Green, 1992) that would help to reduce the scatter in M_{BH} from 0.43 dex to 0.30 dex, Denney et al. (2013) propose that having high quality spectra and using the velocity dispersion of the line ($\sigma_{\text {line }}$), instead of FWHM, will lead to accurate $M_{\text {BH }}$ estimations. However, Denney et al. (2013) sample is limited to only 6 objects and our larger, high quality sample does not show any correlation between $\sigma_{\text {line }}(\mathrm{H} \beta)$ and $\sigma_{\text {line }}(\mathrm{C}$ IV).

In the following section we test the Runnoe et al. (2013) suggested relation as well as other relationships that can be used to improve the CIV-based mass determination method.

Table 2.8: Spearman correlation coefficients, probability, scatter, and the best fit parameters $\left(\log F W H M_{\text {ratio }}=\beta \log L_{P}^{\text {ratio }}+C\right)$ between the listed quantities.

	$\log \left(L_{\mathrm{P}}(\operatorname{Si~IV}+\mathrm{O}\right.$ IV] $\lambda 1400) / L_{\mathrm{P}}(\mathrm{C}$ IV $)$)					$\log \left(L_{\mathrm{P}}(\mathrm{C} \mathrm{III}] \lambda 1909\right) / L_{\mathrm{P}}(\mathrm{C}$ IV $)$) $)$				
	$r_{\text {s }}$	P	scatter(dex)	β	C	$r_{\text {s }}$	$\mathrm{P}(\%)$	scatter (dex)	β	C
\log (FWHM (C IV) /FWHM (H α))	0.36	0.02	0.35	0.76	-0.51	0.34	3	0.34	0.72	-0.55
$\log (\mathrm{FWHM}(\mathrm{C} \mathrm{iv}) / \mathrm{FWHM}(\mathrm{H} \beta))$	0.44	0.003	0.32	0.55	-0.31	0.47	0.2	0.30	0.57	-0.33
$\log (\mathrm{FWHM}$ (C iv) /FWHM (Mg II) $)$	0.51	0.003	0.28	0.69	-0.72	0.57	0.02	0.19	0.52	-0.52
$\log (\mathrm{FWHM}(\mathrm{Civ}) /$ FWHM (H β)) from R13	0.64	3×10^{-9}	0.26	0.57	-0.36	---	-- -	-- -	---	---

2.4.5.1 Rehabilitating Civ?

In Table 2.8 we show the correlation coefficient, correlation probability and scatter between $L_{\mathrm{P}}(\mathrm{Si}$ IV +O IV] $) / L_{\mathrm{P}}(\mathrm{C}$ IV) and FWHM (CIV) $/ \mathrm{FWHM}(\mathrm{H} \beta)$ as well as several other similar line peak and FWHM ratios that are listed in the table. In Figure 2.2.11 we compare such quantities.

As can be seen in table 2.8 and Fig. 2.2.11, we confirm the correlation reported by Runnoe et al. (2013), however with a lower level of significance and larger scatter. These differences may be attributed to the the smaller size of our sample (39 objects here vs. 85 in R13), and the somewhat lower S / N in the $\mathrm{H} \beta$ region for the fainter sources in our sample, compared with R13. We can also see in Table 2.8 and Fig. 2.2.11 that our best fit relation between $L_{\mathrm{P}}\left(\mathrm{SiIV}+\mathrm{O}\right.$ IV]) $/ L_{\mathrm{P}}$ (C iV) and FWHM (CIV)/FWHM $(\mathrm{H} \beta)$ (black solid line in top-middle panel) is in very good agreement with the one presented in R13 (red dashed line in top-middle panel).

We also find that $L_{\mathrm{P}}\left(\mathrm{C}_{\text {IIII }}\right) / L_{\mathrm{P}}$ (CIV) correlations are slightly stronger than the analogous $L_{\mathrm{P}}(\mathrm{Si}$ IV +O IV] $) / L_{\mathrm{P}}(\mathrm{C}$ IV) correlations. At the same time the strongest correlations are those involving these line peak ratios and FWHM (C IV) /FWHM (Mg II). These relationships can be used to derive "corrected" M_{BH} estimates in cases where the relevant line peak ratios can be observed.

Below we present the corrected $M_{\text {BH }}$ that can be derived from Civ and SiIV+O Iv] measurements:

$$
\begin{align*}
M_{\mathrm{BH}}\left(\mathrm{Mg} \mathrm{II}_{\mathrm{pred}}=\right. & 1.13 \times 10^{6}\left(\frac{L_{1450}}{10^{44}}\right)^{0.57} \times\left(\frac{\mathrm{FWHM}(\mathrm{C} \mathrm{IV})}{10^{3} \mathrm{~km} \mathrm{~s}^{-1}}\right)^{2} \\
& \times\left(\frac{\left.L_{P}(\mathrm{Si} \mathrm{IV}+\mathrm{O} \mathrm{IV}]\right)}{L_{P}\left(\mathrm{C}_{\text {IV })}\right)}\right)^{-1.66} \tag{2.2.6}
\end{align*}
$$

and from C IV and C III] measurements:

$$
\begin{align*}
M_{\mathrm{BH}}\left(\mathrm{Mg} \mathrm{II}_{\mathrm{pred}}=\right. & 5.71 \times 10^{5}\left(\frac{L_{1450}}{10^{44} \mathrm{erg} \mathrm{~s}^{-1}}\right)^{0.57} \times\left(\frac{\mathrm{FWHM}(\mathrm{C} \mathrm{IV})}{10^{3} \mathrm{~km} \mathrm{~s}^{-1}}\right)^{2} \\
& \times\left(\frac{\left.L_{\mathrm{P}}(\mathrm{C} \mathrm{III}]\right)}{L_{\mathrm{P}}(\mathrm{C} \mathrm{IV})}\right)^{-2.09} \tag{2.2.7}
\end{align*}
$$

Figure 2.2.11: Top panel: Comparison of the $\mathrm{H} \alpha$-Civ (left), $\mathrm{H} \beta$-Civ (middle) and Mg iI-Civ (right) FWHM ratios with the Si IV+OIV]- Civ line peak ratio. The Red dashed line represents the best-fit relation reported by Runnoe et al. (2013) and the black solid lines represent our best fit relation. Middle panel: same as top panel but this time we compare with the C iri]- Civ line peak ratio. Bottom panel: Predicted M_{BH} masses using the correlations of the Mg II-C iv FWHM ratio with the Si iv+O Iv]- C iv (bottom-left) and the C ini]- C iv (bottom-right) line peak ratios. Green stars represent Broad absorption lines quasars (BALQSO) and magenta points represent the broadMg II objects. The black solid lines represent the 1:1 relation.

The confirmation of the Runnoe et al. (2013) correlation, and the new correlations reported here, should assist in rehabilitating Civ for more reliable M_{BH} measurements, by relying on the nearby SiIV+OIV] and/or C iII] emission lines. Even for those combinations of observables which do not significantly reduce the scatter in M_{BH} determinations, they provide an improvement in the accuracy of rest-frame UV-based M_{BH} estimations since these prescriptions compensates the effect of L / L_{Edd} in the C IV profile.

Chapter 3

Can we improve C iv-based single epoch supermassive black hole mass estimations?

3.1 Introduction

The mass of SMBHs is known to be related to their host-galaxy properties through the so-called $M_{\mathrm{BH}^{-}} \sigma_{\star}$ relation (e.g. Ferrarese \& Merritt, 2000; Häring \& Rix, 2004; Gültekin et al., 2009; Xiao et al., 2011; Kormendy \& Ho, 2013; McConnell \& Ma, 2013). Consequently, for a complete understanding of the formation and growth of SMBHs and their host galaxies it is crucial to obtain precise and accurate measurements of M_{BH}.

The single epoch (SE) black hole mass estimation method is very broadly used on large samples of unobscured, type-I AGN (Croom et al., 2004, McLure \& Dunlop, 2004; Onken et al., 2004; Fine et al., 2006; Shen et al., 2008; Rafiee \& Hall, 2011; Trakhtenbrot \& Netzer, 2012). This method relies on two basic ingredients: (1) the assumption of virialized gas kinematics in the broad line region (BLR) and (2) the empirical relation from reverberation mapping (RM) experiments between the BLR size $\left(R_{\mathrm{BLR}}\right)$ and the continuum luminosity at al particular wavelength $\lambda\left(L_{\lambda} \equiv \lambda L(\lambda)\right)$ where $R_{\mathrm{BLR}}=K^{\prime}\left(L_{\lambda}\right)^{\alpha}$ with $\alpha \sim 0.5-0.7$ and K^{\prime} a normalizing constant Kaspi et al., 2000, 2005, Bentz et al., 2009; Park et al., 2012; Bentz et al., 2013).

Under these assumptions the full width at half maximum (FWHM) of the broad emission lines is a good proxy for the virial velocity of the BLR clouds. M_{BH} can thus be expressed as:

$$
\begin{equation*}
M_{\mathrm{BH}}=f G^{-1} R_{\mathrm{BLR}} V_{\mathrm{BLR}}^{2}=K\left(L_{\lambda}\right)^{\alpha} \mathrm{FWHM}^{2} \tag{3.3.1}
\end{equation*}
$$

Here G is the gravitational constant, f is a geometrical factor that accounts for the
unknown structure and inclination to the line of sight of the BLR. In this chapter, we assume $f=1$, which is an appropriate median value for M_{BH} estimates using the FWHM (Woo et al., 2015). However, there is a large uncertainty in this value (50%) that can be even larger if it depends on luminosity and/or other line properties (e.g. equivalent widths, line offsets, FWHM; Shen, 2013; Collin et al., 2006). We will come back to this issue in chapter 4.

The most reliable RM-based $R_{\text {BLR }}-L$ relation is the $R_{\text {BLR }}(\mathrm{H} \beta)-L_{5100}$ relation. This relation is the only one that has been established over a large number of sources and covering a large luminosity range ($10^{43} \lesssim L_{5100} \lesssim 10^{46} \mathrm{erg} \mathrm{s}^{-1}$). As a consequence, SE M_{BH} calibrations for other lines need to be re-calibrated to match M_{BH} measurements based on $\mathrm{H} \beta$ and L_{5100}. Such re-calibrations are used to determine M_{BH} values at different redshifts where the $\mathrm{H} \beta$ line maybe too faint or impossible to detect directly. In optical surveys, the $\mathrm{H} \alpha(\lambda 6526 \AA)$ and $\mathrm{H} \beta$ lines can be used up to $z \lesssim 0.8$ (e.g. Greene \& Ho, 2005; Xiao et al., 2011; Shen \& Liu, 2012), the Mg II $\lambda 2798$ (hereafter Mg II) can assist for M_{BH} on sources where $0.6 \lesssim z \lesssim 2.2$ (e.g. McLure \& Jarvis, 2002 , Vestergaard \& Osmer, 2009; Wang et al., 2009; Trakhtenbrot et al., 2011; Shen \& Liu, 2012; Trakhtenbrot \& Netzer, 2012) and the Civ $\lambda 1549$ line (hereafter Civ) is used to estimate black hole masses at even higher redshifts $(2.0 \lesssim z \lesssim 5.0$; Vestergaard \& Peterson, 2006; Park et al., 2013).
M_{BH} calibrations based on low ionization lines (i.e. $\mathrm{H} \alpha$, and Mg II) generally show good agreement with the $\mathrm{H} \beta M_{\mathrm{BH}}$ estimator with a typical scatter of $\lesssim 0.2$ dex (Greene \& Ho, 2005; Xiao et al., 2011; Trakhtenbrot \& Netzer, 2012). However, the analogue recalibration using the C IV high ionization line is more problematic and shows large scatter (0.4-0.5 dex) because of several issues. First, the width of C IV is only weakly correlated, if at all, with the width of the low ionization lines and presents large scatter, in many AGN samples (e.g., Baskin \& Laor, 2005; Netzer et al., 2007; Shang et al., 2007, Shen et al., 2008; Fine et al., 2010; Ho et al., 2012; Shen \& Liu, 2012; Trakhtenbrot \& Netzer, 2012; Tilton \& Shull, 2013). Second, the C IV integrated profiles show large blue-shifts (up to several thousands $\mathrm{km} \mathrm{s}^{-1}$; Richards et al., 2002; Baskin \& Laor, 2005; Shang et al., 2007; Richards et al., 2011) that indicates non virial motions. Third, Denney (2012) found that the core of the broad Civ line does not reverberate as a response to continuum variations. This implies that not only the innermost but also the outermost CIV emitting regions may not be virialized.

Given that C IV is the most widely used line for M_{BH} determination at high redshift $(z \gtrsim 2)$ in optical surveys, it is crucial to design practical methodologies to mitigate the issues related to Civ-based M_{BH} determinations. There have been many efforts to improve single-epoch M_{BH} determinations from Civ (e.g. Vestergaard \& Peterson, 2006; Denney et al., 2013; Park et al., 2013; Runnoe et al., 2013; Tilton \& Shull, 2013; Brotherton et al., 2015a; Coatman et al., 2016). The studies of Denney et al. (2013) and Tilton \& Shull (2013) claimed that in spectra of limited S/N and/or spectral resolution, FWHM(C iv) measurements are underestimating the "real" line widths, in objects with strong intrinsic absorption features that cannot be deblended from the emission lines.

This would partially explain the fact that about 40% of the objects show C IV profiles narrower than the $\mathrm{H} \beta$ profiles (Trakhtenbrot \& Netzer, 2012). However, Corbin \& Boroson (1996) found that even objects with no evidence of absorption features, show FWHM (Civ) $<\mathrm{FWHM}(\mathrm{H} \beta)$. After correcting for intrinsic Civ absorption, Denney et al. (2013) claimed that although FWHM(Civ) still does not correlate well with FWHM $(\mathrm{H} \beta), \sigma(\mathrm{C} I v)$ shows a strong correlation with $\sigma(\mathrm{H} \beta)$ and can safely be used for Civ based M_{BH} determinations. Motivated by this results, Park et al. (2013) obtained high quality data for 39 out of 45 objects of the RM experiments campaign (Bentz et al., 2009) and improved the Vestergaard \& Peterson (2006) C iv-based M_{BH} estimator based on the σ (Civ). We note however that Denney et al. (2013) as well as Park et al. (2013) used non homogeneous and multi-epoch samples that could affect their results. In addition, $\sigma_{\text {line }}$ measurements are highly dependent on the continuum determination method even in high quality data (Peterson et al., 2004; Mejía-Restrepo et al., 2016).

Recently, Coatman et al. (2017) found a strong correlation between the blue-shift of the CIv line centroid and FWHM (CIv)/FWHM $(\mathrm{H} \beta)$ for a sample of 66 high luminosity $\left(10^{46.5} \mathrm{erg} \mathrm{s}^{-1}<L_{\text {Bol }}<10^{47.5} \mathrm{erg} \mathrm{s}^{-1}\right)$ and high redshift quasars $(z>2.1)$. They suggest that this correlation can assist to improve C IV-based black-hole masses reducing the scatter between C IV and $\mathrm{H} \alpha$ based M_{BH} determinations from 0.40 dex to 0.24 dex. However, this procedure is not practical because of the difficulty to accurately determine the redshift of the source without information from low ionization lines. Runnoe et al. (2013) and Brotherton et al. (2015a) used a sample of 85 low-redshift $(0.03<z<1.4)$ and low-luminosity (43.37erg s ${ }^{-1}<\log L_{5100}<46.45 \mathrm{erg} \mathrm{s}^{-1}$) AGN with quasi-simultaneous UV and optical rest-frame spectra to propose a method to rehabilitate C IV for M_{BH} determination. The method consisted of using a correlation that they found between the Siiv+Oiv] $\lambda 1400-\mathrm{C}$ iv line peak intensity ratio and the $\mathrm{H} \beta$-C iv FWHM ratio. Using this correlation it is possible to predict FWHM $(\mathrm{H} \beta)$ from measurements of the Si IV+O IV] $\lambda 1400$ (Si IV+O IV] hereafter) emission to obtain more accurate C IV based mass measurements. They specifically claim that the scatter between Civ and $\mathrm{H} \beta$ estimations is reduced from 0.43 dex to 0.33 dex.

In our previous studies, we presented a sample of 39 high-quality, simultaneous (restframe) UV-optical spectra of type-1 AGN at z~1.5 obtained with X-Shooter Capellupo et al. (2015, 2016). Using this sample, Mejía-Restrepo et al. (2016) were able to reproduce the correlation found in Runnoe et al. (2013) but with a weaker statistical significance. Mejía-Restrepo et al. (2016) also found a similar but alternative correlation between the $\left.\mathrm{C}_{\text {III }}\right] \lambda 1909$-C IV line peak intensity ratio and the $\mathrm{H} \beta-\mathrm{C}$ IV FWHM ratio. In general, we found that the ratios of $\mathrm{FWHM}(\mathrm{CIV})$ to the FWHM of the $\mathrm{H} \alpha$, $\mathrm{H} \beta$ and Mg II low ionization lines are correlated with both, the Si IV+O IV]-CIV and the C III] $\lambda 1909$ - C ivline peak ratios. In spite of these correlations, we found that none of them are able to reduce the scatter between Civ-based M_{BH} estimations and the low ionization line M_{BH} estimations.

It is important to point out that the findings of Coatman et al. (2017), Mejía-

Restrepo et al. (2016) and Runnoe et al. (2013) are all obtained from relatively small samples (230, 69 and 39 objects respectively) that map different regions of the parameter space of the AGN population (see $\S 3.2$). Thus, the significance of their findings may be affected by statistical fluctuation and/or could not be applicable to the overall population of non-obscure type-I AGN population.

The purpose of this chapter is to test on large survey quality samples the validity of these practical alternatives to improve C IV-based M_{BH} estimations proposed to date. To accomplish this goal, in this chapter we use data from the Sloan Digital Sky Survey (SDSS York et al., 2000). We select quasars with simultaneous spectral coverage of the Si IV + O IV], C IV, C III] $\lambda 1909$ (C III] hereafter), and Mg II emission lines from the spectroscopic quasar catalogue of the SDSS-III data release 12 (DR12Q; Pâris et al., 2016) and the spectroscopic quasar catalogue from the SDSS-II data release 7 (DR7Q; Schneider et al., 2010). All the alternatives that we are testing here stand on correlations that relates FWHM (Civ) /FWHM $(\mathrm{H} \beta)$ with the C Iv line itself or with the properties of emission lines or of continuum windows that are close the C iv line. Due to the lack of simultaneous coverage of CIV and $\mathrm{H} \beta$ lines in the optical SDSS survey, we will carry our analysis in terms of FWHM (C IV) /FWHM (Mg II) \equiv FWHM [C IV/Mg II] instead of $\operatorname{FWHM}(\mathrm{CIV}) / \mathrm{FWHM}(\mathrm{H} \beta)$. The reasons for this choice are that $\mathrm{FWHM}(\mathrm{Mg}$ II $)$ is known to be tightly correlated with $\operatorname{FWHM}(\mathrm{H} \beta)$ and that M_{BH} estimations from these two emission lines are known to agree within 0.2 dex of accuracy (e.g Wang et al., 2009; Shen \& Liu, 2012; Trakhtenbrot \& Netzer, 2012; Mejía-Restrepo et al., 2016). Thus, FWHM(Mg II) is a good proxy for $\operatorname{FWHM}(\mathrm{H} \beta)$.

This chapter is structured as follows. In section $\$ 3.2$ we present the samples and introduce the most relevant parameters that we measured for our analysis. In 83.3 we present and discuss our main results and in $\S 3.4$ we highlight our most important findings. Throughout this chapter we assume a flat $\Lambda \mathrm{CDM}$ cosmology with the following values for the cosmological parameters: $\Omega_{\Lambda}=0.7, \Omega_{\mathrm{M}}=0.3$ and $H_{0}=70 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$.

3.2 Samples, Data and Analysis

In this section we describe in detail two large samples, namely, the SDSS DR7Q and the DR12Q samples, as well as three small samples taken from Coatman et al. (2017), Mejía-Restrepo et al. (2016) and Runnoe et al. (2013). We also describe the fitting procedure and the the emission line and continuum properties that were obtained for the analysis presented here.

Figure 3.3.1: Left column: L_{1450}-FWHM(Civ) bi-dimensional distributions in the SDSS DR7Q (top-left) and DR12Q (bottom-left) samples. The intensity of the colour represents the relative density of points as shown in the colour bars on the right. The black thin lines represent the $25 \%, 50 \%, 75 \%$ and 99% contours centred at the maximum density point. In the top a right side diagrams we show the projected CDFs of L_{1450} and FWHM(CIV), respectively. We superimpose in each panel analogue data from the small X-Shooter, Runnoe +13 and Coatman +17 samples as summarized in the legend. Runnoe +13 is split in RL and RQ objects in the scatter plots. For the Coatman +17 sample we show L_{1350} as a proxy for $L_{1450}\left(L_{1450}\right.$ is not listed in Coatman et al., 2016). We also show the Pearson correlation coefficients (r_{P}) and associated probabilities (P_{P}) for upholding the null hypothesis of independence of the compared quantities. Right column: $L_{3000}-\mathrm{FWHM}\left(\mathrm{Mg}_{\mathrm{II}}\right)$ bi-dimensional distributions. Description is identical to the left column. Coatman+17 data are not available for these quantities.

3.2.1 Large Samples

To accomplish our goal, we need to guarantee the simultaneous coverage of the Mg II C iII] Civ and Si IV+O IV] and emission lines. According to the spectroscopic coverage of the DR7Q $(3800-9200 \AA)$ and the DR12Q (3600-10400 \AA) samples, we selected objects with $1.79<\mathrm{z}<2.0$ and with $1.70<z<2.3$ respectively. These redshift constraints translate into a total of 4817 objects for the DR7Q catalogue and 69092 objects for the DR12Q catalogue. For the DR12Q sample we adopt the visually inspected redshifts from Pâris et al. (2016) and for the DR7Q sample we used the improved SDSS redshifts provided by Hewett \& Wild (2010). The visually inspected redshift in the SDSS DR12Q catalogue have associated systematic errors of the order of $500 \mathrm{~km} \mathrm{~s}^{-1}$. Additionally, in many cases redshifts are estimated using the Civ line centre (Pâris et al., 2012). This makes line shift estimations in the SDSS DR12Q sample less reliable than in the DR7Q sample which have typical uncertainties of $200 \mathrm{~km} \mathrm{~s}^{-1}$.

3.2.2 Small Samples

We complement our analysis with three additional smaller samples with considerably higher-quality spectroscopic data. These samples correspond to the original samples used to propose the different methodologies to improve CIV-based M_{BH} estimations that we described in the introduction.

The first of these samples is described in Runnoe et al. (2013, the Runnoe +13 sample hereafter) consisting of 69 objects including 37 radio-loud (RL) and 32 radio-quiet (RQ) quasars with multi-epoch observations of the (rest-frame) X-ray, Ultraviolet (UV) and optical. The sample comprises objects with $0.03<z<1.4$ and $10^{43.6} \mathrm{erg} \mathrm{s}^{-1}<L_{1450}<$ $10^{46.7} \mathrm{erg} \mathrm{s}^{-1}$.

The second sample is described in Capellupo et al. (2016, the X-Shooter sample hereafter) consisting of 39 RQ quasars observed by the X-Shooter spectrograph that guaranteed simultaneous observations of the rest-frame UV and optical. The sample comprises objects with $1.45<z<1.69$ and $10^{44.8} \mathrm{erg} \mathrm{s}^{-1}<L_{1450}<10^{46.8} \mathrm{erg} \mathrm{s}^{-1}$.

