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Abstract. Galaxy observations and N-body cosmological simulations produce conflicting
dark matter halo density profiles for galaxy central regions. While simulations suggest a
cuspy and universal density profile (UDP) of this region, the majority of observations favor
variable profiles with a core in the center. In this paper, we investigate the convergency of
standard N-body simulations, especially in the cusp region, following the approach proposed
by [1]. We simulate the well known Hernquist model using the SPH code Gadget-3 and
consider the full array of dynamical parameters of the particles. We find that, although the
cuspy profile is stable, all integrals of motion characterizing individual particles suffer strong
unphysical variations along the whole halo, revealing an effective interaction between the
test bodies. This result casts doubts on the reliability of the velocity distribution function
obtained in the simulations. Moreover, we find unphysical Fokker-Planck streams of particles
in the cusp region. The same streams should appear in cosmological N-body simulations,
being strong enough to change the shape of the cusp or even to create it. Our analysis,
based on the Hernquist model and the standard SPH code, strongly suggests that the UDPs
generally found by the cosmological N-body simulations may be a consequence of numerical
effects. A much better understanding of the N-body simulation convergency is necessary
before a ‘core-cusp problem’ can properly be used to question the validity of the CDM model.
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1 Introduction

Results of N-body simulations come into increasing conflict with observations of the dark
matter (DM) distribution in the central regions of dwarf galaxies. Astronomical observations
favor relatively soft cored density profiles [2–8]. On the contrary, N-body simulations of cold
dark matter tell us that dark matter halos have a universal shape, independent of the halo
mass and initial density fluctuation spectrum, and that the central universal density profile
(hereafter UDP) is cuspy. The first works on the subject proposed the Navarro-Frenk-White
profile (hereafter NFW) that behaves as ρ ∝ r−1 at the center. Later simulations [9, 10]
favor the Einasto profile with a finite central density. However, the obtained Einasto index
is so high (typically n ∼ 5–6) that the profile is still cuspy and close to the NFW one.

For a time, there was a hope that the ‘core-cusp problem’ would disappear once the
baryon contribution is taken into account. However, recent simulations including baryon
matter have rather amplified the problem [11]: apart from the profile disagreement, a more
fundamental difficulty was found. Of course, the presence of baryons in simulations changes
the density profile, but it remains almost universal for all the halos, while the profiles of
real galaxies are extremely varied. The conflict between simulations and observations might
suggest that the cold DM paradigm is wrong. However, before reaching this conclusion,
the accuracy and convergence of the simulations should be scrutinized. For instance, the
overestimation of the energy exchange between the test bodies that may occur in the N-
body simulations leads to the cusp formation [12]. If the energy evolution during the halo
formation is limited, then the density profile of the formed halo resembles more closely the
observed one [13].

As an example, the overestimation of the particle energy exchange may be due to the
unphysical pair collisions of the test bodies. Its importance may be characterized by the
relaxation time [14, eq. 1.32]

τr =
N(r)

8 ln Λ
· τd (1.1)

where N(r) is the number of test bodies inside a sphere of radius r, ln Λ is the Coulomb
logarithm, τd = (6πGρ̄(r))−1/2 is the characteristic dynamical time of the system at radius r,
ρ̄(r) is the average density inside r. Equation (1.1) has two important consequences. First,
τr depends on the smoothing radius of the N-body simulations only through Λ, i.e., only
logarithmically [1]. Therefore, the influence of the unphysical collisional relaxation cannot
be decreased much by the smoothing of the test body potentials. Second, since the number
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of dark matter particles is huge (∼ 1060, if dark matter consists of elementary particles), the
collisional relaxation plays no role in nature, being a purely numerical effect.

The algorithm stability is the critical point of N-body simulations: the Miller’s instabil-
ity makes the Liapunov time comparable with the dynamical time of the system [15]. Even
if we take into account the specificity of N-body algorithms, like the potential smoothing,
the instability development time is much shorter than τr and remains comparable with the
dynamical time at the given radius τd(r) [16, 17]. However, different N-body codes, with var-
ious versions of the Poisson solvers, integration algorithms etc., lead to final halos with the
above-mentioned UDP, which is almost the same and close to NFW. Therefore, it is widely
believed that the universal profile is physically meaningful and that it describes real halos,
even though the orbits of individual test bodies have no physical significance [14, section
4.7.1(b)]. The aim of this paper is to question this opinion.

