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Abstract
The idea that item response theory (IRT) models yield invariant parameter estimates is widely 
accepted among scholars interested in achieving truly scientific measurements in social and 
behavioral sciences. Starting from a conceptual and mathematical definition of invariance, this 
article presents a critical examination of the theoretical and empirical support for the property 
of invariance with regard to populations and samples of items and subjects by means of simulated 
data. The distinction between internal and external invariance is introduced to clarify the meaning 
and limitations of invariance in IRT models. Furthermore, the consequences of “giving in to the 
sirens’ call” of achieving invariant measurements in behavioral sciences are also discussed.
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In his well-known book Against Method, Feyerabend (1975) develops a thesis on the 
force of attraction that beliefs and strong theoretical standpoints exert on scientists, and 
how this force erodes their capacity to perceive the limits of empirical evidence. 
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Feyerabend illustrated his theory by describing how Galileo used arguments unrelated to 
astronomical evidence to advocate the heliocentric system. This example and other his-
torical cases (Gratzer, 2001) reveal that strong beliefs can lead scientists to attempt to 
convince others (and indeed themselves) by means of discursive strategies rather than 
empirical evidence.

This paper will demonstrate that something similar has occurred (and is continuing to 
do so) in the field of psychometrics, where an important part of the psychometric com-
munity that encourages the use of item response theory (IRT), has come to promote the 
idea that IRT models have the capacity to achieve invariant measurements. Unfortunately, 
this property (Hambleton, Swaminathan, & Rogers, 1991) has only been weakly demon-
strated, and its actual meaning and implications are more limited than those suggested in 
disseminating literature.

To support our thesis we provide a conceptual and mathematical definition for the 
property of invariance and develop a critical examination of the theoretical and empirical 
support for invariance in IRT models. Furthermore, we introduce the distinction between 
internal and external invariance to clarify the meaning of invariance in IRT, and discuss 
some of the negative consequences of giving in to the sirens’ call of the imperative 
achievement of invariant measurements in behavioral sciences.

Invariance in psychometrics: Asking the question

In the fields of mathematics and physics, invariance is a property of real or formal sys-
tems for which particular types of transformations do not alter the relationships between 
the elements of a system. Thus, if a system is comprised of measurements of several 
objects using a single instrument, measurement invariance shall be defined as observing 
the same relationships between measurements when a second measurement instrument is 
used in the assessment.

In certain fields of science, measurement invariance may be somewhat trivial because 
measuring an object using equally valid and reliable instruments (e.g., thermometers 
based on different principles) yields equivalent results. Unfortunately, measurement 
invariance is not guaranteed in social and behavioral sciences, where meaningful differ-
ences in scaling are often found when using two equally valid and reliable instruments 
(e.g., tests or scales) developed to measure the same construct, or where notoriously dif-
ferent properties are found for the same instrument when applied in different groups, 
samples, or populations.

Measurement invariance has been regarded as the essential attribute for truly scien-
tific measurement in psychometrics (Jones, 1960), and its achievement is considered a 
“matter of life and death to the science of mental measurement” (Wright, 1968, p. 85). 
Thus, a lack of invariance is deemed unsatisfactory for scientific measurement (De 
Ayala, 2009; Embretson, 1999; Hambleton et al., 1991; Wright, 1968), and considerable 
efforts have been devoted to defining situations in which it is possible to assume the 
existence of measurement invariance in behavioral sciences.

Following Meredith (1993) and Millsap (2008), in the field of psychometrics meas-
urement invariance is generally defined as the equivalence between (a) the probability 
that a subject j drawn for a population (Qk) endorse an item Xi given the subject’s ability 
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(θj) and (b) the probability of endorsing the item solely on subject’s ability. This equiva-
lence is formally expressed in Equation 1. Thus, if item parameter estimates are equal 
(within error levels) across different groups of participants, regardless of the population 
they belong to, items are regarded as invariant.

	 P X Q P Xi j k i jθ θ,( ) = ( ) 	 (1)

Given that participants might belong to an infinite number of populations, each with 
different characteristics, the necessary and sufficient condition for achieving invariant 
measurements is that no population characteristic is associated with the probabilities of 
endorsing the items of the test or scale conditional on the latent trait θ (McDonald, 1982). 
This means that the probability of endorsing any item of the test is solely a function of 
the latent trait and, if all items are invariant, all participants with the same level of ability 
(i.e., the same value in the latent trait) will exhibit the same estimated ability score 
(within error levels), regardless of the population they belong to. Therefore, invariance 
should be regarded as a conditional property, which is only relevant in the context of 
multiple populations (Rupp & Zumbo, 2006), or where one can assume the existence of 
at least two populations with different characteristics that may interfere with the proba-
bilities of endorsing the items of the test given θ.

Bearing this in mind, the reader might speculate as to whether it is possible to achieve 
invariance in the context of social and behavioral sciences, and if so, what kind of meth-
odological and statistical tools are available to ensure invariant results.