Finally, the sample described in Coatman et al. (2017, the Coatman+17 sample hereafter) consists of 230 RQ quasars with observations of the rest-frame UV and optical. The sample comprises objects with $1.5<z<4.0$ and $10^{45.7} \mathrm{erg} \mathrm{s}^{-1}<L_{1350}<$ $10^{47.7} \mathrm{erg} \mathrm{s}^{-1}$. This sample has not reported Mg II emission line measurements but includes $\mathrm{H} \alpha$ emission line measurements that can be used as a proxy for Mg II line measurements.

3.2.3 Line and continuum measurements

For each object in the SDSS DR7Q and DR12Q samples we fitted the line profiles of the Si iv+O iv], Civ, CiII] and Mg iI emission lines as described in Appendix B.1. From the best fit model of the emission lines of each object we measured the line FWHM, the velocity dispersion ($\sigma_{\text {line }}$; following Peterson et al., 2004) , the rest-frame equivalent width ($E W$ (line)), the integrated line luminosity (L (line)) and the luminosity at the peak of the fitted profile ($L_{\text {peak }}($ line $)$). As line blue-shift indicators we measured two different quantities: (1) the shift of the emission line peak $\left(\Delta V_{\text {peak }}\right)$ and (2) the line centroid shift defined as the weighted shift of the entire profile $\left(\Delta V_{\text {line }}\right)$. For each line we also computed the monochromatic luminosities at different wavelengths ($L_{\lambda} \equiv$ $\lambda L(\lambda))$. We particularly measured $L_{1350}, L_{1450}, L_{2000}$ and L_{3000} that correspond to continuum windows adjacent to the Siriv+Oiv], Civ, Ciir] and the Mg II emission lines, respectively. Finally, from the large DR7Q and DR12Q samples we excluded the Broad Absorption Line Quasar (BALQSO) and objects with unreliable fits following the strategy described in Appendix B.1. We ended up with 3267 objects from the DR7Q catalogue (out of 4817) and 35674 from the DR12Q catalogue (out of 69062 objects). In the case of the Runnoe+13, X-Shooter, and Coatman+17 samples we also extracted from the published data the measurements of the aforementioned quantities whenever available.

3.2.3.1 Line wing dependent and weakly dependent quantities

Mejía-Restrepo et al. (2016) showed that $\sigma_{\text {line }}$ and L (line) are very sensitive to the continuum placement because of their strong dependence on the line wings. Analogously, $\Delta V_{\text {line }}$ (C IV), one of the most widely used blue-shift indicators, is also affected by the continuum placement. This fact motivates us to use the alternative blue-shift estimators $\Delta V_{\text {peak }}$ (see definition above). Similarly, $E W$ (line) is also sensitive to continuum placement. We will consequently use $L_{\text {peak }}$ (line) $/ L_{\lambda}$ as proxy for $E W$ (line) because it depends only weakly on continuum placement.

We thus have a set of quantities that are weakly sensitive to continuum placement given by FWHM, $L_{\text {peak }}$ (line), $\Delta V_{\text {peak }}$ and $L_{\text {peak }}$ (line) $/ L_{\lambda}$, as well as a set of quantities that are strongly affected by the placement of the continuum emission given by $\sigma_{\text {line }}$, L (line), $\Delta V_{\text {line }}$ and $E W$ (line). We emphasize however that the latter quantities are also important because they carry information of the broadest components of the emission lines and of the innermost region of the BLR.

From all the quantities considered here, the most relevant parameters for our analysis are the following:

- L_{1450}
- L_{3000}
- $\operatorname{FWHM}(\mathrm{C}$ IV $)$
- $\mathrm{FWHM}\left(\mathrm{Mg} \mathrm{II}^{\mathrm{I}}\right)$
- FWHM [Civ/Mg II] $=$ FWHM (Civ) $/$ FWHM (Mg II)
- $L_{\text {peak }}[\mathrm{C}$ IV $/ \mathrm{SiOIV}] \equiv L_{\text {peak }}(\mathrm{C}$ IV $\left.) / L_{\text {peak }}(\mathrm{SiIV}+\mathrm{OIV}]\right)$
- $\left.L_{\text {peak }}\left[\mathrm{C}_{\text {IV }} / \mathrm{C}_{\text {IIII }}\right]\right] \equiv L_{\text {peak }}(\mathrm{C}$ IV $\left.) / L_{\text {peak }}\left(\mathrm{C}_{\text {III }}\right]\right)$
- $L_{\text {peak }}[\mathrm{C}$ IV $/ 1450 \AA] \equiv L_{\text {peak }}(\mathrm{C}$ IV $) / L(1450 \AA)$
- $\Delta V_{\text {line }}$ (CIV), blue-shift of the C IV line centroid.
- $\Delta V_{\text {peak }}(\mathrm{C}$ IV), blue-shift of the C iv line peak.

In Figures 3.3.1, 3.3.2, 3.3.3 and 3.3.4 we present relevant information associated to these quantities. First, In Fig. 3.3.1 we show the bi-dimensional distribution of \log FWHM (C iv) versus $\log L_{1450}$ (left column) and \log FWHM (Mg II) versus $\log L_{3000}$ (right column) for the DR7Q (top panels) and the DR12Q (bottom panels) samples. In Figures 3.3 .2 and 3.3 .3 we show the bi-dimensional distributions of \log FWHM (C iv) and \log FWHM [Civ/Mg II] versus $\log L_{\text {peak }}[\mathrm{C}$ IV $/ \mathrm{SiOIV}]$ (left), $\log L_{\text {peak }}[\mathrm{C}$ IV $/ \mathrm{C}$ iII]] (centre-left) and $\log L_{\text {peak }}[\mathrm{C}$ IV $/ 1450 \AA]$ (centre-right) of the DR7Q and the DR12Q samples respectively. Finally, in Figure 3.3.4 we show the bi-dimensional distributions of \log FWHM [C IV $/ \mathrm{Mg}$ II] versus $\Delta V_{\text {peak }}$ (C IV) and $\Delta V_{\text {line }}$ (C IV) of the DR7Q (columns 1 and 2 from left to right) and the DR12Q (columns 3 and 4) samples. We also show the cumulative distribution funtion (CDF) of all the quantities and superimpose the analogue X-Shooter, Runnoe +13 and Coatman +17 data whenever the information is available in the literature. We also show the Pearson correlation coefficient (r_{P}) for the DR7Q and DR12Q bi-dimensional distribution of the associated quantities. The associated probability for upholding the null hypothesis $\left(\mathrm{P}_{\mathrm{P}}\right)$ is also shown whenever $P_{P}>1 \times 10^{-20}$ otherwise it is approximated to $P_{P}=0$.

As can be observed from all the figures described above, all samples used for this chapter are subject to different limitations and, potentially, different selection effects and biases. On the one hand, large samples have the advantage of sampling the overall quasar population. However, they not only have relatively low data quality but are also limited at low luminosity (because of flux limits) and high luminosities (because of the upper redshift cuts Labita et al., 2009). On the other hand, our small samples have very good data quality but can only barely represent the overall quasar population. In Appendix B. 2 we compare all the samples and discuss the advantages and limitations associated to them.

Figure 3.3.2: Bidimensional distributions of FWHM [C IV/Mg II] (top-row) and FWHM(Civ) (bottom row) vs $L_{\text {peak }}\left[\mathrm{C}\right.$ iv/SiOIV] (left-column), $L_{\text {peak }}[\mathrm{C}$ iv/CiiI]] (centre-column) and $L_{\text {peak }}[\mathrm{C}$ IV $/ 1450 \AA]$ (right-column) in the SDSS DR7Q sample. The intensity of the colour represents the relative density of points as shown in the colour bar on the right. The black thin lines represent the $25 \%, 50 \%, 75 \%$ and 99% contours centred at the maximum density point. The projected CDFs of each of the quantities are also shown in the right and top side diagrams. We superimpose to each panel analogue data of the Runnoe+13 and X-Shooter small samples as indicated in the legends. Coloured trend lines represent the median values of FWHM [CIV/Mg II] (middle panels) and FWHM(CIV) (bottom panels) as a function of the different line peak ratios for objects with FWHM (Mg II $)<3000 \mathrm{~km} \mathrm{~s}^{-1}$ (lightturquoise) and FWHM ($\left.\mathrm{Mg}_{\mathrm{II}}\right)>4500 \mathrm{~km} \mathrm{~s}^{-1}$ (red). The dispersion bars represent the $1-\sigma$ dispersion of the points around these trends. Note that the dynamic range that is shown for $\mathrm{FWHM}(\mathrm{C}$ IV) and FWHM(Mg II) coincides (1.6dex). The same situation occurs with the dynamic range that is shown for $L_{\text {peak }}\left[\mathrm{C}\right.$ IV/SiOIV], $L_{\text {peak }}$ [CIV/C iiI]] and $L_{\text {peak }}[\mathrm{C}$ IV $/ 1450 \AA]$ (2.5dex). We also show the correlation coefficient r_{P}. In all these cases $\mathrm{P}_{\mathrm{P}}<10^{-90}$ and are not shown in the panels.

Figure 3.3.3: As in Figure 3.3 .2 but for the SDSS DR12Q sample.

3.3 Results

In this section we explore in detail the different methods that have been proposed by Runnoe et al. (2013), Mejía-Restrepo et al. (2016) and Coatman et al. (2017) to improve C iv-based M_{BH} estimations. First we will analyse our results from the largest SDSS DR7Q and DR12Q samples to subsequently contrast them with those obtained from the Runnoe +13 , X-Shooter and Coatman +17 samples and discuss the possible problems in the analysis done with such small samples.

3.3.1 SDSS DR7Q and DR12Q samples

3.3.1.1 Line Peak Ratios

Here, we first explore the statistical significance of the anti-correlations that link FWHM [C iv/Mg II] with $L_{\text {peak }}\left[\mathrm{C}_{\text {IV }} / \mathrm{SiOIV}\right], L_{\text {peak }}\left[\mathrm{C}\right.$ IV/C IIII] , and $L_{\text {peak }}[\mathrm{C}$ IV $/ 1450 \AA]$ and which are used to improve Civ-based M_{BH} estimations. The reason to include $L_{\text {peak }}[$ Civ $/ 1450 \AA]$ in this analysis, which has not been considered in the literature, is its independence on other emission lines. Hereafter we will refer to these three quantities as the line peak ratio quantities.

Figures 3.3 .2 and 3.3 .3 show the bidimensional distributions of \log FWHM (C iv)

Figure 3.3.4: Bidimensional distributions of FWHM (C iv) /FWHM ($\mathrm{Mg} \mathrm{II}_{\mathrm{II}}$) (toppanels) and FWHM (CIV) (bottom panels) vs the Civ blueshift proxies $\Delta V_{\text {peak }}$ (left) and $\Delta V_{\text {line }}$ (right) in the SDSS DR7Q (two left columns) and DR12Q (two right columns) samples. The intensity of the colour represents the relative density of points as shown in the colour bar on the top. The black thin lines represent the $25 \%, 50 \%$, 75% and 99% contours centred at the maximum density point. The small samples are superimposed as indicated in the legends. The projected CDFs of $\Delta V_{\text {peak }}$ and $\Delta V_{\text {line }}$ are also shown in the top diagrams. In Coatman +17 sample there are not available measurements for the $\mathrm{FWHM}(\mathrm{Mg}$ II). We then used $0.75 \mathrm{FWHM}(\mathrm{H} \alpha)$ as a proxy for FWHM (Mg II) where 0.75 represent the median value of FWHM (Mg II) /FWHM ($\mathrm{H} \alpha$) in the X-Shooter sample from Mejía-Restrepo et al. (2016). Coloured trend lines represent the median values of FWHM [Civ/Mg II] (middle panels) and FWHM(Civ) (bottom panels) as a function of the different blueshift estimators for objects with FWHM (Mg II) $<3000 \mathrm{~km} \mathrm{~s}^{-1}$ (light-turquoise) and FWHM (Mg II) $>4500 \mathrm{~km} \mathrm{~s}^{-1}$ (red). The dispersion bars represent the $1-\sigma$ dispersion of the points around these trends. Measurements of the blue-shift are less reliable in the DR12Q sample than in the DR7Q sample because of the redshift determination (see $\S 3.2$). We also show the correlation coefficient r_{P}. In all these cases $P_{P}<10^{-90}$ and are not shown in the panels.

Table 3.1: Scatter found in correlations between the listed quantities in the DR7Q and DR12Q samples

	scatter			
	FWHM $\left[\mathrm{C}_{\text {IV }} / \mathrm{Mg}\right.$ II $]$		FWHM (C iv $)$	
	DR7Q	DR12Q	DR7Q	DR12Q
$L_{\text {peak }}\left[\mathrm{C}_{\text {IV }} / \mathrm{SiOIV}^{2}\right]$	0.21	0.27	0.17	0.21
$\left.L_{\text {peak }}\left[\mathrm{C}_{\text {IV }} / \mathrm{C}_{\text {IIII }}\right]\right]$	0.22	0.29	0.19	0.23
$L_{\text {peak }}\left[\mathrm{C}_{\text {IV }} / 1450 \AA\right]$	0.20	0.25	0.14	0.19
$\Delta V_{\text {peak }}\left(\mathrm{C}_{\text {IV }}\right)$	0.19	0.28	0.16	0.22
$\Delta V_{\text {line }}\left(\mathrm{C}_{\text {IV }}\right)$	0.21	0.29	0.19	0.24

(bottom row) and \log FWHM $[\mathrm{C}$ IV $/ \mathrm{Mg} \mathrm{II}]$ (middle row) versus $\log L_{\text {peak }}[\mathrm{C}$ IV $/ \mathrm{SiOIV}]$ (left), $\log L_{\text {peak }}\left[\mathrm{C}_{\text {IV }} / \mathrm{C}_{\text {IIII }}\right]$ (middle-left) and $\log L_{\text {peak }}[\mathrm{C}$ IV $/ 1450 \AA]$ (middle-right) for the SDSS DR7Q and DR12Q samples respectively. We also show the Pearson correlation coefficients (r_{p}) and associated probabilities of upholding the null hypothesis $\left(\mathrm{P}_{\mathrm{p}}\right)$. The reader can notice that we are mapping the same dynamical range for \log FWHM (Civ) and \log FWHM [C iv/Mg II] (1.6 dex in both cases) as well as for $\log L_{\text {peak }}[\mathrm{C}$ IV $/ \mathrm{SiOIV}], \log L_{\text {peak }}[\mathrm{C}$ IV $/ \mathrm{C}$ III] $]$ and $\log L_{\text {peak }}[\mathrm{C}$ IV $/ 1450 \AA]$ (a total of 2.5 dex in all of them).

We can see that FWHM [Civ/Mgir] as well as FWHM(Civ) are anti-correlated with $L_{\text {peak }}[$ C IV $/ 1450 \AA], L_{\text {peak }}\left[\mathrm{C}\right.$ IV/SiOIV] and $L_{\text {peak }}[$ C IV $/ \mathrm{C}$ III] $]$ in both SDSS quasar samples. By looking at the r_{p} values, we observe that in most cases the anti-correlations of the three line peak ratio quantities with FWHM(CIV) are tighter than those with FWHM [C iv/Mg II] with the exception of $\left.L_{\text {peak }}\left[\mathrm{C}_{\text {IV }} / \mathrm{C}_{\text {III }}\right]\right]$ in the DR7 sample where the r_{p} values are equal. Furthermore, we find that the scatter of the correlations associated to FWHM(Civ) are smaller than in those associated to FWHM [C IV / Mg II] in both SDSS quasar samples as summarize in Table 3.1.

One possibility to explain this behaviour is that the correlations associated to FWHM [C iv/ $\mathrm{Mg}_{\mathrm{II}]}$ are caused by the more fundamental $\mathrm{FWHM}(\mathrm{C}$ Iv) correlations. This interpretation is supported by the tight correlation between FWHM(Civ) and FWHM [CIv/Mg II] that we find in both SDSS samples ($r_{\mathrm{p}}=0.71$ in both cases). Thus, FWHM [CIV/MgII] is just increasing the scatter of the original correlations with FWHM(Civ).

To check this idea we first subdivided our DR7Q and DR12Q samples into two groups: Objects with FWHM (Mg II) $<3000 \mathrm{~km} \mathrm{~s}^{-1}$ (narrow-group) and objects with FWHM ($\mathrm{Mg}_{\text {II }}$) $>4500 \mathrm{~km} \mathrm{~s}^{-1}$ (broad-group) corresponding to the lower and upper 25%. Then, we binned each group by the line peak ratio quantities. For each bin we computed the median value of FWHM [C iv/Mg II] and FWHM(Civ) and the corresponding $1-\sigma$ scatter. The light-turquoise and red solid lines in Figs. 3.3.2 and 3.3.3 represent the median values and corresponding $1-\sigma$ dispersion in the narrow- and broadgroups, respectively. We can see that light-turquoise and red lines are very close to each other and that their dispersion bars overlap in the diagrams associated to FWHM(C iv) (bottom panels). In those panels the median red lines are just slightly above the light-
turquoise lines (roughly 0.07 dex) in all diagrams. However, in those diagrams associated to FWHM [C IV/Mg II] (middle panels) we can see a clearer separation between light-turquoise and red lines. Particularly red lines (FWHM (Mg II) $>4500 \mathrm{~km} \mathrm{~s}^{-1}$) are now roughly 0.3 dex under the light-turquoise lines (FWHM ($\left.\mathrm{Mg} \mathrm{II}^{\prime}\right)<3000 \mathrm{~km} \mathrm{~s}^{-1}$) in all diagrams. This indicates that $\operatorname{FWHM}\left(\mathrm{Mg}_{\mathrm{II}}\right)$ is driving the dispersion in the correlation between FWHM [C IV/Mg II] and the line peak ratio quantities.

To obtain further support for the previous finding, we looked at the residuals of the line peak ratios when expressed as a function of $\mathrm{FWHM}(\mathrm{Civ})$. In the case that FWHM($\left.\mathrm{Mg}_{\mathrm{II}}\right)$ is driving the dispersion in the FWHM [C IV/Mg II] correlations, we would find significant anti-correlation between these residuals and FWHM (Mg iI). To address this, we fit the line peak ratios in terms of FWHM(Civ) and FWHM [C IV / Mg II] using bisector linear regressions. We find that for the peak ratios as functions of FWHM [CIV/Mg II], all the line-peak-ratio-residuals are significantly anti-correlated with $\mathrm{FWHM}\left(\mathrm{Mg}_{\text {II }}\right)$ ($\left|r_{p}\right|>0.41$ in both samples) as expected. Moreover, for the line peak ratios versus $\mathrm{FWHM}(\mathrm{C} I V)$ we do not find any significant correlations between any of the residuals with $\mathrm{FWHM}\left(\mathrm{Mg} \mathrm{II}^{\mathrm{I}}\right)\left(\left|r_{p}\right|<0.23\right.$ in both samples $)$.

An additional test consists of estimating the statistical significance of the difference between the correlation coefficients associated to FWHM(Civ) and those associated to FWHM [C IV/Mg II] in both SDSS quasar samples. The William's test, using Fisher-z transformations, provides a procedure to test the equality of two Pearson correlation coefficients obtained from the same sample and sharing one common variable (Dunn \& Clark, 1969). By applying this method to the correlations of FWHM(C iv) and FWHM [C IV/Mg II] with the common variable $L_{\text {peak }}\left[\mathrm{C}_{\text {IV }} / \mathrm{SiOIV}\right]$, we find an associated probability for upholding the null hypothesis of $P_{\text {William }}<10^{-5}$ in both SDSS quasar samples. This result discards the equivalence of both the FWHM(CIV)$L_{\text {peak }}[\mathrm{C}$ iv $/ \mathrm{SiOIV}]$ and the FWHM [C IV/Mg II]- $L_{\text {peak }}[\mathrm{C}$ IV $/ \mathrm{SiOIV}]$ correlations coefficients. We find similar behaviours for the case of the FWHM (C IV) $-L_{\text {peak }}[\mathrm{C}$ IV $/ 1450 \AA]$ and FWHM $[\mathrm{C}$ IV $/ \mathrm{Mg}$ II $]-L_{\text {peak }}[\mathrm{C}$ IV $/ 1450 \AA]$ correlations where we find $P_{\text {William }}<10^{-14}$ in both samples. Finally, for the case of the $\operatorname{FWHM}(\mathrm{Civ})-L_{\text {peak }}[\mathrm{C}$ Iv/Ciir $\left.]\right]$ and FWHM [C iv/Mg II]- $L_{\text {peak }}\left[\mathrm{C}\right.$ IV $\left./ \mathrm{C}_{\text {III }}\right]$] correlations we find $P_{\text {William }}=10^{-9}$ in the DR12Q sample.

From all the evidence that we have collected, we can conclude that the prescriptions proposed by Runnoe et al. (2013) and Mejía-Restrepo et al. (2016) are of limited applicability for correcting C IV-based estimates of M_{BH} because the correlations between the line peak ratios and FWHM(C IV) are statistically stronger and very likely causing the weaker correlations associated to FWHM [C iv/Mg ir].

3.3.1.2 C iv blueshifts

We continue to test whether or not the use of $\Delta V_{\text {line }}$ (Civ) proposed by Coatman et al. (2017) can be used to improve C iv-based measurements. In addition to $\Delta V_{\text {line }}$ (C IV)
we will also include $\Delta V_{\text {peak }}$ (CIV) in our analysis. The reason for this choice is the better stability of $\Delta V_{\text {peak }}$ (C IV) to continuum placement as we discussed in $\S 3.2$.

In Fig. 3.3.4 we show the bi-dimensional distribution of FWHM [C IV $\left./ \mathrm{Mg}_{\mathrm{II}}\right]$ and FWHM (C Iv) versus the C iv blue-shift indicators $\Delta V_{\text {peak }}\left(\mathrm{C}\right.$ Iv) and $\Delta V_{\text {line }}(\mathrm{C}$ IV) in both SDSS samples. In each panel we map the same dynamic range for FWHM(Civ) and FWHM [CIV/Mg II]. We also present the Pearson correlation coefficients for each diagram.

Fig. 3.3.4 demonstrates that FWHM [Civ/Mg iI] and FWHM(Civ) are both correlated with $\Delta V_{\text {peak }}$ (Civ) and $\Delta V_{\text {line }}$ (Civ) in both SDSS samples. It is also noticeable that in most cases, the correlations between both blue-shift estimators and FWHM (Civ) are tighter than with FWHM [CIV/Mg II]. The only exception is with $\Delta V_{\text {line }}$ (C iv) in the DR7Q sample where both correlations show similar significance. We can also notice in Table 3.1 that the scatter of the FWHM(C iv) correlations is smaller than the scatter in the corresponding FWHM [C IV/Mg II] correlations in both SDSS samples. These results would indicate that the correlations associated to FWHM(C iv) are causing the correlations associated to FWHM [CIV/Mg II].

We repeated the same three tests to further check the reliability of these results. First, when dividing the samples into two subsets according to their FWHM(Mg II), we find that the separation of the median trends of objects with FWHM (Mg II) <3000 of those with FWHM $\left(\mathrm{Mg}_{\text {II }}\right)>4500 \mathrm{~km} \mathrm{~s}^{-1}$ (light-turquoise and red lines in Fig. 3.3.4) is increased from roughly -0.08 dex in the FWHM(CIV) diagrams to roughly 0.25 dex in the FWHM [C IV/Mg II] diagrams. Second, the analysis of residuals suggests significant anti-correlations with $\mathrm{FWHM}\left(\mathrm{Mg}_{\mathrm{II}}\right)$ in all the blue-shift-residuals associated to FWHM [Civ/Mg II] ($\left|r_{s}\right|>0.36$ in both samples) and no correlations with FWHM (Mg II) in all the blue-shift-residuals associated to $\operatorname{FWHM}(\mathrm{C} \mathrm{IV})\left(\left|r_{s}\right|<0.10\right.$ in both samples). Finally, the relative significance test shows that FWHM(Civ) correlations are indeed stronger than the FWHM [Civ/Mg II] correlations ($\mathrm{P}_{\text {William }}<$ $0.006)$ for $\Delta V_{\text {peak }}$ (Civ) and $\Delta V_{\text {line }}$ (Civ) in the DR12Q sample and for $\Delta V_{\text {line }}$ (C iv) in the DR7Q sample. This test shows that the FWHM(Civ)- $\Delta V_{\text {line }}(\mathrm{C}$ IV) and the FWHM [C iv/Mg ir]- $\Delta V_{\text {line }}(\mathrm{C}$ Iv) correlation coefficients in the DR7Q samples (0.48 and 0.50 respectively) are not statistically different to each other $\left(\mathrm{P}_{\text {William }}=0.1\right.$, smaller than two-sigma significance). All these results support idea that the FWHM(Civ) correlations with the C IV blue-shifts are the main cause for the analogue correlations with FWHM [C IV/Mg II] and suggest that the prescription suggested by Coatman et al. (2017) is of limited applicability to improve C IV mass measurements.

