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S U M M A R Y
An analytical solution is derived concerning the linear run-up for any given initial wave
generated over a sloping bathymetry. Due to the simplicity of the linear formulation, complex
transformations are unnecessary, hence the shoreline motion is directly obtained in terms of
the initial wave. This result supports not only maximum run-up invariance between linear and
nonlinear theories but also the time evolution of shoreline motion and velocity, exhibiting
good agreement with the nonlinear theory. The present formulation also allows quantifying
the shoreline motion numerically from a customized initial waveform, including non-smooth
functions. This is useful for numerical tests, laboratory experiments or realistic cases in which
the initial disturbance might be retrieved from seismic data rather than using a theoretical
model. It is also shown that the run-up calculation for the real case studied is consistent with
the field observations.
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1 I N T RO D U C T I O N

In near field subduction zones, after an earthquake triggers a
tsunami, the first wave reaches the coastline within 15–30 min.
Nevertheless, in the recent 2015 Illapel tsunami, witnesses affirm
that the first inundation occurred 5 min after origin time (Melgar
et al. 2016). The short response-time motivates an analytical study
to understand the local phenomena in coastal zones.

The 1+1 D (one space + one temporal dimension) water wave
evolution problem over sloping bathymetries has been extensively
studied. Contributions regarding the run-up problem on sloping
beaches have been addressed for over five decades. The first solu-
tion for the fully nonlinear formulation of the shallow water wave
equations on a sloping beach (Fig. 1a) was presented by Carrier &
Greenspan (1958). They defined a hodograph transformation (the
CG transformation) in terms of the Riemann invariants of the hy-
perbolic system that connects the physical space (x, t) with a dual
space (σ , λ). Tuck & Hwang (1972) proposed a slightly different
transformation that not only solves the nonlinear equations but also
turns them into the same form as the linear ones.

Another approach is having a sloping beach consisting of a uni-
form sloping part connected to a horizontal plane that models the av-
erage sea floor (the canonical problem (Fig. 1b)). Synolakis (1987)
considered an incoming solitary wave into the canonical problem.
The author derived an analytical expression for the run-up, referred
to as run-up law hereafter. He also studied the nonlinear effects
with the use of the CG transformation, providing a wave breaking
criterion. His work is widely used as a benchmark for numerical
codes (Synolakis et al. 2008), and it has been the base to further
approaches. Li & Raichlen (2001) confirmed the wave breaking
criterion obtained by Synolakis (1987), with numerical and ex-

perimental approaches. Besides, Li & Raichlen (2001) added a
correction term to the run-up law derived by Synolakis (1987),
which is important in a specific range of relative wave height,
but neglects most of the geophysical applications. Pelinovsky &
Mazova (1992) considered different initial waveforms to investi-
gate the analytical solution of the nonlinear run-up problem. They
included a parameter in order to describe the domain of a wave
breaking region. They confirmed its importance and its applica-
tion for real tsunamis by taking a database of over 114 events.
They tested their results with monochromatic waves and Lorenz
pulses.

Motivated by tsunami observations of the Mw 7.7 1992
Nicaraguan Earthquake, Tadepalli & Synolakis (1994) introduced
N-shaped waves, namely N-waves. They are suitable for subduction
zones where the subducting plate angle is more gradual, and the
earthquake can produce an initial wave with a visible elevation-
subsidence pattern.

Liu et al. (2003) solved the forced linear shallow water equation.
They compared their solution with the nonlinear depth integrated
version of the same problem in order to study the run-up process of
landslides.

An analytic solution of the nonlinear shoreline motion and veloc-
ity on a sloping beach was presented by Kânoǧlu (2004). He utilized
the linearized CG transformation, and succeeded in describing the
run-up process for several waves: Gaussian pulse, solitary wave
and N-wave. In the same line, Pritchard & Dickinson (2007) ex-
tended the Kânoǧlu’s (2004) solution using a near-shore expansion
around of the transformed shoreline coordinate, which is valid for
any smooth initial condition. Those initial waves are approximated
by a combination of Gaussian waveforms proposed by Carrier et al.
(2003).
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Figure 1. Sketches of the basic models including the variable definitions
and coordinate system. (a) Sloping uniform beach geometry. (b) Canonical
problem geometry.

Madsen et al. (2008) made a complete review in relation to the
use of solitary waves for tsunami modelling. They stated that there
are not enough arguments to utilize solitary-type wave as an ini-
tial condition, at least in geophysical scales and, as Kânoǧlu et al.
(2015) pointed out, this paradigm shifts from solitary to N-wave.
Additionally, Madsen & Schäffer (2010) provided an analytical so-
lution for the full nonlinear shallow water equations by using the
CG transformation. They applied their solution to well-known ini-
tial waves, for instance, sinusoidal, solitary, and N-waves. However,
as Madsen & Schäffer (2010) pointed-out, the solution is applicable
only for smooth enough initial conditions.