Invariance in IRT: Stating the answer

Since the earliest developments in the field of psychometrics, numerous psychometri-
cians have struggled to develop methodological procedures to achieve invariant 
measurements. For example, Thorndike (1922), Thurstone (1927), and Guttman 
(1950) developed different techniques (i.e., transmuting scores, absolute scaling, and 
scalogram analysis, respectively; cf. Engelhard, 1984, 2008) with this purpose, in 
order to be able to compare test scores across different groups. During the mid-20th 
century, efforts devoted to seeking invariance in the field of psychometrics were 
transferred to IRT. In this context, Lord (1952) argued that measurement invariance 
was achievable within latent variable models because it is “possible under certain 
conditions to define a metric for the ability such that the frequency distribution of 
ability in the group tested will remain the same even though the composition of the 
test is changed” (pp. 1–2).

In IRT models, measurement invariance occurs when items exhibit the same item 
characteristic curves (ICC) across groups of participants or, equivalently, items exhibit 
the same parameter estimates across groups (Embretson & Reise, 2000). Therefore, 
measurement invariance should be a matter of empirical research, as addressed by the 
differential item functioning (DIF) research tradition within IRT models (cf. Camilli & 
Shepard, 1994; Holland & Wainer, 1993), however, an influential group of scholars have 
promoted the belief that measurement invariance is an intrinsic property of the IRT 
framework and, as such, is achievable by fitting IRT models.
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One of the first psychometricians arguing that measurement invariance is an intrinsic 
property of an IRT model was Rasch (1960/1980), who developed the IRT model that 
bears his name. The Rasch model has the property of specific objectivity, which would 
allow for comparing participants regardless of the specific set of items or instruments 
used in the measurement process. Consequently, if participant responses fit to a Rasch 
model, the specific objectivity ensures that (a) differences in the logarithms of the odds 
of endorsing an item will be equal among any pair of participants, regardless of the item 
used in the comparison and (b) differences in difficulty parameters between any pair of 
items will be equal across groups of participants participating in the estimation. Thus, it 
would allow the achievement of invariant estimates across items and participant 
parameters.

Given that specific objectivity was originally claimed as a property of Rasch-type 
models, certain authors argue that invariance is a property restricted to these types of 
models (Fischer & Molenaar, 1995; Wright, 1999), whereas other authors (e.g., De 
Ayala, 2009; Embretson & Reise, 2000; Hambleton et  al., 1991; Reise & Haviland, 
2005) generalize this property to all IRT models. These latter authors argue that all IRT 
models are invariant because they: (a) estimate participants’ parameters taking into 
account the properties of the items and estimate item parameters taking into account 
participant abilities (De Ayala, 2009; Embretson, 1996); (b) ensure that estimated prob-
abilities of endorsing an item solely depend on the ICC and not on participants’ abilities 
(Hambleton & Swaminathan, 1985); and (c) take the form of a regression (albeit non-
linear), and the estimation of a regression is invariant as it does not depend on the distri-
bution of the abilities of the group assessed (Lord, 1980).

Thus, in most handbooks and articles promoting the IRT framework, the property of 
invariance is highlighted as one of the main advantages of IRT models compared to clas-
sical test theory (CTT). For example, Hambleton et al. (1991) argue that measurement 
invariance “is the cornerstone of IRT and its major distinction from classical test theory” 
(p. 19). Reise, Ainsworth, and Haviland (2005) consider invariance as one of the main 
characteristics of IRT models because, without this property, it would be “virtually 
impossible to administer a common measure to different groups, compute raw scores, 
and make meaningful comparisons” (p. 97). Embretson and Reise (2000) listed the prop-
erty of invariance as one of the new rules of measurement which emerged with the IRT 
framework. Thus, IRT advocates seem to believe that invariance is a goal achievable 
using IRT models for test and scale development, and this is regarded as a revolution in 
the field of psychometrics: as stated by Wright, “a new measurement in psychology has 
emerged from a confluence of scientific and social science methodology” (1999, p. 65).

Interestingly, the authors who consider invariance to have been achieved do not pro-
vide a formal definition for the concept, although they seem to regard it as a universal or 
unconditional property of IRT models which enables the complete independence of esti-
mates from the samples of participants, populations of individuals, and sets of items used 
in the assessment. For example, some authors claim that IRT estimates are “population-
free” and “test-free” (Embretson, 1999, p. 8), which is a highly desirable and useful 
property “because it frees the practitioner from the specific characteristics of the instru-
ment and samples used” (De Ayala, 2009, p. 409), enabling participant parameters to be 
“estimated independently of the particular test items” (Hambleton & Russell, 1993, p. 
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42), and making the assessment independent of the characteristics of any particular pop-
ulation (Reise et al., 2005). Furthermore, they suggest that invariance in IRT enables the 
calibration of tests with biased samples of the target population, arguing for example that 
“unbiased estimates of item properties may be obtained from unrepresentative samples” 
(Embretson & Reise, 2000, p. 23), or that “sample invariance inherent within IRT means 
that test developers do not need a representative sample of the examinee population to 
calibrate test items” (Hambleton & Russell, 1993, p. 45).