3.3.2 Small Samples

We continue our analysis exploring the small samples described in $\$ 3.2$. Below we analyse the behaviour of the line peak ratios and the blue-shift relations with FWHM(CIV) and FWHM [CIV/Mg II] in those samples and discuss the similarities and divergences

Table 3.2: Pearson correlation coefficients of (1) $\log F W H M(C \mathrm{Iv})$ and (2) $\log F W H M[C \mathrm{IV} / M g \mathrm{II}]$ versus the line peak quantities in (a) the X-Shooter sample, (b) the Runnoe +13 sample, (c) the combination of the X-Shooter and Runnoe +13 samples and (d) the combination of the X-Shooter and Runnoe +13 samples excluding the $R L$ objects. $\left.L_{\text {peak }}[C \mathrm{IV} / C \mathrm{III}]\right]$ measurements are not available for the Runnoe +13 sample .

	$\mathrm{X}^{a} \mathrm{Sh}^{a}$			$\mathrm{R}+13^{b}$			Both^{c}			${\mathrm{Both} \mathrm{RQ}^{d}}$		1	2	1	2	1	2	1	2
$\log L_{\text {peak }}[\mathrm{C}$ IV $/ \mathrm{SiOIV}]$	-0.27	-0.46	-0.02	-0.60	-0.44	-0.65	-0.54	-0.54											
$\log L_{\text {peak }}[\mathrm{C}$ IV $/ 1450 \AA]$	-0.50	-0.36	-0.23	-0.38	-0.52	-0.59	-0.60	-0.59											
$\log L_{\text {peak }}\left[\mathrm{C}\right.$ IV $\left.\left./ \mathrm{C}_{\text {III }}\right]\right]$	-0.25	-0.56	-	-	-	-	-	-											

with respect to our findings in the large SDSS samples.

3.3.2.1 Line Peak Ratios

Given that line peak related information is only available for the X-Shooter and Runnoe +13 samples we limit the analysis of the line peak ratios to these samples. In addition to the SDSS data, in Figures 3.3 .2 and 3.3 .3 we also show the data points and distribution functions associated with the X-Shooter (light-blue dots) and Runnoe +13 samples (lime open dots and lime filled dots for RL and RQ objects, respectively).

As we discuss in Appendix B.2, we remark that both Runnoe+13 and the X-Shooter samples are not complete. Indeed, Runnoe+13 and X-Shooter samples are sampling totally different regions of the parameter spaces determined by (1) the peak quantities and FWHM [Civ/Mg ir] and by (2) the line peak quantities vs FWHM(Civ). The Runnoe +13 sample has a large number of RL objects. In consequence, we would expect that the combination of the X-Shooter and the Runnoe +13 samples will return a closer representation of the total type-1 AGN population after the exclusion of the RL objects from the Runnoe+13 sample.

In table 3.2 we show the correlation coefficients of the line peak quantities versus FWHM(Civ) (1) and FWHM [C iv/Mg II] (2) in the following configurations:

- The individual X-Shooter and Runnoe+13 samples (a and b).
- The combination of the X-Shooter and the Runnoe+13 samples including RL objects (c).
- The combination of the X-Shooter and the Runnoe+13 samples excluding RL objects (d).

From the information in table 3.2 we can observe that for the individual samples in most cases the correlations of FWHM [C IV/ $\left.\mathrm{Mg}_{\mathrm{II}}\right]$ with the line peak quantities are tighter than those associated with $\mathrm{FWHM}(\mathrm{C} I \mathrm{I})$. The same behaviour is found for the

Table 3.3: Absolute values of the Pearson correlation coefficients $\left(\left|r_{\mathrm{p}}\right|\right)$ of the quantities in the first column versus $F W H M(C \mathrm{IV})$ (1) and $F W H M[C \mathrm{IV} / M g \mathrm{II}]$ (2). The central values correspond to the medians obtained from the 100 randomly generated sub-samples selected to have flat distributions in $L_{1450}(a), F W H M\left(C_{\mathrm{IV}}\right)(b), F W H M[C \mathrm{IV} / M g \mathrm{II}](c)$, and $L_{1450}-F W H M(C \mathrm{Iv})(d)$ from the SDSS DR7Q and DR12Q samples. Errors correspond to the central 68% of the $\left|r_{\mathrm{p}}\right|$ distribution.

Random Sampling \Rightarrow	$L_{1450}{ }^{\text {a }}$				FWHM(Civ) ${ }^{\text {b }}$				FWHM [$\left.\mathrm{C}_{\text {IV }} / \mathrm{Mg} \mathrm{II}\right]^{c}$					$L_{1450}-\mathrm{FWHM}(\mathrm{C} \text { IV })^{d}$			
	DR12Q		DR7Q		DR12Q		DR7Q		DR12Q		DR7Q			DR12Q		DR7Q	
	1	2	1	2	1	2	1	2	1	2	1	1	2	1	2	1	2
$L_{\text {peak }}[\mathrm{C}$ IV/SiOIV $]$	$0.63_{-0.03}^{+0.03}$	$0.55_{-0.04}^{+0.03}$	$0.59_{-0.11}^{+0.10}$	$0.52_{-0.09}^{+0.09}$	$0.58_{-0.04}^{+0.05}$	$0.55_{-0.05}^{+0.05}$	$0.611_{-0.06}^{+0.08}$	$0.54_{-0.08}^{+0.08}$	$0.58_{-0.04}^{-0.06}$	$0.57_{-0.05}^{+0.04}$	$0.62+$		${ }_{0}^{8} 0.57_{-0.08}^{+0.08}$	$0.49_{-0.02}^{+0.02}$	$0.47_{-0.02}^{+0.02}$	$0.61_{-0.04}^{+0.04}$	$0.56_{-0.04}^{+0.05}$
$L_{\text {peak }}[$ C IV/CIIII $]$	$0.37_{-0.04}^{+0.04}$	$0.37_{-0.04}^{+0.04}$	$0.37_{-0.11}^{+0.11}$	$10.37_{-0.12}^{+0.11}$	$0.42_{-0.06}^{+0.05}$	$0.41_{-0.05}^{+0.04}$	$0.44_{-0.11}^{+0.11}$	$0.42_{-0.12}^{+0.11}$	$0.42_{-0.04}^{+0.06}$	$0.37_{-0.07}^{+0.05}$	0.49^{+}		${ }_{3}^{7} 0.49_{-0.10}^{+0.09}$	$0.36_{-0.02}^{+0.03}$	$0.36_{-0.03}^{+0.02}$	$0.46_{-0.06}^{+0.05}$	$0.42_{-0.05}^{+0.05}$
$L_{\text {peak }}[$ C IV/ $1450 \AA]$	$0.70_{-0.02}^{+0.03}$	$0.56_{-0.04}^{+0.03}$	$0.72_{-0.08}^{+0.06}$	$0.52_{-0.11}^{+0.09}$	$0.62_{-0.04}^{+0.03}$	$0.52_{-0.04}^{+0.05}$	$0.67_{-0.08}^{+0.05}$	$0.53_{-0.06}^{+0.09}$	$0.59_{-0.05}^{+0.04}$	$0.49_{-0.05}^{+0.05}$	0.73_{-}^{+}	${ }_{-0.09}^{+0.07}$	${ }_{9}^{7} 0.61_{-0.09}^{+0.09}$	$0.57_{-0.02}^{+0.01}$	$0.49_{-0.02}^{+0.02}$	$0.69_{-0.04}^{+0.03}$	$0.54_{-0.04}^{+0.05}$
$\Delta V_{\text {peak }}(\mathrm{C} \mathrm{IV})$	$0.48_{-0.05}^{+0.04}$	$0.42_{-0.03}^{+0.02}$	$0.60_{-0.11}^{+0.09}$	${ }^{9} 0.56_{-0.09}^{+0.08}$	$0.44_{-0.06}^{+0.05}$	$0.37_{-0.05}^{+0.06}$	$0.62_{-0.09}^{+0.08}$	$0.58_{-0.10}^{+0.08}$	$0.42_{-0.05}^{+0.06}$	$0.34_{-0.06}^{+0.06}$	$0.67{ }_{-}^{+}$	${ }_{-0.11}^{+0.06}$	${ }_{1}^{6} 0.64_{-0.06}^{+0.06}$	$0.48_{-0.02}^{+0.02}$	$0.41_{-0.02}^{+0.03}$	$0.60_{+0.04}^{-0.05}$	$0.57_{-0.04}^{+0.05}$
$\Delta V_{\text {line }}(\mathrm{C}$ IV)	$0.62_{-0.03}^{+0.03}$	$0.54_{-0.04}^{+0.04}$	$0.54_{-0.09}^{+0.08}$	$0.56_{-0.09}^{+0.08}$	$0.42_{-0.06}^{+0.05}$	$0.41_{-0.06}^{+0.05}$	$0.55_{-0.09}^{+0.09}$	$0.55_{-0.08}^{+0.09}$	$0.42_{-0.05}^{+0.04}$	$0.40_{-0.05}^{+0.05}$	0.63_{-}^{+}	${ }_{-0.10}^{+0.07}$	${ }_{0}^{7} 0.65_{-0.08}^{+0.06}$	$0.466_{-0.02}^{+0.02}$	$0.45_{-0.03}^{+0.02}$	$0.52_{-0.05}^{+0.04}$	$0.56_{-0.05}^{+0.04}$

combination of both samples including the RL objects. However, we find that when the RL objects are excluded from the analysis the FWHM [CIV/Mg II] and FWHM(Civ) correlations coefficients are statically indistinguishable.

3.3.2.2 Civ blueshifts

Before reporting the results of our comparative analysis for the Coatman+17 sample, we remark that this sample leans towards large luminosity objects as can be seen in Fig. 3.3.1. Nonetheless, its $\Delta V_{\text {line }}$ (Civ) and FWHM(Civ) distribution are in very good agreement with the SDSS-DR7Q sample (see Appendix B. 2 and Figures 3.3.1, 3.3.4 for detalis).

Using the results reported in Coatman et al. (2017), we find that in their sample $\Delta V_{\text {line }}$ (CIV) is very tightly correlated with FWHM(Civ) ($r_{\mathrm{p}}=0.82$). However, we also find that the $\Delta V_{\text {line }}$ (CIv)-FWHM (C iv) /FWHM (H α) Pearson correlation coefficient is essentially equal ($r_{\mathrm{p}}=0.83$). It is also remarkable that Fig. 9 in Coatman et al. (2017) shows that the scatter in the FWHM (C iv) /FWHM (H α) vs $\Delta V_{\text {line }}$ (Civ) correlation is clearly dominated by $\mathrm{FWHM}(\mathrm{H} \alpha)$. These results support our hypothesis that the FWHM(Civ)- $\Delta V_{\text {line }}$ (CIV) correlation is the driver of the FWHM (C Iv) /FWHM (H α)- $\Delta V_{\text {line }}$ (C IV) correlation.

3.3.3 Resampling tests

In this subsection we present different tests designed to check the validity of our findings. They consist of re-sampling our SDSS DR7Q and DR12Q samples in four different ways.

- Flat distribution in L_{1450}.
- Flat distribution in FWHM.
- Flat distribution in FWHM [C IV/Mg II].
- L_{1450} and FWHM simultaneously.

The reason for these tests is to check whether our findings are biased by the peaky distribution in $L_{1450}, \mathrm{FWHM}(\mathrm{C}$ IV) and FWHM [C IV/Mg II] and/or the known correlation between L_{1450} and FWHM(Civ) that we observe in Fig. 3.3.1 (see also Appendix B.2). To this end, we first divided our SDSS samples in bins of 0.5dex in L_{1450} starting at $\log L_{1450}=45.0$ in the DR7Q sample and at $\log L_{1450}=44.5$ in the DR12Q sample. For FWHM (Civ) and FWHM [Civ/Mg II] we divided our sample in bins of 0.4dex. To guarantee an equal number of objects in each bin, we selected 23 objects from the DR7Q sample and 100 objects from the DR12Q sample. We finally subdivided our SDSS samples in bi-dimensional bins of L_{1450} and FWHM(Civ) of (0.5 and 0.4 dex respectively). For each bin we selected 13 and 30 objects in the DR7Q and DR12Q samples. We repeated these procedures 100 times to account for statistical variance because of the limited sampling. In all cases we find that the FWHM(CIV) associated correlations show larger or equivalent statistical significance than the FWHM [C iv/Mg II] correlations as suggested by the William's method (See Table 3.3 for details).

3.4 Discussion

C iv-based M_{BH} estimations are known to be problematic. In the past few years Runnoe et al. (2013), Mejía-Restrepo et al. (2016) and Coatman et al. (2017) provided alternative methods attempting to improve C IV-based masses. All these methods were based on correlations between different observables associated to the C ivemission and the ratio of FWHM (Civ) and the FWHM of low-ionization lines (i.e. $\mathrm{H} \alpha, \mathrm{H} \beta$ and Mg II). In spite of the good quality of the data used in these works, all these methods were derived using small samples with limited coverage of the parameter space of the observables involved in each method. Using SDSS DR7Q and DR12Q samples (which in spite of their quality limitations are more representative of the quasar population) we showed that all these methods are of limited applicability to improve C IV-based M_{BH} estimations. In fact, we find that the aforementioned methods depend on correlations that are actually associated to the FWHM of the C iv profile itself and not to an interconnection between FWHM(C IV) and the FWHMs of the low ionization lines. Additionally, our analysis suggests that from all the correlations that we considered with FWHM(C iv), those that are associated to $L_{\text {peak }}[\mathrm{C}$ IV $/ 1450 \AA]$ are the tightest ones. We also find that other quantities considered in this work ($L_{\text {peak }}\left[\mathrm{C}\right.$ IV/SiOIV], $L_{\text {peak }}[\mathrm{C}$ IV $/ \mathrm{C}$ IIII]], $\Delta V_{\text {peak }}\left(\mathrm{C}\right.$ IV) and $\Delta V_{\text {line }}(\mathrm{C}$ IV $)$) are all tightly correlated with $L_{\text {peak }}[\mathrm{C}$ IV $/ 1450 \AA$] (see Table. B.2.)

Further support comes from the principal component analysis (PCA) described in Appendix B.3. This analysis reveals that the first Eigenvector is mostly driven by the anti-correlation between $\mathrm{FWHM}(\mathrm{CIV})$ and $L_{\text {peak }}[\mathrm{CIV} / 1450 \AA]$. This occurs in such a way that the relations between these quantities and FWHM [C IV $/ \mathrm{Mg}$ II], L_{1450}, EW (Civ) , $L_{\text {peak }}[\mathrm{C}$ iv $/ \mathrm{SiOIV}], L_{\text {peak }}[\mathrm{C}$ IV $/ \mathrm{C}$ IIII $], \Delta V_{\text {peak }}(\mathrm{C}$ IV $)$ and $\Delta V_{\text {line }}(\mathrm{C}$ IV) are basically driven by the FWHM(C IV)- $L_{\text {peak }}[\mathrm{C}$ IV $/ 1450 \AA]$ anti-correlation. Notably, the second Eigenvector is mostly driven by FWHM(Mg II) and shows no correlation with any C IV related quantity. This indicates that the formation of the Mg iI and C IV profiles is independent from each other. In other words, there is no-possibility to relate the non-virialized C IV emission with the virialized Mg II emission. $^{\text {I }}$

A possible explanation for this could be associated to the fact that the more luminous a quasar is, the smaller its EW(C IV). This phenomenon is known as the Baldwin Effect in honour its discoverer Baskin \& Laor (2004, 2005); Richards et al. (2011); Ge et al. (2016). Both, the quasar luminosity and EW(CIV), are known to be related with the Civ blue-shift, the Civ asymmetry, and the relative strength of the X-ray emission (Richards et al., 2011). Indeed, if we take $L_{\text {peak }}$ [CIV/1450 \AA] as a proxy for the EW of C IV and consider the anti-correlation between FWHM(C IV) and L_{1450}, we can conclude that the very tight anti-correlation between FWHM(C IV) and $L_{\text {peak }}[\mathrm{C}$ IV $/ 1450 \AA]$ can be seen as inherited from the Baldwin Effect.

The Baldwin Effect is believed to the be driven by the Eddington ratio that induces radiation driven winds into the BLR region that produces the CIV emission. In this scenario, as the Eddington ratio increases, the wind become stronger and increases the velocity of the outflowing Civ material (this velocity is directly related to the Civ blueshift). If this scenario is at play, our findings would suggest that winds would also induce larger FWHM(CIV).

Chapter 4

Nuclear gas distribution effect on the mass determination of distant supermassive black holes

The material presented in this chapter is extracted from Mejia-Restrepo et al 2017 submitted to Nature-Astronomy.

4.1 Introduction

Active Supermassive black holes (SMBHs) are powered by accretion flows, probably in the form of accretion discs (ADs) that convert gravitational energy into radiation (Shakura \& Sunyaev, 1973). Gas in the Broad Line Region (BLR), located in the vicinity of the SMBH and moving at Keplerian velocities of thousands of kilometres per second, is photo-ionized by the AD producing broad emission lines. Under virial equilibrium, the observed full width at half maximum ($\mathrm{FWHM}_{\mathrm{obs}}$) of these lines can be used as a proxy for the virial velocity $\left(V_{\mathrm{BLR}}\right)$ and M_{BH} can be expressed as:

$$
\begin{equation*}
M_{\mathrm{BH}}=G^{-1} R_{\mathrm{BLR}} V_{\mathrm{BLR}}^{2}=f G^{-1} R_{\mathrm{BLR}} \mathrm{FWHM}_{\mathrm{obs}}^{2} \tag{4.4.1}
\end{equation*}
$$

Here, G is the gravitational constant, $R_{\text {BLR }}$ is the mean BLR distance to the SMBH and f is the virial factor that accounts for the differences between the unknown $V_{\text {BLR }}$ and $\mathrm{FWHM}_{\mathrm{obs}}$ that are mostly caused by the BLR gas distribution of each object. Since even in the closest active galaxies the BLR cannot be resolved with current capabilities, $R_{\text {BLR }}$ is estimated from reverberation mapping (RM) experiments that show a strong correlation between this distance and the continuum luminosity (the $R_{\text {BLR }}-L$ relation) (Kaspi et al., 2000; Bentz et al., 2013). f is assumed to be constant for all systems and is usually determined by requiring RM-based masses (from Equation 4.4.1) to agree, on average, with masses estimated from the relation between M_{BH} and the stellar velocity
dispersion found in local galaxies (Onken et al., 2004; Graham, 2015, Woo et al., 2015). This indirect technique to determine M_{BH} is known as the "single epoch virial method" (Trakhtenbrot \& Netzer, 2012; Shen, 2013).

Figure 4.4.1: Accretion-disk-derived Black Hole Mass versus Single Epoch Black Hole Masses. The black solid line shows the 1:1 relation. The colour of the points scales with the $\mathrm{FWHM}_{\text {obs }}$ of the emission lines in each panel. The approaches yield masses in very good agreement with each other, albeit with a significant scatter. The scatter shows a strong gradient with $\mathrm{FWHM}_{\mathrm{obs}}$, from small $\mathrm{FWHM}_{\mathrm{obs}}$ (blue) above the 1:1 relation to large $\mathrm{FWHM}_{\text {obs }}$ (red) below.

Unfortunately, the virial method is subject to biases and uncertainties associated with our ignorance of the dependence of f on additional physical properties. These could include radiation pressure perturbations (Marconi et al., 2008; Netzer \& Marziani, 2010), non virial velocity components (Denney et al., 2009b, 2010), the relative thickness $\left(H / R_{\text {BLR }}\right)$ of the Keplerian BLR orbital plane (Gaskell, 2009), and the line-of-sight inclination angle (i) (Wills \& Browne, 1986; Shen \& Ho, 2014; Runnoe et al., 2014) of this plane. An analytical expression for f in the case of a planar BLR of thickness $H / R_{\text {BLR }}$ is given by:

$$
\begin{equation*}
f=\left[4\left(\sin ^{2} i+\left(H / R_{\mathrm{BLR}}\right)^{2}\right)\right]^{-1} \tag{4.4.2}
\end{equation*}
$$

where $\sin ^{2} i$ accounts for the line-of-sight projection of the Keplerian velocity of the BLR orbital plane (Collin et al., 2006; Decarli et al., 2008a). The nature of the velocity component responsible for the thickness of the BLR in unclear. However, ideas such as non-coplanar orbits, accretion disk pressure, induced turbulence and outflowing disc winds have been suggested in the literature as plausible mechanisms to puff up the BLR (Collin et al., 2006; Czerny et al., 2016). Given all these, the assumption of an universal f introduces an uncertainty in the single epoch method which is estimated to be at least a factor of 2-3.

Here we used an alternative method to estimate M_{BH} by fitting the AD spectra of 37 active galaxies at $\mathrm{z} \sim 1.5$ (about $1 / 3$ of the current age of the universe), observed using the ESO X-Shooter spectrograph which provides simultaneous, very wide wavelength coverage of the AD emission (Capellupo et al. 2015, 2016) (see $\S 4.3 .1$ in the Methods section for sample description). The spectra were fitted with standard, geometrically thin, optically thick AD models (Shakura \& Sunyaev, 1973) including general relativistic and disc atmosphere corrections (Slone \& Netzer, 2012). Each model is determined by several properties, mainly its $M_{\mathrm{BH}}\left(M_{\mathrm{BH}}^{\mathrm{AD}}\right)$, the normalized accretion rate (expressed as the Eddington ratio $\left.\lambda_{\text {Edd }}=L / L_{\text {Edd }}\right)$ and the black hole spin $\left(a_{*}\right)$ (see $\$ 4.3 .2 .2$ in the Methods section and Appendix C for model description). Because the method only relies on our ability to model the AD , the resulting $M_{\mathrm{BH}}^{\mathrm{AD}}$ are completely independent of the more uncertain BLR geometry and kinematics, and therefore of any assumptions on the f factor. In chapter 2 we estimated the associated single epoch black hole masses $\left(M_{\mathrm{BH}}^{\mathrm{SE}}\right)$ of this sample from the $\mathrm{H} \alpha, \mathrm{H} \beta, \mathrm{Mg}_{\text {II }}$ and C iv broad emission lines. This open the possibility to (1) compare both M_{BH} estimations and determine possible dependences of f in other observational properties and (2) infer the underlying distribution of the BLR gas.

4.2 Results and Discussion

M_{BH} determinations from the aforementioned methods are compared in Figure 4.4.1, The approaches yield masses in very good agreement with each other, albeit with significant scatter of a factor of about 2. We looked for possible drivers for this scatter and found a strong gradient in $\mathrm{FWHM}_{\text {obs }}$ across the relation, as can be seen by the colour gradient of the data points in Figure 4.4.1.