Indeed, the convergency criteria of N-body simulations used at present are exclusively
based on the density profile stability. [18] found that the cusp of the UDP remains stable at
least until t = 1.7τr and then a core forms. On this basis [18] supposed that the core formation
is the first sign of the collision influence and offered the most extensively used criterion for
simulation convergency t < 1.7τr. The acceptance that the collisions have no effect even if the
simulation time exceeds τr seems surprising. However, later convergency tests (also based
only on the stability of the density profile) suggested even softer criteria [19, 20]. In this
paper we perform a more sophisticated convergency test, going beyond the density profile
analysis and considering the full array of the dynamical parameters of the particles.

2 Calculations

2.1 The main idea

In order to test the N-body convergency, we follow the method offered in [1]. We simulate
the well-known Hernquist model with the density profile ρ(r) = Ma/[2πr(r + a)3] (where a
is the scale radius and M is the total halo mass), and with the isotropic velocity distribution
at each point [21]. The model is spherically symmetric and fully stable, i.e., the density and
velocity profiles should not change with time. We chose the Hernquist model because it is
close to the NFW and behaves exactly as the NFW (ρ ∝ r−1) in the central region, but it
has a known analytical solution for the stationary velocity distribution, contrary to the NFW
one. The region of the cusp (r < a) is of main concern to us.

Since the gravitational potential φ(r) is constant, the specific energy ε = φ(r) + v2/2
and the specific angular momentum ~K of each particle should be conserved. Instead of ε, it
will be more convenient to use the apocenter distance of the particle r0 (i.e. the maximum
distance on which the particle can move off the center, which can be found from the implicit
equation ε = φ(r0) + K2/2r0). Being an implicit function of the integrals of motion ε and
K, r0 is an integral of motion as well. Thus, any time variation of ε, ~K, or r0 is necessarily
a numerical effect, and we may judge the simulation convergency following the behavior of
these quantities.

We need to clarify two important points of our work. Some properties of the perfectly
symmetrical model we consider (like the exact conservation of the angular momentum for
every particle) are unstable and not realistic for real astrophysical DM halos that are always
triaxial as a result of tidal perturbations etc. The application of perfectly spherical models
to real systems may give rise to false conclusions [22]. However, the use of the spherical
model for our purposes is well founded. We are not considering the task of comparison of
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simulation results with observations. Our aim is just to check if the ‘N-body matter’ behaves
as a collisionless matter, which is the principle question of the dark matter modelling.

Second, there is a frequent belief that it is much easier to converge on the spherically
averaged density distribution than on the full properties of the phase space distribution func-
tion. Indeed, we need not correctly reproduce each individual particle trajectory. Moreover,
it is not even necessarily desirable since real dark matter halos are not spherically symmetric
and therefore host chaotic orbits. However, it would be completely wrong to disregard the
phase evolution of the system or consider its evolution as a ‘second order effect’ with respect
to the density profile shape. As we will show in the Results: the simulation convergency
section, correct simulations of the energy and angular momentum of each particle (contrary
to individual particle trajectories) are of critical importance for correct simulations of the
density profile.

2.2 The simulations

We simulate a single separate Hernquist halo. The aim of this work is to perform a sophis-
ticated test of the standard convergency criteria, therefore we do not try to model any real
astronomical object. Since the standard N-body units [23] are used, the results are indepen-
dent on the choice of a and halo mass. However, we choose some values of the parameters,
for illustrative purposes. Let us set a = 100 pc, which roughly corresponds to the well-known
dwarf spheroidal satellite of the Milky Way, Segue 1. This is one of the most popular objects
for the indirect dark matter search, since it is close to the Solar System; its present-day mass
can be estimated as 3 · 107M� [24]. Segue 1 experienced strong tidal disruption, and we
do not know its initial mass. We consider two limiting cases. In the body of the paper we
accept the halo mass M = 109M�, which is comparable with the present-day mass of a larger
dwarf satellite, Fornax [25] and almost certainly exceeds the initial mass of Segue 1. Thus we
consider the case of a compact and very dense dwarf spheroidal galaxy. However, since all
the simulations are performed in the dimensionless N-body units, a reader may easily extend
the results for any value of M . If a is fixed, the only value that is sensitive to the choice of M
is time: all the time intervals scale as ∆t ∝M−0.5 (while the ratios of time intervals remain
the same). As an illustration, we also considered the case of M = 107M�, which is certainly
lower, then the present-day mass of Segue 1. The only difference is that all the time intervals
get ten times larger, and we everywhere specify the values corresponding to M = 107M� in
the footnotes. Anticipating events, we say that the results shown in all the figures in this
paper are not sensitive at all to the choice of M .