From the arguments cited above, it seems possible to infer that IRT enables the valida-
tion and estimation of the properties of a test using a biased sample which, for example, 
may over or under-represent any group or subpopulation (e.g., a sample that under-rep-
resents a particular ethnic group) or a sample of participants with biased levels of ability 
in the latent trait (e.g., a sample comprised only of participants with high levels of abil-
ity). It should be clarified that the property of invariance in IRT does not imply that 
exactly the same item parameter estimates will be obtained when fitting a model to dif-
ferent samples (e.g., samples of participants with high and low ability). Due to the inde-
terminacy of the estimation (i.e., arbitrary values for the mean and scale of the latent 
trait), parameter estimates only will be linearly related (DeMars, 2010; Rupp & Zumbo, 
2004). As a result, IRT estimates “are invariant only within a linear transformation” 
(Reise et al., 2005, p. 96). Only after equating the parameters to exhibit the same metric 
will estimates be equivalent.

The property of invariance is a potentiality which is materialized for a data set if and 
when the IRT model fits the data. As Reise and Haviland (2005) assert, “any advantages 
that IRT modeling may have relative to CTT can only be realized in practice when data 
are judged appropriate for IRT models and the estimated IRT model parameters fit the 
observed data” (p. 230). In keeping with this, De Ayala (2009) argues, “theoretically, IRT 
item parameters are invariant … However, whether invariance is realized in practice 
(i.e., with parameter estimates) is contingent on the degree of model-data fit” (p. 61). As 
a consequence, given that invariance is a property of real or formal systems, within IRT 
models, invariance is only a potentiality of its mathematical function, and will remain in 
this state until model-data fit is proven. In that scenario, what are the limits (if any) of 
invariance when participants’ responses to a set of items fit a given model? In the sec-
tions that follow, we will address these points.

Invariance in IRT: Questioning the answer

As mentioned before, IRT models are regarded as a paradigm shift in psychometrics, as 
well as methodological tools that yield invariant parameter estimates when evidence of 
model-data fit exists. Thus, if an IRT model fits to a population of items and participant 
responses, any sample or subsample of items drawn from that population will produce 
the same participant parameter estimates (after equating the metric for the subtests) and, 
consistently, equivalent item parameters will be obtained when calibrating the test with 
any sample or subsample of participants drawn from that population for which the model 
fits. However, it is not possible to assume that invariance will remain if the same set of 
items is applied to another sample drawn from a different population of participants, or 
from a subpopulation that behaves in a different fashion with regard to the latent trait 
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because, in that scenario, the IRT model may not fit the data or, even more importantly, 
may fit according to different parameters.

To illustrate this point, a Monte Carlo simulation, similar to those conducted when 
differential item functioning (DIF) phenomena are analyzed, was conducted according to 
the Rasch model (although its generalization to other IRT models is trivial) for unidimen-
sional dichotomous tests of 40 items, applied to samples of 2,000 participants where θ 
values were drawn from a standard normal distribution. Five experimental conditions 
were created by manipulating the values of difficulty parameters for participants with 
high levels of ability, thus generating a slightly different Rasch model for one of the abil-
ity subgroups. Condition I was generated as the baseline. Here all participants—regard-
less of their level of ability—responded to the items according to exactly the same Rasch 
model (i.e., a model with the same parameters) with item difficulty parameters (i.e., 
parameter b) drawn from a standard normal distribution. In conditions II through V, we 
first generated the difficulty parameters for all items according to a standard normal 
distribution. Then the difficulty parameters were modified by random numbers drawn 
either from a Uniform (-1.5, 1.5) distribution (in conditions II and III) or a χ2(1) distribu-
tion (in conditions IV and V) for items with a level of difficulty greater than the mean 
difficulty of the test (i.e., b > 0), and for participants with levels of ability greater than the 
mean population ability (i.e., θ > 0). For conditions II and IV, random numbers were 
summed to the original difficulty parameters, and for conditions III and V, the random 
values were multiplied by the original parameters. This simulation implies that in condi-
tions II through V, all participant responses fit to a Rasch model, but the population of 
respondents with higher levels of ability answered the test according to slightly different 
difficulty parameters than participants with lower levels of ability.

A total of 500 replicates were created for each condition using the software R 2.15.2 
(R Development Core Team, 2012). After data generation, each sample was split into 
two subsamples (i.e., A and B) of low and high values in the latent trait. Each subsample 
was calibrated independently using the Rasch model implemented in the LTM package 
(Rizopoulos, 2006). The correlation between parameter estimates in subsamples A and B 
was assessed for each condition to evaluate invariance of results.

The average Pearson correlation among difficulty parameter estimates in subsamples 
A and B across replicates equals .994 for condition I and .845, .598, .773, and .738 for 
conditions II through V, respectively. To illustrate these results, Figure 1 depicts the 
observed relationship between parameter estimates in subsamples A and B for a ran-
domly selected replicate. The upper row in Figure 1 illustrates the strong linear relation-
ship between parameter estimates in the two subsamples in condition I, while the second 
and third row depict a lower correlation of estimates in both subsamples in conditions II, 
III, IV, and V. Please note that the weaker relationships and the greater variability 
observed in conditions II through V result from true population differences in difficulty 
parameters among participants with low and high levels of ability, and are not the result 
of a larger estimation error.

