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PARTICLE-LIKE SOLUTIONS IN NONEQUILIBRIUM SYSTEMS: COUPLED
OSCILLATORS, VEGETATION, AND OPTICS

Las soluciones tipo partícula se encuentran presentes en muchos campos de la física, in-
cluyendo simples sistemas mecánicos, como osciladores acoplados, así como en sistemas más
complejos tales como magnetismo, vegetación, superconductores, entre otros. Su importancia
radica en el modelamiento de fenómenos fuera del equilibrio en sistemas disipativos, donde
la inyección y disipación de energía juega un importante rol. En este trabajo estamos par-
ticularmente interesados en estudiar estas soluciones en tres distintos contextos: osciladores
acoplados, vegetación y óptica, los cuales serán tratados separadamente.

Esta tesis está compuesta por seis capítulos y cuatro apéndices, los cuales contienen los
artículos publicados durante este trabajo. Los primeros dos capítulos sirven como introduc-
ción: En el Capítulo 1 presentamos las motivaciones y objetivos generales de esta tesis y en
el Capítulo 2 los conceptos y herramientas necesarias para la comprensión del estudio.

El primer contexto en el que estudiaremos soluciones tipo partículas es tratado en el
Capítulo 3 y en los Apéndices A y B. En ellos estudiaremos osciladores acoplados sometidos a
forzamiento paramétrico, particularmente enfocados en estudiar el efecto de este forzamiento
en soluciones kinks de la ecuación sine-Gordon y de la ecuación escalar φ4. Presentaremos
un nuevo tipo de kinks, los cuales hemos denominados como flaming kinks, los cuales se
caracterizan por emitir ondas desde su posición central. Mostraremos cómo la interacción de
estas soluciones permite la formación de estructuras localizadas estables, caracterizando la
dinámica de esta interacción analíticamente. Además, aplicaremos nuestros resultados a un
hilo magnético, puesto que en cierto límite se describe por la ecuación sine-Gordon.

El segundo contexto bajo estudio es vegetación, donde estudiaremos un mecanismo de
formación de patrones a través de la interacción de estructuras localizadas rodeadas por suelo
descubierto. El Capítulo 4 y el Apéndice C están dedicado a este tópico. En ellos trataremos
los casos uni y bi dimensionales, derivando en cada uno la dinámica de interacción entre las
estructuras. Mostraremos cómo esta interacción permite la formación de redes de estructuras
localizadas, y cómo éstas se reorganizan para formar configuraciones estables.

El último contexto de nuestro estudio es un experimento que consiste en la red de difracción
producida al aplicar un rayo láser a una inestabilidad tipo zigzag, producida en una celda
de cristal líquido tipo in-plane switching (IPS) conectada a un generador. Esta inestabilidad
zigzag no es más que una extensión natural de soluciones tipo partícula a dos dimensiones.
Discutiremos este tema en el Capítulo 5 y en el Apéndice D. En ellos propondremos un modelo
teórico para explicar los diferentes perfiles de difracción observados al variar la frecuencia y
amplitud de la señal del generador. Este modelo está basado en la difracción de Fraunhofer.

Finalmente, en el Capítulo 6 presentamos las conclusiones de este trabajo.

iii



iv



THESIS ABSTRACT
DEGREE: MASTER IN PHYSICS
MASTER CANDIDATE: ERNESTO ANTONIO BERRÍOS CARO
DATE: 2017
THESIS ADVISOR: MARCEL G. CLERC GAVILÁN

PARTICLE-LIKE SOLUTIONS IN NONEQUILIBRIUM SYSTEMS: COUPLED
OSCILLATORS, VEGETATION, AND OPTICS

Particle-like solutions are present in many fields in physics, including simple mechanical
systems, like coupled oscillators, as well as in more complex systems such as magnetism,
vegetation, superconductors, among others. Their importance lies in the modeling of non
equilibrium phenomena in dissipative systems, where the injection and dissipation of energy
plays an important role. In this work, we are particularly interested in studying these so-
lutions in three different contexts: coupled oscillators, vegetation, and optics, which will be
treated separately.

This thesis is composed of six chapters and four appendices that contain the articles
published during this work. The first two chapters serve as an introduction: In Chapter 1
we present the motivations and general objectives for this thesis and in Chapter 2 useful
concepts and tools.

The first context where we study particle-like solutions is treated in Chapter 3 and Ap-
pendices A and B. There we study coupled oscillators submitted to a parametric forcing,
particularly focused on studying the effect of this forcing in kink solutions from the sine-
Gordon equation and from the φ4 scalar field equation. We present a new type of kinks
named as flaming kinks, characterized by emitting waves from their center position. We
show how the interaction of these solutions allows the formation of stable localized struc-
tures, characterizing the dynamics of this interaction analytically. Moreover, we apply our
results to a magnetic wire, since in certain limit this system is described by the sine-Gordon
equation.

The second context under study is vegetation, where we study a mechanism of pattern
formation through the interaction of localized structures of vegetation surrounded by bare
soil. Chapter 4 and Appendix C are devoted to this topic. There we treat both one and two
dimensional cases, deriving in each one the interaction dynamics between the structures. We
show that this interaction allows the formation of stable localized structure lattices, and how
they reorganize to form stable configurations.

The last context of our study is an experiment consisting of a diffraction grating produced
by applying a laser beam to a zigzag instability, produced in a in-plane switching (IPS)
liquid crystal cell connected to a generator. This zigzag instability is nothing but the natural
extension of particle-like solutions to two dimensions. We discuss this subject in Chapter 5
and Appendix D. There we propose a theoretical model to explain the different diffraction
profiles observed as the frequency and amplitude of the generator signal is varied. This model
is based on Fraunhofer diffraction theory.

Finally, in Chapter 6 we present the conclusions of this work.
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Chapter 1

Introduction

Spatially localized structures are a fascinating element of nature, whose relevance has been
appreciated over the past decades, given its presence in various fields, ranging from physical,
biological, geological or even chemical systems. Which has captured their attention is the sim-
ilarity of different structures observed in multiple contexts, suggesting the existence of general
principles behind their formation. Their main feature is that they allow the confinement of
energy, chemical concentration, phytomass density, fluid, depending on context [64,91], that
offers a short spatial range correlations in comparison to long-range correlations, e.g., periodic
patterns, characterized by occupying the whole available space [10,65,80]. This confinement
can have a wide range of applications, as the case of light confinement used in fibre optics or
spectroscopy [5, 99].

(a) (b)

Figure 1.1: (a) Oscillon formed by vibrating vertically granular layers [93]. (b) Two-
dimensional localized structures on the surface of a ferrofluid, under a uniform magnetic
field normal to the surface [84].