We use N = 106 test bodies.1 They are placed randomly, in accordance with the
analytically obtained space and velocity distributions [21]. The relaxation time at r = a is
τr(a) ' 8.8 · 1016s ' 2.8 · 109 years. Therefore, we make 200 snapshots with the time interval
∆t = 1015s ' 30 mln. years, covering the time from 0 to tmax = 2 · 1017s ' 6.5 · 109 years2.
We record the positions and the velocities of each particle on each snapshot.

We evolve the system using one of the most extensively employed in cosmological sim-
ulations SPH codes, Gadget-3, an update version of Gadget-2 [26, 27]. The gravitational
interactions in Gadget-3 are computed using a hierarchical tree [28, 29]. In this algorithm
the space is divided in different cells and the gravitational force acting on a particle is com-

1All the data, as well as results of simulations of a Plummer sphere of mass 1012M� we used as an auxiliary
test model, are publicly available at http://www.das.uchile.cl/anton.

2For the case of the halo mass M = 107M�, τr(a) ' 2.8 · 1010 years, ∆t = 1016s ' 300 mln. years,
tmax = 2 · 1017s ' 6.5 · 1010 years
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puted using a direct summation for particles that are in the same cell and by means of
multipole (up to the quadrupole) expansion for the particles that are in a different cell. The
minimum distance between particles to be part of a different cell is controlled by a tree
opening criterion. Gadget-3 uses the Barnes-Hut tree opening criterion for the first force
computation. This criterion is controlled by an opening angle µ, which determines the max-
imum ratio between the distance to the center of mass of the cell (d) and the size of the cell
(l). If the cell is too close to the particle, d/l will be greater than µ, and new cells have to be
opened to maintain the accuracy on the force computation. In the further evolution of the
system a dynamical updating criterion (controlled by the fractional error facc) is used. We
use the standard set of parameters µ = 0.7 and facc = 0.005, as suggested by [27, 30, 31].
These values lead to a relative force error that is roughly constant in the simulation ∼ 0.5%.
We chose the softening radius 0.02a = 2 pc, in accordance with [19, 32].

3 Results: the integrals of motion

Initially we convert each of the 201 snapshots into the center-of-mass frame of references at
the moment when a snapshot is made.

First of all, we try to reproduce the results of [18]. The density profile indeed remains
quite stable, and then a core in the center appears. Exactly following [18], we consider the
moment t20% when the mass inside some radius drops on 20% comparing to the initial value
as the moment of the core formation. The ratio of t20% to the relaxation time τr at the same
radius r is represented in figure 1. We see that our data by and large confirm the results
of [18], the core really appears at t ' 2τr.

Before proceeding any further, two important comments relating to all the subsequent
text should be made. First, our convergency tests are mainly oriented on the radius interval
[0.25a; 1.5a] where they are the most precise. This choice of the working interval might appear
strange at first sight: typically the convergency problems occur much closer to the halo center.
However, if we had chosen a realistic area (r ≤ 0.01a), then it would have contained only
∼ 100 test particles, and the statistic would have been poor. On the other hand, the density
profile between 0.25a and 0.75a remains much the same as in the center, since a power-law
profile ρ ∝ r−1 is self-similar. The lower border of the region under consideration r = 0.25a is
defined by our choice of the timestep ∆t = 1015 s.3 At r = 0.1a, τr ' ∆t, and the Hernquist
profile is certainly corrupted by the collisions even on the first timestep. However, as we will
see from the discussion of figure 4, the core formation becomes visible in phase portrait at
much larger distances than in the density profile itself. Therefore, only the results related to
r ≥ 0.25a can be totally trusted.

Second, we want to consider variations of the integrals of motion as a function of radius.
However, each particle contributes to the density profile on an interval between its pericenter
radius rmin and apocenter radius r0. Hereafter we will consider r0 as the characteristic radius
corresponding to the particle. Indeed, if the particle orbit is elongated, the particle spends
almost all the time near the apocenter, in accordance with the Kepler’s second law. On the
contrary, if the orbit is circular, the particle moves along almost uniformly, but its radius
always remains close to r0.