The almost perfect correlation observed in condition I demonstrates that when all data 
is generated from the same Rasch model, parameter estimates are invariant even if esti-
mations are conducted on samples with biased (e.g., high or low) levels of ability. In 
contrast, the smaller correlation observed in conditions II through V demonstrates that 
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invariance is not achieved when participant responses are produced by a slightly differ-
ent Rasch model, estimated on samples of participants with different levels of ability. 
This means that invariance will not hold whenever two or more populations—in this 
case, two populations defined by their level of θ—exhibit certain characteristics correlat-
ing with the probability of endorsing some of the items in the test given θ, even if the 
model fits the data within each population.

This example demonstrates an important limitation on the possibility of generalizing 
the invariance of IRT models, namely the difference between internal and external 
invariance. IRT models are internally invariant because they will yield the same param-
eter estimates within the single population of items and participants (and samples drawn 
from that population) for which evidence of fit exists. However, this property will not 
remain if a group in the population assessed has at least one characteristic that interferes 
with the participants’ conditional responses to the test, or if a different population (and 
samples) of items and participants is assessed. In other words, contrary to conventional 
wisdom promulgated by IRT advocates, IRT models themselves cannot support the 
assumption of external invariance of the results (i.e., the invariance between populations 
and samples).

Figure 1.  Observed relationship between parameter estimates in subsamples A and B for a 
randomly selected replicate.
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The distinction between internal and external invariance seems unnoticed in previous 
literature on psychometrics, so much so that demonstrations found in papers and well-
known handbooks to support the idea of invariance in IRT models only demonstrate 
internal invariance, and appear simply to assume external consequences. There follows 
a presentation and discussion of three examples retrieved from the most-cited IRT hand-
books, illustrating this situation.

The first example is taken from De Ayala’s (2009) work. The author aims to demon-
strate that invariance “is not present in the application of CTT, but it is exhibited in IRT” 
(p. 409). He conducted a small Monte Carlo experiment according to the one-parameter 
logistic model for a dichotomous test of 20 items and a sample of 1,000 participants. He 
split the test into two subsets of difficult and easy items, and then computed the raw score 
(RS) of each participant on each subtest. The correlation between both series of RS was 
equal to .713, which (in the author’s opinion) demonstrates that CTT participant esti-
mates are not invariant. Interestingly, IRT participant estimates from the two subsets of 
items exhibited a correlation equal to .745, which is evidently close to the correlation 
value observed for RS and does not demonstrate invariance in the IRT. However, De 
Ayala argues that in this scenario, the measurement error increases as a consequence of 
using short subtests, and so he repeated the exercise using two subsets of 50 items each, 
finding a correlation between IRT participant estimates equal to .933. He regarded the 
results as proof of invariance in IRT.

Although this result may indeed be correct, we should bear in mind that both IRT and 
CTT estimates are affected by test lengths, and RS should also yield a stronger correla-
tion in a longer subtest, consequently exhibiting greater degrees of invariance in those 
situations. Unfortunately, this information was not reported by the author.

To evaluate this hypothesis, we replicated De Ayala’s (2009) work in a Monte Carlo 
study using 500 replicates. The average correlation between IRT participant estimates 
was equal to .773 and the correlation between RS was equal to .717 for subtests of 10 
items. When subsets of 50 items were used, the correlation between IRT participant esti-
mates reached .924, and the correlation between RS reached .82, which appears to sup-
port the idea of greater degrees of invariance in IRT if compared to CTT. However, if 
instead of computing RS we replace them with the Z-value of the proportion of correct 
responses to the test of each participant—as Fan (1998) has suggested doing in order to 
avoid ceiling and/or floor effects generated by the metric of RS—the average correlation 
between the two subtests increased to .914. Therefore, after this simple transformation, 
CTT estimates achieve a level of invariance equivalent to IRT estimates.

The second example is taken from the work of Embretson and Reise (2000). The 
authors created the responses to a test of 30 items using a Rasch model, in a sample of 
3,000 participants and simulated participant abilities and difficulty parameters according 
to a normal distribution. The authors split the sample into two groups (using the median 
of θ) of low and high level of ability, and calibrated each subsample independently. 
Based on the large correlation (r = .997) between difficulty parameter estimates of both 
samples, they concluded that IRT estimations are invariant. They discarded invariance in 
CTT scoring because the relationship between the proportion of correct responses of 
each item (i.e., parameter p) in both samples was monotonic but not linear (r = .8). 
Interestingly, the lack of linearity in p-parameters seems to be the consequence of ceiling 
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and/or floor effects inherent to the p-metric. If instead of computing the correlation 
between p-parameters we replace them by the Z-value of p, nonlinearity will tend to van-
ish, and CTT parameters will also exhibit high levels of invariance. To evaluate this 
argument, we reproduced Embretson and Reise’s (2000) study using 500 replicates and 
found an average correlation between IRT difficulty parameters equal to .962, an average 
correlation of p-parameters equal to .814, and an average correlation between Z-values 
of p-parameters equal to .996. This reveals that a simple transformation of the metric of 
estimates in CTT may result in greater degrees of invariance.