The ratio between $M_{\mathrm{BH}}^{\mathrm{AD}}$ and $M_{\mathrm{BH}}^{\mathrm{SE}} / f=G^{-1} R_{\mathrm{BLR}} \mathrm{FWHM}_{\text {obs }}^{2}$ allows us to determine a proxy for the virial factor f which we define as:

$$
\begin{equation*}
f_{\mathrm{AD}}(\text { line }) \equiv M_{\mathrm{BH}}^{\mathrm{AD}} /\left(G^{-1} R_{\mathrm{BLR}}\left(\mathrm{FWHM}_{\mathrm{obs}}(\text { line })\right)^{2}\right) \tag{4.4.3}
\end{equation*}
$$

In Figure 4.4.2 we show f_{AD} (line) as a function of the $\mathrm{FWHM}_{\text {obs }}$ for the $\mathrm{H} \alpha, \mathrm{H} \beta, \mathrm{Mg}_{\mathrm{II}}$ and Civ broad emission lines. Strong anti-correlations between $f_{\text {AD }}$ and $\mathrm{FWHM}_{\text {obs }}$ are present for all lines. These correlations are found to be significantly stronger than the expected correlations between f_{AD} and $G^{-1} R_{\mathrm{BLR}} \mathrm{FWHM}_{\mathrm{obs}}^{2}$ (see Table 4.1 and see

Figure 4.4.2: Virial factor f as a function of $\mathbf{F W H M}_{\text {obs }}$ for the $\mathbf{H} \alpha, \mathbf{H} \beta, \mathbf{M g} \mathbf{i i}$ and C iv broad emission lines. The black solid line is the best linear fit to the data. There is a clear anti-correlation between f_{AD} and $\mathrm{FWHM}_{\mathrm{obs}}$ for all lines as suggested in Figure 4.4.1. The colour of the points scales with the measured monochromatic luminosity at $5100 \AA\left(L_{5100}\right)$ for each object, as indicated by the colour bar. Redder (bluer) points correspond to larger (smaller) values of L_{5100}. No clear gradient is seen in the scatter of these anti-correlations as a function of L_{5100}.
$\$ 4.3 .3$ in the Methods section for details). We can conclude that the $\mathrm{FWHM}_{\mathrm{obs}}$ of the broad lines drives the discrepancies between $M_{\mathrm{BH}}^{\mathrm{AD}}$ and $M_{\mathrm{BH}}^{\mathrm{SE}}$.

We also determined how $M_{\mathrm{BH}}^{\mathrm{AD}}$ depends on $\mathrm{FWHM}_{\mathrm{obs}}$ and L_{λ} (as described in $\$ 4.3 .3$ in the Method section). The dependence on $\mathrm{FWHM}_{\text {obs }}$ is close to linear and, therefore, very different from the expected squared dependency found in Equation 4.4.1. The dependence on the monochromatic luminosities is consistent, within errors, with that found for single epoch calibrations (i.e., $M_{\mathrm{BH}}^{\mathrm{AD}} \propto R_{\mathrm{BLR}}$). This indicates that L_{λ} has no impact on the scatter between $M_{\mathrm{BH}}^{\mathrm{SE}}$ and $M_{\mathrm{BH}}^{\mathrm{AD}}$ and that f can be expressed as a single function of the $\mathrm{FWHM}_{\text {obs }}$ of the broad emission lines. As can be seen in Table 4.1, our result are consistent within uncertainties with $f_{\mathrm{AD}} \propto \mathrm{FWHM}_{\mathrm{obs}}{ }^{-1}$ for all lines.

Table 4.1: The virial factor as a function of $\boldsymbol{F} \boldsymbol{W H} M_{\mathrm{obs}}$ for the broad emission lines. $\mathrm{FWHM}_{\mathrm{obs}}^{0}$ and β are best fit parameters found for $f_{\mathrm{AD}}=$ $\left(F W H M_{\mathrm{obs}}(\text { line }) / \mathrm{FWHM}_{\mathrm{obs}}^{0}\right)^{\beta} . \quad r_{\mathrm{s}}$ and P_{s} are the Spearman correlation coefficient and associated null-hypothesis probability for the f_{AD} vs $F W H M_{\mathrm{obs}}(\dagger)$ and f_{AD} vs $G^{-1} R_{B L R} F W H M_{\text {obs }}^{2}(\ddagger)$ correlations.

			$\mathrm{FWHM}_{\text {obs }}(\dagger)$		$G^{-1} R_{\text {BLR } \mathrm{FWHM}_{\text {obs }}^{2}(\ddagger)}$	
Broad line	$\mathrm{FWHM}_{\text {obs }}^{0}\left[\mathrm{~km} \mathrm{~s}^{-1}\right]$	β	r_{s}	P_{s}	r_{s}	P_{s}
$\mathrm{H} \alpha$	4000 ± 700	-1.00 ± 0.10	-0.85	4×10^{-11}	-0.44	5×10^{-3}
$\mathrm{H} \beta$	4550 ± 1000	-1.17 ± 0.11	-0.84	8×10^{-11}	-0.48	2×10^{-3}
$\mathrm{Mg}_{\text {II }} \lambda 2798$	3200 ± 800	-1.21 ± 0.24	-0.75	9×10^{-8}	-0.23	2×10^{-1}
$\mathrm{C}_{\text {IV }} \lambda 1549$	5650 ± 3000	-1.29 ± 0.35	-0.61	6×10^{-5}	-0.25	1×10^{-1}

Previous work attempted to derived f by comparing single epoch SMBH mass estimations with masses obtained using the scaling relations between the black hole mass and the luminosity (Decarli et al., 2008b) or stellar dispersion (Shen \& Ho, 2014) of the host galaxy spheroidal components. The results of these works also exhibit an anti-correlation between f and the $\mathrm{FWHM}_{\text {obs }}$ of the broad emission lines and were understood as an effect of line of sight inclination of the BLR. However, these works applies the same prescription to all systems, assuming that all objects are well represented by the median trend of the scaling relations, and do not take into account the large intrinsic scatter in such relations. This is in sharp contrast with our sample where $M_{\mathrm{BH}}^{\mathrm{AD}}$ is independently obtained for each object through individual spectral fitting of the accretion disc emission.

The high quality spectra in our sample and the careful modelling of its broad emission lines allow us to explore in detail whether the line of sight inclination in a disc-like BLR can reproduce the observed trends. For this purpose we use the data and correlations determined from the $\mathrm{H} \alpha$ line because of its high signal-to-noise ratio Mejía-Restrepo et al., 2016). We define $\mathrm{FWHM}_{\mathrm{int}}$ as the intrinsic full width at half maximum of the virialized velocity component of the BLR. To recover the virial expectation $M_{\mathrm{BH}} \propto\left(\mathrm{FWHM}_{\mathrm{int}}\right)^{2}$ given by Equation 4.4.1 we use our result that $f \propto \mathrm{FWHM}_{\mathrm{obs}}^{-1}$ for $\mathrm{H} \alpha$ (or equivalently $M_{\mathrm{BH}}^{\mathrm{AD}} \propto \mathrm{FWHM}_{\mathrm{obs}}$) implying that, on aver-
age, $\mathrm{FWHM}_{\mathrm{int}} \propto \mathrm{FWHM}_{\text {obs }}^{1 / 2}$. First, we adopt a model of a thin BLR (assuming that $H / R \rightarrow 0$ in Equation 4.4.2) and use Monte Carlo simulations to find the $\mathrm{FWHM}_{\mathrm{int}}$ distribution that, after taking into account the line-of-sight inclination effects for randomly orientated BLRs, reproduces the cumulative $\operatorname{FWHM}(\mathrm{H} \alpha)$ distribution (see 84.3 .4 in the

Figure 4.4.3: Virial factor- $\mathbf{F W H M}_{\text {obs }}$ bi-dimensional distribution. Predicted bidimensional probability distribution function of the virial factor versus $\mathrm{FWHM}_{\mathrm{obs}}$ for a thin $\operatorname{BLR}(H / R=0)$ modified by line-of-sight inclination is shown in gray. The darkest regions represent the most probable combinations of these quantities as quantified in the colour bar. The thin, black lines are the $25 \%, 50 \%$ and 75% and 99% confidence limit contours centred around the maximum probability point. The thick yellow line is the median of the $f-\mathrm{FWHM}_{\mathrm{obs}}$ distribution derived from a quantile non-parametric spline regression. The open-blue circles are data taken from Figure 4.4.2 for the $\mathrm{H} \alpha$ line. The magenta thick line is the derived relation $f=\left(\mathrm{FWHM}(\mathrm{H} \alpha) / 4000 \mathrm{~km} \mathrm{~s}^{-1}\right)$ and the shadowed region the associated uncertainties. The yellow and magenta lines are in very good agreement within uncertainties. Additionally, the distribution of the data points shows a good agreement with the predicted bi-dimensional distribution confidence limits. Explicitly, we find 21% of the points inside the central 25% confidence level region, 51% inside the 50% confidence level region, 78% inside the 75% confidence level region and 87% inside the 99% confidence level region.

Methods section for details). Next, we generate a large population of objects drawn from the $\mathrm{FWHM}_{\text {int }}$ distribution and determine for each of these f and $\mathrm{FWHM}_{\mathrm{obs}}$. Finally, we compare the bi-dimensional $f-\mathrm{FWHM}_{\text {obs }}$ distribution obtained from our observations with that generated from the simulations. We find that we are able to reproduce not only the mean trend of the observed correlation, but also the density distribution of data points, as can be seen in Figure 4.4.3. Furthermore, our simulations can recover the expected $\mathrm{FWHM}_{\mathrm{int}} \propto \mathrm{FWHM}_{\mathrm{obs}}^{1 / 2}$ correlation (see extended data Figure 4.4.7). These results strongly indicate that line-of-sight inclination effects cause the observed $f-\mathrm{FWHM}_{\text {obs }}$ anti-correlation.

We also considered the combined effect of inclination and BLR thickness by assuming an universal H / R within the range $0-1$. We find that a wide range in thickness ratios $(H / R \lesssim 0.5)$ can reproduce the cumulative distribution function of $\mathrm{FWHM}(\mathrm{H} \alpha)$, but only relatively thin BLRs $(H / R \lesssim 0.1)$ can reproduce the observed bi-dimensional distribution of f_{AD} and $\mathrm{FWHM}(\mathrm{H} \alpha)$, and the predicted $\mathrm{FWHM}_{\mathrm{int}} \propto \mathrm{FWHM}_{\mathrm{obs}}^{1 / 2}$ dependence.

We have also examined possible alternative scenarios. In particular, the effects of radiation pressure force in a gravitationally bound BLR can predict $f \propto \mathrm{FWHM}_{\mathrm{obs}}^{-1}$ for some configurations (Netzer \& Marziani, 2010). This model predicts that the scatter in the relation will depend on the luminosity of the sources (see \$4.3.5 in the Methods section). However, we do not find clear indications for this in our observations, as can be seen by the colour coded data points in Figure 4.4.2, where no clear gradient in L_{5100} is found across the $f-\mathrm{FWHM}_{\text {obs }}$ correlation. Note however that given the relatively narrow range in L_{5100} covered by our sample (a factor of 80), and the uncertainties in our estimations of f, radiation pressure remains a likely mechanism that should be explored further in the future (see Extended data figure 4.4.8).

In summary, our results favour the line-of-sight inclination as the best interpretation for the observed $f-\mathrm{FWHM}_{\mathrm{obs}}$ correlation. As already discussed, this effect has been widely known to affect black hole mass measurements and is inherent to a flattened BLR geometry. At the same time, radiation pressure remains a viable mechanism and have been proven to affect high ionization emission lines, as it is the case of Civ, but there is no conclusive evidence for its effect in low ionization emission lines such as $\mathrm{H} \alpha$, $\mathrm{H} \beta$ and Mg iI Mejía-Restrepo et al., 2016).

Regardless of its physical origin, the dependence of f with $\mathrm{FWHM}(\mathrm{H} \alpha)$ implies that M_{BH} has been, on average, systematically overestimated for systems with large FWHM $(\mathrm{H} \alpha)\left(\gtrsim 4000 \mathrm{~km} \mathrm{~s}^{-1}\right)$ and underestimated for systems with small FWHM(H α) $\left(\lesssim 4000 \mathrm{~km} \mathrm{~s}^{-1}\right)$. The range of f_{AD} values presented in Figure 4.4.2, which are associated with $\mathrm{FWHM}(\mathrm{H} \alpha)=1600-8000 \mathrm{~km} \mathrm{~s}^{-1}$, imply a range in f, and hence M_{BH}, of factor ~ 6. However, this range should not be taken as representative of the entire population of AGN since our sample is too small (37 objects) and was not defined to be complete in terms of BLR properties.

Even though our sample is selected at a specific epoch $(z \sim 1.5)$, the physics of
a compact region such as the BLR is likely to remain constant over time. This has important implications for the study of active SMBHs at low and high redshifts. For example, the lowest M_{BH} sources at $z \sim 0$ typically show relatively narrow BLR profiles $\left(1000 \mathrm{~km} \mathrm{~s}^{-1} \lesssim \mathrm{FWHM}(\mathrm{H} \alpha) \lesssim 2000 \mathrm{~km} \mathrm{~s}^{-1}\right)$. In this case, M_{BH} should be about 2-4 times larger than current estimates, and consequently $\lambda_{\text {Edd }}$ should be smaller by the same factor. Another example is related to the mass of the most massive young known quasars found at $z \gtrsim 6$. Our proposed dependence of f with $\mathrm{FWHM}(\mathrm{Mg}$ II $)$ reduces the mass of the brightest known systems by up to a factor 2, as they typically show lines with $\mathrm{FWHM}(\mathrm{Mg} \mathrm{II}) \geq 3200 \mathrm{~km} \mathrm{~s}^{-1}$, somewhat alleviating the tension between their outstandingly large masses and the very early epochs at which they have been discovered (Mortlock et al., 2011; De Rosa et al., 2014; Wu et al., 2015).

4.3 Methods

4.3.1 Sample description

The sample we use in this letter consists of 39 type-I AGN selected to be within a narrow redshift range around $z \simeq 1.55$. For this sample we obtained high signal to noise (S / N) spectroscopic observations using the VLT/X-Shooter spectrograph. At the selected narrow redshift range, the X-Shooter spectrograph covers a wide range from $\sim 1200 \AA$ to $\sim 9200 \AA$ in the rest-frame. The sample was selected to homogeneously map the parameter space of M_{BH} and $\lambda_{\mathrm{Edd}}=L / L_{\mathrm{Edd}}$ within the sampled region. The initial values of these quantities were obtained from single-epoch (SE) calibrations (Trakhtenbrot \& Netzer, 2012) of the $\mathrm{H} \alpha$ broad emission line and its adjacent continuum.

The broad spectral coverage and the high S / N in our sample allowed us to (1) recalibrate, compare and test the performance of the different SE M_{BH} estimators using $\mathrm{H} \alpha, \mathrm{H} \beta$, Mg II and C iv(Mejía-Restrepo et al., 2016); and (2) model and confidently constrain the observed Spectral Energy Distributions (SEDs) in 37 out of 39 objects using standard thin accretion disc models (Capellupo et al., 2015, 2016). The output of the SED fitting provided alternative estimations for $M_{\mathrm{BH}}, M, \lambda_{\mathrm{Edd}}$ and a realistic estimate of a_{*}. For the sake of simplicity, hereafter when referring to paper I, II and III we will be citing references 22,26 and 23 , respectively.

4.3.2 Estimating M_{BH}

In this section we briefly describe the two alternative approaches that we followed to derive M_{BH} and comment on the sources of uncertainties of each method.

4.3.2.1 Single Epoch $M_{\text {BH }}$ estimates

We used new calibrations of the single epoch (SE) black hole mass estimators for the broad $H \alpha, H \beta$, MgII and CIV emission lines. In particular, we used the coefficients of the first two columns of Table 7 in Paper II. The underlying assumption in SE estimations is that Equation4.4.1 holds for all broad emission lines and $V_{\text {BLR }}$ can be estimated from the $\mathrm{FWHM}_{\text {obs }}$ of the line in question using Equation 4.4.1. We used $f=1$ as suggested from M_{BH}-Stellar dispersion calibrations (Woo et al., 2015). R_{BLR} is obtained from the calibration of the $R_{\text {BLR }}-L$ relation obtained from various RM studies (Kaspi et al., 2000, 2005; Bentz et al., 2009, 2013) which can be written as:

$$
\begin{equation*}
R_{\mathrm{BLR}}=R_{\mathrm{BLR}}^{0}\left(\frac{L_{\lambda}}{10^{44} \mathrm{erg} \mathrm{~s}^{-1}}\right)^{\alpha_{\mathrm{line}}} \tag{4.4.4}
\end{equation*}
$$

where, R_{BLR}^{0} is the normalization constant which for the case of the $\mathrm{H} \beta$ line, and for $\lambda=5100 \AA$, is 538 light-days (Mejía-Restrepo et al., 2016).

As we briefly discussed in the letter, the simple SE mass determination method is limited in various important ways:

1. The $R_{\mathrm{BLR}}-L$ relation has been obtained from a relatively small sample of lowz $(z \lesssim 0.3)$ Seyfert I galaxies and low luminosity quasars $\left(L_{5100} \lesssim 10^{46} \mathrm{erg} \mathrm{s}^{-1}\right.$, where $\left.L_{5100} \equiv 5100 \AA \times L(5100 \AA)\right)$. Therefore, extrapolation of the $R_{\text {BLR }}-L_{5100}$ relation is needed to estimate M_{BH} in high luminosity objects at high-z. Moreover, the intrinsic scatter in the $R_{\mathrm{BLR}}-L_{5100}$ relation is affected by intrinsic luminosity variations as well as by the disc inclination to the line-of-sight (Davis \& Laor, 2011; Netzer \& Trakhtenbrot, 2014; Capellupo et al., 2015).
2. The re-calibration of the $H \beta$-based single epoch method to other broad emission lines like $\mathrm{H} \alpha, \mathrm{Mg}$ II $\lambda 2798$ and C iv $\lambda 1549$ induces intrinsic dispersion that can be as high as 0.5 dex for the C iv $\lambda 1549$ line (Mejía-Restrepo et al., 2016).
3. The dependence of f on inclination is a major source of uncertainty. This has been explored in numerous papers. A recent paper used a sample of about 600 local SDSS type1-AGN to compare the M_{BH} estimations derived from the $M_{\mathrm{BH}^{-}}$ stellar dispersion relation ($M_{\mathrm{BH}}^{\sigma^{\star}}$) with those derived from the single epoch method Shen \& Ho, 2014). They found that $f_{\sigma^{\star}} \equiv M_{\mathrm{BH}}^{\sigma^{\star}} /\left(G^{-1} R_{\mathrm{BLR}}\right.$ FWHM $\left.(\mathrm{H} \beta)^{2}\right)$ is anti-correlated with $\operatorname{FWHM}(\mathrm{H} \beta)$, and argued that this is a manifestation of the line-of-sight inclination in a flat, disc-like BLR. Earlier works also suggested an anti-correlation between the radio loudness of sources and the observed FWHM $(\mathrm{H} \beta)$ (Wills \& Browne, 1986; Runnoe et al., 2014). Assuming that radio jets in AGN are aligned with the axis of symmetry of the BLR and that the flat BLR is aligned with the disc, their results strongly suggests that the BLR in radio-loud AGN are considerably flattened.
4. There are questions regarding the validity of virial equilibrium of the BLR material. Earlier results about AGN with multiple emission measurements (i.e., NGC3783, NGC5548, NGC7469 and 3C390.3) show that the velocity radial profiles that are in good agreement with the expectations for a Keplerian system (Peterson \& Wandel, 2000; Onken \& Peterson, 2002) (i.e., $V_{\text {BLR }}(r) \propto r^{-1 / 2}$). Additionally, in some velocity resolved RM experiments, the blue wing of the $\mathrm{H} \beta$ line has been observed to lag behind the red wing, which generally rules out significant outflow of both high- and low-ionization lines (Done \& Krolik, 1996 Ulrich \& Horne, 1996; Sergeev et al., 1999). However, more recent RM observations revealed diverse kinematics of the BLR including inflows, outflows and virialized gas (Denney et al., 2009b, 2010).
5. The use of a single value of f for measuring M_{BH} in sources that are not part of RM samples introduces an additional uncertainty which results from the fact that the $\mathrm{FWHM}_{\text {obs }}$ measured from single-epoch spectra are systematically larger than those measured from the RMS profiles during a RM campaign (Collin et al., 2006). This can be easily verified by comparing the RMS FWHM $(\mathrm{H} \beta$) (Bentz \& Katz, 2015) with the one measured from the mean spectrum of the same sources (Du et al., 2015). This is also true when the standard deviation of the lines ($\sigma_{\text {obs }}$) is used instead of the $\mathrm{FWHM}_{\text {obs }}$ and has not been taken into account, properly, in many studies. For example, from the results published in a recent paper Batiste et al., 2017) we obtain $\mathrm{FWHM}_{\text {mean }} / \mathrm{FWHM}_{\mathrm{rms}}=1.17_{0.15}^{+0.37}$.
6. The line shape parameter $\mathrm{FWHM}_{\mathrm{obs}} / \sigma_{\text {obs }}$ provides information on the structure and kinematics of the BLR. For instance, $\mathrm{FWHM}_{\text {obs }} / \sigma_{\text {obs }} \sim 3.4$ is found for a spherical shell of clouds moving with fix a velocity and random orientations, $\mathrm{FWHM}_{\text {obs }} / \sigma_{\text {obs }} \sim 3$ is found for an face-on rotating ring with fixed velocity, $\mathrm{FWHM}_{\mathrm{obs}} / \sigma_{\mathrm{obs}}=2.35$ corresponds to Gaussian profiles, $\mathrm{FWHM}_{\mathrm{obs}} / \sigma_{\text {obs }} \sim$ 2 is found for a face on rotating Keplerian disc, $\mathrm{FWHM}_{\text {obs }} / \sigma_{\text {obs }} \sim 1(\rightarrow 0)$ corresponds to Lorentzian profiles due, for example, to turbulent motions, as well as logarithmic profiles which can be caused by in-/outflow motions, and $\mathrm{FWHM}_{\text {obs }} / \sigma_{\text {obs }} \sim 0.98$ corresponds to exponential profiles caused by electron scattering within the photo-ionized BLR gas (Kollatschny \& Zetzl, 2013). It is known that $\mathrm{FWHM}_{\text {obs }} / \sigma_{\text {obs }}$ vary within a significant range (Collin et al., 2006; Kollatschny \& Zetzl, 2011, Peterson et al., 2004) suggesting that BLR profiles are not universal and that the virial factor is far from being a constant value.