In order to study the behavior of the integrals of motion (theoretically they should
conserve), we order all 106 particles according to their r0 in the initial snapshot, and then
divide the particles into 200 groups of 5000 particles each. All the particles in the same group

3For the case of the halo mass M = 107M�, ∆t = 1016s ' 300 mln. years.
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Figure 1. The ratio between the time t20% when the mass inside some radius r drops on more than
20%, to the relaxation time τr(r).

have similar r0, and the group may be characterized by the average initial r0 of its members.
We calculate ∆r0/r0 = (r0(i + 1) − r0(i))/r0 and ∆K/Kcirc = (K(i + 1) − K(i))/Kcirc for
each particle on each timestep. Here i is the number of the snapshot, Kcirc is the angular
momentum corresponding to the circular orbit at r0; apparently, this is the maximum value
of K any particle with the apocenter distance r0 may possess. Then we find the root-mean-
squares of ∆r0/r0 and ∆K/Kcirc averaged over each group and for each snapshot. Our
analysis shows that the root-mean-squares do not significantly depend on time until the
moment when the core forms at the radius corresponding to r0 of the group. Therefore, we
then average the root-mean-squares of ∆r0/r0 and ∆K/Kcirc over all the timesteps where
the core had not formed yet. We denote the values averaged in such a complex manner by
〈∆̂r0/r0〉 and 〈∆̂K/Kcirc〉.

The dependance of 〈∆̂K/Kcirc〉 (squares) and 〈∆̂r0/r0〉 (crosses) from the dimen-
sionless radius r0/a is represented in figure 2. We see that even in a single time step
∆t = 1015s ' 30 mln. years4 the integrals (that should be constant) vary significantly.

Figure 3 represents the values Kcirc
τr

〈
∆̂K
∆t

〉−1
(squares) and 1

τr

〈
∆̂r0
r0∆t

〉−1
(crosses) that are

the ratios of the time intervals in which an average particle totally ‘forgets’ its initial values
of K and r0 to the relaxation time τr(r). Everywhere in the region of reliability (r ≥ 0.25a)
the ratios are much less than 1.

It means that the particles totally ‘forget’ their integrals of motion in a time much
shorter than τ(r). In general one could not expect a reliable simulation of the velocity
distribution at t ∼ τ(r) under such conditions.

4For the case of the halo mass M = 107M�, ∆t = 1016s ' 300 mln. years.
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Figure 2. The averaged relative variations 〈∆̂K/Kcirc〉 (squares) and 〈∆̂r0/r0〉 (crosses) of the

integrals of motion in a single time step ∆t. See the definition of the averaging ∆̂ in the section
Results: the integrals of motion.

4 Results: the simulation convergency

Thus, the integrals of motion of the particles are not conserved at all, while the density profile
remains stationary in quite good agreement with the theory5 in our simulations. The same
stability and reproducibility of the cusps in cosmological modelling leads to the wide accep-
tance of the idea that, though no significance can be attached to the trajectories of individual
particles in the N-body simulations, the cuspy density profile is meaningful and should cor-
rectly describe the profiles of real halos. Let us use our results to illustrate the vulnerability
of the profile stability as the only convergency criterion of the N-body simulations.

Indeed, if a Hernquist halo consists of real DM (we suppose that it is cold and nonin-
teracting), the values of ε, ~K, and r0 of each particle must conserve, the particle distribution
function f should depend only on ε and K [14] and obey the collisionless kinetic equation
df/dt = 0. It means that there are no particle fluxes in the phase space (ε,K).

However, figures 2 and 3 doubtlessly reveal an intensive energy and angular momentum
exchange between the particles, i.e., the test bodies interact. Then the system may be
described by the Fokker-Planck (hereafter FP) equation [33, 34]

df

dt
=

∂

∂qα

{
Ãαf +

∂

∂qβ
[Bαβf ]

}
(4.1)

5We should mention, however, that the absence of the collision influence up to almost 2 relaxation times
looks surprising [1].
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Figure 3. The ratios Kcirc

τr

〈
∆̂K
∆t

〉−1

(squares) and 1
τr

〈
∆̂r0
r0∆t

〉−1

(crosses) of the time, in which the

particles completely ‘forget’ the initial values of the integrals of motion, to the relaxation time τr(r).

where qα is an arbitrary set of generalized coordinates,

Ãα =
δqα
δt

Bαβ =
δqαδqβ

2δt
(4.2)

We may choose q1 = ε, q2 = K, and figure 2 shows that at least coefficients B11 and B22

in the equation (4.1) differ essentially from zero. Thus we model real DM halos that are
believed to be collisionless, by a system of test bodies governed by the kinetic equation with
a significant collisional term, i.e., by an essentially collisional equation.