Localized structures can be found in several non-equilibrium systems, where the injection
and dissipation of energy play an important role [30,31]. They can appear as patches, spikes,
interfaces, dissipative solitons, among others forms. In some cases these structures are time-
dependent, as the case of particle-like localized excitations created by vibrating vertically
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granular layers in evacuated containers, known as oscillons [93] (see Fig. 1.1 (a)); or can
be stationary in time, as the solitons formed in a ferrofluid (suspension of magnetic dipoles)
submitted to a uniform magnetic field applied in the normal direction to the surface [84] (see
Fig. 1.1 (b)). In general, the formation of localized structures is due to a balance between
a positive feedback balance that tends to amplify the spatial homogeneities and a transport
process that tends to restore the homogeneity [91]. They can also arise as the coexistence
between two stable states, not necessarily homogeneous [24].

This thesis is not intended to provide a general description of the formation of localized
structures, but in studying properties that arise from the interaction between them or with an
external factor. Given the wide variety of physical systems where localized structures appear,
we will not restrict ourselves to one physical system. We study in this work separately three
different contexts: coupled oscillators, vegetation, and optics, focusing on localized structures
with particle-like properties, that is, structures defined by a finite set of parameters, such
as width, momentum, charge, etc. In the next section, we present the main objectives and
results of this thesis.

1.1 Objectives and main results

The main purpose of this work is to study particle-like localized structures in different physical
systems, using theoretical, numerical and experimental tools. In particular, our goals are:

Coupled oscillators:

1. Study the effect of dissipation and an external oscillatory parametric forcing in particle-
like solutions in coupled oscillators, particularly focused on kink solutions from the
sine-Gordon equation. As a result of this study, we have found a new type of kinks,
which we have named as flaming kinks. We have also found these solutions in the
parametrically driven and damped φ4 scalar field equation.

2. Study the interaction between a flaming kink and a flaming antikink, using theoretical
nonlinear tools to characterize their dynamics, and compare with numerical data. We
have found that this interaction allows the formation of a family of stable localized
structures.

3. Apply our results to a magnetic wire submitted to external oscillatory magnetic fields,
which in some limit is described by the sine-Gordon equation.

4. Extend our study to two dimensions. Study in this directions is still in progress.

Vegetation:

1. Study particle-like localized structures in vegetation by using numerical simulations of
a mathematical model based on facilitation and competition growth rate process. Our
characterization includes both one and two dimensions.
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2. Study the interaction of these localized structures, deriving theoretically the interaction
law of the distance of separation between them. We have demonstrated that this
interaction is repulsive, which agrees with numerical observations.

3. Characterize numerically the stable equilibrium configurations that arise when several
localized structures are placed in arbitrary configurations. We study the reorganization
of these configurations when a single localized structure is removed.

Optics:

1. Study experimentally the diffraction grating produced by applying a laser beam in
a zigzag interface instability, formed in an in-plane switching cell filled with nematic
liquid crystal. This cell is connected to a generator, which modifies the interface as the
signal is varied. We consider this zigzag instability as a transverse particle-like solution.

2. Characterize theoretically the different diffraction profiles observed, by proposing a
model based on the Fraunhofer diffraction theory. Our findings are in good agreement
with the experimental data.
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Chapter 2

Theoretical background

In this section, we will briefly introduce the tools, methods, and concepts useful for this
thesis, as well as the physical models on which it will be based.

2.1 Elementary concepts

A dynamical system is a system whose configuration is described by a phase space (or state
space), where its evolution in time is specified by a mathematical rule [56,87]. If the time is
continuous, the rule of evolution might be in general a differential equation, or if it is discrete,
a map from the phase space to itself.

A phase space corresponds to a space U ⊆ Rn composed by states u ∈ U which depend
on space r and time t. In the continuous case the evolution of the states will be given by

du

dt
= f(u, t), (2.1)

where f : U × R → U is a vector field. The system will be of order n and if ∂f
∂t

= 0 will be
called autonomous . Notice that every system with n temporal variables can be written as in
(2.1) through a change of variables. For instance, the second order equation ẍ + ẋ + x = 0
can be expressed as ẋ = y, ẏ = −x− y.

The interest of dynamical systems not only includes physics but also biology, economics,
ecology, among others fields, where the notion of time evolution is relevant. A well known
example of a dynamical system is the Lotka − V olterra model of competition [12] between
two species (e.g. r =rabbits and s =sheeps)

ṙ = r(a− br − cs), ṡ = s(d− er − fs), (2.2)

where a, b, c, d, e, f are positive constants. These positive constants are parameters that
characterize the different temporal evolution exhibited by the above model. This is a second
order and autonomous system, which lives in the phase space (r, s) ∈ [0,∞)× [0,∞).

4



The solutions of a dynamical system follow particular curves in the phase space called
trajectories. A dynamical system is said to describe the flow in the phase space, the motion
of a particular point (an initial condition) along one of these curves. The pattern of solution
curves or trajectories is called phase portrait, like the one shown in Fig. 2.1 for Eq. (2.2) for
the case a = 3, b = e = f = 1 and c = d = 2. Here the arrows represent the directions of the
flow and the dots the fixed points, i.e., the points that satisfy f = 0. The solid black dots
represent the stable fixed points (also known as attractors, since the flow is toward them), the
open circle (0, 0) is an unstable fixed point (or repeller), while the point (1, 1) corresponds
to a saddle point, which is a point that can attract or repel in different directions.

0 1 2 3

1

2

Sheep (s)

Rabbits (r)

Figure 2.1: Phase portrait of Lotka-Volterra model (Eq. (2.2)) for a = 3, b = e = f = 1 and
c = d = 2.

The advantage of studying a phase portrait is that it allows analyzing the system in a
clear and simple way, without having the analytical solution. Indeed, this representation
corresponds to a geometrical characterization of the solutions. For the previous case, we
can interpret that the system will evolve in such a way that one species will drive the other
to extinction. This situation also occurs in other models of competition, which has led the
biologists to formulate the principle of competitive exclusion, or Gause’s law [41].

The parameters on which the system depends can change the stability of fixed points
and the nature of phase portraits. In the Lotka-Volterra system, there are three different
qualitatively phase portraits.

2.2 Bifurcation theory

2.2.1 Linear analysis

The change in the qualitative character of a solution (stable, unstable, etc.) as a control
parameter is varied is known as instability [56,87], concept introduced by Henri Poincaré [81].
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The instability generates a qualitative change of phase portrait, known as bifurcation. To
analyze the nature of the bifurcation it is necessary to perform a linear stability analysis.
Let us consider then the following autonomous dynamical system

du

dt
= f(u; r), (2.3)

where r is a control parameter that we will vary. Suppose that u = u0 is a fixed point (or
steady state solution)

f(u0; r) = 0.

To characterize its stability as the parameter r changes, we study the dynamics of a small
perturbation δu around the equilibrium. Therefore, proposing u = u0 + δu, replacing into
Eq. (2.3) and linearizing in δu, one gets

δu̇i =
∑

j

Kijδu
j, Kij =

∂fi

∂uj
(u = u0). (2.4)

Since u0 is a time-independent state, the matrix Kij does not depend on time. This matrix
corresponds to the Jacobian of f evaluated in u0. Its eigenvalues λσ determine how the
system evolves under a perturbation [87] because

δu =
∑

σ

Aσeλσtvσ,

where Aσ is a set of initial amplitudes and vσ the eigenvectors associated with the corre-
sponding eigenvalues λσ.