4.3.2.2 Black Hole Mass Estimates from SED fitting

As previously mentioned, in papers I and III we recently implemented an alternative method to estimate the black hole mass in type1-AGN based on the fitting of the SED of the accretion discs, using a geometrically thin, optically thick accretion disc model, and obtained successful fits in 37 out of 39 objects in our sample. The model is fully determined by $M_{\mathrm{BH}}^{\mathrm{AD}}, a_{*}, \dot{M}$, the AD inclination with respect to the line-of-sight (i_{LOS}),
and intrinsic A_{V}. The procedure consisted of a Bayesian minimization over a grid of models covering a range in values for these parameters. We assumed Gaussian priors for $M_{\mathrm{BH}}^{\mathrm{SE}}\left(\mathrm{H} \alpha, L_{6200}\right)$ and \dot{M}_{SE}. Means were given by the single-epoch estimations for each object and standard deviations of 0.3 and 0.2 dex were adopted, respectively. $M_{\mathrm{BH}}^{\mathrm{SE}}\left(\mathrm{H} \alpha, L_{6200}\right)$ and \dot{M}_{SE} were calculated assuming a virial factor $f_{\mathrm{FWHM}_{\mathrm{obs}}}=1$. Flat priors were assumed for the remaining model parameters. The role of the priors is to penalize models which deviate significantly from the observational estimations of $M_{\mathrm{BH}}(\mathrm{H} \alpha)$ and \dot{M}_{SE}, but allow a symmetric parameter search on either side of the means. (See appendix C for details about the model and Bayesian procedure)

We have investigated the possibility that our initial choices of $f_{\mathrm{FWHM}_{\text {obs }}}$ and the standard deviation in $M_{\mathrm{BH}}^{\mathrm{SE}}\left(\mathrm{H} \alpha, L_{6200}\right)\left(\sigma_{M_{\mathrm{BH}}}\right)$, affect the resulting $M_{\mathrm{BH}}^{\mathrm{AD}}$. As shown in Figure 4.4.4, this is not the case. In this Figure, we compare the resulting $M_{\mathrm{BH}}^{\mathrm{AD}}$ for a large range of initial guesses in f and $\sigma_{M_{\mathrm{BH}}}$ with the original $M_{\mathrm{BH}}^{\mathrm{AD}}$ values obtained for our sample in paper III (where $f_{\mathrm{FWHM}_{\mathrm{obs}}}=1$ and $\sigma_{M_{\mathrm{BH}}}=0.3$ were assumed). We find that for large enough $\sigma_{M_{\mathrm{BH}}}(\gtrsim 0.8 \mathrm{dex})$ there is basically no difference between the $M_{\mathrm{BH}}^{\mathrm{AD}}$ values obtained with our initial choices and those $M_{\mathrm{BH}}^{\mathrm{AD}}$ values obtained with an initial f varying over a large range (0.4-2.5).

We also tested the reliability of the f_{AD} anti-correlation with $\mathrm{FWHM}_{\text {obs }}$ found using our Bayesian algorithm. We explored whether the assumption of flat priors for $i_{\text {LOS }}$ and A_{V} had an impact on our results. We tested various Gaussian priors on $\cos i_{\mathrm{LOS}}$ assuming as central values some randomly assigned numbers and different intrinsic scatters of $0.1,0.2$ and 0.3 dex. We also assumed Gaussian priors on A_{V}. The central values were obtained from the recent calibrations of A_{V} based on the $L(\mathrm{H} \alpha) / L(\mathrm{H} \beta)$ ratio (Baron et al., 2016). The intrinsic scatter were varied from 0.1 to 0.3 dex. In all cases we recover the anti-correlation between $\log f_{\mathrm{AD}}$ and the $\mathrm{FWHM}_{\text {obs }}$ for the Balmer lines with similar statistical significance. We also used $M_{\mathrm{BH}}^{\mathrm{SE}}\left(\mathrm{C}_{\text {IV }}, L_{1450}\right)$ as the central value for the M_{BH} prior and tested using the median values, instead of the mean, for M_{BH} and \dot{M}. In both cases we recover the aforementioned anti-correlation with similar statistical significance. We conclude that our findings are not an artefact of the fitting code.

One important drawback from our modelling is a large degeneracy between the accretion rate and the inclination angle of the disc. For a given flux, larger inclinations will return larger intrinsic luminosities which in turn will return larger accretion rates. Fortunately, the derived black hole mass does not strongly depend on either inclination nor accretion rate and the mass estimates are consistent within 0.1 dex regardless of the final derived inclinations and accretion rates. As a consequence, the derived disc inclinations are very uncertain and are not good indicators of the real inclinations of the disc and consequently of the flat BLRs. Therefore, these values are not used as proxies for the inclination of the BLR and the determination of the virial factor.

Figure 4.4.4: Dependency of $M_{\mathrm{BH}}^{\mathrm{AD}}$ on the adopted values of f and $\sigma_{M_{\mathrm{BH}}}$. Original $M_{\mathrm{BH}}^{\mathrm{AD}}$ values (from Paper III) vs Recalculated $M_{\mathrm{BH}}^{\mathrm{AD}}$ values obtained using different values for f_{FWHM} and the scatter in M_{BH} ($\sigma_{M_{\mathrm{BH}}}$, as shown in the legend). The solid line represents the $1: 1$ relation and the dashed lines represent $f=0.4$ and $f=2.5$. As $\sigma_{M_{\mathrm{BH}}}$ increases $M_{\mathrm{BH}}^{\mathrm{AD}}$ values get closer to the 1:1 relation (with just one exception at the lowest mass). This indicates that $f=1$ is an appropriate initial choice. The cross symbol in the bottom right corner represents a typical error bars in our $M_{\mathrm{BH}}^{\mathrm{AD}}$ estimations.

4.3.3 f as a function of line width

In Table 4.1 we present the correlation coefficients of the $f_{\mathrm{AD}^{-}}-\mathrm{FWHM}_{\mathrm{obs}}$ and $f_{\mathrm{AD}^{-}}$ $R_{\mathrm{BLR}} \mathrm{FWHM}_{\mathrm{obs}}^{2} / G$ correlations for all the broad emission lines considered here. In all cases we find that the correlations associated with the $\mathrm{FWHM}_{\text {obs }}$ are stronger than those associated with $R_{\text {BLR }} \mathrm{FWHM}_{\mathrm{obs}}^{2} / G$. This suggests that the $\mathrm{FWHM}_{\text {obs }}$ correlations are not inherited from the definition of f_{AD}. In order to prove this we conducted the Williams's Test (Dunn \& Clark, 1969). Given a sample size, this test computes the statistical significance of the difference between the correlation coefficients of two correlations that have one variable in common. In this case the two dependent correlations are $f_{\mathrm{AD}}-\mathrm{FWHM}_{\mathrm{obs}}$ and $f_{\mathrm{AD}}-R_{\mathrm{BLR}} \mathrm{FWHM}_{\mathrm{obs}}^{2} / G$, while the common variable is f_{AD}. Our results indicate very different correlation coefficients for the $f_{\mathrm{AD}}-\mathrm{FWHM}_{\mathrm{obs}}$ and the $f_{\mathrm{AD}}-R_{\mathrm{BLR}} \mathrm{FWHM}_{\mathrm{obs}}^{2} / G$ correlations (see Table 4.1), with a $5-\sigma$ significance for the $\mathrm{H} \alpha$ line, $4-\sigma$ significance for the $\mathrm{H} \beta$ and the Mg II $\lambda 2798$ lines and a $3-\sigma$ significance for the C iv $\lambda 1549$ line. This confirms that the correlations associated with the $\mathrm{FWHM}_{\mathrm{obs}}$ of the broad emission lines are indeed much stronger than those that by definition are associated with $R_{\mathrm{BLR}} \mathrm{FWHM}_{\mathrm{obs}}^{2} / G$.

Single epoch M_{BH} can also be estimated using σ_{obs} instead of $\mathrm{FWHM}_{\mathrm{obs}}$. Obviously, in that case the virial factor has a different numerical value since FWHM can be significantly different from $\sigma_{\text {obs }}$ (e.g., for a Gaussian line profile $\mathrm{FWHM}_{\mathrm{obs}}=2.35 \sigma_{\text {obs }}$). We tested whether the associated $f_{\mathrm{AD}}\left(\sigma_{\text {obs }}\right) \equiv M_{\mathrm{BH}}^{\mathrm{AD}} /\left(G^{-1} R_{\mathrm{BLR}} \sigma_{\text {obs }}^{2}\right)$ is also anticorrelated with $\sigma_{\text {obs }}$ and confirmed statically significant anti-correlations using all four emission lines. However, in this case there is no statistical difference between the $f_{\mathrm{AD}}-\sigma_{\text {obs }}$ and $f_{\mathrm{AD}}-R_{\mathrm{BLR}} \sigma_{\text {obs }}^{2} / G$ correlations. This is most likely due to the larger uncertainties associated with the measurement of $\sigma_{\text {obs }}$ in our sample (Mejía-Restrepo et al., 2016).

To determine how $M_{\mathrm{BH}}^{\mathrm{AD}}$ depends on the $\mathrm{FWHM}_{\text {obs }}$ of the lines and the associated L_{λ} used in single epoch mass determinations methods, we used the following expression:

$$
\begin{equation*}
\log M_{\mathrm{BH}}^{\mathrm{AD}}\left(\mathrm{FWHM}, L_{\lambda}\right) \equiv \alpha_{\mathrm{AD}} \log \left(L_{\lambda}\right)+E \log \mathrm{FWHM}(\text { line })+F \tag{4.4.5}
\end{equation*}
$$

and implemented an ordinary bi-variate least square linear regression to determine the coefficients in the equation. We summarize the results in Table 4.2, where we also show $\alpha_{\text {line }}$, which represents the slope of the power-law coefficient of L_{λ} in Equation 4.4.4. We also list the scatter between $M_{\mathrm{BH}}^{\mathrm{AD}}$ and $M_{\mathrm{BH}}^{\mathrm{SE}}\left(\mathrm{FWHM}, L_{\lambda}\right)$ as well as the scatter between $M_{\mathrm{BH}}^{\mathrm{AD}}$ and the corrected $M_{\mathrm{BH}}^{\mathrm{SE}}\left(\mathrm{FWHM}, L_{\lambda}\right)\left(M_{\mathrm{BH}}^{\mathrm{SE}}(\operatorname{corr}) \equiv \mathrm{M}_{\mathrm{BH}}^{\mathrm{AD}}\left(\mathrm{FWHM}, \mathrm{L}_{\lambda}\right)\right)$ after the dependency of f_{AD} on $\mathrm{FWHM}_{\mathrm{obs}}$ is taken into account. In the case of the Balmer lines, the scatter is reduced by about a factor 2 . Thus, correcting for the correlation between $\log f_{\mathrm{AD}}$ and the $\mathrm{FWHM}_{\mathrm{obs}}$ of the Balmer lines provides an important improvement in our M_{BH} estimations.

The results of the linear regressions presented in Table 4.2 highlight two important findings. First, α_{AD} and $\alpha_{\text {line }}$ are basically indistinguishable from each other. This indicates that L_{λ} has almost no impact in the deviation of $M_{\mathrm{BH}}^{\mathrm{SE}}\left(\mathrm{FWHM}, L_{\lambda}\right)$ from

Table 4.2: Properties of different correlations found for the emission lines of interest. Column [1]: power-law coefficient from reverberation mapping experiments (see Equation 4.4.4). Columns [2]-[4]: best fit parameters for linear regressions of the expression $\log M_{\mathrm{BH}}^{\mathrm{AD}}\left(F W H M, L_{\lambda}\right)=\alpha_{\mathrm{AD}} \log \left(L_{\lambda}\right)+E \log$ FWHM (line) $+F$. Column [5]: R^{2} values of the linear regressions. Columns [6] and [7]: scatter in the $M_{\mathrm{BH}}^{\mathrm{AD}}$ vs $M_{\mathrm{BH}}^{\mathrm{SE}}\left(F W H M, L_{\lambda}\right)$ and $M_{\mathrm{BH}}^{\mathrm{AD}}$ vs $M_{\mathrm{BH}}^{\mathrm{SE}}(\operatorname{corr})$ correlations.

	$\alpha_{\text {line }}$	α_{AD}	E	F	R^{2}	$M_{\mathrm{BH}}^{\mathrm{AD}}$ vs $M_{\mathrm{BH}}^{\mathrm{SE}}$	$M_{\mathrm{BH}}^{\mathrm{AD}}$ vs $M_{\mathrm{BH}}^{\mathrm{SE}}($ corr $)$
	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$
$\mathrm{H} \alpha$	0.63	0.66 ± 0.03	1.00 ± 0.10	7.42 ± 0.07	0.948	0.17	0.09
$\mathrm{H} \beta$	0.65	0.69 ± 0.04	0.82 ± 0.11	7.43 ± 0.09	0.943	0.24	0.12
MgII	0.61	0.68 ± 0.05	0.78 ± 0.24	7.40 ± 0.15	0.850	0.22	0.16
CIV	0.60	0.61 ± 0.06	0.69 ± 0.36	7.29 ± 0.27	0.770	0.24	0.20

$M_{\mathrm{BH}}^{\mathrm{AD}}$ and that $M_{\mathrm{BH}}^{\mathrm{AD}}$ preserves its dependency on R_{BLR}. Second, the dependence of $M_{\mathrm{BH}}^{\mathrm{AD}}$ on the observed $\mathrm{FWHM}_{\text {obs }}$ of the Balmer lines is close to linear rather than quadratic, as expected from the virial relation.

4.3.4 Inclination as the source of the $f-\mathbf{F W H M}_{\text {obs }}$ correlation

In this section we present different tests that we carried out to determine whether inclination is driving the correlation between f and $\mathrm{FWHM}_{\mathrm{obs}}$.

Hereafter when referring to $\log f_{\mathrm{AD}}, M_{\mathrm{BH}}^{\mathrm{SE}}\left(\mathrm{FWHM}, L_{\lambda}\right)$ and $\mathrm{FWHM}_{\text {obs }}$ we mean $\log f_{\mathrm{AD}}(\mathrm{H} \alpha), M_{\mathrm{BH}}^{\mathrm{SE}}(\mathrm{FWHM}(\mathrm{H} \alpha))$ and the observed value of $\mathrm{FWHM}(\mathrm{H} \alpha)$, unless otherwise specified. The reason to select the $\mathrm{H} \alpha$ line instead of the $\mathrm{H} \beta$ line for the following analysis is the better S / N and hence more accurate measurements of $\mathrm{FWHM}(\mathrm{H} \alpha)$ in our sample. As shown in earlier works, $\mathrm{FWHM}_{\mathrm{obs}}$ in both Balmer lines are the same within uncertainties (Greene \& Ho, 2005; Mejía-Restrepo et al., 2016).

The anti-correlation between $\log f_{\mathrm{AD}}$ and $\mathrm{FWHM}_{\text {obs }}$ could be explained by the inclination of the axis of symmetry of a disc-like BLR with respect to the line-of-sight (LOS). If we consider the median LOS inclination, $i_{\text {median }}$, at which Type-1 AGN are typically observed, we can also define a median virial factor $f_{\text {median }}$ at which the SE $M_{\text {BH }}$ calibration represents an accurate black hole mass for objects observed at $i_{\text {median }}$. Objects with narrower than usual broad emission lines are more likely observed at $i<i_{\text {median }}$ (face-on orientations) and objects with broader than usual emission are more likely observed at $i>i_{\text {median }}$ (edge-on orientations). This will produce too large (too small) SE mass estimates for objects with very broad (very narrow) emission lines, and would translate into a virial factor that anti-correlates with the line FWHMs.

The inclination hypothesis is also consistent with recent work that found that $f_{\sigma^{\star}} \equiv$ $M_{\mathrm{BH}}^{\sigma^{\star}} /\left(G^{-1} R_{\mathrm{BLR}} \mathrm{FWHM}(\mathrm{H} \beta)^{2}\right)$ is anti-correlated with $\mathrm{FWHM}(\mathrm{H} \beta)$ (Shen \& Ho, 2014). Here, $M_{\mathrm{BH}}^{\sigma^{\star}}$ is the black hole mass obtained from the correlation between M_{BH} and the

Figure 4.4.5: Cumulative distribution functions for the observed and simulated $\mathbf{F W H M}_{\text {obs }}$ for $\mathbf{H} \alpha$. The cumulative distribution function (CDF) of $\operatorname{FWHM}(\mathrm{H} \alpha)$ is the thin magenta line. The magenta shadowed region shows the Poissonian uncertainties. The thick orange line and yellow stars are the disc CDF for a thin $(H / R=0)$ and thick $(H / R=0.5)$ BLR, respectively. In both cases we assumed a truncated Gaussian distribution for the intrinsic $\operatorname{FWHM}(\mathrm{H} \alpha)$ convolved with a $\sin i$ distribution. The cyan dashed line is a Gaussian distribution with no truncation. The dark blue dashed line is the CDF for $\mathrm{FWHM}_{\text {int }}=8170 \mathrm{~km} \mathrm{~s}^{-1}$ and $\mathrm{FWHM}_{\text {std }}=0$, as modelled in other works (McLure \& Dunlop, 2001; Decarli et al., 2008a). We observe that the modelled CDFs are generally in good agreement with the observed CDF for the thin and thick BLR models, but the thick BLR fails to reproduce the observed CDF at small $\mathrm{FWHM}(\mathrm{H} \alpha)$ values.
stellar dispersion of the spheroidal component in galaxies. Analogously, an earlier work compared the virial black hole masses with black hole mass estimations obtained from
the relation between black hole mass and the luminosity of the host-galaxy spheroidal component (Decarli et al., 2008b). Their results also show a clear anti-correlation between f and the $\mathrm{FWHM}_{\text {obs }}$ of the broad emission lines that is interpreted by the authors as a BLR line-of-sight inclination bias.

There is further evidence that favors the hypothesis that LOS inclination is biasing SE M_{BH} estimations. As already pointed out, previous works found that the $\operatorname{FWHM}(\mathrm{H} \beta)$ is significantly anti-correlated with radio core dominance in radio-loud quasars (Wills \& Browne, 1986; Runnoe et al., 2014). This is consistent with H β emitting gas in a flattened configuration. In this scenario core-dominated objects (with their radio emission being Doppler-boosted along the LOS) correspond to face-on discs that typically show narrow $\mathrm{H} \beta$ profiles, while lobe-dominated objects (lacking Dopplerboosting) correspond to edge-on discs, that typically show broad $\mathrm{H} \beta$ profiles. In this scenario, the BLR is flat and the general plane of motion is similar to the plane of rotation of the central disc. In addition to this, there is accumulated evidence in the literature favouring a disc-like geometry for the BLR (McLure \& Dunlop, 2001, 2002; Laor et al., 2006; Decarli et al., 2008a; Pancoast et al., 2014).

For a disc-like BLR with a thickness ratio H / R and inclination i with respect to the line-of-sight we will have $\mathrm{FWHM}_{\mathrm{obs}}=\mathrm{FWHM}_{\mathrm{int}} \times \sqrt{\sin ^{2}(i)+(H / R)^{2}}$. Thus, for an ensemble of randomly orientated BLRs the final distribution of $\mathrm{FWHM}_{\mathrm{obs}}$ will depend on (1) the intrinsic $\mathrm{FWHM}_{\mathrm{int}}$ distribution and (2) the range of possible random orientations at which the BLR can be observed, both of which are, a priori, not known.

To check the inclination hypothesis we first need to determine the distribution of $\mathrm{FWHM}_{\text {int }}$ that is consistent with the probability density distribution (PDF) of the observed $\mathrm{FWHM}_{\text {obs. }}$. We then need to test whether it is possible to recover the anticorrelation of f with $\mathrm{FWHM}_{\mathrm{obs}}$ and the linear dependence of M_{BH} on $\mathrm{FWHM}_{\mathrm{obs}}$, as derived in this letter. In other words, we need to test whether a population of randomly generated inclinations and $\mathrm{FWHM}_{\text {int }}$ that satisfy the PDF of $\mathrm{FWHM}_{\text {obs }}$, can also account for:

$$
\begin{equation*}
f \propto \mathrm{FWHM}_{\mathrm{obs}}^{-1} \tag{4.4.6}
\end{equation*}
$$

and at the same time:

$$
\begin{equation*}
\mathrm{FWHM}_{\mathrm{int}} \propto \mathrm{FWHM}_{\mathrm{obs}}^{1 / 2} \tag{4.4.7}
\end{equation*}
$$

It is important to note that both predictions should be satisfied to guarantee inclination as the driving mechanism of the observed correlation between f and $\mathrm{FWHM}_{\mathrm{obs}}$. The reason for this is that each of these expressions tests the dependency between $\mathrm{FWHM}_{\mathrm{obs}}$ and the two independent distributions determined to reproduce $\mathrm{FWHM}_{\mathrm{obs}}$: $\sin (i)$ and $\mathrm{FWHM}_{\text {int }}$. While Equation (5) tests the dependency between $\mathrm{FWHM}_{\text {obs }}$ and $\sin ^{-2}(i)$ (which is proportional to f), Equation (6) tests the dependency between $\mathrm{FWHM}_{\text {obs }}$ and $\mathrm{FWHM}_{\text {int }}$.

Figure 4.4.6: Virial factor- $\mathbf{F W H M}_{\text {obs }}$ bi-dimensional distributions for a thin and thick BLR. Predicted bi-dimensional probability distribution functions of the virial factor and $\mathrm{FWHM}_{\text {obs }}$ for a thin BLR (left) and a thick BLR (right), as predicted by the best-fit models shown in Figure 4.4 .5 are shown in gray. The darkest regions represent the most probable combinations of these quantities as quantified in the colour-bar. The thin black lines are the $25 \%, 50 \%$ and 75% and 99% confidence limit contours centred around the maximum probability point. The thick yellow lines are the median of the $f-\mathrm{FWHM}_{\mathrm{obs}}$ distributions derived from a quantile non-parametric spline regression. The open-blue circles are data from Figure4.4.2 for the $\mathrm{H} \alpha$ line. The magenta lines are the derived relation $f=\left(F W H M(H \alpha) / 4000 \mathrm{~km} \mathrm{~s}^{-1}\right)$ and the shadowed regions the associated uncertainties. The thin blue-dashed lines are the $25 \%, 50 \%$ and 75% quantiles of the observational distribution after accounting for the measurement errors in f_{AD} and $\mathrm{FWHM}(\mathrm{H} \alpha)$. We see that for the thin BLR the 50%-quantile (median) of the theoretical and observational distributions are in very good agreement with each other. Additionally, the distribution of the data points shows good agreement with the predicted bi-dimensional distribution confidence limits. Explicitly, we find that 21% of the points fall inside the central 25% confidence level region, 51% fall inside the 50% confidence level region, 78% fall inside the 75% confidence level region, and 87% fall inside the 99% confidence region level. On the other hand, the thick BLR model cannot reproduce the bi-dimensional $f-\mathrm{FWHM}_{\text {obs }}$ distribution.

We first assumed a thin BLR by taking $H / R=0$. We computed the PDF as the product of two independent random variables (Glen et al., 2004) and applied it to the special case where $\mathrm{FWHM}_{\mathrm{obs}}=\mathrm{FWHM}_{\mathrm{int}} \times \sin (i)($ Lopez \& Jenkins, 2012). For the $\mathrm{FWHM}_{\mathrm{int}}$ distribution, we assumed an underlying truncated normal distribution with certain mean $\left(\mathrm{FWHM}_{\text {mean }}\right)$ and dispersion $\left(\mathrm{FWHM}_{\text {std }}\right)$. Our normal distribution was truncated to allow $\mathrm{FWHM}_{\text {int }}$ to vary between 1000 and $30000 \mathrm{~km} \mathrm{~s}^{-1}$. We also assumed that our sample is limited to objects with line-of-sight inclination angles between $i_{\min }=$
0° and $i_{\max }=70^{\circ}$, with $i_{\max }$ determined by the torus opening angle. For an optimal exploration of the parameter space we ran a Monte Carlo Markov Chain simulation using the python code EMCEE (Foreman-Mackey et al., 2013). For the simulation we used 20 independent walkers and 5000 iterations that mapped a total of 10^{5} models.

In the left panel of Figure 4.4.5 we compare the observed cumulative PDF (FWHM ${ }_{\text {obs }}$) and its uncertainty (magenta thin line and shadowed region, respectively) with the predicted cumulative PDF from the model with the highest posterior probability (black line). The parameters of this model are: $i_{\min }=19^{\circ}, i_{\max }=45^{\circ}, \mathrm{FWHM}_{\text {mean }}=8500$, $\mathrm{FWHM}_{\text {std }}=2150, \mathrm{FWHM}_{\text {min }}=4200$ and $\mathrm{FWHM}_{\max }=30000$. Our model successfully reproduces the observed cumulative PDF. However, a simple normal distribution (red dashed line) is also consistent with the data and cannot be rejected. We also determined the best fit model for a distribution with $\mathrm{FWHM}_{\text {std }}=0$, i.e., effectively a single velocity. This model (dashed blue-line) is able to reproduce the distribution at low values of $\mathrm{FWHM}_{\mathrm{obs}}$, but it is unable to account for the distribution at large velocity widths.