The last example is taken from Hambleton et al. (1991). They evaluated the invari-
ance of IRT using survey data and suggested that a reasonable approach to assessing 
invariance would be to split the sample twice: first by randomly assigning participants to 
two groups, and second by splitting the sample according to the median ability estimated 
with the IRT model. They found a correlation of ability estimates equal to .86 when the 
groups were created by random assignment, and a correlation equal to .80 when groups 
were created according to median ability. According to their criteria, these results dem-
onstrated invariance. Although the authors may be correct in their interpretation of the 
results, it is important to stress that their exercise only demonstrates what we have termed 
internal invariance, and not external invariance, since the authors, instead of comparing 
estimates between populations, compare estimates within one sample for which evidence 
of fit to a single IRT model was found.

All three examples described above are demonstrations of internal invariance of esti-
mates, thus conclusions about invariance derived from them cannot be generalized 
beyond the set of items and sample of participants used in the estimation; for instance, to 
another set of items developed to measure the same construct for which another IRT 
model may fit, or to another population of participants that may take the test. Indeed, 
even though in the above examples, samples were split into subsamples with contrasting 
levels of ability, this demonstration of invariance is fairly restricted. In the first two 
examples, the demonstration of invariance was a tautology, as datasets were created from 
a single IRT model, with no population characteristic interfering with the probabilities of 
endorsing any of the items. As a consequence, invariance observed in the results was 
caused by the simulation procedure, not by the IRT model used in the analyses. Similarly, 
in the third example, the demonstration of invariance in real data was conducted accord-
ing to the magnitude of θ, which does not guarantee that further segmentations of the 
sample according to other variables (e.g., age, gender, etc.) will produce invariant results. 
Therefore it can be seen that external invariance was neither demonstrated nor consid-
ered in these examples which are so frequently cited in support of the use of IRT models 
as a means of prevention of the influence of other population characteristics, that is, 
against the lack of external invariance.

Invariance, model-fit, and (sub) sample size: Exploring the 
boundaries

As mentioned earlier, the property of invariance in IRT depends on the possibility of 
establishing the degree of model-data fit; in fact, for some authors “invariance and 
model-data fit are equivalent concepts” (Hambleton, 1994, p. 540). However, because 
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invariance is also a property of the sample for which evidence of model-fit exists, infer-
ences to a broader population depend on the design of the sampling procedure. Thus, 
examining the limits of the property of invariance requires a discussion of the problems 
relating to model-data fit and to sampling design.

Regarding the evaluation of model-data fit and invariance in IRT models, it is known 
that invariance is a property of the model parameters (Hambleton, 1994), which “only 
holds when the fit of the model to the data is exact in the population” (Hambleton et al., 
1991, p. 23); however, in real-life applications varying degrees of misfit and lack of 
invariance will always be found due to the probabilistic nature of IRT models and there-
fore invariant parameters are unlikely to ever be found in these scenarios (DeMars, 
2010). Applied researchers should rely on statistical tests to assess model-data fit under 
the assumption that relative-fit is sufficient to achieve an acceptable degree of invari-
ance. Unfortunately, it is a highly complex task to evaluate when the degree of misfit is 
meaningful enough to reject an IRT model, because it is known that some goodness-of-
fit statistics exhibit unacceptable power and Type I error rates (Liu & Maydeu-Olivares, 
2013; Orlando & Thissen, 2000), or tend to reject correct models as a consequence of 
minor degrees of misfit when the sample size is large (Embretson & Reise, 2000; 
Hambleton et al., 1991). Thus, statistical tools to assess model-data fit in the IRT seem to 
be insufficiently developed to enable a straightforward and effective decision-making 
process for applied research aiming to assess invariance.

The most frequently cited IRT handbooks (e.g., Embretson & Reise, 2000; Hambleton 
et al., 1991; van der Linden & Hambleton, 1997) tend to elaborate on the merits of a 
particular IRT model and the complexity of parameter estimation, but do not discuss in 
detail their requirements in terms of sample design. Indeed, when sample issues are men-
tioned, authors briefly indicate that samples need to be large and heterogeneous 
(Hambleton & Russell, 1993), or that samples do not need to be random (DeMars, 2010) 
or representative of the population of interest (Embretson & Reise, 2000; Hambleton & 
Russell, 1993) because of the property of invariance in IRT. However, modern sampling 
theory demonstrates that sample-based inferences to the population are supported only 
when samples are representative, namely, when the sample accurately reflects the char-
acteristics of interest in the population. Thus, even though a large sample size allows for 
smaller variation around estimates (i.e., smaller standard errors), this should not detract 
attention from the fact that “large unrepresentative samples can perform as badly as 
small unrepresentative samples. A large unrepresentative sample may do more damage 
than a small one because many people think that large samples are always better than 
small ones” (Lohr, 2009, pp. 8–9).