An important point must be underscored: the density profile in our simulation indeed
holds its shape (close to the NFW one in the center), in gratifying agreement with the
theoretical predictions. The variations of the integrals of motion, that we found, mainly
touches on the velocity distribution of the particles. Together with the UDP stability in
cosmological simulations, it can produce a dangerous illusion that N-body simulations might
adequately model the density profiles of dark matter structures, despite the fact that the
velocity distribution was distorted. We should emphasize that it cannot be true. Indeed, let
us consider a stationary spherically symmetric halo for the sake of simplicity. The particle
distribution in the phase space fd3xd3v is a function of only the particle energy ε and three
components if its angular momentum ~K [14]. If the velocity distribution of the particles is
anisotropic in each point (which is the case under consideration in this paper), f depends
only on the particle energy f(ep) = f(φ(r)+v2/2) = f(φ(r0)+K2/(2r2

0)). The particle speed
distribution at some radius r is therewith equal to 4πv2f(φ(r) + v2/2)dv, and the density
is
∫

4πv2f(φ(r) + v2/2)dv. These relationships clearly demonstrate the impossibility of a
reliable determination of the density profile without a reliable determination of the velocity
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distribution. The distributions over ~v and r are not just bound, there are actually a sort
of projections of the same distribution f on the velocity or space coordinates. Apparently,
this conclusion is very general and does not depend on the assumption about the spherical
symmetry that we made.

We are able to compare the results with the theoretical prediction and check their
agreement in the model case that we consider. However, it is impossible in the case of
real cosmological simulations. Therefore, any numerical effect influencing on the velocity
distribution f(~v) or on the integrals of motion of the test particles puts the density profiles
obtained in the simulations in doubt. Moreover, the fact that the cuspy profile ρ ∝ r−1 turns
out to be very stable in our simulation, despite of r0 and K variations, is probably not a
coincidence, but a direct result of the numerical effects we discuss.

Indeed, the fact that we model collisionless systems with the test bodies governed by an
essentially collisional equation is surprising per se, but the main consequence is that the profile
stability does not guarantee the simulation correctness. The FP streams in the phase space
created by the particle interaction may form stable density profiles (corresponding to the
stationary solutions of the Fokker-Planck equation), but these profiles and their persistence
are at odds with the behavior of real collisionless systems. As the first and crude illustration,
the collisions lead to the contraction of the central region of any realistic profile and finally to
the core collapse. The density profile outside the core approaches a power law ρ ∝ r−2.23 and
then remains quite stable for a long time [14]. Of course, this distribution is already formed by
the unphysical test body collisions, and the immutability of the ρ ∝ r−2.23 profile says nothing
either about the simulation convergency or about the behavior of real collisionless systems.

The core collapse appears at t � τr and has nothing to do with the Hernquist or the
UDP profiles. However, the Fokker-Planck equation has an another stationary solution close
to the NFW one [1, 35].

A question appears: if we obtain a stable cuspy density profile, how can we differentiate
cusps correlating with the properties of real collisionless systems from the solutions created
by the numerical effects? In a collisionless system, the values of r0 of the particles in the
cusp should remain constant. If collisions are significant, the values of r0 should experience a
random walking, and the particles move up and down in the cusp forming a downward stream
(of the particles with decreasing r0) and an upward stream (of the particles with increasing
r0). For the cusp to be stable, the streams should compensate each other, which corresponds
to a stationary solution of the Fokker-Planck equation. Thus, if the cusp is created by the FP
diffusion, we should see two significant streams of particles with decreasing and increasing
r0, and the streams should compensate each other in order to provide the cusp stability.

We chose two adjacent (i.e., divided by a single ∆t) snapshots at the beginning of the
simulations, in order to minimize the core formation effects. For an array of radii r, we
calculated the number ∆N+(r) of particles that had r0 < r at the first snapshot and r0 > r
at the second one, and the number ∆N−(r) of particles that had r0 > r at the first snapshot
and r0 < r at the second one. Of course, ∆N+(r) = ∆N−(r) = 0 in the collisionless case,
since r0 is an integral of motion.

Figure 4 represents ∆N+(r) (squares) and ∆N−(r) (crosses) divided by the total number
of the particles N(r) inside r. As we can see, the FP streams exist, though they compensate
well each other outside of r = 0.4a. As we approach the center, the upward stream becomes
increasingly stronger than the downward one. This is the first sign of the core formation,
that is still invisible in the density profile at this radius, being already quite clear at the
phase picture of the system.