Other approaches have been studied regarding complex features.
Kânoǧlu & Synolakis (1998) and Fuentes et al. (2015) studied the
linear 1+1 D run-up for an extended case of the canonical problem.
Instead of using the canonical setting, they considered a piecewise
linear bathymetry, by finding a strong dependence of the run-up
with the slope of the closest segment to the shore. Ezersky et al.
(2013) and Fuentes et al. (2015) used this approach to explore
resonance effects attributed to bathymetry shape. Fuentes et al.
(2013) incorporated dimensional complexity regarding the 2+1 D
problem (x, y, t). They provided an analytical solution for a solitary
wave in an extended canonical problem. Recently, Riquelme et al.
(2015) used these two approaches and proposed a quick way to
estimate the run-up heights as soon as the seismic information
allows imaging of the earthquake source. Kânoǧlu et al. (2013)
provide a 2+1 D approach on a constant depth ocean inside the
linear regime. Their solution reveals important focusing phenomena
of N-waves, that is to say, the convergence of waves on a certain
focal point. Sepúlveda & Liu (2016) proposed an analytic solution
based on a Fourier expansion of the initial condition in terms of the
fault plane parameters.

This work presents a simple analytical solution for the linear
run-up height on a sloping beach, allowing even the use of non-
smooth initial waves. This solution can be used to integrate any
kind of wave, in particular, those obtained from seismic data. The
mathematical development is presented in Section 2. A complete
and detailed derivation of the whole development is shown in the
appendix. In Section 3, a comparison between the present solution
with the full nonlinear solution is given. Different kind of classic
waves are tested, including a real tsunami case. Finally, a summary
and main conclusions are given in Section 4.

2 M AT H E M AT I C A L D E R I VAT I O N

A tsunami run-up is generally modelled with shallow water equa-
tions. This study focuses on the 1+1 D linear formulation. Since it
was pointed out by Synolakis (1991), the linear theory can correctly
predict the run-up on a sloping beach for a non-breaking initial
wave. Thus, the linear equations to consider are

ut + gηx = 0 (1)

ηt + [hu]x = η0t (2)

where u = u(x, t) represents the depth-averaged horizontal velocity
component, η(x, t) is the water surface disturbance, η0(x, t) is a
forcing term, which models the sea floor deformation, h = h(x) is
the bathymetry profile and g the gravity acceleration. Hereafter, the
slope of the beach will be referred to as α =: tan (β). In the present
case, h(x) = αx, which means that the problem to solve is set in
Fig. 1(a).

Tuck & Hwang (1972) utilized the system (1)–(2), and derived an
expression for η by the standard Hankel–Laplace transform tech-
nique, obtaining:

η(x, t) = 2√
gα

∫ ∞

0
J0

(
2k

√
x
) ∫ ∞

0
J0

(
2k

√
ξ
)

×
∫ t

0
η1t t (ξ, τ ) sin[

√
αgk(t − τ )]dτdξdk, (3)

where

η1(x, t) = η0(x, t) + [η(x, 0−) + tηt (x, 0−)]H(t), (4)

H(t) is the Heaviside step function and J0(·) is the zero-order cylin-
drical Bessel function. Note that the notation ‘0−’ in eq. (4) comes
from the Laplace transform that allows the use of generalized func-
tions (see Appendix A1).

When it is desired to account for the effects of the tsunami gener-
ation process, it is important to consider a time-dependent forcing
term η0(x, t) which contains the time history of a seismic source.
This could be particularly useful for slow earthquake or landslide
(Liu et al. 2003) generated tsunamis. In these cases η(x, 0−) = ηt(x,
0−) = 0. However, because generally tsunami speed is approxi-
mately 15 times slower than rupture velocity, a common practice
is to consider an instantaneous initial wave transferred from the
seabed to the water surface, keeping the same shape. This is equiva-
lent to the absence of the term η0(x, t). Also, Synolakis et al. (1997)
pointed out that for an initial value tsunami problem, a null initial
velocity should be taken (u(x, 0) = ηt(x, 0−) = 0). However, there
are solutions accounting for an initial velocity different from zero
(Kânoǧlu & Synolakis 2006). Thus, from (4)

η1t t (x, t) = η(x, 0−)δt (t) (5)

and expression (3) yields

η(x, t) = 2√
gα

∫ ∞

0
η(ξ, 0−)Gt (x, ξ, t)dξ (6)

where

G(x, ξ, t) =
∫ ∞

0
J0

(
2k

√
x
)

J0

(
2k

√
ξ
)

sin[
√

αgtk]dk (7)

which was obtained by Tuck & Hwang (1972). Eqs (6) and (7)
are the starting point of this paper. Carrier et al. (2003) practically
obtained the same kernel as eq. (7), interpreted as a Green function
in the hodograph space for the nonlinear solution. They derived an
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explicit formula in terms of the complete elliptic integral of first
kind.