Highlighting sample size as the single key feature for inference based on IRT models 
neglects the importance of sample design and representativeness for research on invari-
ance. Inferences regarding the external invariance of results may hold only if satisfactory 
evidence of internal invariance has been obtained from a representative sample. Thus, 
assuming that a biased sample will yield unbiased parameter estimates means believ-
ing—without empirical proof—that none of the characteristics of the misrepresented 
groups in the sample are associated with the conditional probabilities of endorsing the 
items, and this belief is unrealistic.
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In addition, most human populations are heterogeneous and could be understood as 
the aggregation of several subpopulations, which may exhibit characteristics associated 
with the conditional probabilities of endorsing the items in a test. Therefore, it is difficult 
to establish the set of subpopulations for which invariance holds, because even if the 
overall sample size is large and representative of the general population, the sample size 
of—at least—one subpopulation, for which a different model may fit, might not be large 
enough to produce meaningful levels of misfit in the overall sample.

To illustrate this point, a Monte Carlo simulation was conducted on three condi-
tions. We created a total of 500 replicates for each condition, considering samples of 
1,000 participants and responses to tests comprised of 40 items, according to a two-
parameter IRT model where participants’ abilities and difficulty parameters were sam-
pled from a standard normal distribution. Discrimination parameters were set according 
to a Uniform (0.5, 2.5) distribution. In condition I, all participants belong to one popu-
lation (i.e., there were no subpopulations) where a two-parameter IRT model fit, 
whereas in conditions II and III, participants were randomly assigned to two subpopu-
lations (A and B). In condition II, 95% of the participants were assigned to subpopula-
tion A, and 5% were assigned to subpopulation B. In condition III, 55% of the 
participants were assigned to A, and 45% were assigned to B. In conditions II and III, 
discrimination parameters were the same for all items and participants in both sub-
populations, but difficulty parameters were different for each subpopulation (although 
they were drawn from the same type of distribution). With this design, we aimed to 
represent heterogeneous populations comprised of subgroups of different sizes, which 
respond to a test according to different parameters which belong to the same generic 
IRT model. Data analyses were conducted for the total sample of each condition, ignor-
ing the subpopulations, in order to evaluate the effectiveness of goodness-of-fit statis-
tics in detecting this lack of invariance.

Table 1 displays the mean goodness-of-fit statistics across the 500 replicates for each 
condition. Results revealed a good fit of participants’ responses in condition I and an 
acceptable fit in condition II. In condition III, a significant proportion of items exhibited 
a misfit, especially in the analysis of doublets and triplets of items: this could be misin-
terpreted as a problem of local dependence, whereas in fact it is a problem of lack of 
invariance.

These results confirm that when populations are heterogeneous and comprised of sub-
populations whose parameters are different, the overall sample goodness-of-fit statistics 
only yield evidence on subpopulations for which the sample size is large enough to gen-
erate meaningful misfits in the global sample. If the subpopulation with different para-
meters is small (or severely underrepresented), its differences from the larger groups are 
likely to be overlooked. Thus, researchers should bear in mind that evaluating model-
data fit to establish the possibility of measurement invariance in heterogeneous popula-
tions is a complex task that requires research of its own (Hambleton et al., 1991), and 
only when representative and large samples of each relevant subpopulation are available 
would it be possible to provide empirical evidence on measurement invariance for each 
relevant subpopulation in order to support inferences to the global population. This is no 
different from any other research in the social and behavioral sciences.
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Invariance in IRT: Stating the consequences

Given the evidence presented so far, the reader may wonder how advocates of IRT can 
suggest that estimations within this framework are sample-free, that representative sam-
ples are not required, or why no explicit advice has been given with regard to sample 
requirements to ensure the external validity of results. These concerns are shared by 
some psychometricians, and some criticism has emerged regarding the hypothetical 
property of invariance in IRT models.

For example, McDonald (1999) considers invariance to be a mathematical tautology 
rather than a property of IRT models because “if the item parameters from two groups 
cannot be rescaled so as to coincide … we can always use population membership as a 
‘latent trait’ and make a model whose parameters are tautologically invariant” (p. 326). 
Rupp and Zumbo (2004, 2006) argue that invariance is a relational property of multiple 
populations which is meaningless when a single population is assessed, as indeed seems 
to be the case in most research examples where the property of invariance is demon-
strated. Millsap (2008) regards invariance as a theoretical property which has “little role 
to play in any actual investigation” (p. 196), because “invariance is an empirical property 
of items that may or may not hold, but is not mandated by the structure of a particular 
latent variable model” (p. 197). Moreover, Hambleton et al.’s (1991) statement regarding 
the equivalence between invariance and model-fit could be interpreted as an implicit 
acknowledgment that invariance is restricted to samples and populations for which evi-
dence of fit exists, and may not be generalized beyond that evidence. Muñiz and 
Hambleton (1992) also suggest the internal meaning of invariance in IRT when they 
claim that invariance can refer only to those tests comprising items that belong to an 
item-bank and which are calibrated on the same scale. Otherwise there is no such invari-
ance, to the extent that without item-banks, IRT does not yield any meaningful difference 
compared to CTT.