Re(λ)

Im(λ)

Re(λ)

Im(λ)

Stationary bifurcation Andronov-Hopf bifurcation

(a) (b)

Figure 2.2: Two possible generic behaviors of how the eigenvalues of the system evolves
when the control parameter r crosses its critical point rc. (a) Stationary bifurcation. (b)
Andronov-Hopf bifurcation.

The stability of the system is determined by the real part of λσ. The condition for being
stable is that the real part of all eigenvalues be negative, i.e., Re (λσ) < 0. As r changes, the
onset of instability occurs when it is fulfilled that Re (λσ) = 0, for some σ, at certain critical
r = rc. As this parameter is varied, based on the fact that the differential equations are real,
there are two possible generic behaviors that the system can perform:
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1. Stationary bifurcation: When only one real eigenvalue crosses the origin in the complex
λ plane.

2. Andronov-Hopf bifurcation: A complex conjugate pair of eigenvalues crosses the imag-
inary axis in the complex λ plane. In this case, the imaginary part of them gives an
oscillating component in time.

Both classes of bifurcations are illustrated in Fig. 2.2.

2.2.2 Nonlinear analysis

When r > rc there is at least one eigenvalue that grows exponentially in time in the linearized
equation (2.4). However, the nonlinear terms of the dynamical system will clearly affect the
evolution, either saturating the growth or further enhancing it.

The way that the system will behave after crossing the critical point r = rc falls into
some possibilities, given by the form of dynamical equations for the amplitudes of unstable
eigenvectors [56]. In general, the procedure to determine the type of bifurcation is to put these
equations, after suitable nonlinear methods, into standard forms. The symmetries of these
standard form equations and the sign of their coefficients will be crucial for the subsequent
behavior. These equations are known as normal forms [20, 33,53,56,87].

In what follows we will study some normal forms for stationary bifurcations, which will
play an important role in future discussions.

2.2.3 Pitchfork bifurcation

Since this is a stationary bifurcation with reflection symmetry, there is a single growing
eigenvector with amplitude X(t). The normal form of this bifurcation is

dX

dt
= εX ±X3, (2.5)

where ε = r − rc is the bifurcation parameter (or control parameter). Namely, it is the
parameter that controls the stability of the equilibrium under study. Notice that the critical
point occurs when ε = 0. Depending on the sign, we distinguish two different cases:

1. Supercritical (negative sign)1: In this case, the nonlinear term is saturating. The
equilibriums of this equation are X = 0 and X = ±√ε. For ε < 0 only X = 0 is stable
and no other real solutions exist. For ε > 0, when it crosses the critical point, X = 0
becomes unstable and two stables equilibriums emerge, X = ±√ε. The bifurcation
diagram, that is, a schematic representation of the bifurcation, is shown in Fig. 2.3 (a).
A well-known example of this bifurcation is the Andronov pendulum [7].

1This equation was first introduced by Landau (1944) to describe the effect of nonlinearities on linear hy-
drodynamic instability. A similar model with a constant term that breaks reflexion symmetry was introducing
to study combustion process by Zeldovich and Frank-kemeneskii.
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2. Subcritical (positive sign): Here the nonlinear term is destabilizing. The equilibriums
are X = 0 and X = ±√−ε. For ε < 0 the solution X = 0 is stable, and the two other
unstable. For ε > 0 the solution X = 0 destabilizes and there are no other solutions.
The respective bifurcation diagram is shown in Fig. 2.3 (b).
If we add a quintic term to this equation of the form

dX

dt
= εX +X3 − gX5, (2.6)

with g > 0, the bifurcation diagram evolves as shown in Fig. 2.3 (c). The arrows
show the path that the solution follows when ε is increased or decreased, allowing the
possibility of jumps and hysteresis [87].

0

Xeq Xeq

0

Xeq

S

S

0 0

Xeq

Saddle-Node

Pitchfork supercritical Pitchfork subcritical

Pitchfork subcritical

(a) (b)

(c) (d)

Figure 2.3: Bifurcation diagram for different kinds of Pitchfork bifurcations: (a) Supercritical.
(b) Subcritical. (c) Subcritical with a quintic term (Eq. (2.6)). The plots show the evolution
of the steady stable and unstable states in function of the bifurcation parameter ε. The
full (dotted) lines represent the stable (unstable) states. The arrows in (c) account for the
path that the equilibrium solution follows when the bifurcation parameter ε is increased or
decreased. Notice that there is a jump in ε = 0 and in εs.

2.2.4 Saddle-Node bifurcation

The saddle-node bifurcation is characterized because fixed points are created and destroyed
as the control parameter is varied. Following the same notation as the previous case, the
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prototypical equation for this bifurcation writes

dX

dt
= ε−X2, (2.7)

which has fixed points ±√ε. Then, for ε < 0 there are not equilibrium points. Nevertheless,
when ε = 0 the system has only one equilibrium X = 0, which is a saddle-node fixed point.
This means that the point is stable for perturbations in one direction, but unstable in the
opposite direction [87]. The interesting feature of this bifurcation occurs when ε > 0. In
this case, two new equilibriums emerge: +

√
ε, which is stable, and −√ε, unstable. The

corresponding bifurcation diagram is presented in Fig. 2.3 (d). A simple mechanical example
that exhibits this bifurcation is the Shilnikov particle [21].

The same bifurcation can also be obtained from the equation

dX

dt
= ε+X2,

where now there is no equilibrium for ε > 0.

Note that in the subcritical Pitchfork with a quintic term (Eq. (2.6)) there are two saddle-
node bifurcations in the positions marked as S as it is shown in Fig. 2.3 (c). It is important
to note that although the mechanisms described above accounts for fixed point instabilities,
these mechanisms are fundamental for understanding the emergence of extended solutions,
particularly particle-like solutions [29].

2.3 Spatial instabilities

Until now we have been considering systems like Eq. (2.3), which are described by ordinary
differential equations with derivatives in time. However, in most cases in physics (and other
fields of course) are described by spatiotemporal fields, hence their dynamics is described by
partial differential equations, with derivatives in space and time. In those cases, it is possible
to find the emergence of spatial instabilities, depending on the parameters of the system. To
illustrate this let us consider the following model

∂tu = εu− u3 − (∂xx + q2)2u, (2.8)

which is the so-called Swift-Hohenberg equation, named after Jack B. Swift and Pierre Ho-
henberg [88], derived to explain convecting rolls in the Rayleigh-Bénard experiment. The
relevance of this equation lies in its pattern formation mechanism, which is present in fields
like nonlinear optics and vegetation [25,61,89], among others. To analyze this mechanism let
us first find the homogeneous and stationary equilibriums of this equation, i.e., equilibriums
constant in space and time, respectively. These are

u0 = 0, u± = ±
√
ε− q4.