Also, from eqs (6) and (7), one can derive the shoreline velocity
in terms of the initial wave (see Appendix A2 for details),

u(0, t) = − 1

α
ηt (0, t). (8)

Accounting for the moving boundary condition at the shoreline
is a difficult task to solving. Normally, the run-up is attained for
a coordinate inland (x < 0, and nonlinear theory must be used),
however, to study the approximate shoreline motion with linear
theory, the still-water shoreline is considered (hereafter SWS), that
is to say, the water height at the shoreline of the undisturbed water
level. Thus, evaluating at x = 0, eq. (7) reduces to

G(0, ξ, t) = 1

2

H (
1
4 αgt2 − ξ

)
√

1
4 αgt2 − ξ

(9)

therefore, from eqs (6) and (9), the time-series at the shoreline is

η(0, t) = 1

2

∂

∂t

{
t

∫ 1

0

η
(

1
4 αgt2 y, 0−

)
√

1 − y
dy

}
. (10)

Note that eq. (10) does not require derivatives of the initial condition,
which allows the use of less restrictive waves than the standard
formulations. This is the main result of this work. Eq. (10) gives
the SWS in terms of the initial condition only, in a quite simple
integral representation. When the initial condition is set, the use
of this formula allows for prompt estimation of the SWS and the
corresponding maximum run-up.

Numerical integration can be used to evaluate eq. (10). However,
if the initial condition corresponds to an infinitely differentiable
function, by doing integration by parts N times, the integral on
eq. (10) is equivalent to∫ 1

0

η (x∗ y, 0−)√
1 − y

dy = 2
N−1∑
k=0

(2x∗)k

(2k + 1)!!
∂k

x η(0, 0−)

+ (2x∗)N

(2N − 1)!!

∫ 1

0
(1 − y)N− 1

2 ∂ N
x η(x∗ y, 0−)dy (11)

where x∗ = 1
4 αgt2.

The remainder in eq. (11) tends to zero when N tends to infinity.
Thus, an explicit power series is obtained for the approximated
shoreline motion:

η(0, t) =
∞∑

k=0

(2x∗)k

(2k − 1)!!
∂k

x η(0, 0−) (12)

which is suitable when McLaurin coefficients can be computed
explicitly. An equivalent and more elegant manner for deriving
expression (12) is to apply eq. (10) by expanding η(x, 0−) in the
McLaurin series and using the Beta function:∫ 1

0

yk

√
1 − y

dy = B

(
k + 1,

1

2

)
= 2k+1k!

(2k + 1)!!
.

According to the linear theory, the maximum run-up and run-
down can be obtained by solving the following optimization prob-
lems

Rup = maxt∈R+ η(0, t) (13)

Rdown = mint∈R+ η(0, t). (14)

For x < 0, the previous formulation is not valid and one must solve
the nonlinear equations (Synolakis 1987, 1991).

3 I N I T I A L WAV E S T E S T E D

Formulae (10) and (12) allow the evaluation for any type of initial
wave. Customized shapes can also be evaluated, even if they do not
proceed from usual functions. Even though the whole development
was made in dimensional form, it can be easily converted into the
dimensionless form by replacing α = g = 1.

3.1 Analytical solution: parabolic wave

For analytical purposes, knowing precise expressions is useful for
validating new solutions and numerical codes. In this case, the initial
wave of maximum height H at x0

2 is defined as

η(x, 0−) = 4H

(
1 − x

x0

)
x

x0
H(x0 − x). (15)

This wave is not smooth at x = x0, however, it is still possible to use
it as initial condition. A direct evaluation from eq. (12) shows the

maximum run-up is Rup = 3
2 H , occurs at the time tup =

√
3x0
2αg , and

the run-down Rdown = − 8
3 H is reached at the time tdown =

√
4x0
αg .

Fig. 2 shows the computed SWS motion for different initial
parabolic waves. The numerical integration of eq. (10) confirms
the analytical solution for the run-up and the run-down.