First, we tested whether our thin BLR model is successful in reproducing the $f-$ $\mathrm{FWHM}_{\mathrm{obs}}$ distribution seen in the data (i.e., Equation 5). In the left panel of Figure 4.4.7 we show the predicted bi-dimensional probability density distribution of the virial factor and the observed $\operatorname{FWHM}(\mathrm{H} \alpha)$ as predicted by the thin BLR model. The Figure includes contours showing $25 \%, 50 \%, 75 \%$ and 99% confidence limits contours (blackthin lines) centred around the maximum probability point. We also superposed the data from in Figure 4.4.2 (open-blue circles). The magenta line represents the derived relation $f=\left(\mathrm{FWHM}(\mathrm{H} \alpha) / 4000 \mathrm{~km} \mathrm{~s}^{-1}\right)$. The thick yellow line is the median of the $f-$ $\mathrm{FWHM}_{\text {obs }}$ distributions derived using a quantile non-parametric spline regression $(\mathrm{Ng}$ \& Maechler, 2007). Analogously, the blue-dashed lines represent the $25 \%, 50 \%$ and 75% quantiles of the observational distribution. To obtained these quantiles, for each observed data we randomly generated 1000 points following the error distributions in f_{AD} and $\mathrm{FWHM}(\mathrm{H} \alpha)$ and then applied the COBS method to characterize the resulting distribution. We can notice that the median (50%-quantile) of the theoretical and observational distributions are in very good agreement. The scattered open-blue circles also show excellent agreement with the the bi-dimensional probability density function from the best model. Explicitly, we find that from our 37 objects, 21% fall inside the central 25% confidence level region, 51% fall inside the 50% confidence level region, 74% fall inside the 75% confidence level region, and 85% fall inside the 99% confidence level region.

Next, we tested for the same thin BLR model whether it is possible to recover the predicted relation between $\mathrm{FWHM}_{\mathrm{obs}}$ and $\mathrm{FWHM}_{\mathrm{int}}$ (i.e., Equation 6). In the left panel of Figure 4.4.7 we show the predicted bi-dimensional probability distribution of $\mathrm{FWHM}_{\text {int }}$ versus $\mathrm{FWHM}_{\text {obs }}$ using the model with the highest posterior probability. The magenta solid line and magenta shadowed region represent the expected $\mathrm{FWHM}_{\text {int }}$ $\propto \mathrm{FWHM}_{\mathrm{obs}}^{1 / 2}$ relation and 1- σ uncertainties, respectively. The solid-yellow line and yellow shadowed region represent the median $\mathrm{FWHM}_{\mathrm{int}}-\mathrm{FWHM}_{\text {obs }}$ and errors from
the simulated bi-dimensional distribution. A good agreement is found between the simulations and the predicted relations. This implies that we are also able to recover the relation $\mathrm{FWHM}_{\mathrm{int}} \propto \mathrm{FWHM}_{\mathrm{obs}}^{1 / 2}$ for the thin BLR model.

Figure 4.4.7: $\mathbf{F W H M}_{\text {obs }}-\mathbf{F W H M}_{\text {int }} \mathbf{b i} \mathbf{- d i m e n s i o n a l ~ d i s t r i b u t i o n s ~ f o r ~} \mathbf{a}$ thin and thick BLR. Bi-dimensional probability distribution of the intrinsic and observed $\operatorname{FWHM}(\mathrm{H} \alpha)$ for a thin BLR (left) and a thick BLRs (right) as predicted by the best-fit models shown in Figure 4.4.5. The darkest regions show the most probable combinations of $\mathrm{FWHM}_{\mathrm{int}}$ and $\mathrm{FWHM}_{\mathrm{obs}}$ values as quantified in the colour-bar. The thick black line is the 1:1 correlation. The thin black lines are the $68 \%, 95 \%$ and 99% confidence limit contours centred around the maximum of the probability distribution. The magenta line is the relation $\mathrm{FWHM}_{\mathrm{int}} \propto \mathrm{FWHM}_{\mathrm{obs}}^{1 / 2}$ and the width of the magenta shadowed region accounts for the uncertainties in that relation. The solid yellow line is the 50% regression quantile of $\mathrm{FWHM}_{\mathrm{int}}$ as a function of $\mathrm{FWHM}_{\text {obs }}$ for the theoretical probability density distribution and the yellow shaded region covers the 25% to 75% percentiles. We can see that inclination closely reproduces the expected relation $\mathrm{FWHM}_{\mathrm{int}} \propto \mathrm{FWHM}_{\mathrm{obs}}^{1 / 2}$ for the thin BLR but fails to reproduce it for the thick BLR case.

In order to test the effects introduced by a thick BLR $(0<H / R<1)$, we assumed a single H / R for all objects and followed the same steps outlined for the case of a thin BLR. We found that a wide range in BLR thickness ratios $(H / R<0.5)$ is able to reproduce the cumulative $\mathrm{FWHM}_{\text {obs }}$ PDF. However, objects with large thickness ratios clearly fail to reproduce the bi-dimensional distributions of $f-\mathrm{FWHM}_{\mathrm{obs}}$ and $\mathrm{FWHM}_{\mathrm{int}}-\mathrm{FWHM}_{\mathrm{obs}}$, as can be seen in the right panels of Figures 4.4.6 and 4.4.7. We generally find that only relatively thin BLRs, i.e., those with $H / R<0.1$, are able to reproduce both bi-dimensional distributions and the cumulative FWHM(H α) PDF. In particular, for a BLR with $H / R \rightarrow 0$, we find that the derived f_{AD} values constrain the range of inclinations at which the BLR is observed in our sample to $15^{\circ} \lesssim i \lesssim 50^{\circ}$.

This upper limit is consistent with typical expectations of a central torus hiding the BLR. We also find that the median virial factor in our sample, $f=0.95$, corresponds to a median orientation of $i_{\text {median }}=31^{\circ}$.

In summary, our results show that a population of randomly orientated, thin BLRs can successfully reproduce our observations. We can thus conclude that inclination is very likely the main reason for the observed $f-\mathrm{FWHM}_{\mathrm{obs}}$ correlations.

4.3.5 Radiation pressure effects

We finally considered the possibility that non-virial BLR motions or winds induced by radiation pressure force might cause the observed $f_{\mathrm{AD}}-\mathrm{FWHM}_{\mathrm{obs}}$ dependency. We first tested a simple model that assumes that the BLR is composed of homogeneous clouds that are optically thick to ionizing radiation but optically thin to electron scattering. The model predicts a dependency between the virial factor and the the normalized accretion rate, $\lambda_{\text {Edd }}$, of the form: $f=f_{1}\left[1+K \lambda_{\text {Edd }}\right]$, where f_{1} is the true virial factor and K depends on the fraction of ionizing radiation and the column density of the gas clouds that is assumed constant along the entire BLR (Marconi et al., 2008). From this expression we can see that $M_{\mathrm{BH}}^{\mathrm{SE}}$ underestimates the actual M_{BH} as λ_{Edd} increases. Equivalently, f_{AD} should increase as $\lambda_{\text {Edd }}$ increases. However, we find no clear correlation between $\lambda_{\text {Edd }}$ and f_{AD} in our data ($r_{\mathrm{s}}=0.2, P=0.23$), and therefore radiation pressure effects, as prescribed by this model, are not present in our objects. Note however that our sample is restricted to a relatively small range of $\lambda_{\text {Edd }}$ (from $\lambda_{\text {Edd }}=0.01$ to $\lambda_{\text {Edd }}=0.3$, corresponding to a variation by a factor of 30).

A more recent model considers the effects of radiation pressure in a more realistic BLR composed of pressure confined clouds, hence allowing the gas density of individual clouds to decrease with distance to the central black hole (Netzer \& Marziani, 2010). In this model the system is still bound by gravity and FWHM ${ }_{\text {obs }}$ becomes smaller with increasing $\lambda_{\text {Edd }}$. The reason for this trend is that as $\lambda_{\text {Edd }}$ increases, the clouds spend more time at large distances from the black hole, therefore increasing the median $R_{\text {BLR }}$ and decreasing the median BLR Keplerian velocities. To account for this effect, the authors of this model proposed a modified expression for $R_{\text {BLR }}$:

$$
\begin{equation*}
R_{\mathrm{BLR}}=R_{\mathrm{BLR}}^{0}\left[a_{1} L_{\lambda}^{\alpha_{\text {line }}}+a_{2}\left(L_{\lambda} / M_{\mathrm{BH}}\right)\right] \tag{4.4.8}
\end{equation*}
$$

where a_{1} and a_{2} are constants. The first term accounts for the observational relation described in Equation 4.4.4 and the second term represents a radiation pressure perturbation quantified by $L_{\lambda} / M_{\mathrm{BH}} \propto \lambda_{\mathrm{Edd}}$. When replaced into the virial mass equation (Equation 4.4.1) this relation leads to a simple quadratic equation on M_{BH} with solution:

$$
\begin{equation*}
M_{\mathrm{BH}}^{\mathrm{rad}}=\frac{a_{10}}{2} L^{\alpha_{\text {line }}} \mathrm{FWHM}_{\mathrm{obs}}{ }^{2}\left[1+\sqrt{1+\frac{4 a_{20} L_{\lambda}^{1-2 \alpha_{\text {line }}}}{a_{10}^{2} \mathrm{FWHM}_{\mathrm{obs}}^{2}}}\right] \tag{4.4.9}
\end{equation*}
$$

Figure 4.4.8: Radiation pressure in a gravitationally bound BLR. The observed virial factor vs $\mathrm{FWHM}_{\mathrm{obs}}$ for the $\mathrm{H} \alpha$ line is shown (black squares). The magenta line is the derived relation $f=\left(\operatorname{FWHM}(\mathrm{H} \alpha) / 4000 \mathrm{~km} \mathrm{~s}^{-1}\right)$ and the width of the shadowed region accounts for the uncertainties in that relation. The filled points represent the modelled $f_{\text {rad }}$ from the best fit model for radiation pressure in a gravitationally bound BLR. The colour of the points scales with the measured monochromatic luminosity at $5100 \AA\left(L_{5100}\right)$ for each object, as indicated by the colour bar. Redder (bluer) points correspond to larger (smaller) values of L_{5100}. As can be observed, the model predicts that the scatter in $f_{\text {rad }}$ (coloured points) is driven by L_{5100} (see Equation 4.4.10). This dependence is not seen in our data (black squares) as shown in Figure 4.4.2. Nevertheless, the relatively large errors in f_{AD} and the weak dependence of $f_{\text {rad }}$ in L_{5100} may probably hide the expected dependence from this radiation pressure model.
or equivalently:

$$
\begin{equation*}
f_{\mathrm{rad}} \propto\left[1+\sqrt{1+\frac{4 a_{20} L_{\lambda}^{1-2 \alpha_{\text {line }}}}{a_{10}^{2} \mathrm{FWHM}_{\mathrm{obs}}^{2}}}\right] \tag{4.4.10}
\end{equation*}
$$

where $M_{\mathrm{BH}}{ }^{\mathrm{rad}}$ and f_{rad} are the black hole mass and virial factor for a radiation pressure dominated BLR. $a_{10}=a_{1} f_{0} R_{\mathrm{BLR}}^{0} G^{-1}, a_{20}=a_{2} f_{0} R_{\mathrm{BLR}}^{0} G^{-1}$, and f_{0} is a normalization constant. In the case when $4 a_{20} L_{\lambda}^{1-2 \alpha_{\text {line }}} / a_{10}^{2} \mathrm{FWHM}_{\mathrm{obs}}^{2} \gg 1$ this would result in a close agreement with the inverse proportionality between f_{AD} and $\mathrm{FWHM}_{\mathrm{obs}}$ found in our data. Given that $\alpha_{\text {line }}$ is found to be ~ 0.6 for all lines (Table 4.2), this would translate into an explicit dependency of f on L_{λ}. We would then expect that the scatter in the $f_{\mathrm{AD}}-\mathrm{FWHM}_{\text {obs }}$ relation should be driven by L_{λ}. In Figure 4.4.2 larger (smaller) values of L_{5100} are represented by redder (bluer) colours. We can see that there is no clear suggestion that the scatter in driven by L_{5100} in any of the lines. Note however that the relatively narrow range in L_{5100} covered by our sample (from $L_{5100}=2.0 \times 10^{44}$ to $L_{5100}=1.6 \times 10^{46} \mathrm{ergs} / \mathrm{s}$, corresponding to a factor of 80), together with the uncertainties in our estimations of f, do not allow us to rule out this mechanism.

Testing this model further, we found the combination of parameters a_{1}, a_{2} and f_{0} that best reproduce our $M_{\mathrm{BH}}^{\mathrm{AD}}$ measurements and the observed relation between f and $\mathrm{FWHM}_{\text {obs }}$ for the $\mathrm{H} \alpha$ line. To obtain dimensionless values for a_{1} and a_{2} we expressed $M_{\mathrm{BH}}, L_{\lambda}$ and FWHM in units of $10^{8} M_{\odot}, 10^{44} \mathrm{erg} \mathrm{s}^{-1}$ and $1000 \mathrm{~km} \mathrm{~s}^{-1}$, respectively. Taking $\alpha_{\text {line }}=0.63$, as suggested by the observations (see Table 4.2), we carried out a Monte-Carlo Markov Chain exploration of the parameter space of the model and found that $a_{1}=0.88, a_{2}=0.36$ and $f_{o}=0.51$ are able to reproduce our $M_{\mathrm{BH}}^{\mathrm{AD}}$ measurements with a scatter of 0.12 dex, preserving the experimental dependence of $R_{\text {BLR }}$ on L_{λ} as expressed in Equation 4.4.4 with a scatter of 0.05 dex. At the same time the results are able to reproduce the observed $f-\mathrm{FWHM}_{\text {obs }}$ relation with a scatter of 0.11 dex (see Figure 4.4.8, which presents our observations (black squares with error bars) together with the prescribed values for f as given by Equation 4.4.10 (colored circles without error bars)). However, we also found that the residuals between the predicted values and the best fit to the correlation are heavily correlated with $L_{5100}\left(\mathrm{r}_{\mathrm{s}}>0.63, \mathrm{P}_{\mathrm{s}}<\right.$ 2×10^{-5}), as can be seen by the color gradient of our simulated points in the direction perpendicular to the correlation best fit in Figure 4.4.8. This bias is introduced by the explicit dependence of $f_{\text {rad }}$ on L_{λ} which is not observed in our sample, although notice that the error bars of our derived f values are of the order of, if not larger, than the expected dependence (see Figure 4.4.8). Finally, the dependency on L_{5100} vanishes when $\alpha_{\text {line }}=0.5$. For this case, however, we were unable to reproduce any the observables. Extending our sample towards lower luminosities should yield the final test to be able to confidently conclude whether this model can be the driving mechanism for the observed $f-\mathrm{FWHM}_{\text {obs }}$ correlation.

Chapter 5

Conclusions

Here I present the most relevant conclusions of this thesis which is oriented to improve current mass estimation methods of distant SMBHs and to infer the physical properties of the BLR.

In chapter 2 we used a unique sample of 39 type-I AGN observed by X-Shooter and uniformly covering the $M_{\mathrm{BH}}-L / L_{\mathrm{Edd}}$ plane at $z=1.55$ down to $i_{\mathrm{AB}} \sim 21 \mathrm{mag}$. Our sample allows for a comprehensive comparison between different luminosity probes and emission line measurements, for the prominent broad emission lines $\mathrm{H} \alpha, \mathrm{H} \beta, \mathrm{Mg}$ II and C Iv, which are commonly used for virial SMBH mass estimates. Thanks to the broad spectral coverage, we were also able to test two approaches for continuum fitting and test for possible biases in M_{BH} determinations: a physically-motivated approach based on fitting an accretion disc model to each spectrum; and a more practical approach which treats the continuum around each prominent line as an independent power-law.

In summary, the main findings of this work are:

1. Comparing the two continuum fitting approaches, we find only small (although systemic) offsets in the derived line luminosities, local continua luminosities, and line FWHMs, and consequently in M_{BH} determinations (<0.05 dex). This implies that a precise modeling of the continuum emission is not crucial for M_{BH} determinations.
2. Line dispersion measurements ($\sigma_{\text {line }}$) are highly sensitive to continuum modelling, and cannot be safely used for M_{BH} determination, even for the well-studied Balmer lines and/or when high-quality spectra of broad UV lines are available.
3. We corroborate that both the $\mathrm{H} \alpha$ and $\mathrm{H} \beta$ lines show very similar FWHMs and can be consistently used for estimating M_{BH} based on the virial assumption.
4. The Mg II line width is found to follow that of $\mathrm{H} \beta$, and, generally, can be safely used for M_{BH} estimations. Our new observations show that the MgII line is about
$30 \pm 15 \%$ narrower than $\mathrm{H} \beta$ (in FWHM). We also found that about 10% of the objects show atypically broad Mg II lines, with FWHM ($\mathrm{Mg}_{\mathrm{II}}$) \gtrsim FWHM (H α). These Mg II profiles are also systematically blue-shifted, probably due to nonvirial dynamics, and further shown to be not suitable for reliable M_{BH} estimation (see $\$ 2.4 .3 .4$). We note that broad-Mg II objects can only be identified using additional information from one of the Balmer lines, which would in turn eliminate the necessity to identify them. Without any additional information, such sources may be present in any sample of AGN.
5. We find that FWHM measurements for C IV in low-S/N spectra are systematically underestimated, for objects with partially resolved or unresolved C IV absorption features. We also find that the FWHMs of Mg II and the FWHMs of non-absorbed C iv profiles are consistent in low- and high-S/N data sets. On the other hand, the line dispersion measurements ($\sigma_{\text {line }}$) for both CIV and Mg II profiles differ significantly (a scatter of $\sim 0.2 \mathrm{dex}$).
6. $L / L_{\text {Edd }}$ seems to affect the dynamics of the Mg II-emitting region, especially in objects with extreme accretion rates (as pointed out by Marziani et al. (2013a)).
7. We provide new single epoch calibrations for M_{BH}, based on the FWHM of $\mathrm{H} \alpha$, $\mathrm{H} \beta, \mathrm{Mg}$ II and Civ.
8. The considerable uncertainties associated with C IV-based determination of M_{BH} are not solely due to insufficient spectral resolution and/or S / N. They are more likely related to the physics of the BLR. Our results are in agreement with some earlier findings about the systematic uncertainties associated to Civ. We found that the $L / L_{\text {Edd }}$ is strongly correlated with FWHM (C Iv) /FWHM (H α) and with the velocity offset of the Civ line. We stress, however, that these correlations show large scatter and cannot practically assist in improving M_{BH} (Civ) estimates.
9. We confirm the result of Runnoe et al. (2013), finding a significant correlation between the Si IV +O IV]/C IV line peak ratio and $\mathrm{FWHM}(\mathrm{C}$ Iv $) / \mathrm{FWHM}(\mathrm{H} \beta)$, which may in principle assist rehabilitating CIV-based M_{BH} determinations. Moreover, we find even stronger correlations associated with the C iir]/C iv line peak ratio. In contrast to Runnoe et al. (2013), our results indicate that these empirical correlations do not significantly reduce the scatter in M_{BH} (CIv) estimates. These opposite results are probably a consequence of the limited number of objects (<100 objects) in our sample as well as in the sample of Runnoe et al. (2013). To evaluate the robustness and usefulness of these methods, it is important to test these correlations on larger and more complete samples.

Motivated by the latter result, in chapter 3 we used the SDSS sample to test the validity of the practical alternatives to improve C IV-based M_{BH} estimations proposed
to date. Particularly, we tested the methods proposed by Runnoe et al. (2013), MejíaRestrepo et al. (2016) and Coatman et al. (2017) which are all based on correlations between different observables associated to the C IV emission and the ratio of FWHM(Civ) and the FWHM of low-ionization lines (i.e. $\mathrm{H} \alpha, \mathrm{H} \beta$ and Mg II). In spite of the good quality of the data used in these works, all these methods were derived on small samples that show limited coverage of the parameter space of the observables that are involved.

The usage of the SDSS DR7Q and the DR12Q quasar databases (which in spite of their data quality limitations are more representative of the quasar population) indicates that all these methods are of limited applicability to improve C iv-based M_{BH} estimations. In fact, we find that the aforementioned methods depend on correlations that are actually associated to the FWHM of the CIV profile itself and not to an interconnection between FWHM(CIv) and the FWHMs of the low ionization lines. Further support comes from the principal component analysis (PCA) described in the Appendix B.3. This analysis revealed that the first Eigenvector is mostly driven by the anti-correlation between $\mathrm{FWHM}(\mathrm{C}$ iv) and the quantities used in Runnoe et al. (2013), Mejía-Restrepo et al. (2016) and Coatman et al. (2017) to improve C Iv-bases mass estimations. Notably, the second Eigenvector is mostly driven by FWHM(Mg iI) and shows no correlation with any C IV related quantity. This indicates that the formation of the $\mathrm{Mg}_{\text {II }}$ and Civ profiles is independent from each other. In other words, there is no-possibility to relate the non-virialized CIv emission with the virialized $\mathrm{Mg}_{\mathrm{II}}$ emission.

Finally, in chapter 4, we evaluated the effects of the gas distribution on the determination of single epoch black hole masses. This study was possible thanks to the comparison of single epoch black hole mass estimations with those obtained from fitting standard disc models to the observed accretion disc SED. Our results show that the virial factor is inversely proportional to the observed width of the broad emission lines. We also find that line-of-sight inclination of gas in a planar distribution is the most probable cause for this effect. However, radiation pressure effects on the distribution of gas can also reproduce our findings. Regardless of the physical origin, our results provide an straightforward procedure to mitigate the uncertainties in single epoch black hole mass estimations associated to our ignorance of the actual virial factor in each source.

Appendix A

Complementary information to Chapter 2

A. 1 Demonstrating the quality of X-Shooter spectra

Figure A.A. 1 compares the newly obtained X-Shooter spectrum (UVB+VIS arms) to the publicly available SDSS spectrum, for J0143-0056 - the source shown in Figs. 2.2.3 and 2.2.4. This source has a $S / N \simeq 25$ at $2000 \AA$ which lies in the middle of the S / N range for the entire sample. Both spectra are presented without any binning or smoothing, including the residual sky and/or instrumental features. We note the significant improvements to S / N and spectral resolution, as evident from the minor absorption feature on the blue wing of the C III] $\lambda 1909$ line. The broader spectral coverage allows for a much more robust determination of the continuum level next to the Civ and $\mathrm{Mg}_{\text {II }}$ emission lines (i.e., L_{1450} and L_{3000}. Obviously, the NIR arm of X-Shooter includes the $\mathrm{H} \beta$ and $\mathrm{H} \alpha$ spectral regions (not shown here), which are unavailable in the SDSS data.

A. 2 New UV iron emission template

In figure A.A. 2 we compare our new UV iron template with the template of T06.We prefer the use of our new template motivated by the following three reasons:

- The T06 template severely underestimates the continuum emission around $2100 \AA$.
- T06 modelled the BC continuum as a modified Black Body following (Grandi, 1982). This does not provide a good approximation to Balmer emission and we

Figure A.A.1: SDSS and X-Shooter spectra of J0143-0056. Both spectra have been rescaled to avoid overlapping.
prefer templates based on photo-ionization calculations.

- The T06 template only extends between $2200 \AA$ and $3500 \AA$. However, there is still a remaining weaker but still non-negligible contribution from iron emission up to the Balmer limit ($3647 \AA$). The correct estimation of iron emission in this regions ($3500 \AA$ to $3647 \AA$) is crucial for estimating the emission by iron lines and to prevent overestimation of the BC.