The eigenvalues associated to u0 can be obtained by means of a linear stability analysis as
in Sec. 2.2.1, that is u = u0 + δu, but now proposing δu ∝ eλt+ikx. Thus, replacing in the
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linearized equation, we can derive a relation between the growth rate and the wavenumber
of the instability, which is

λk = ε− (q2 − k2)2.

With this relation, we can analyze the region of parameters where the spatial instabilities
take place. In Fig. 2.4 is sketched this expression for some values of ε. Notice that since
ε is the maximum of this equation, λ is negative for every value of k for ε < 0, implying
that the perturbations decay exponentially to zero, that is, u0 is stable. On the other hand,
for ε > 0 we see that λ is positive for some values of k, which means that u0 destabilizes.
In this case, it evolves to a periodic profile, known as pattern. This kind of instability is
usually referred as Turing instability, in honor to the English mathematician Alan Turing
who derived a similar equation to the Swift-Hohenberg equation 25 years before, in one of
his unpublished works [27].

-q +q0

0

k
Figure 2.4: λk profile in function of the wavenumber k for different values of ε. The maximum
value is ε and is obtained evaluating in ±q. The critical case ε = 0 is usually referred as the
marginal case.

In what follow we will derive the amplitude equation of this system that describes the en-
velope of the pattern, but first we need a useful tool called the Fredholm solvability condition.

2.4 Fredholm solvability condition

The Fredholm solvability condition (or Fredholm alternative) is named after the Swedish
mathematician Erik Fredholm [38]. This is a useful result often used in nonlinear problems.
It establishes, in an elementary way, that for a linear problem

LW = b,

where L is a linear operator and W an unknown variable, one of the following conditions
must be held:
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1. Either: LW = b has solution W .
2. Or: L†v = 0 has solution v, with 〈v|b〉 6= 0, where 〈·|·〉 is a given inner product and L†

the adjoint operator under this product, that is,
〈
L†f

∣∣g
〉

= 〈f |Lg〉 ,

for every f and g.

In a more simpler way, this condition establishes that the system LW = b has solution if
only if for v ∈ Ker{L†} it fulfills that 〈v|b〉 = 0, i.e., b must be orthogonal to v.

2.5 Amplitude equations

As we have seen in Sec. 2.3, in the Swift-Hohenberg equation the critical mode occurs when
ε = 0. When this condition fulfills the critical mode is k = q, since λk(k = q) = 0 is the
maximum value. To analyze the behavior of the system near this critical mode we propose
as ansatz

u(x, t) = A(t)eiqx + A∗(t)e−iqx +W (x,A,A∗), (2.9)

where A is the envelope of the pattern, A∗ its complex conjugate and W is a small correction
caused by nonlinear terms. It will be considered that A is a small variable and ε a small
parameter, in the sense that terms proportional to AW and εW will be neglected. Moreover,
it will be assumed that A is a slow variable, implying that its temporal derivative ∂tA is small.
So that, ∂tAW will be neglected. It is straightforward that all the previous assumptions also
applies to A∗.

Replacing Eq. (2.9) in Eq. (2.8) and linearizing in W , since is a small correction, we
obtain

LW = b, (2.10)

where the linear operator is
L = (∂xx + q2)2,

and
b =

(
−∂tA+ εA− 3|A|2A

)
eiqx − A3e3iqx + c.c.,

where c.c. refer to the complex conjugate terms. If we define the following inner product

〈f |g〉 =
q

2π

ˆ π/q

−π/q
f · q dx,

the linear operator turns out to be self-adjoint, that is, L† = L. Therefore, the elements of
the Kernel of L† are

Ker{L†} = {eiqx, e−iqx}. (2.11)

The Fredholm solvability condition states that the linear system (2.10) has solution if b is
orthogonal to the elements in (2.11). Therefore, we need to impose that

〈
eiqx
∣∣b
〉

= 0 and
〈
e−iqx

∣∣b
〉

= 0.
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These two equations give the dynamical equations for A(t) and A∗(t):

∂tA = εA− 3|A|2A

and
∂tA

∗ = εA∗ − 3|A|2A∗.

The equation that A satisfies (and also A∗) is known as the Ginzburg-Landau equation with
real coefficients. Notice that they have the form of the normal form a supercritical Pitchfork
bifurcation is a slow variable and epsilon a small parameter (see Eq. (2.5)). Moreover, the
steady states have the form A = (ε/3)1/2eiφ0 , where φ0 is arbitrary. Then, according to Eq.
(2.9), the steady states us(x) evolves with ε like

us(x) = 2

√
ε

3
cos(qx+ φ0) +O(ε3/2),

which is a periodic profile with wavelength 2π/q. This profile is the pattern solution from
the Swift-Hohenberg equation. Its wavelength depends on the parameters of the system and
not in its size. Indeed, if we remove a wavelength of this profile, another wavelength will
emerge and the system will return to its original form.

2.6 Time-dependent forcing

Let us analyze now the effects in a system under a time-dependent forcing, particularly the
role played by the forcing frequency.

2.6.1 Resonance

Forced oscillators have been studied since the dawn of mechanics. During the study of the
dynamics of the pendulum, Galileo observes the resonance phenomenon [40]. However, based
on a linear forced oscillator, Euler was the first to explain this phenomenon [34]. Add forcing
corresponds to add energy to a system. The simplest case is the driven oscillator, in which an
external driving force varying harmonically is applied [59,68], like a driven simple pendulum.
In presence of dissipation, the equation of motion writes

θ̈ + µθ̇ + ω2
0θ = a cosωt,

with µ the damping coefficient, ω0 the natural frequency of the system, a the forcing am-
plitude and ω the forcing frequency. Since the forcing is oscillatory, the system is gaining
and losing energy. The response of the system consists in two parts: a transient effect, i.e.,
that die out, and an oscillatory steady-state, which is relevant for times larger than 2/µ. The
amplitude A of this steady-state is given by [68]

A =
a√

(ω2 − ω2
0)2 + ω2µ2

. (2.12)
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When the forcing frequency ω gets closer to the natural frequency ω0, this amplitude
reaches its maximum value. This phenomenon is called resonance. In this case, the periodic
forcing generates a response that increases in time.

When the damping increases, the maximum amplitude A is reached in a frequency lower
than ω0, as illustrated in Fig. 2.5.

One important property of this kind of forcing, that is, when it is applied directly to the
system, is that the response will be at the same frequency of the forcing. The situation is
different in the case of parametric forcing.

0 0.5 1 1.5 2
0

2

4

6

8

10

ω

A

Figure 2.5: Amplitude of the steady-state solution (Eq. (2.12)) in function of the forcing
frequency ω for different values of the damping coefficient µ, for ω0 = 1. For the blue line
we have used a = 1 and µ = 0.1, for the red a = 5 and µ = 0.7, and for the green a = 6 and
µ = 1.2.