3.2 Gaussian pulse

A good way to validate analytical solutions is to compare them with
the existing ones. In this case, those solutions presented by Carrier
et al. (2003) are considered. By using the nonlinear theory, they
computed the maximum run-up and run-down for four different
initial waves constructed with Gaussian pulses of the form

η(x, 0−) = H1 exp
{−k1(x − x1)2

} − H2 exp
{−k2(x − x2)2

}
(16)

Fig. 3 shows the initial waves and the SWS motions. The analytical
solutions obtained in eqs (10) and (8) exhibit good agreement in
comparison with results obtained by Carrier et al. (2003).

3.3 Solitary wave

The most regular solution of the Korteweg–De Vries equation is
known as a solitary wave, and it takes the form

η(x, 0−) = Hsech2(γ (x − x1)) (17)

with γ = 1
d

√
3H
4d .

Synolakis (1987) obtained the maximum run-up of this wave in
the canonical problem, namely Rup = 2.831H

5
4 d− 1

4 |α|− 1
2 .

Fig. 4 shows the results of four different solitary waves studied
by Kânoǧlu (2004) used to validate his own analytical solution. The
presented solution accurately predicts the run-up values. The depen-
dence of the maximum run-up with the initial height is confirmed
inside the linear regime, as Synolakis (1987) pointed out.

3.4 N-waves

Tadepalli & Synolakis (1994) defined a dipole wave in terms of
hyperbolic functions. They followed the same formalism proposed
by Synolakis (1987) to describe the run-up process of the solitary
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Figure 2. Four parabolic initial waves (a)–(d) from eq. (15) and their corresponding SWS motion (e)–(h) evaluated from eq. (10) in dimensionless form.
Circles and triangles are the analytical run-up and run-down, respectively. (a) H = 0.1 and x0 = 1. (b) H = 0.5 and x0 = 1. (c) H = 1 and x0 = 2. (d) H = 0.1
and x0 = 2.

Figure 3. Four Gaussian initial waves (a)–(d) from eq. (18) and their corresponding SWS motion (e)–(h) evaluated from eq. (10) and shoreline velocities
(i)–(l) from eq. (8) in dimensionless form. In (e)–(l), the continuous line represents the linear theory (eqs 10 and 8) and the blue dots, the nonlinear theory
(Kânoǧlu 2004). (a) H1 = 0.017, x1 = 1.69, k1 = 4, H2 = x2 = k2 = 0. (b) H1 = −0.017, x1 = 1.69, k1 = 4, H2 = x2 = k2 = 0. (c) H1 = 0.02, x1 = 1.5625,
k1 = 3.5, H2 = 0.01, x2 = 1, k2 = 3.5. (d) H1 = 0.006, x1 = 4.1209, k1 = 0.4444, H2 = 0.018, x2 = 1.6384, k2 = 4. The pairs Rup − Rdown are (e) 0.0471
and −0.0268. (f) 0.0268 and −0.0471. (g) 0.0584 and −0.0235. (h) 0.0328 and −0.0481.

wave in the canonical problem. The expression for an isosceles
leading-elevation, or depression N-wave, is

η(x, 0−) = ±3
√

3

2
Hsech2(γ (x − x1))tanh(γ (x − x1)) (18)

with γ = 3
2d

√√
3
4

H
d . They obtained that Rup = 3.86H

5
4 d− 1

4 |α|− 1
2 .

Fig. 5 shows the results for four different isosceles N-waves
studied by Kânoǧlu (2004). The reader may note the symmetry be-
tween the run-up and run-down with leading-elevation and depres-
sion N-wave. As it was shown by Tadepalli & Synolakis (1994),

for a leading-elevation isosceles N-wave in a canonical problem,
Rup, Rdown ∝ H

5
4 , which is in agreement with the results obtained.

3.5 A case study: the 2014 Mw = 8.2 Iquique earthquake

As it has been said before, the computation for the SWS motion
can be performed for any initial wave, including a discrete de-
scription of the profile. However, numerical integration requires a
special care for this case. First, the singularity on the integrand in
eq. (10) is removed by a simple trigonometric change of variables,
namely y = sin 2(θ ). Then, the integral I(t) is approximated with a
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Figure 4. Results for four solitary waves in dimensionless form. (a) Black dots represent the run-up computed from eq. (10), H = 0.040, 0.035, 0.030, 0.025

and x1 = 20. The line shows Rup ∝ H
5
4 . (b) Example of initial solitary wave with H = 0.040 and x1 = 20. (c,d) represent the SWS motion and shoreline

velocity respectively for the initial wave shown in (b). Black continuous lines show the linear solutions (eq. 10 for (c) and eq. 8 for (d)) and the blue dots are
the nonlinear solutions from Kânoǧlu (2004).