Table 1.  Goodness-of-fit statistics for each condition.

Goodness-of-fit statistics Condition

I II III

Mean χ2 statistic per item 9.31 9.86 10.89
Percentage of items that yield misfit 
according to item χ2 statistic

6.9% 9.6% 14.0%

Mean χ2 statistic per doublets of items 1.03 2.02 9.96
Percentage of items yielding misfit 
according to χ2 of doublets

0.2% 4,0% 25.6%

Mean χ2 statistic per triplets of items 3.64 7.78 32.26
Percentage of items yielding misfit 
according to χ2 of triplets

0.4% 9.7% 47.5%

Mean Lz statistic per subject 0.23 0.23 0.24
Percentage of subject yielding misfit 
according to Lz

2.3% 5.1% 2.0%

Note. Lz = Standardized version of L0 statistic (Levine & Rubin, 1979).
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These statements reveal that in applications involving real data, invariance is not 
guaranteed and each subpopulation must be empirically assessed, as recommended by 
the tradition of factor analysis (Maydeu-Olivares, Morera, & D’Zurilla, 1999) and DIF 
studies (Camilli & Shepard, 1994; Holland & Wainer, 1993). However, these cautions 
are in contrast with the widespread belief that the property of invariance in IRT allows 
measurements to be test-free, sample-free, and population-free, and with the idea that 
invariance (i.e., internal and external invariance as defined previously) is guaranteed 
when evidence of model-data fit is available.

The lack of clarity regarding the meaning of the property of invariance in IRT and the 
boundaries of inference surrounding it, has generated at least three important negative 
consequences.

First, it has obscured the real differences between CTT and IRT estimates. Indeed, 
some authors have tried to emphasize the differences between CTT and IRT to create the 
impression of a paradigm shift, however, differences between the two approaches are 
only related to differences in the procedures for estimating participant abilities, item 
properties, metrics thereof (i.e., bounded in CTT, unbounded in IRT) and the capacity to 
model the relationship between a latent trait and the participants’ responses to the items 
in IRT. Therefore, instead of highlighting their differences, it might be more productive 
to address their similarities, as other authors have done (cf. Holland & Hoskens, 2003).

Second, it has generated confusion among social and behavioral scientists attempting 
to provide empirical proof of the advantage of IRT models, and has made them more 
likely to force their data in order to confirm their expectations using misleading analyses. 
For instance, Adedoyin, Nenty, and Chilisa (2008) attempted to demonstrate the invari-
ance of IRT estimations by comparing the mean of participant parameters across several 
pairs of samples, disregarding the fact that IRT software arbitrarily fixes the mean of the 
latent trait at around zero and the standard deviation at one. As a consequence, all sam-
ples will yield the same mean, and therefore such comparison does not prove any prop-
erty within the model.

Third, it has led some researchers to overlook the probabilistic and statistical nature 
of research in social and behavioral sciences by misinterpreting invariance in IRT as a 
protection against the impact of population characteristics, or as a property that frees the 
researcher from the need to use a representative sample when examining the validity of 
tests. For example, Breithaupt and Zumbo (2002) argue that IRT models “are not theo-
retically sensitive to examinee characteristics unrelated to ability (such as gender, or 
average group performances)” (p. 391), and Chernyshenko, Stark, Drasgow, and Roberts 
(2007) developed a scale intended for the general population and conducted a study of a 
sample of students, claiming that “whereas it is true that college samples likely show 
higher means on order than does the general U.S. population, it is important to note that 
IRT item parameters are subpopulation invariant” (p. 95). But, as we have shown, only 
when samples are representative of the population can they be used to estimate popula-
tion characteristics with a known degree of accuracy (Lohr, 2009).

In this paper, we have argued that population characteristics (e.g., age, gender, lan-
guage, nationality, race, or even differences in participants’ abilities) might be related to 
the probability of endorsing one or more items conditional on θ, and that using IRT 
models (or any other statistical model) does not provide any protection against their 
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influence. Therefore, to ensure that a certain population characteristic (e.g., gender) does 
not interfere with the measurement of a construct, the sample size should be large enough 
to enable demonstrations of model-data fit in the overall sample, and the assessment of 
model-data fit, DIF, or differential test functioning (DTF) in all subpopulations resulting 
from that characteristic.

The main negative consequences of the ambiguous definition of measurement invari-
ance in IRT are, on the one hand, overlooking the restrictions for population inference 
when working with samples with limited or no representativity of the population of inter-
est (e.g., a sample of college students when developing an instrument intended for the 
general population) and, on the other hand, overlooking the need to employ large and 
representative samples for each relevant subpopulation assessed with the instrument. 
These omissions have reduced attention to the limits of test validation, and might have 
negative consequences for participants assessed using tests that were calibrated on a dif-
ferent population or with a biased sample.