2.6.2 Parametric forcing

The previous case is not the only one that generates a response that increases with time. Let
us consider the case when the injection of energy is applied to a parameter of the system,
namely when the system is under a parametric forcing. One simple mechanical example
of this is the simple driven pendulum with a vertical oscillatory point of support or pivot
(see Fig. 2.6). In presence of dissipation, the equation of motion that satisfies the vertical
deviation angle θ(t) of this system is [59]

θ̈ = −(ω2
0 + γ sinωt) sin θ − µθ̇,

with

γ =
aω2

L
,

where ω0 and L are the natural frequency and length of the pendulum, a and ω the amplitude
and frequency of the forcing, respectively, and µ the damping coefficient. It is interesting
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to mention that this phenomenon was already used in the tenth century to perfume a Spain
cathedral, of course, without their respective understanding [85]. This system has two sta-
tionary solutions, θ = 0 and θ = π. In absence of forcing these equilibriums are stable
and unstable, respectively. However, vertical parametric forcing can change stability into
instability and vice versa.

g

m

a sin ωt 

L

Figure 2.6: Driven simple pendulum with a vertical oscillatory pivot at frequency ω and
amplitude a.

Linear stability analysis of θ = 0

Let us analyze the stability of the θ = 0 solution. Performing a linear analysis in θ we get

θ̈ = −(ω2
0 + γ sinωt)θ − µθ̇, (2.13)

which is usually referred as theMathieu equation, a special case of the Hill equation [36,59,70].
Even though the Mathieu equation is an ordinary differential equation, it has not analytical
solutions due to the time-dependence in one of its coefficients 2. Nevertheless, since this
coefficient is periodic in time, we can apply the Floquet theorem. This theorem states that
this equation has solutions of the form

eλjtψj(t), (2.14)

where λj, called the Floquet exponents, are functions of the parameters ω, γ and µ. The
functions ψj(t) are periodic in time [77], that is ψj(t+ 2π/ω) = ψj(t). We are not interested
in studying these functions, but in the λj exponents. Notice that they define the region where
the solutions are stable or unstable, depending if their real parts are negative or positive.
Stability requires that all the real parts be negative, implying that if one these exponents is
positive the solution is unstable. Therefore, the stability boundaries in the space of parameters

2The solutions, in fact, corresponds to special functions named Mathieu functions, introduced by Émile
Mathieu (1868) to analyze the motion of elliptical membranes.
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are determined where all the real parts of these exponents vanish3. The stability chart that
specifies these regions is called the Ince-Strutt diagram [96]. As we will see, the dissipation
plays an important role on these regions.

0.7 1 1.5 2 2.50

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ω/ω0

Stable

Unstable

Unstable

µ=0

µ=0.1

Figure 2.7: Stability chart of the damped Mathieu equation, known as Ince-Strutt diagram.
The yellow part represents the unstable regions, while the blue part the stable regions. For
µ = 0 the boundary curves reach the horizontal axis in ω = 2ω0/n. The unstable regions
around these frequencies are usually called the Arnold Tongues. As µ grows these tongues
rise.

Stability chart: Ince-Strutt diagram

To establish the stability boundary regions we consider the solution of the Mathieu equation
as an expansion in Fourier series,

θ(t) =
∞∑

n=0

an cos

(
ntω

2

)
+ bn sin

(
ntω

2

)
, (2.15)

where an and bn are the Fourier coefficients. Introducing this ansatz into the Mathieu equa-
tion (2.13) we derive a set of an infinite number of equations. Nonetheless, according to the
principle of harmonic balance [32, 75], every coefficient proportional to every sine or cosine
term is to be equated to zero. This yields to a linear system in an and bn of infinite order.

3Notice that the Floquet theorem corresponds to the Bloch theorem in solid-state physics, applied to
determine the bands in the energy spectrum.
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Truncating until n = 3, this system writes in matrix form



4ω2
0

ω2
2γ
ω2 0 0 0 0 0

4γ
ω2

4ω2
0

ω2 − 4 4µ
ω

0 0 0 0

0 −4µ
ω

4ω2
0

ω2 − 4 0 0 0 0

0 0 0
4ω2

0

ω2 + 2γ
ω2 − 1 2γ

ω2
2µ
ω

0

0 0 0 2γ
ω2

4ω2
0

ω2 − 9 0 6µ
ω

0 0 0 −2µ
ω

0
4ω2

0

ω2 − 2γ
ω2 − 1 2γ

ω2

0 0 0 0 −6µ
ω

2γ
ω2

4ω2
0

ω2 − 9







a0

a2

b2

a1

a3

b1

b3




=




0

0

0

0

0

0

0




,

where the square matrix only has elements in the center diagonals. In fact, in absence of
dissipation (µ = 0) this matrix is tridiagonal.

In order to determine the boundary regions of stability, we need to impose that determi-
nant of this square matrix is zero, which is equivalent to impose that the real part of the
Floquet exponents λj from Eq. (2.14) vanish. From this condition, we can derive numerically
the boundary stability regions in functions of the parameters of the system. However, since
this matrix is of infinite order it is necessary to truncate the Fourier expansion, depending
on the desired accuracy of the boundary.

In Fig. 2.7 it is shown the stability chart in the γ − ω plane, obtained by truncating the
Fourier expansion until n = 20. It is important to note that when one consider more modes,
critical curves do not change significantly in shape. As it is shown, for µ = 0 the boundary
curves reach the horizontal axis in certain values of the forcing frequency ω. These values in
fact are

ω =
2

n
ω0,

with n an integer number. They correspond to the frequencies where the θ = 0 solution
destabilizes, that is, they define the parametric resonance condition. Thus, the parametric
forcing allows the possibility to have resonance not only at the natural frequency ω0. The
unstable regions around these critical frequencies are usually referred as Arnold tongues [82].
Notice that as µ grows the minimum value of these tongues raises.

Analytical approximation of 2:1 Arnold Tongue

The tongue located around ω = 2ω0 is usually called the 2:1 tongue, since it corresponds to
the region where the system needs to be forced twice the natural frequency to resonate. This
tongue has been largely studied in different physical contexts, e.g., in Faraday instability in
fluids [55].
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There is a way to approximate analytically this tongue, which is useful to predict the
system behavior when the parameters cross the tongue boundary. To do that, based on the
work of Eugene Butikov [16,17], we should propose as ansatz in the Mathieu Eq. (2.13) the
following expansion

θ(t) = A1eiω
2
t + A∗1e−iω

2
t, (2.16)

where A∗1 denote the conjugate complex of A1. Notice that this is nothing but to consider
the term n = 1 in ansatz (2.15). Then, introducing it into the Mathieu equation, it yields
to an expression with terms proportional to e±iω

2
t. Following the same procedure as before,

these terms have to be equated to zero. Thus, we obtain a linear system, which in matrix
form is represented as


−

ω2

4
+ iµω

2
+ ω2

0 − iγ
2

iγ
2

−ω2

4
− iµω

2
+ ω2

0




A1

A∗1


 =


0

0


 ,

and imposing that the determinant of this system be zero, we derive the following expressions
for the boundary stability curve

γ± = ±1

2

√
4µ2ω2 + ω4 − 8ω2

0ω
2 + 16ω4

0.