Figure 5. Results for four Isosceles N-waves in dimensionless form. (a) Black dots represent the run-up and black triangles, the run-down computed from

eq. (10), with H = 0.040, 0.035, 0.030, 0.025 and x1 = 15. The line shows that Rup, Rdown ∝ H
5
4 . (b) Example of initial leading elevation Isosceles N-wave

with H = 0.040 and x1 = 15. (c) and (d) represent the SWS motion and shoreline velocity respectively for the initial wave shown in (b). Black continuous lines
show the linear solutions (eq. 10 for (c) and eq. 8 for (d)) and the blue dots are the nonlinear solutions from Kânoǧlu (2004).

trapezoidal method of non-uniform grid,

I (t) = :
∫ 1

0

η
(

1
4 αgt2 y, 0−

)
√

1 − y
dy

= 2
∫ π

2

0
η

(
1

4
αgt2 sin2(θ ), 0−

)
sin(θ )dθ. (19)

The observations for the initial wave are defined as (xi, ηi). The
discretization is given by xm = m−1

Nx −1 X f , m = 1, . . . Nx , with Xf

the length of the profile. The discretization of the time variable
is t j = j−1

Nt −1 T f , j = 1, . . . , Nt , with Tf the time duration of the
simulation. The discretization of the interval [0, π

2 ] is given by θi =
arcsin(

√
i−1

N0−1 ), i = 1, . . . , N0. For obtaining a correct evaluation

of the integral, there should be a matching along the discretization.
This implies X f = 1

4 αgT 2
f and Nx = 1 + (N0 − 1)(Nt − 1)2.

The numerical approximation of the integral I(t), for large values
of N0 is

I j =: I (t j ) ≈
N0−1∑
i=1

(
ηm(i+1, j)

√
i

N0 − 1
+ ηm(i, j)

√
i − 1

N0 − 1

)

× (θi+1 − θi ) + O
(

N
− 1

2
0

)
(20)

with m(i, j) = 1 + (i − 1)(j − 1)2. The order of approximation
comes from the truncation error of trapezoidal rule of non-uniform
grid spacing.

Finally, the approximated shoreline motion for the observed ini-
tial wave is

η(0, t j ) ≈ 1

2

{
j I j+1 − ( j − 1)I j

}
j = 1, . . . , Nt − 1. (21)
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Figure 6. Comparison between two initial waves: one from teleseismic data and the other from a theoretical N-wave. (a) Finite Fault Model of the Mw = 8.2
Iquique Earthquake (Hayes et al. 2014). The black star represents the epicentre, and dots are the field measurements locations and the dashed line represents the
chosen transect. (b) Field measurements of the run-up heights of the 2014 Iquique tsunami. (c) Initial profile along the transect shown in (a). The continuous
curve represents the initial wave obtained from the slip model in (a). The dashed line represents a generalized N-wave (Madsen & Schäffer 2010) with
A1 = 1.7 m, A2 = 0.7 m, x1 = 82 km, x2 = 35.8 km and γ = 0.0340 km−1 (eq. 22). (d) SWS motions for the initial waves shown in (c). The time-series
derived from seismic data (continuous) is computed with eqs (20)–(21), while theoretical N-wave (dashed) is computed with eq. (10). Black dot represents the
maximum run-up of the analytical solution.

After an earthquake occurs, teleseismic inversion is performed in
order to reconstruct the distribution of the slip across the fault plane,
and then, a Finite Fault Model (FFM) is generated. The FFM used
for the Mw = 8.2 Iquique earthquake is obtained from the USGS
website (Hayes et al. 2014). Once the FFM is available, it is possible
to derive the initial condition from Okada’s equations (Okada 1985),
which provides the static sea floor deformation. In the formulation
presented in this paper, the static deformation is directly transferred
to the water surface as an initial condition. Fig. 6 shows the FFM
model and the initial waveform produced along the maximum uplift
zone in order to obtain η(x, 0−).

The maximum run-up is a combination of the first wave impact
and excitation of the resonance modes. Later edge waves can am-
plify the run-up, as it was observed in the Iquique earthquake (An
et al. 2014; Catalán et al. 2015). However, to anticipate the tsunami
hazard, it is worth to estimate the first impact. Riquelme et al.
(2015) utilized analytical solutions from Fuentes et al. (2013, 2015)
to propose a methodology to obtain an approximated run-up dis-
tribution as soon as the seismic information is retrieved (Fig. 6),
obtaining estimations of the same order as the ones observed by
field measurements.