Concluding remarks: The sirens’ call and  
self-delusion in IRT

This article has analyzed the concept of invariance in IRT and its theoretical and empiri-
cal support. It has demonstrated its empirical limitations and discussed the consequences 
of unclear definitions of invariance for applied research in the behavioral sciences.

Despite the fact that many advocates of IRT have promoted the belief that this frame-
work yields unconditionally invariant measures (i.e., internal and external invariance) 
this paper has provided evidence to support the idea that IRT is only internally invariant, 
and not externally invariant per se. This means that inferences regarding the invariance 
of results are restricted to the populations of items and participants that are accurately 
represented in the sample of participants and items used in the calibration of the test, 
provided that the model fits the data. Thus, the properties observed in a given sample are 
not generalizable to other populations or samples without further evidence.

Examples such as those presented in this paper, and the phenomena of DIF and DTF, 
demonstrate this limitation and the risk of simply assuming external invariance without 
empirical evidence. Therefore, in order to be able to claim that measurement results are 
invariant across different populations and/or instruments (i.e., external invariance), com-
prehensive research should be conducted for all relevant populations and instruments.

In recognition of the difficulties involved in carrying out valid comparisons among 
participants which may belong to numerous groups or populations, researchers are 
advised to act prudently, avoiding generalizations beyond the evidence in the study 
because, even if a careful analysis of DIF or DTF with regard to certain characteristics 
(e.g., gender) is conducted, other characteristics not considered in the analyses (e.g., age, 
race, language, etc.) may still interfere with measurement results.

Although the idea of internal invariance in IRT may sound less appealing than the idea 
of unconditional invariance, the empirical consequences of internal invariance are rele-
vant for research. Internal invariance of IRT enables, for example, the development of 
computer-adaptive tests (CATs) by guaranteeing that any subset of items drawn from an 
item-bank for which evidence of fit exists will yield equivalent results to any other subset 
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of items drawn from the same bank. Naturally, a valid employment of CATs is always 
restricted to the population of participants for which calibrated parameters can be extra-
polated, and there is no reason to believe that different groups or populations will yield 
the same results when assessed with items from the bank, since there may be character-
istics associated with the conditional probabilities of responses to the items in the bank 
that need to be assessed before assuming further external validity and external invariance 
of the bank.

The information and evidence provided here enable us to suggest that the belief that 
IRT models are unconditionally invariant (i.e., internally and externally) is an example 
of the phenomenon of self-delusion in science (Gratzer, 2001), which illustrates the dif-
ficulties experienced by scientific communities in the construction of knowledge, where 
pressure for meaningful achievements occasionally produces negative impacts on criti-
cal thinking skills, and renders researchers vulnerable to misinterpretation of the evi-
dence, a phenomenon that is potentiated when the scholars involved in the misinterpretation 
are highly competent and prestigious.

The phenomenon of self-delusion is not unusual in science. For instance, Feyerabend 
(1975) described how Galileo’s detractors had valid reasons to doubt what he claimed he 
saw through the telescope, and how Galileo used argumentative strategies unattached to 
the data to convince the scientific community of his ideas. Even though later evidence 
demonstrated that Galileo was right, this should not obscure the fact that he could have 
been wrong, in which case his argumentative skills would have caused a delay in scien-
tific progress, at least until the error had been exposed. We believe that arguments sug-
gesting that IRT estimations are unconditionally or universally invariant are likely to fall 
into this same category.

Achieving true scientific measurements in social and behavioral sciences is highly 
desirable, and this desirability has led advocates of IRT to mischaracterize the scope of 
invariance in this psychometric framework, or at least to be ambiguous enough to allow 
misinterpretations and misconceptions about invariance in the field. While it is true that 
this confusion gave greater face-validity and legitimacy to IRT when compared to CTT, we 
believe that focusing its outreach on an incorrect interpretation of the property of invari-
ance created more difficulties than benefits by blurring the most meaningful differences 
and similarities between both psychometric frameworks, generating confusion among 
researchers intending to prove the superiority of IRT estimations, and failing to provide 
clarity as to the situations and objectives for which IRT is more efficient than CTT. More 
importantly, however, misconceptions and misinterpretations regarding invariance in IRT 
have led some researchers to become overconfident in the IRT framework itself, overlook-
ing the fact that IRT models are statistical modeling tools that do not replace the need for 
representative samples of all target populations and subpopulations when designing and 
validating tests in order to reach valid and generalizable research conclusions.

The history of science shows that long-term results arise after having clear knowledge 
of the limitations of measurement tools, and not as a consequence of self-delusion about 
their properties. Believing that IRT models are methodological tools that yield internally 
and externally invariant measurement results means surrendering to the beauty of the 
sirens’ call, but just as Ulysses tied himself firmly to the mast we must resist the call for 
the sake of our disciplines, by employing our best critical practices.
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