Since the forcing amplitude is positive, γ+ is the solution with physical meaning. In Fig.
2.8 we compare this analytical approximation with the 2:1 tongue obtained in the previous
section. Notice that the approximation fits better for frequencies ω > 2ω0.

1.5 2 2.5

0.5

1

1.5

2

ω/ω0

γ

1 mode
2 modes

Figure 2.8: 2 : 1 tongue for µ = 0.1, with its analytical approximations using 1 and 2 modes
as ansatz, expressed in Eqs. (2.16) and (2.17), respectively.

If we now consider an ansatz of the form

θ(t) = A1eiω
2
t + A3e−i 3ω

2
t + c.c, (2.17)

and perform the same analysis, the approximation fits even better as it is shown in Fig. 2.8.
Therefore, one may conclude that some Arnold tongues can be described in a few modes,
which makes it possible to obtain analytical formulas.
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2.6.3 Kapitza effect

One interesting feature of this parametric forcing is the stabilization of the θ = π steady
state (upside-down pendulum) in the vertically driven pendulum. As we have discussed in
the previous section, the dynamical equation of this system is given by

θ̈ = −(ω2
0 + γ sinωt) sin θ − µθ̇. (2.18)

In what follows we will apply a method developed by the Russian physicist Pyotr Leonidovich
Kapitsa (or Peter Kapitza) [48], in order to treat analytically dynamical systems with a nat-
ural time scale much larger than the time scale of the forcing. To illustrate the time-scale
separation in this system, in Fig. 2.9 is shown the temporal evolution for a forcing frequency
ω = 20ω0, without dissipation.

500 1500 2500 3500

-0.2

-0.1

0

0.1

0.2

t(a.u.)

Slow scale

Fast scale

Figure 2.9: Temporal evolution obtained by integrating numerically the Eq. (2.18), with
ω0 = 1, γ = 40, ω = 20 and µ = 0.

To apply this strategy we propose the following ansatz

θ(t) = θslow(t) + θfast(t),

where θslow(t) accounts for the slowly part, that is, the envelop of the temporal profile, and
θfast(t) stands for the fast one, representing the small amplitude traveling waves (see Fig.
2.9). In addition, the θfast(t) variable will be considered small compared to θslow(t),

θfast(t)� θslow(t).

Then, introducing this ansatz into Eq. (2.18) and linearizing in θfast, we get

θ̈slow + θ̈fast = −(ω2
0 + γ sinωt)(sin θslow + θfast cos θslow)− µ(θ̇slow + θ̇fast). (2.19)

From this equation we can extract the equation for the rapid motion, by collecting the terms
that vary in the fast time scale (T = 2π/ω). These are

θ̈fast = −γ sinωt sin θslow − (ω2
0 + γ sinωt)θfast cos θslow − µθ̇fast.
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However, to simplify our analysis let us consider the limit of high frequencies, particularly
when µ� ω. Since γ ∝ ω2 the dominant terms in this limit are

θ̈fast ≈ −γ sinωt sin θslow,

where we have considered the fact that θfast is small. Here the time dependence of θslow can
be neglected if we take into account that the two time scales are well separated. Thus, the
integration yields

θfast ≈
γ

ω2
sinωt sin θslow.

Likewise, this result can be obtained by using the method of the stationary phase for the
integral of Laplace [9]. Then, replacing this solution in Eq. (2.19) and taking the temporal
average on the fast time scale, i.e.,

〈f(t)〉 =
ω

2π

ˆ 2π/ω

0

f(t)dt,

we get
θ̈slow = −ω2

0 sin θslow − γ〈sinωt θfast〉 cos θslow − µθ̇slow,

since the variable θslow does not vary on this time scale and 〈sinωt〉 = 0. On the other hand,

〈sinωt θfast〉 ≈
γ

ω2
〈sin2 ωt〉 sin θslow =

γ

2ω2
sin θslow,

which finally yields to an effective equation for the slow variable

θ̈slow = −ω2
0 sin θslow −

γ2

4ω2
sin 2θslow − µθ̇slow.

From this equation is possible to establish the stability condition for the θslow = π solution.
Stability requires that the potential energy has a local minimum at this solution. This
condition is indeed

γ2

2ω2
> ω2

0,

and since γ = aω2/l, this condition writes

ω >
√

2
ω0l

a
.

Therefore, for frequencies that fulfill this condition the upside-down position becomes
stable.

2.7 Particle-like solutions in coupled oscillators

Let us turn now to study an important aspect of this thesis, the particle-like solutions. These
solutions are particle-like states for classical field equations, that is, they are solutions that
can be characterized by to be localized and be described by a finite number of parameters
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such as position, width, charge, and so forth. The study of the particle-like solutions is in the
structural pillar of the nonlineal physics, from the discovery of solitons. The study of these
solutions involves nonlinear wave equations, scalar field theory [42,45,100], to name a few.

In what concerns this thesis, we are interested in studying the effect of parametric forcing
in the so-called kink soliton solutions. We will discuss this effect in Chapter 3. In this section
we will introduce the main aspects of kink solutions of the sine-Gordon equation, as well as
in the φ4 scalar field equation, where we will study the kink-antikink interaction.

2.7.1 Sine-Gordon equation

The sine-Gordon equation was first introduced in 1862 by the French engineer Edmond Bour
in his work on deformation of surfaces [14]. It was rediscovered in 1939 by Frenkel and
Kontorova in the study of crystal dislocations [54].

d

L

k

m

x

g

Figure 2.10: Schematic representation of a chain of coupled pendulums by springs.

To introduce this equation let us consider a simple and pedagogical mechanical model
composed of a chain of simple pendulums, with each pendulum connected by linear springs
to its nearest neighbors as it is depicted in Fig. 2.10. Here k is the torque constant of the
springs, d the distance of separation between the pendulums, m and L their mass and length,
respectively. Defining

ω2
0 = g/l and κ2 =

k d2

mL2
,

the equation that describes the dynamics of the vertical deviation angle θ(x, t) in the contin-
uous limit, that is, when ω0/κ� d, is [83]

∂ttθ = −ω2
0 sin θ + κ2∂xxθ,

which is the so-called sine-Gordon equation4. The importance of this equation lies on its
modeling of many fields of physics, like dislocations in crystals, domain walls in ferromagnets,

4The name of this equation is a word play on the well known Klein-Gordon equation, which has the form
∂ttθ = −ω2

0θ + κ2∂xxθ.
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flux in Josephson transmission lines, among others [15, 26]. Notice that under the following
transformations

t→ ω0t and x→ ω0

κ
x,

the SG equation can be written as

∂ttθ = − sin θ + ∂xxθ, (2.20)

where it is easy to appreciate its Lorentz invariance, since it includes the d’Alembert operator
� ≡ ∂tt − ∂xx.

One important property of the SG equation is that admits analytical solutions of soliton
solutions, such as kinks or breathers5, introduced by Seeger and co-workers more than sixty
years ago [15]. In addition, it is important to note that this equation is integrable.

0

2π

π

x(a.u.)