In order to compare the numerical integration with the analytical
solution, a generalized N-wave is chosen (Madsen & Schäffer 2010).
The initial wave is defined as

η(x, 0−) = A1sech2(γ (x − x1)) − A2sech2(γ (x − x2)), (22)

where γ (x1 − x2) = π

2 . The run-up in a canonical problem for these
kinds of waves (presented in an equivalent form) is

Rup = A1

√
γ d|α|− 1

2 max
θ

χμ(θ ), (23)

where μ = A2
A1

, χμ(θ ) = Li(− 3
2 , −e−2θ ) − μLi(− 3

2 , −e−2θ+π ),
Li(n, λ) is the polylogarithm function and θ is a time variable
(Madsen & Schäffer 2010).

Table 1. Summary of relative error (per cent) of waves tested from
Sections 3.2–3.4. |Rnon linear − Rlinear|/Rnon linear is around 0–2 per cent.

Gaussian Solitary N-wave

(a) 0.0298 0.0030 1.5603
(b) 0.1381 0.0056 1.3453
(c) 2.3613 0.0048 1.0744
(d) 0.1319 0.0288 0.7997

Fig. 6 shows that the analytical shoreline motion for the initial
wave obtained from the FFM agrees with the modelled N-shaped
wave, despite the fact that the curve obtained from seismic data does
not come from an elementary function. By using typical values for
northern Chile (d = 4 km and α = 1

20 ), the run-up of the general-
ized theoretical N-wave is 5.8 m according to eq. (23). The run-up
is 4.7 m in the case of the disturbance produced with the Okada’s
equations, which are consistent with the observed field measure-
ments of the order of 4 m (Catalán et al. 2015). It is interesting
to note that the analytical solution provided by Sepúlveda & Liu
(2016), with the seismic parameters found in Hayes et al. (2014),
yields a run-up of 4.2 m, which is also consistent with the results of
this work.

4 D I S C U S S I O N A N D C O N C LU S I O N S

An analytical solution is computed to model the shoreline motion
derived from linear theory, and a method to integrate any type of
initial waves is developed.

The complexity in the treatment of the nonlinear solutions con-
sists in passing from the physical into the dual space, and vice versa.
Also, most of available analytical solutions are restricted to smooth
waves only. The derived solution from the linear theory overcomes
this issue, producing a fast computation, with almost the same ac-
curacy as the nonlinear theory, as shown in Table 1. However, the
present solution is valid for profiles only, that is to say that some
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important 2-D effects can be missed, for instance, wave focusing
(Kânoǧlu et al. 2013) and interference are neglected.

This formulation can be adapted to integrate any kind of ini-
tial wave, even an arbitrary waveform that, for example, may be
retrieved from seismic data. However, additional work should be
done in order to explore the range of validity and sensitivity of the
parameters.

As it was presented in the introduction, the state of the art al-
ready has analytical solutions, even for nonlinear theory. Also, the
long wave run-up invariance between linear and nonlinear theories
has been well documented. Nonetheless, the present solution also
shows full shoreline motion and velocity invariance. One advantage
of linear solutions in dimensional form is to allow direct physical
and mathematical interpretation from the initial condition and the
geometrical setting. On the other hand, this approach has some lim-
itations regarding the scope of the solution. Due to some important
2+1 D effects ignored along the wave travel (e.g. wave focusing,
energy loss, etc.), far field tsunamis are not suitable to consider
here. It will be worth it to dedicate a future work to explore the
generalization of this approach to higher dimensions.

For tsunami early warning purposes, a first order run-up estima-
tion is necessary. Then, an analytical solution adapted for tsunami
generation on a sloping bathymetry, rather than a plane sea floor,
is more realistic. In terms of efficient estimation, Riquelme et al.
(2015) proposed the idea to use analytical water wave solutions,
utilizing FFMs, that could be rapidly generated by GPS inversions
(≈5 min). An improvement to their methodology is to replace the
1+1 D formulation with the one presented here, which is more
suitable for subduction zones, and that practically does not need
computational time to be evaluated.
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Madsen, P.A. & Schäffer, H.A., 2010. Analytical solutions for tsunami
runup on a plane beach: single waves, N-waves and transient waves, J.
Fluid Mech., 645, 27–57.
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A P P E N D I X A : D E TA I L E D
M AT H E M AT I C A L D E R I VAT I O N

In the following, detailed derivations are shown step by step.