We constructed the template following T06 and VW01 procedures and using our own estimations of the accretion-disc emission and Balmer continua. We redefined the

Figure A.A.2: Comparison of our new template (red) and Tsuzuki et al. (2006) template (black).
accretion-disc-continuum by manually selecting the continuum windows at $\sim 2100 \AA$ and $\sim 4200 \AA$ which account for the region where we require to obtain the new iron template ($2100-3647 \AA$) . The Balmer continuum model that we use is described in section 2.3.

Our template provides stronger iron emission, particularly in the range of 2620-3500 \AA, which is crucial for $\mathrm{Mg}_{\mathrm{II}}$ measurements. This could be explained by our different Balmer continuum approach and disc continuum windows.

A. 3 Emission line constraints

Table A. 1 lists the constraints on the emission line modeling for each of the components in our fitting procedure following Shang et al. (2007) and Vanden Berk et al. (2004).

A. 4 Comparison of Observed Emission Line Profiles

In Figures A.A. 3 and A.A. 4 we show the normalized profiles of the $\mathrm{H} \alpha, \mathrm{H} \beta, \mathrm{Mg}$ II and C iv emission lines, in velocity space. In most but not all sources, the C iv profiles (red) are broader and blue shifted with respect to the $\mathrm{H} \alpha$ and $\mathrm{H} \beta$ line profiles as discussed in $\$ 2.4 .3$. The low ionization lines, $\mathrm{H} \alpha, \mathrm{H} \alpha$ and Mg II, show similar shape profiles. $\mathrm{H} \beta$ is generally slightly broader than $\mathrm{H} \alpha$. Mg II is, on average, 30% narrower than $\mathrm{H} \beta$. The five broad-Mg II objects (top-row) show Mg II that are broader than $\mathrm{H} \alpha$ and $\mathrm{H} \beta$. These Mg II profiles are also slightly blue-shifted (about $300 \mathrm{~km} \mathrm{~s}^{-1}$) relative to the $\mathrm{H} \beta$ line. The two BALQSOs are the last two objects of the bottom row on the second set.

Table A.1: Line regions and adopted constraints. Under the global approach the CIV and $C \mathrm{III}$] line regions are fitted simultaneously

${ }^{\text {Y }}$ H
Figure A.A.3: Comparison of the observed $\mathrm{H} \alpha$ (black), $\mathrm{H} \beta$ (blue), Mg II (green) and C IV (red) line profiles in the velocity space for the objects in the sample with satisfactory Thin disc continuum fits. All profiles have been normalized relative to the peak flux density of the line. It is important to remark that both the Mg II and CIV profiles are doublets and their decomposed profiles are narrower than shown here. In the top row we show the five broad -Mg II objects.

${ }^{\text {Y }}$ H

Figure A.A.4: - continued. Comparison of the observed $\mathrm{H} \alpha$ (black), $\mathrm{H} \beta$ (blue), $\mathrm{Mg}_{\mathrm{II}}$ (green) and CIV (red) line profiles in the velocity space for the objects in the sample with satisfactory Thin disc continuum fits. All profiles have been normalized relative to the peak flux density of the line. It is important to remark that both the Mg II and C IV profiles are doublets and their decomposed profiles are narrower than shown here. To the left of the bottom row we show the two BALQSO objects.

Appendix B

Complementary information to Chapter 3

B. 1 Fitting Procedure, measurements and BALQSO exclusion

Our broad emission line modelling follows the procedure presented by Mejía-Restrepo et al. (2016) and Trakhtenbrot \& Netzer (2012). Very briefly, the most prominent lines (Si IV + O IV], C IV, C III] and Mg II) are modelled using two Gaussian components while other weak emission lines are modelled with a single Gaussian (including He ir1640, N IV1718, Si III]1892). The central wavelength of each Gaussian component is restricted to move within $1000 \mathrm{~km} \mathrm{~s}^{-1}$ around the laboratory central wavelength. The Civ and He II1640 are allowed to be blue shifted up to $5000 \mathrm{~km} \mathrm{~s}^{-1}$.

We automatized the procedure by introducing some additional steps to the line and continuum fitting. We first proceed to fit and subtract the continuum emission within a pair of continuum windows around each line. These continuum windows are set at the wavelengths that we list in Table B.1. We subsequently fit the emission line following the "local" approach described in Mejía-Restrepo et al. (2016). After this we obtain the residuals of the fitting and remove the pixels with the 3% most negative fluxes

Table B.1: Spectral pseudo-continuum windows used for our line fitting procedure under the local continuum approach. ${ }^{1}$ For each object, we manually adjusted the continuum bands, using the listed wavelength ranges as a reference.

Line Complex	Continuum windows $^{1}-$	
Si IV +O IV $]$	$1340-1360 \AA$	$1420-1460 \AA$
C IV	$1430-1460 \AA$	$1680-1720 \AA$
C III $]^{\text {Mg II }}$	$1680-1720 \AA$	$1960-2020 \AA$

Table B.2: Pearson correlation coefficients between the listed quantities for the DR7Q and DR12Q samples.

	DR7Q correlations												
Property	1	2	3	4	5	6	7	8	9	10	11	12	13
${ }^{1}$ FWWHM(C IV)	1	0.17	0.71	0.34	-0.51	0.44	-0.63	-0.51	0.36	-0.11	-0.83	0.22	-0.19
${ }^{2} \mathrm{FWHHM}(\mathrm{Mg} \mathrm{II})$	0.17	1	-0.58	0.1	0.11	-0.19	-0.07	0.03	-0.09	0.07	-0.2	0.6	-0.1
${ }^{3} \mathrm{FWHM}[\mathrm{C}$ IV/Mg II]	0.71	-0.58	1	0.21	-0.5	0.5	-0.47	-0.45	0.36	-0.15	-0.55	-0.24	-0.09
${ }^{4} L_{1450}$	0.34	0.1	0.21	1	-0.28	0.37	-0.36	-0.36	0.07	-0.09	-0.44	0.08	-0.16
${ }^{5} \Delta V_{\text {peak }}$ (C iv)	-0.51	0.11	-0.5	-0.28	1	-0.68	0.49	0.5	-0.39	0.25	0.45	-0.05	0.07
${ }^{6} \Delta V_{\text {line }}(\mathrm{C}$ IV)	0.44	-0.19	0.5	0.37	-0.68	1	-0.51	-0.53	0.34	-0.25	-0.48	-0.03	-0.09
${ }^{7} L_{\text {peak }}[\mathrm{C}$ IV $/ 1450 \AA]$	-0.63	-0.07	-0.47	-0.36	0.49	-0.51	1	0.65	-0.6	0.77	0.58	-0.2	0.07
${ }^{8} L_{\text {peak }}[\mathrm{C}$ IV $/ \mathrm{SiOIV}]$	-0.51	0.03	-0.45	-0.36	0.5	-0.53	0.65	1	-0.47	0.45	0.43	-0.08	0.03
${ }^{9} L_{\text {peak }}[\mathrm{C}$ IV $/ \mathrm{C}$ III $]$]	0.36	-0.09	0.36	0.07	-0.39	0.34	-0.6	-0.47	1	-0.55	-0.23	0.03	0.15
${ }^{10} \mathrm{EW}(\mathrm{C} \text { IV })$	-0.11	0.07	-0.15	-0.09	0.25	-0.25	0.77	0.45	-0.55	1	-0.08	-0.06	-0.13
${ }^{11} L_{\text {peak }}(\mathrm{C}$ IV) $/ L$ (C IV)	-0.83	-0.2	-0.55	-0.44	0.45	-0.48	0.58	0.43	-0.23	-0.08	1	-0.23	0.28
${ }^{12} \mathrm{FWHHM}(\mathrm{Mg} \mathrm{II}) / \sigma(\mathrm{Mg} \mathrm{II})$	0.22	0.6	-0.24	0.08	-0.05	-0.03	-0.2	-0.08	0.03	-0.06	-0.23	1	-0.19
${ }^{13} L_{3000} / L_{1450}$	-0.19	-0.1	-0.09	-0.16	0.07	-0.09	0.07	0.03	0.15	-0.13	0.28	-0.19	1
						2Q c	rrelat						
${ }^{1} \mathrm{FWWHM}(\mathrm{C}$ IV $)$	1	0.14	0.71	0.39	-0.37	0.39	-0.53	-0.46	0.33	-0.01	-0.5	0.16	-0.01
${ }^{2} \mathrm{FWHHM}(\mathrm{Mg} \mathrm{II})$	0.14	1	-0.6	0.08	-0.01	-0.08	-0.01	0.07	-0.04	0.08	-0.11	0.58	0.02
${ }^{3} \mathrm{FWHM}[\mathrm{C}$ IV/Mg II]	0.71	-0.6	1	0.25	-0.29	0.37	-0.41	-0.42	0.29	-0.07	-0.32	-0.29	-0.03
${ }^{4} L_{1450}$	0.39	0.08	0.25	1	-0.31	0.43	-0.37	-0.53	0.27	-0.06	-0.29	0.11	0.14
${ }^{5} \Delta V_{\text {peak }}(\mathrm{C}$ IV)	-0.37	-0.01	-0.29	-0.31	1	-0.66	0.39	0.37	-0.29	0.13	0.22	-0.01	-0.08
${ }^{6} \Delta V_{\text {line }}(\mathrm{C}$ IV)	0.39	-0.08	0.37	0.43	-0.66	1	-0.45	-0.46	0.29	-0.14	-0.27	-0.02	0.03
${ }^{7} L_{\text {peak }}[\mathrm{C}$ IV $/ 1450 \AA]$	-0.53	-0.01	-0.41	-0.37	0.39	-0.45	1	0.59	-0.53	0.58	0.28	-0.11	-0.04
${ }^{8} L_{\text {peak }}[\mathrm{C}$ IV $/ \mathrm{SiOIV}]$	-0.46	0.07	-0.42	-0.53	0.37	-0.46	0.59	1	-0.47	0.27	0.26	-0.08	-0.09
$\left.{ }^{9} L_{\text {peak }}\left[\mathrm{C}_{\mathrm{IV}} / \mathrm{C}_{\mathrm{III}}\right]\right]$	0.33	-0.04	0.29	0.27	-0.29	0.29	-0.53	-0.47	1	-0.3	-0.16	0.07	0.28
${ }^{10} \mathrm{EW}(\mathrm{C} \text { IV })$	-0.01	0.08	-0.07	-0.06	0.13	-0.14	0.58	0.27	-0.3	1	-0.61	-0	-0.04
${ }^{11} L_{\text {peak }}(\mathrm{C}$ IV) $/ L$ (C IV)	-0.5	-0.11	-0.32	-0.29	0.22	-0.27	0.28	0.26	-0.16	-0.61	1	-0.1	0.01
${ }^{12} \mathrm{FWHHM}(\mathrm{Mg} \mathrm{II}) / \sigma(\mathrm{Mg} \mathrm{II})$	0.16	0.58	-0.29	0.11	-0.01	-0.02	-0.11	-0.08	0.07	-0	-0.1	1	-0.07
${ }^{13} L_{3000} / L_{1450}$	-0.01	0.02	-0.03	0.14	-0.08	0.03	-0.04	-0.09	0.28	-0.04	0.01	-0.07	1

within the continuum windows. The purpose of this step is to exclude from the fitting strong absorption features. We repeat the entire procedure three times to guarantee convergence. We also exclude from our sample objects with final reduced χ^{2} larger than 3.

To avoid Civ BALQSOs we excluded from the sample objects with more than 7% of the pixels with negative CIV residuals. To test the performance of this automatic selection method we compare the objects that are flagged as BALQSOs using our method with the sample of 562 manually classified BALQSOs from the SDSS-DR2 quasar database that is described in Ganguly et al. (2007). With our criterion we flagged as BALQSO a total of 573/5088 objects from the SDSS-DR2 quasar catalogue at $1.7<z<2.0$. From these objects we found that $560 / 562$ objects are also classified as BALQSO in the manually selected Ganguly et al. (2007) sample. These results translate into a successful identification rate of 99.6% and a false positive identification rate of 2.3%. After excluding the BALQSO candidates and objects with unreliable fits we end up with 3267 from the DR7Q catalogue (out of the originally selected 4817 objects) and with 35674 objects from the DR12Q catalogue (out of the originally selected 69092 objects).

B. 2 Sample comparison

Here we describe in detail the parameter space of the most relevant physical quantities derived for the samples and summarize the most relevant issues associated to each of the of the small and large samples used in chapter 3.

B.2.1 Large sample remarks

- In both SDSS samples we can observed that FWHM(Civ) and L_{1450} correlate with each other $\left(r_{\mathrm{p}} \equiv r_{\text {Pearson }} \sim 0.35\right)$. This Indicates that, on average, more luminous quasars typically show broader C Iv line profiles. However, the FWHM ($\mathrm{Mg}_{\mathrm{II}}$) is completely independent of the quasar luminosity $\left(r_{\mathrm{p}}<0.05\right.$ in both SDSS samples).
- The DR12Q sample probes considerably fainter sources, compared with the DR7Q sample (by $\sim 0.5 d e x$), and extends to $L_{1450} \gtrsim 10^{44.5} \mathrm{erg} \mathrm{s}^{-1}$. This difference between both samples allows us to directly test the impact of luminosity limited samples as well as data quality in our analysis.
- In the case of \log FWHM (Civ) and \log FWHM (Mg iI) both SDSS samples span similar ranges, from ~ 3 to ~ 4.2 in log FWHM (C Iv) and from ~ 3 to ~ 3.8 in \log FWHM ($\mathrm{Mg}_{\mathrm{II}}$). However, the DR12Q sample has a larger fraction of object with low \log FWHM (C iv) and \log FWHM (Mg II). Explicitly, 5% (10\%) of the objects in the DR12Q sample have FWHM (C IV) $\lesssim 3.3$ (FWHM (Mg II) $\lesssim 3.3$) versus $2 \%(6 \%)$ in the DR7Q sample. Additionally, the DR12Q sample has a larger fraction of objects with \log FWHM $\left(\mathrm{Mg}_{\mathrm{II}}\right)>3.8$. The sharp cut at $\log \operatorname{FWHM}\left(\mathrm{C}_{\mathrm{IV}}\right)=\log \mathrm{FWHM}\left(\mathrm{Mg}_{\mathrm{II}}\right)=3$ is imposed by the fitting criterion.
- The log FWHM [C iv/Mg II] distribution in both samples span over similar ranges, from ~-0.6 to ~ 0.8. However, the DR12Q sample shows a larger fraction (28%) of objects with \log FWHM $\left[\mathrm{C}\right.$ IV $\left./ \mathrm{Mg} \mathrm{II}^{\mathrm{II}}\right]<0$ than the DR7Q sample (20%).
- We can observe that the DR12Q sample shows a larger fraction (roughly 10\%) of objects with $\log L_{\text {peak }}[\mathrm{C}$ iv $/ \mathrm{SiOIV}]$ and $\log L_{\text {peak }}[\mathrm{C}$ IV $/ \mathrm{C}$ iir $\left.]\right] \gtrsim 1$ than the DR7Q sample (roughly $\sim 5 \%$). We need however to be cautious about the reliability of such measurements because those objects show $L_{\text {peak }}$ (SiIV + O IV]) and $\left.L_{\text {peak }}(\mathrm{CIII}]\right)$ weaker than one tenth of $L_{\text {peak }}(\mathrm{C} I V)$. Thus, the signal to noise of the C iII] and Si IV+O IV] line profiles is probably very low in many of those objects. We can also appreciate that the DR12Q and DR7Q samples show a similar distribution in $\log L_{\text {peak }}[\mathrm{C}$ IV $/ 1450 \AA]$.
- As we already explained, DR7Q blue-shift estimations are more accurate that in DR12Q. Additionally, we can observe in Fig. 3.3 .4 that the $\Delta V_{\text {peak }}$ (Civ) and the $\Delta V_{\text {line }}$ (CIV) distributions show a larger fraction of objects with small blueshifts in the DR12Q sample than in the DR7Q sample $(6 \%$ in DR7Q vs 23%

DR12Q and 12% in DR7Q vs 28% in DR12Q for $\Delta V_{\text {peak }}\left(\mathrm{C}\right.$ iv) and $\Delta V_{\text {line }}$ (C Iv) $<200 \mathrm{~km} \mathrm{~s}^{-1}$ respectively). This behaviour is probably caused by objects in the DR12Q sample whose cosmological redshift has been estimated using the Civ profile. This effect artificially biases the CIV blue-shifts towards values close to 0 . Because of these problems with the DR12Q redshift determinations we will mainly focus our blue-shift analysis on the DR7Q sample.

B.2.2 Small sample remarks

- The Runnoe +13 sample is mostly described by uniform distributions in L_{1450}, FWHM (Civ) and FWHM(Mg II) that are fairly similarly distributed around the SDSS data. However, RL AGN are mostly high luminosity objects. We can also observe that the Runnoe+13 FWHM [C IV/Mg II] distribution is clearly shifted towards larger values than the peak of the SDSS distributions. In terms of $\Delta V_{\text {peak }}$ (C IV), the sample is shifted towards low values (75% with $<1000 \mathrm{~km} \mathrm{~s}^{-1}$). Finally, in terms of the line peak ratios, $\log L_{\text {peak }}(\mathrm{CIV}) / L_{\text {peak }}(\mathrm{Si}$ IV + O IV]) and $\log L_{\text {peak }}\left(\mathrm{C}_{\text {IV }}\right) / L_{\text {peak }}\left(\mathrm{C}_{\text {IIII }}\right)$, the sample is shifted towards large values $(75 \%$ with $\gtrsim 0.5$).
- The X-Shooter sample also shows flat distributions in $\log L_{1450}, \log$ FWHM (C IV) and \log FWHM ($\mathrm{Mg}_{\mathrm{II}}$) that are also fairly spread around the SDSS data. Its \log FWHM [$\left.\mathrm{C}_{\text {IV }} / \mathrm{Mg}_{\mathrm{II}}\right]$ is clearly distributed towards values lower than the peak of the SDSS distribution. It can be observed that the line peak ratios ($\sim 75 \%$ with $\log L_{\text {peak }}($ C IV $) / L_{\text {peak }}($ Si IV + O IV $\left.]\right) \lesssim 0.5$ and $\log L_{\text {peak }}(\mathrm{C}$ IV $) / L_{\text {peak }}(\mathrm{C}$ III $\left.]\right) \lesssim$ 0.5) and blue-shifts (75% with $<1000 \mathrm{~km} \mathrm{~s}^{-1}$) are both distributed towards low values with respect to the SDSS distribution peaks.
- The Coatman +2017 sample is clearly dominated by objects with very large L_{1450} $\left(L_{1450} \gtrsim 10^{46} \mathrm{erg} \mathrm{s}^{-1}\right)$ compared to the other samples. However, its FWHM(C iv) and $\Delta V_{\text {line }}$ (C IV) distributions very closely follow the SDSS DR7Q distributions.

B. 3 Principal Component analysis

In Table B. 2 we show the correlation matrix associated to the most relevant C iv and Mg II measurements in both SDSS samples. We ran a Principal Component Analysis (PCA) on this correlation matrix to find different groups of interconnected variables and obtain the amount of variance driven by each group. In Table B. 3 we show the correlation coefficients between the first three eigenvectors and the quantities that define them. We can observe that the first Eigenvector (EV1) is responsible for 38 and 32 percent of the variance in the DR7Q and DR12Q samples respectively. In both cases, FWHM (Civ) and $L_{\text {peak }}[\mathrm{C}$ IV $/ 1450 \AA]$ show the strongest correlations with EV1 indicating that the FWHM (C IV) $-L_{\text {peak }}[\mathrm{C}$ IV/1450 $]$ anti-correlation drives EV1 and con-

Table B.3: Pearson correlation coefficients between the listed quantities and the three first Eigenvectors (EV1, EV2 and EV3) obtained from principal component analysis for the DR7Q and DR12Q correlation matrices shown in Table B.2

sequently a large percentage of the variance in the SDSS samples. FWHM [C IV/Mg II],
 and $L_{\text {peak }}$ (Civ) / L (Civ) also show important correlations with EV1. However, these correlations are basically caused by the strong dependence of these quantities with FWHM (C iv) and $L_{\text {peak }}[$ C iv $/ 1450 \AA]$.

The second Eigenvector (EV2) is responsible for 16% and 15% of the variance in the DR7Q and DR12Q samples, respectively, and is strongly correlated with FWHM(Mg II) in both samples. It also shows a strong correlation with FWHM (Mg II) / σ (Mg II) and a strong anti-correlation with FWHM [Civ/Mgir], which is basically inherited from their correlations with FWHM(Mg II). Given that by definition EV2 is linearly independent of the other Eigenvectors, this result reveals that FWHM(Mg iI) is basically independent of any C IV related quantity and may indicate that C IV and $M g$ II profiles show completely independent behaviours.

Finally, the third Eigenvector (EV3) drives 13% and 14% of the variance of the SDSS samples, respectively, and is strongly correlated with EW(CIV) as well as with $L_{\text {peak }}$ (CIV) / L (Civ) which are both strongly correlated with each other because of their dependence on L (CIV). It also exhibits a correlation with FWHM [C IV $/ \mathrm{Mg}_{\text {II }}$] which is not correlated with any of these quantities. Thus, EV3 does not provide a link between Civ and Mg ir properties.

Appendix C

Accretion disc models

The material presented in this appendix is based on the work published in Capellupo et al. (2015) and Capellupo et al. (2016) which I coauthored.

C. 1 Thin accretion disc model

In this work, we use the numerical code described in Slone \& Netzer (2012) to calculate synthetic thin AD spectra. This code assumes the blackbody thin-disc model of Shakura \& Sunyaev (1973) disc with major improvements in two areas: the inclusion of general relativity terms and the improvement of the radiative transfer in the disc atmosphere. In this case, $M_{\mathrm{BH}}, \dot{M}, a_{*}$ and the viscosity parameter (α) determine the intrinsic SED of the accretion disc. Our calculations include Comptonization of the emitted radiation in the AD atmosphere (Hubeny et al., 2001; Davis \& Laor, 2011) and, for BH spin values of $a_{*} \geq 0$, full general relativistic corrections. For retrograde discs with $a_{*}<0$, the general relativistic effects are not included, which is a fair approximation because of the large size of the $\operatorname{ISCO}\left(>6 r_{g}\right.$, where r_{g} is the gravitational radius of the black hole). Throughout this work we assume $\alpha=0.1$

C. 2 Black hole mass and accretion rate determination

In our SED modelling the two input parameters are M_{BH} and \dot{M}. For each AGN in our sample, we calculate both $M_{B H}$ and \dot{M} directly from the observed spectrum.