(a) (b)

g

Figure 2.11: (a) Spatial profile of kink and antikink solution in function of the variable
s = x − vt (see Eq. (2.21)). The full (dotted) line corresponds to the kink (antikink)
solution. (b) Representation of the kink solution in the chain of pendulums.

Kinks

The kinks are due to the degeneracy of the system in the θ = 0 solution. They correspond
to solutions that connect two symmetric states, or minima of the (periodic) potential energy
[66, 95]. In the case of the chain of pendulums the kinks correspond to a localized rotation
in 2π, connecting the states θ = 0 and θ = 2π (see Fig. 2.11). Since the SG is Lorentz
invariant, it is expected that traveling solutions also exist. Their analytical expression from
Eq. (2.20) writes

θ(x, t) = 4 arctan (exp{−σγ(v)(x− x0 − vt)}) , (2.21)

with
γ(v) =

1√
1− v2

,

5The original German name for kinks and breathers were translatorische and oszillatorische Eigenbewe-
gungen.
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where v is the kink speed, which can not exceed the value 1. The value x0 is the center
position at t = 0. The factor γ(v) can be treated as the Lorentz contraction of the kink
width. The parameter σ = ±1 is usually referred as the topological charge. When σ = 1
we call the solution as kink, while for σ = −1 as antikink. In the chain of pendulums, when
s = x− vt increases from −∞ to +∞, the pendulums rotate from 0 to 2π for the kink, and
from 2π to 0 for the antikink. Their respective spatial profile is plotted in Fig. 2.11.

Kink-kink and kink-antikink collisions

It is possible to show that Eq. (2.20) admits further solutions [57, 58] of the form

θ(x, t) = 4 arctan

(
F (x)

G(t)

)
, (2.22)

where F (x) andG(t) are arbitrary functions. Introducing this expression into the SG equation
one can obtain analytical expressions for kink-kink and kink-antikink collisions.
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Figure 2.12: Initial and final instant of the kink-kink collision. (a) Two kinks travel with
the same velocity in opposite directions. (b) After the collision, the each kink changes its
velocity direction. Then, the kink-kink interaction is repulsive.
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The kink-kink collision has the form

θ(x, t) = 4 arctan



v sinh

(
x√

1− v2

)

cosh

(
vt√

1− v2

)


 ,

and describes the collision between two kinks traveling with respective velocities +v and −v
to the origin. As it shown in Fig. 2.12, the kink-kink collision is repulsive, that is, it results
in a change of the direction of each kink.

x(a.u.)

0

2

-2

x(a.u.)

0

2

-2

(a)

(b)

Figure 2.13: Initial and final instant of the kink-antikink collision. (a) One kink and an
antikink travel with the same velocity in opposite directions. (b) After the collision, the each
kink passes through each other. Then, the kink-antikink interaction is permeable.

In a similar way, the kink-antikink collision writes

θ(x, t) = 4 arctan




sinh

(
vt√

1− v2

)

v cosh

(
x√

1− v2

)


 ,

and shows that the kink-antikink collision is perfectly permeable since they pass through
each other. Their temporal evolution is shown in Fig. 2.13.
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Breathers

The breather solutions correspond to localized solutions characterized by oscillations in their
amplitude. This solution can also be obtained from Eq. (2.22). Their analytical solution
reads

θ(x, t) = 4 arctan

(√
1− Ω2

Ω
sech

(√
1− Ω2x

)
sin Ωt

)
,

and represents an oscillating state where its envelope is modulated at frequency Ω. Its
temporal evolution is shown in Fig. 2.14.
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Figure 2.14: Temporal evolution of breather solution. (a) Spatial profile evolution for different
times. (b) Corresponding spacetime diagram. We have used Ω = 0.5.

2.7.2 φ4 scalar field equation

Let us turn now to the study of kink solutions in the φ4 scalar field theory equation. The
φ4 scalar theory is the simplest model that describe spontaneous symmetry breaking, widely
used to describe phase transitions. This field theory is called φ4 since the Lagrangian contains
a fourth power in φ(x, t). It appears in different physical contexts, such as quantum physics,
particle physics and cosmology [79,95,97,98]. The equation of this model reads

∂ttφ = εφ− φ3 + ∂xxφ,

where ε controls the size of the kink solution, which has the analytical form

φ(x, t) = σ
√
ε tanh

(√
ε

2
√

1− v2
(x− vt− x0)

)
, (2.23)

where −1 < v < 1 is the kink velocity and x0 the center position at t = 0. The topological
charge σ follows the same rules as in sine-Gordon kinks, i.e., for σ = 1 the solution is called
kink and for σ = −1, antikink. The spatial profile of these solutions is similar to those of
sine-Gordon equation. However, the maximum and minimum values in this case are

√
ε and

−√ε, respectively, as it is shown in Fig. 2.15.
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Figure 2.15: Spatial profile of the analytical kink solution of the φ4 equation expressed in
Eq. (2.23), with x0 = 0, v = 0 and ε = 1.

Unlike the sine-Gordon equation, there are not analytical expressions for the kink-kink
and kink-antikink collision. In fact, depending on the initial velocities of the kinks, there are
different possible configurations. In a different range of velocities the kink-antikink collision
could be repulsive, or lead to the mutual capture of the pair, or lead to a phenomenon called
two bounce resonance [18, 43], where the kinks first coalesce and then escape, with a very
regular pattern governing the behaviors.

In what concern this thesis, we are interested in studying the dissipative effects on kinks
solutions. In the next section, we will analyze the kink-antikink interaction in the dissipative
φ4 equation.

2.7.3 Kink-antikink interaction in dissipative φ4 model

Considering now the addition of dissipation in the φ4 field equation, that is

∂ttφ = εφ− φ3 + ∂xxφ− µ∂tφ, (2.24)

where µ > 0 accounts for the dissipation, we will study the kink-antikink interaction in the
limit of small dissipation and large distance of separation. To start, we propose the following
ansatz

φ(x, t) = φk(x− x−(t)) + φak(x− x+(t))−√ε+W (x, x+, x−), (2.25)

where φk and φak corresponds to a kink and antikink solution of the stationary Eq. (2.24),
respectively. Therefore

φk(x− x−(t)) =
√
ε tanh

(√
ε

2
(x− x−(t))

)

and

φak(x− x+(t)) = −√ε tanh

(√
ε

2
(x− x+(t))

)
.
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The function W accounts for the small nonlinear corrections of interaction between the
solutions. Besides, x− and x+ corresponds to the center positions of the kink and antikink,
respectively, that are promoted as functions of time. The spatial profile of this ansatz is
illustrated in Fig. 2.16, where we have defined

∆(t) ≡ x+(t)− x−(t), δ(t) =
x−(t) + x−(t)

2
,

as the distance of separation between the kinks and the center position, respectively.

x(a.u.)

0

Figure 2.16: Spatial profile of the ansatz from Eq. (2.16).