A1 The still water shoreline (SWS) motion η(0, t)

The linearized system (1)–(2) is the starting point. By elimination
of u(x, t), with h(x) = αx, one obtains an equivalent second-order
partial differential equation

ηt t − αg(xηx )x = η0t t (A1)

Downloaded from https://academic.oup.com/gji/article-abstract/209/2/597/2957020
by Universidad de Chile user
on 22 March 2018



604 M. Fuentes

To solve eq. (A1), a Hankel-type transform is employed. The
following definition will be adopted:

H{ f }(k) =: f̂ (k) =:
∫ ∞

0
f (r )J0(2k

√
r )dr (A2)

f (r ) = 2
∫ ∞

0
f̂ (k)J0(2k

√
r )kdk (A3)

where J0 is the cylindrical Bessel function of zero order. Note that
the use of the elements J0(2k

√
r ) for the basis is guaranteed by the

orthogonality of the Bessel functions. Also, a correct evaluation of
the Dirac delta is needed. This comes from the fact that δ(g(x)) =∑

i
δ(x−xi )
|g′(xi )| , where the sum is over the roots of g.

The main reason of using eqs (A1) and (A2) is that the operator
(xηx)x is converted into −k2η̂(k, t), in fact,

H{(xηx )x }(k)

=
∫ ∞

0
(xηx )x J0(2k

√
x)dx

= [
(xηx )J0(2k

√
x)

]∞
0

+ k

∫ ∞

0
ηx J1(2k

√
x)

√
xdx

= k
[
ηJ1(2k

√
x)

]∞
0

− k

∫ ∞

0
η(x, t)

(
J1(2k

√
x)

√
x
)

x
dx

= −k2η̂(k, t),

where the identity ( 1
x

d
dx )m (xn Jn(x)) = xn−m Jn−m(x) is used in the

last step.
Then, eq. (A1) becomes

η̂t t + αgk2η̂ = η̂0t t . (A4)

Now, eq. (A4) can be solved by using the Laplace transform

L{ f }(s) = f (s) =:
∫ ∞

0−
f (t)e−st dt.

The lower limit 0− makes emphasis on the fact that f can be also a
distribution, for instance, the Dirac delta impulse. Thus, the Laplace
transform turns the ODE (A4) into

s2η̂(k, s) − sη̂(k, 0−) − η̂t (k, 0−) + αgk2η̂ = L{η̂0t t }(s). (A5)

Solving for η̂,

η̂(k, s)

= 1

s2 + (
√

αgk)2

(
L{η̂0t t }(s)

+s2

[
1

s
η̂(k, 0−) + 1

s2
η̂t (k, 0−)

] )

= 1

s2 + (
√

αgk)2
(L{η̂0t t }(s)

+L{([η̂(k, 0−) + t η̂t (k, 0−)]H(t))t t }(s))

= 1

s2 + (
√

αgk)2
L{(η̂0 + [η̂(k, 0−) + t η̂t (k, 0−)]H(t))t t }(s)

defining the function η1(x, t) =: η0(x, t) + [η(x, 0−) + tηt (x, 0−)]
H(t), where H(t) is the Heaviside step function, one has

η̂(k, s) = 1

s2 + (
√

αgk)2
η̂1t t (k, s). (A6)

Utilizing the convolution theorem from eq. (A6) follows

η̂(k, t) = H(t)√
αgk

sin
(√

αgkt
) ∗ η̂1t t (k, t). (A7)

Writing the convolution integral and replacing the Hankel transform
definitions from eqs (A2) and (A3), eq. (A7) results in

η(x, t) = 2√
gα

∫ ∞

0
J0

(
2k

√
x
) ∫ ∞

0
J0

(
2k

√
ξ
)

×
∫ t

0
η1t t (ξ, τ ) sin[

√
αgk(t − τ )]dτdξdk, (A8)

which is the general solution for the water surface evolution.
As a particular case, η0(x, t) = ηt(x, 0−) = 0 for all (x, t) are

chosen. Thus, the definition of η1(x, t) implies

η1t t (x, t) = η(x, 0−)δt (t). (A9)

This allows the integration on τ ,∫ t

0
η1t t (ξ, τ ) sin[

√
αgk(t − τ )]dτ

=
∫ t

0
η(ξ, 0−) sin[

√
αgk(t − τ )]δτ (τ )dτ

= −η(ξ, 0−){∂τ sin[
√

αgk(t − τ )]}∣∣
τ=0

= η(ξ, 0−)∂t sin[
√

αgkt]. (A10)

Then, inserting eq. (A10) in eq. (A8) and utilizing the Leibniz
integral rule give

η(x, t) = 2√
gα

∫ ∞

0
η(ξ, 0−)∂t

×
∫ ∞

0
J0

(
2k

√
x
)

J0

(
2k

√
ξ
)

sin[
√

αgkt]dkdξ. (A11)