– 8 –
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Figure 4. The upward ∆N+(r)/∆t (squares) and downward ∆N−(r)/∆t (crosses) Fokker-Planck
streams of particles divided by the total number of the particles N(r) inside r.

A question appears: are the discovered fluxes ∆N+(r) and ∆N−(r) real and important?
May they be just a small noise, produced by particles near the boundary, crossing and
recrossing it and thus giving the impression of flows that do not exist? One can readily see
that this is not the case. First of all, ∆N+(r) and ∆N−(r) apparently give only the lower
bounds on the upward and downward FP streams: the value of r0 of a particle could have
crossed r an odd number of times (and then it is counted only once) or an even number of
times (and then it is not counted at all). Since we count each particle no more than once on
a timestep, we totaly avoid the recrossing effect.

Second, the flows are just too strong to be just a noise. For instance, figure 4 shows
that, though ∆N+(r) and ∆N−(r) are just the lower bounds on the streams, ∆N+(r) '
∆N−(r) ' 2 · 104 at r = a, i.e. ∼ 2% of the total halo mass crosses this radius because of
this unphysical effect on each timestep. This is approximately the total number of particles
in the layer of thickness ∼ a/12 around the radius r = a. The value a/12 by far exceeds the
smoothing radius or any reasonable numerical noise that may occur in the computing scheme.

The surprisingly high intensity of the Fokker-Planck diffusion is the main result of this
work. Approximately 8% of particles are renewed even inside r = a. It means that in only
10∆t ' 300 mln. years6 (i.e., in 5% of the simulation time) all the particles inside the sphere
r = a (which contains a quarter of the total mass of the system) can be substituted by a
purely numerical effect. The fractions of particles inside radius r that can be carried away
or in by the upward and downward Fokker-Planck streams in the Power’s time 1.7τr are
1.7τr

∆N+(r)
N(r)∆t and 1.7τr

∆N−(r)
N(r)∆t . Figure 5 shows that they always significantly exceed 1. The

cusp in our simulations was created in the initial conditions, but its shape is similar to the
UDP. We can see that the unphysical FP streams are strong enough to arbitrarily change

6For the case of the halo mass M = 107M�, 10∆t ' 3 · 109 years.
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Figure 5. The fractions of N(r) particles inside radius r that is carried away and in by the upward

and downward Fokker-Planck streams in the time 1.7τr offered by [18] (1.7τr
∆N+(r)
N(r)∆t (squares) and

1.7τr
∆N−(r)
N(r)∆t (crosses), respectively).

the shape of the cusp (and therefore the shape is defined by the FP diffusion rather than by
the properties of the collisionless system) and even to create it.

Another argument in support of the numerical nature of the cusps in cosmological
simulations is the profile universality. The similarity contradicts the observational results [11],
but is quite natural if the cusps are formed by the FP diffusion. An UDP-like stationary
solution is innate for the FP equation: the suppositions in [35] and [1] are quite different,
but the results are similar. The properties of the solution of the FP equation are totally
defined by only a few coefficients Ãα and Bαβ that can be similar for different N-body codes
using similar algorithms, and are almost certainly the same within the same simulation. As
a result, the resulting halos are also self-similar, while nature is much more variable.

The second important conclusion of this section is that the profile stability cannot be
used as the simulation convergency criterion: the first unquestionable signs of the influence
of the test particle interaction appear in the phase portrait much earlier than the density
profile evolution and the beginning of the core formation.

The third conclusion is that, since the variations of K and r0 are very significant in
figure 2 even at r > 4a, where the role of collisions or potential softening is minor, the
integral variations there are most likely due to the potential calculating algorithm. But
whatever the reason of the variations may be, the ill effect on the simulations is the same
from the point of view of the kinetic equation: variations if the integrals of motion reveal the
collisional influence and suggest that the system behavior is no longer described by the correct
collisionless equation. A convergence study with varying the opening angle µ of the Barnes-
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Hut tree opening criterion, softening scale, as well as other parameters of the gravitational
force computation, is essential to understanding the origin of the non-conservation of integrals
of motion and find the optimal parameter set to decrease these undesirable numerical effects.

A much better understanding of the N-body simulation convergency is necessary to cast
doubts on the CDM model on the basis of ‘cusp vs. core’ contradiction.
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