For $M_{B H}$, we use the single epoch estimations from the $\mathrm{H} \alpha$ emission line using the new calibration derived in chapter 2. To measure \dot{M}, we follow several earlier works
based on the properties of thin ADs, e.g., Collin et al. (2002); Davis \& Laor (2011). The SED of such systems, at long enough wavelengths, is given by a canonical power-law of the form $L_{\nu} \propto \nu^{1 / 3}$. Given a known M_{BH}, the mass accretion rate can be directly determined by using the monochromatic luminosity in the region of the continuum showing such a power-law. The only additional unknown is the disc inclination to the line of sight. The expression we use here is taken from Netzer et al. (2014) and is given by:

$$
\begin{equation*}
4 \pi D_{L}^{2} F_{\nu}=f(\theta)\left[M_{8} \dot{M}_{\odot}\right]^{2 / 3}\left[\frac{\lambda}{5100 \AA}\right]^{-1 / 3} \quad \operatorname{erg~cm}^{-2} \mathrm{~s}^{-1} \mathrm{~Hz}^{-1} \tag{C.C.1}
\end{equation*}
$$

where F_{ν} is the observed monochromatic flux, M_{8} is the BH mass in units of $10^{8} M_{\odot}$, \dot{M}_{\odot} the accretion rate in units of M_{\odot} / yr, and D_{L} the luminosity distance. The inclination dependent term, $f(\theta)$, gives the angular dependence of the emitted radiation. There are various possibilities for parametrizing this term (see Netzer et al., 2014). Here we express it as:

$$
\begin{equation*}
f(\theta)=\frac{f_{0} F_{\nu}}{F_{\nu}(\text { face-on })}=f_{0} \frac{\cos \theta(1+b(\nu) \cos \theta)}{1+b(\nu)} \tag{C.C.2}
\end{equation*}
$$

where θ is the inclination to the line of sight and $b(\nu)$ is a limb darkening function which, in the present work, we assume to be frequency independent with $b(\nu)=2$. For this case, $f_{0} \simeq 1.2 \times 10^{30} \mathrm{erg} / \mathrm{sec} / \mathrm{Hz}$. This constant was obtained from realistic thin accretion models calculated by Slone and Netzer (2012), at a rest-frame wavelength of $5100 \AA$. Because of this, it is slightly different from other values quoted in the literature (e.g. Davis \& Laor 2011, as corrected in Laor \& Davis 2011).

Throughout this work, we use \dot{m} to describe the normalized (or Eddington) mass accretion rate,

$$
\begin{equation*}
\dot{m}=\frac{\dot{M}}{\dot{M}_{E d d}} \tag{C.C.3}
\end{equation*}
$$

where $\dot{M}=L_{\mathrm{bol}} / \eta c^{2}$ and $\dot{M}_{\mathrm{Edd}}=L_{\mathrm{Edd}} / \eta c^{2}$. We assume $L_{\mathrm{Edd}}=1.5 \times 10^{46} M_{8} \mathrm{erg} \mathrm{s}^{-1}$, which applies to solar composition gas. Using this definition, $\dot{m}=L / L_{\text {Edd }}$.

The above expressions can be re-arranged to estimate \dot{M} by using the intrinsic λL_{λ} at a chosen wavelength. Longer wavelengths are likely to provide better estimates since the approximation is based on the $L_{\nu} \propto \nu^{1 / 3}$ part of the disc SED. For $M_{\mathrm{BH}}>10^{8} M_{\odot}$ and relatively small M, this section of the SED corresponds to wavelengths longer than about $6000 \AA$ (e.g. figure 1 in Netzer et al., 2014). We choose the wavelength of $\lambda=8600 \AA$, which is well beyond $6000 \AA$, is located within the K-band of the observed SEDs, and is clear of emission lines.

A disadvantage associated with this choice is that towards longer wavelengths, the stellar light in the host galaxy starts to contribute significantly to the measured continuum. This effect is much more significant for fainter AGN than those studied here

Table C.1: Parameter values for the grid of $A D$ models.

Parameter	Δ	Min-Max values
$\log M_{B H}\left[M_{\odot}\right]$	0.075	$7.40: 10.25$
$\log \dot{M}\left[M_{\odot} / \mathrm{yr}\right]$	0.075	$-1.50:+2.10$
a_{*}	0.1	$-1.0:+0.998$
$f_{\text {sca }}$	0.067	$1.000: 0.330$
$A_{V}(\mathrm{mag})$	0.05	$0.00: 0.50$

(Stern \& Laor, 2012). We determine which objects require a host galaxy subtraction based on the rest-wavelength equivalent width (EW) of the $\mathrm{H} \alpha$ emission line. The EW of the Balmer lines is not affected by the Baldwin effect, and the $\mathrm{H} \alpha$ line intensity is a reliable bolometric luminosity indicator (Stern \& Laor, 2012). We first look at the EW distribution of the brightest 28 AGN in the sample, whose luminosity at $5100 \AA$ is high enough that host contamination is small enough to safely be neglected (Shen et al., 2011). We then compare the EW distribution for the 11 faintest AGN in the sample to the distribution for the brighter AGN, and we find most of the faint AGN have EW smaller than the median EW of the brighter AGN (i.e. EW $<400 \AA$). This clustering of AGN at low EW, as compared to the distribution of EW for the brighter sample, indicates there is host galaxy contamination to the continuum luminosity in this wavelength region for these few objects.

In order to subtract the host galaxy for these few faint objects, we use a Bruzual \& Charlot (2003) model of an old stellar population, with an age of 11 Gyr and solar metallicity. Such stellar population models have been used in many earlier works to correct for host galaxy contamination (e.g. Bongiorno et al., 2014; Banerji et al., 2015). We scale the stellar population model based on the ratio between the observed $\mathrm{H} \alpha$ EW and the median of the EW distribution ($400 \AA$). Younger stellar populations have a larger contribution in the UV, but using a stellar population with an age of 900 Myr , instead of the 11 Gyr model, changes the luminosity by less than 5% at $3000 \AA$ in the corrected AGN spectrum. Therefore, the choice of stellar population model does not have a large effect on the UV spectrum of our AGN. We now use these corrected spectra for measuring \dot{M} and for the remainder of the analysis presented in this thesis.

C. 3 Bayesian SED-Fitting Procedure

We generate a grid of thin AD models using the Slone \& Netzer (2012) code, and we use a Bayesian method to fit the models to the observed spectra. Our grid consist of 441,440 models for evenly spaced values of $M_{B H}, \dot{M}, a_{*}$ and the scaling factor $\left(f_{\text {sca }}=\cos \theta(1+2 \cos \theta) / 3\right)$ as described in Table C.1. To account for the possible host-galaxy intrinsic reddening we include A_{V} as a parameter in the Bayesian analysis. We adopt a range in A_{V} from 0 . to 0.50 mag , in intervals of 0.05 . To deredden the Xshooter spectra we adopt a simple power-law curve, where $A(\lambda)=A_{V}\left(\lambda / \lambda_{V}\right)^{-1}$ mag.

In our Bayesian approach, we determine the posterior probability for each of the 441,440 models for each value of A_{V} for each source. This probability is the product of the likelihood, $\mathcal{L}(m)$, and priors on M_{BH} and \dot{M}. We have no prior knowledge on a_{*}, $\cos 6$, or the amount of intrinsic reddening. The likelihood is based on the standard χ^{2} statistic, measured using up to seven line-free continuum windows, centred at 1353, $1464,2200,4205,5100,6205$, and $8600 \AA$. The widths of these bands range from 10 to $50 \AA$. For five objects at the upper end of the narrow redshift range of our sample, the bands centred on 4205 and $5100 \AA$ fall within regions of strong atmospheric absorption and are thus unusable. When calculating the χ^{2}, we combine the standard error from Poisson noise and an assumed 5 per cent error on the flux calibration.

We use Gaussian priors on the observed values $\left(M_{B H}^{o b s}, \dot{M}^{\text {obs }}\right)$ and with standard deviations $\left(\sigma_{M}, \sigma_{\dot{M}}\right)$ given by their uncertainties. We adopt 0.3 and 0.2 dex for σ_{M} and $\sigma_{\dot{M}}$, respectively. The resulting posterior probability is given by:

$$
\begin{aligned}
\text { posterior } \propto \exp & \left(-\chi^{2} / 2\right) \times \exp \left(-\left(M_{B H}^{o b s}-M_{B H}^{m o d}\right)^{2} / 2 \sigma_{M}^{2}\right) \\
& \times \exp \left(-\left(\dot{M}^{o b s} \times \frac{M_{B H}^{\text {BH }}}{M_{B H}^{m o d}}-\dot{M}^{m o d}\right)^{2} / 2 \sigma_{\dot{M}}^{2}\right)
\end{aligned}
$$

The Bayesian procedure ranks the 441,440 models based on the posterior probability for each one. We consider an AGN to have a satisfactory thin AD fit when the model with the highest probability has a reduced χ^{2} statistic less than 3 .

[^4]
Bibliography

Abazajian, K. N., et al. 2009, ApJS, 182, 543
Antonucci, R. 1993, ARA\&A, 31, 473
Antonucci, R. R. J., \& Miller, J. S. 1985, ApJ, 297, 621
Arav, N., Borguet, B., Chamberlain, C., Edmonds, D., \& Danforth, C. 2013, MNRAS, 436, 3286

Banerji, M., et al. 2015, MNRAS, 454, 419
Baron, D., Stern, J., Poznanski, D., \& Netzer, H. 2016, ArXiv e-prints
Baskin, A., \& Laor, A. 2004, MNRAS, 350, L31
-. 2005, MNRAS, 356, 1029
Batiste, M., Bentz, M. C., Raimundo, S. I., Vestergaard, M., \& Onken, C. A. 2017, ApJ, 838, L10

Bentz, M. C., \& Katz, S. 2015, PASP, 127, 67
Bentz, M. C., Peterson, B. M., Netzer, H., Pogge, R. W., \& Vestergaard, M. 2009, ApJ, 697, 160

Bentz, M. C., et al. 2013, ApJ, 767, 149
Bongiorno, A., et al. 2014, MNRAS, 443, 2077
Borguet, B. C. J., Arav, N., Edmonds, D., Chamberlain, C., \& Benn, C. 2013, ApJ, 762, 49

Boroson, T. A., \& Green, R. F. 1992, ApJS, 80, 109
Brotherton, M. S., Runnoe, J. C., Shang, Z., \& DiPompeo, M. A. 2015a, ArXiv e-prints
Brotherton, M. S., Singh, V., \& Runnoe, J. 2015b, MNRAS, 454, 3864
Bruzual, G., \& Charlot, S. 2003, MNRAS, 344, 1000

Capellupo, D. M., Netzer, H., Lira, P., Trakhtenbrot, B., \& Mejía-Restrepo, J. 2015, MNRAS, 446, 3427
-. 2016, MNRAS, 460, 212
Coatman, L., Hewett, P. C., Banerji, M., \& Richards, G. T. 2016, MNRAS, 461, 647
Coatman, L., Hewett, P. C., Banerji, M., Richards, G. T., Hennawi, J. F., \& Prochaska, J. X. 2017, MNRAS, 465, 2120

Collin, S., Boisson, C., Mouchet, M., Dumont, A.-M., Coupé, S., Porquet, D., \& Rokaki, E. 2002, A\&A, 388, 771

Collin, S., Kawaguchi, T., Peterson, B. M., \& Vestergaard, M. 2006, A\&A, 456, 75
Corbin, M. R. 1990, ApJ, 357, 346
Corbin, M. R., \& Boroson, T. A. 1996, ApJS, 107, 69
Croom, S. M., Smith, R. J., Boyle, B. J., Shanks, T., Miller, L., Outram, P. J., \& Loaring, N. S. 2004, MNRAS, 349, 1397

Czerny, B., Du, P., Wang, J.-M., \& Karas, V. 2016, ApJ, 832, 15
Davis, S. W., \& Laor, A. 2011, ApJ, 728, 98
De Rosa, G., et al. 2014, ApJ, 790, 145
Decarli, R., Dotti, M., Fontana, M., \& Haardt, F. 2008a, MNRAS, 386, L15
Decarli, R., Labita, M., Treves, A., \& Falomo, R. 2008b, MNRAS, 387, 1237
Del Moro, A., et al. 2016, MNRAS, 456, 2105
Denney, K. D. 2012, ApJ, 759, 44
Denney, K. D., Peterson, B. M., Dietrich, M., Vestergaard, M., \& Bentz, M. C. 2009a, ApJ, 692, 246

Denney, K. D., Pogge, R. W., Assef, R. J., Kochanek, C. S., Peterson, B. M., \& Vestergaard, M. 2013, ApJ, 775, 60

Denney, K. D., et al. 2009b, ApJ, 704, L80
—. 2010, ApJ, 721, 715
Done, C., \& Krolik, J. H. 1996, ApJ, 463, 144
Du, P., et al. 2015, ApJ, 806, 22
Dunn, O. J., \& Clark, V. 1969, Journal of the American Statistical Association, 64, 366

Ferrarese, L., \& Merritt, D. 2000, ApJ, 539, L9
Fine, S., Croom, S. M., Bland-Hawthorn, J., Pimbblet, K. A., Ross, N. P., Schneider, D. P., \& Shanks, T. 2010, MNRAS, 409, 591

Fine, S., et al. 2006, MNRAS, 373, 613
-. 2008, MNRAS, 390, 1413
Foreman-Mackey, D., Hogg, D. W., Lang, D., \& Goodman, J. 2013, PASP, 125, 306
Ganguly, R., Brotherton, M. S., Cales, S., Scoggins, B., Shang, Z., \& Vestergaard, M. 2007, ApJ, 665, 990

Gaskell, C. M. 1982, ApJ, 263, 79
—. 2009, New Astronomy Review, 53, 140
Gaskell, C. M., \& Goosmann, R. W. 2013, ApJ, 769, 30
Ge, X., Bian, W.-H., Jiang, X.-L., Liu, W.-S., \& Wang, X.-F. 2016, MNRAS, 462, 966
Ginsburg, A., \& Mirocha, J. 2011, PySpecKit: Python Spectroscopic Toolkit, Astrophysics Source Code Library

Glen, A. G., Leemis, L. M., \& Drew, J. H. 2004, Computational Statistics \& Data Analysis, 44, 451

Goosmann, R. W., \& Gaskell, C. M. 2007, A\&A, 465, 129
Graham, A. W. 2015, ArXiv e-prints
Graham, A. W., Onken, C. A., Athanassoula, E., \& Combes, F. 2011, MNRAS, 412, 2211

Grandi, S. A. 1982, ApJ, 255, 25
Greene, J. E., \& Ho, L. C. 2005, ApJ, 630, 122
Gültekin, K., et al. 2009, ApJ, 698, 198
Häring, N., \& Rix, H.-W. 2004, ApJ, 604, L89
Hewett, P. C., \& Wild, V. 2010, MNRAS, 405, 2302
Ho, L. C., Goldoni, P., Dong, X.-B., Greene, J. E., \& Ponti, G. 2012, ApJ, 754, 11
Hubeny, I., Blaes, O., Krolik, J. H., \& Agol, E. 2001, ApJ, 559, 680
Kallman, T. R., \& Krolik, J. H. 1986, ApJ, 308, 805

Kaspi, S., Brandt, W. N., Maoz, D., Netzer, H., Schneider, D. P., \& Shemmer, O. 2007, ApJ, 659, 997

Kaspi, S., Maoz, D., Netzer, H., Peterson, B. M., Vestergaard, M., \& Jannuzi, B. T. 2005, ApJ, 629, 61

Kaspi, S., Smith, P. S., Netzer, H., Maoz, D., Jannuzi, B. T., \& Giveon, U. 2000, ApJ, 533, 631

Khachikian, E. Y., \& Weedman, D. W. 1974, ApJ, 192, 581
Kollatschny, W., \& Zetzl, M. 2011, Nature, 470, 366
-. 2013, A\&A, 558, A26
Kormendy, J., \& Ho, L. C. 2013, ARA\&A, 51, 511
Labita, M., Decarli, R., Treves, A., \& Falomo, R. 2009, MNRAS, 399, 2099
Laor, A., Barth, A. J., Ho, L. C., \& Filippenko, A. V. 2006, ApJ, 636, 83
Laor, A., \& Davis, S. W. 2011, MNRAS, 417, 681
Laor, A., Jannuzi, B. T., Green, R. F., \& Boroson, T. A. 1997, ApJ, 489, 656
Lopez, S., \& Jenkins, J. S. 2012, ApJ, 756, 177
Marconi, A., Axon, D. J., Maiolino, R., Nagao, T., Pastorini, G., Pietrini, P., Robinson, A., \& Torricelli, G. 2008, ApJ, 678, 693

Marziani, P., Dultzin-Hacyan, D., \& Sulentic, J. W. 2006, Accretion onto Supermassive Black Holes in Quasars: Learning from Optical/UV Observations (Nova Science Publishers), 123

Marziani, P., Sulentic, J. W., Plauchu-Frayn, I., \& del Olmo, A. 2013a, A\&A, 555, A89
—. 2013b, ApJ, 764, 150
McConnell, N. J., \& Ma, C.-P. 2013, ApJ, 764, 184
McLure, R. J., \& Dunlop, J. S. 2001, MNRAS, 327, 199
-. 2002, MNRAS, 331, 795
-. 2004, MNRAS, 352, 1390
McLure, R. J., \& Jarvis, M. J. 2002, MNRAS, 337, 109
Mejía-Restrepo, J. E., Trakhtenbrot, B., Lira, P., Netzer, H., \& Capellupo, D. M. 2016, MNRAS, 460, 187

Mortlock, D. J., et al. 2011, Nature, 474, 616

Müller, A., \& Wold, M. 2006, A\&A, 457, 485
Netzer, H. 1977, MNRAS, 181, 89P
-. 2006, ApJ, 652, L117
Netzer, H., Lira, P., Trakhtenbrot, B., Shemmer, O., \& Cury, I. 2007, ApJ, 671, 1256
Netzer, H., \& Marziani, P. 2010, ApJ, 724, 318
Netzer, H., Mor, R., Trakhtenbrot, B., Shemmer, O., \& Lira, P. 2014, ApJ, 791, 34
Netzer, H., \& Trakhtenbrot, B. 2014, MNRAS, 438, 672
Ng, P., \& Maechler, M. 2007, Statistical Modelling, 7, 315
Onken, C. A., Ferrarese, L., Merritt, D., Peterson, B. M., Pogge, R. W., Vestergaard, M., \& Wandel, A. 2004, ApJ, 615, 645

Onken, C. A., \& Peterson, B. M. 2002, ApJ, 572, 746
Pancoast, A., Brewer, B. J., Treu, T., Park, D., Barth, A. J., Bentz, M. C., \& Woo, J.-H. 2014, MNRAS, 445, 3073

Pâris, I., et al. 2012, A\&A, 548, A66
-. 2016, ArXiv e-prints
Park, D., Woo, J.-H., Denney, K. D., \& Shin, J. 2013, ApJ, 770, 87
Park, D., et al. 2012, ApJ, 747, 30
Peterson, B. M., \& Wandel, A. 1999, ApJ, 521, L95
-. 2000, ApJ, 540, L13
Peterson, B. M., et al. 2004, ApJ, 613, 682
Popovic, L. C., Vince, I., Atanackovic-Vukmanovic, O., \& Kubicela, A. 1995, A\&A, 293, 309

Rafiee, A., \& Hall, P. B. 2011, ApJS, 194, 42
Ricci, C., et al. 2017, MNRAS, 468, 1273
Richards, G. T., Vanden Berk, D. E., Reichard, T. A., Hall, P. B., Schneider, D. P., SubbaRao, M., Thakar, A. R., \& York, D. G. 2002, AJ, 124, 1

Richards, G. T., et al. 2011, AJ, 141, 167
Runnoe, J. C., Brotherton, M. S., DiPompeo, M. A., \& Shang, Z. 2014, MNRAS, 438, 3263

Runnoe, J. C., Brotherton, M. S., Shang, Z., \& DiPompeo, M. A. 2013, MNRAS, 434, 848

Satyapal, S., Ellison, S. L., McAlpine, W., Hickox, R. C., Patton, D. R., \& Mendel, J. T. 2014, MNRAS, 441, 1297

Schneider, D. P., et al. 2010, AJ, 139, 2360
Sergeev, S. G., Pronik, V. I., Sergeeva, E. A., \& Malkov, Y. F. 1999, ApJS, 121, 159
Shakura, N. I., \& Sunyaev, R. A. 1973, A\&A, 24, 337
Shang, Z., Wills, B. J., Wills, D., \& Brotherton, M. S. 2007, AJ, 134, 294
Shen, Y. 2013, Bulletin of the Astronomical Society of India, 41, 61
Shen, Y., Greene, J. E., Strauss, M. A., Richards, G. T., \& Schneider, D. P. 2008, ApJ, 680, 169

Shen, Y., \& Ho, L. C. 2014, Nature, 513, 210
Shen, Y., \& Liu, X. 2012, ApJ, 753, 125
Shen, Y., et al. 2011, ApJS, 194, 45
Slone, O., \& Netzer, H. 2012, MNRAS, 426, 656
Stalevski, M., Ricci, C., Ueda, Y., Lira, P., Fritz, J., \& Baes, M. 2016, MNRAS, 458, 2288

Stern, J., \& Laor, A. 2012, MNRAS, 423, 600
Sulentic, J. W., Bachev, R., Marziani, P., Negrete, C. A., \& Dultzin, D. 2007, ApJ, 666, 757

Sulentic, J. W., Marziani, P., Zamanov, R., Bachev, R., Calvani, M., \& DultzinHacyan, D. 2002, ApJ, 566, L71

Tilton, E. M., \& Shull, J. M. 2013, ApJ, 774, 67
Trakhtenbrot, B., \& Netzer, H. 2012, MNRAS, 427, 3081
Trakhtenbrot, B., Netzer, H., Lira, P., \& Shemmer, O. 2011, ApJ, 730, 7
Tremaine, S., Shen, Y., Liu, X., \& Loeb, A. 2014, ApJ, 794, 49
Tsuzuki, Y., Kawara, K., Yoshii, Y., Oyabu, S., Tanabé, T., \& Matsuoka, Y. 2006, ApJ, 650, 57

Ulrich, M.-H., \& Horne, K. 1996, MNRAS, 283, 748
Urry, C. M., \& Padovani, P. 1995, PASP, 107, 803

Vanden Berk, D. E., et al. 2004, ApJ, 601, 692
Vestergaard, M. 2002, ApJ, 571, 733
Vestergaard, M., \& Osmer, P. S. 2009, ApJ, 699, 800
Vestergaard, M., \& Peterson, B. M. 2006, ApJ, 641, 689
Wall, J. V., Jackson, C. A., Shaver, P. A., Hook, I. M., \& Kellermann, K. I. 2005, A\&A, 434, 133

Wang, J.-G., et al. 2009, ApJ, 707, 1334
Wills, B. J., \& Browne, I. W. A. 1986, ApJ, 302, 56
Wills, B. J., Netzer, H., Brotherton, M. S., Han, M., Wills, D., Baldwin, J. A., Ferland, G. J., \& Browne, I. W. A. 1993, ApJ, 410, 534

Woo, J.-H., Yoon, Y., Park, S., Park, D., \& Kim, S. C. 2015, ApJ, 801, 38
Woo, J.-H., et al. 2010, ApJ, 716, 269
Wu, X.-B., et al. 2015, Nature, 518, 512
Xiao, T., Barth, A. J., Greene, J. E., Ho, L. C., Bentz, M. C., Ludwig, R. R., \& Jiang, Y. 2011, ApJ, 739, 28

York, D. G., et al. 2000, AJ, 120, 1579
Zheng, W., \& Sulentic, J. W. 1990, ApJ, 350, 512
Zuo, W., Wu, X.-B., Fan, X., Green, R., Wang, R., \& Bian, F. 2015, ApJ, 802, 140

[^0]: ${ }^{1}$ For example, for Civ we find that a narrow component typically contributes $\sim 3 \%$, and at most 6%, of the total line luminosity.

[^1]: $M_{\mathrm{BH}}(\mathrm{H} \alpha)$ measurements obtained through FWHM $(\mathrm{H} \alpha)$ and L_{6200}.
 $M_{\mathrm{BH}}(\mathrm{H} \alpha)$ measurements obtained through FWHM $(\mathrm{H} \alpha)$ and $L(\mathrm{H} \alpha)$

[^2]: ${ }^{2}$ For the remaining 10 objects, the only archival spectroscopy available is from the 2SLAQ survey, which is of limited S / N and is not flux calibrated.

[^3]: ${ }^{3}$ The scaling factor is somewhat luminosity dependent. See TN12 for a discussion of this issue.

[^4]: ${ }^{1}$ We only consider $\cos \theta>0.5$, appropriate for type-I AGN.