Eq. (A11) suggests defining a function independent of the initial
condition,

G(x, ξ, t) =
∫ ∞

0
J0

(
2k

√
x
)

J0

(
2k

√
ξ
)

sin[
√

αgkt]dk. (A12)

Eq. (A12) is interpreted as the Green’s function of the system.
Except that factors and definition of the variables, it is practically
the same kernel obtained by Carrier et al. (2003). Therefore, in
terms of G, the water surface evolution is written as

η(x, t) = 2√
gα

∫ ∞

0
η(ξ, 0−)Gt (x, ξ, t)dξ. (A13)

To study the approximated shoreline motion, eq. (A13) is evalu-
ated at x = 0. Employing the Leibniz’s integral rule and (see e.g.
Gradshteyn & Ryzhik 1994)∫ ∞

0
J0(ax) sin(bx)dx = H(b − a)√

b2 − a2
(A14)

one can obtain

η(0, t) = 2√
gα

∂

∂t

{∫ 1
4 αgt2

0

η(ξ, 0−)√
αgt2 − 4ξ

dξ

}
. (A15)

Last expression can be simplified by considering the change of
variables inside the integral ξ =: 1

4 αgt2 y, which turns it into

η(0, t) = 1

2

∂

∂t

{
t

∫ 1

0

η
(

1
4 αgt2 y, 0−

)
√

1 − y
dy

}
. (A16)
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For numerical integration purposes, eliminating the singular-
ity in the integrand is required. To complete this task, the
change of variables y = sin 2(θ ) is employed, which turns (A16)
into

η(0, t) = ∂

∂t

{
t

∫ π
2

0
η

(
1

4
αgt2 sin2(θ ), 0−

)
sin(θ )dθ

}
. (A17)

At this point, eq. (A17) can be numerically used for integrating any
analytical initial condition. Nonetheless, when the initial condition
allows infinite derivatives around x = 0, eq. (A16) can be used
to obtain a series expansion. There are, at least, two equivalent
ways to obtain it: by iterative integration by parts and by McLaurin
expansion of the initial condition. Only the second one is presented
here. Therefore, writing

η(x∗ y, 0−) =
∞∑

k=0

∂k
x η(0, 0−)

k!
(x∗ y)k (A18)

where x∗ = 1
4 αgt2, expression (A18) is inserted into (A16) and

integrating term by term follows

η(0, t) = 1

2

∞∑
k=0

∂k
x η(0, 0−)

k!
∂t

(
t x∗k) ∫ 1

0
yk(1 − y)−

1
2 dy. (A19)

The integral on eq. (A19) is the Beta function which can be evaluated
in exact form (see e.g. Abramowitz & Stegun 1964)∫ 1

0
yk(1 − y)−

1
2 dy = B

(
k + 1,

1

2

)
= 2k+1k!

(2k + 1)!!
(A20)

where (2m + 1)!! =:
m∏

i=0

(2i + 1), with (−1)!! =: 1.

Finally, inserting eq. (A20) into (A19) and using ∂ t(tx∗k) =
(2k + 1)x∗k

η(0, t) =
∞∑

k=0

(2x∗)k

(2k − 1)!!
∂k

x η(0, 0−), (A21)

which is the series representation of the approximated shoreline mo-
tion when the initial condition admits McLaurin expansion around
x = 0.

A2 The approximated shoreline velocity u(0, t)

Taking eq. (A12) and using that lim
z→0

J1(z)

z
= 1

2
,

Gx (0, ξ, t) = ∂x

∫ ∞

0
J0

(
2k

√
x
)

J0

(
2k

√
ξ
)

sin[
√

αgkt]dk

∣∣∣∣
x=0

= −
∫ ∞

0
k

J1

(
2k

√
x
)

√
x

J0

(
2k

√
ξ
)

sin[
√

αgkt]dk

∣∣∣∣∣
x=0

= −
∫ ∞

0
k2 J0

(
2k

√
ξ
)

sin[
√

αgkt]dk

= 1

αg
Gtt (0, ξ, t). (A22)

Inserting eq. (A22) into eq. (A13), the spatial derivative is

ηx (0, t) = 1

αg

2√
αg

∫ ∞

0
η(ξ, 0)Gttt (0, ξ, t)dξ

= 1

αg
ηt t (0, t). (A23)

Then, from eq. (1) and replacing eq. (A23),

ut (0, t) = − 1

α
ηt t (0, t). (A24)

Because of the null initial velocity condition, integration of
eq. (A24) gives

u(0, t) = − 1

α
ηt (0, t), (A25)

which is the formula used to estimate the linear approximation of
the shoreline velocity.
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