It will be assumed that the kinks are located very far apart, implying that ∆ will be much
larger than the kink width

√
2/ε (∆�

√
2/ε). As a consequence, since W accounts for the

effects of interaction will be also small. In addition, it will be assumed that the kinks travel
slowly, implying that the temporal derivatives of x−(t) and x+(t) are small, in such a way
that terms proportional to the product of W with ẋ− or ẋ+ will be neglected.

Taking into account the previous considerations, introducing the ansatz into Eq. (2.24)
and linearizing in W , we obtain the following linear system

LW = b,

where the linear operator L corresponds to

L ≡ ε− 3(φk + φak −
√
ε)2 + ∂xx,

and

b =
1

2

(
∆̈ + µ∆̇

)
(∂z−φk − ∂z+φak)−

(
δ̈ + µδ̇

)
(∂z−φk + ∂z+φak)

+

(
δ̇2 +

∆̇2

4

)
(∂z−z−φk + ∂z+z+φak)− δ̇∆̇(∂z−z−φk − ∂z+z+φak)

−
(
3φk(φak −

√
ε)2 + 3φ2

k(φak −
√
ε)− 3

√
εφak(φak −

√
ε)
)
,

(2.26)

where z±(t) = x− x±(t).
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Our goal to characterize the kink-antikink interaction is to find the dynamical equations
for δ and ∆. Our strategy we will be to apply the Fredholm solvability condition introduced
in Section 2.4. For that, we introduce the following inner product

〈f |g〉 =

ˆ +∞

−∞
fg dx,

thus L is a self-adjoint operator, i.e., L† = L, where L† is the adjoint operator. We require
finding the elements of the Kernel of L†. Nevertheless, given the fact that L† is not suitable to
perform analytical calculations it is necessary to make some simplifications. Let us propose
the followings pseudo-eigenvectors

〈τ | = ∂z−φk + ∂z+φak, (2.27)

〈χ| = ∂z−φk − ∂z+φak, (2.28)

meaning that both products 〈τ | L† and 〈χ| L† are exponentially close to zero [49]. To show
this, notice that since the spatial derivative fulfills ∂z−φk

0 =
[
ε− 3φ2

k + ∂xx
]
∂z−φk,

the terms that remain when we apply L† to ∂z−φk are proportional to φk(φak −
√
ε)∂z−φk,

which in the limit of large distance of separation ∆ is small. This comes from the fact that

lim
x→x1�x0

φak(x)−√ε = 2
√
ε e−2

√
ε
2

(x1−x0), (2.29)

and because ∂z−φk is a localized function around x−. The same analysis can be applied to
the product of L† with ∂z+φak, obtaining the same result. Then, the products 〈τ | L† and
〈χ| L† are exponentially close to zero and we can consider τ and χ as pseudo-eigenvectors.
In Fig. 2.17 we show the spatial profile of these functions. We will name τ and χ as the
translational and interaction mode.
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Figure 2.17: Profile of translation and interaction modes τ and χ defined in Eq. (2.27) and
(2.28). We have used ε = 0.5.

Applying the Fredholm solvability condition we impose that

〈τ |b〉 = 0, and 〈χ|b〉 = 0.
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Translational mode

Integrating numerically the inner product 〈τ |b〉 we see that the term proportional to the
expression

(
δ̈ + µδ̇

)
is the only relevant in b. In fact, setting ε = 1, x− = −100 and

x+ = 100, the inner product of τ with this term is more than 1010 larger than the others
terms b. Thus, from Eq. (2.26) we can conclude that at dominant order

δ̈ + µδ̇ = 0,

which means that the central position of the localized structures is constant, keeping mo-
tionless. This behavior is expected since the system must keep its spatial symmetry because
there is no external forcing.

Interaction mode

On the other hand, applying the same analysis to the inner product 〈χ|b〉, we observe that
the relevant terms are

1

2

(
∆̈ + µ∆̇

)
〈χ|χ〉+

〈
∂z−φk

∣∣3√εφak(φak −
√
ε)
〉
−
〈
∂z+φak

∣∣3√εφk(φk −
√
ε)
〉

= 0, (2.30)

where we have used the fact that

3φk(φak −
√
ε)2 + 3φ2

k(φak −
√
ε)− 3

√
εφak(φak −

√
ε) =

3φak(φk −
√
ε)2 + 3φ2

ak(φk −
√
ε)− 3

√
εφk(φk −

√
ε).

The third inner product in Eq. (2.30) can be approximated analytically. For that, let us
rewrite this integral using the variable y = x− x+

〈
∂z+φak

∣∣3√εφk(φk −
√
ε)
〉

= 3
√
ε

ˆ +∞

−∞
∂z+φak(y) φk(y + ∆) (φk(y + ∆)−√ε)dy.

The integrand of this expression is zero in the whole integration region, except where y is close
to zero. Given the fact that we are considering ∆ very large, we can use the approximation
(2.29) to write

〈
∂z+φak

∣∣3√εφk(φk −
√
ε)
〉
≈ 3
√
ε

ˆ +∞

−∞
∂z+φak(y)

√
ε (−2

√
ε) e−2

√
ε
2

(y+∆)dy

= 6ε
√
ε e−2

√
ε
2

∆Iak,

where Iak = −
´ +∞
−∞ ∂z+φak(y)e−2

√
ε
2
ydy. The same analysis applied the second inner product

in (2.30) yields to
〈
∂z−φk

∣∣3√εφak(φak −
√
ε)
〉

= −6ε
√
ε e−2

√
ε
2

∆Ik,

with Ik =
´ +∞
−∞ ∂z−φk(y)e−2

√
ε
2
ydy. It is easy to see that Iak = Ik and that they are positive.

These integrals will be labeled simply as I.
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Finally, replacing in (2.30) we obtain the kink-antikink interaction law

∆̈ + µ∆̇ = −24
I

〈χ|χ〉ε
√
ε e−2

√
ε
2

∆,

which predicts that the kink-antikink interaction is attractive and lead to an eventual an-
nihilation. Moreover, this equation predicts that there are not width equilibriums, that is,
in this model there are not localized stable structures. Nevertheless, one of the topics that
this thesis will cover is the effect of the parametric forcing in this model, where it will be
demonstrated the existence of localized structures.

2.8 Localized structures in vegetation

Let us turn now to the study of particle-like solutions in a context of current relevance, the
vegetation, particularly focused on localized structures in semi-arid or arid climates. It is
important to note that due to the climatic change observed in the last decades, the arid and
semi-arid zones of the planet are growing. In this section, we will introduce a model for the
dynamics of vast classes of vegetation communities. As far as this thesis is concerned, we
are interested in the interaction between localized structures that corresponds to vegetation
surrounded by bare soil. We will discuss how these structures can lead to pattern formation
in Chapter 4.

2.8.1 Mean-field model of vegetation evolution

When we talk of semi-arid or arid climates, we refer to climatic conditions with scarce water
resources. In these climates is common to encounter different non-uniform structures in veg-
etation, generically called vegetation patterns [44,72]. These structures are a consequence of
how the hydric stress (insufficiency of water) can cause clustering effects to take advantage
of water resources that benefit the vegetation domains, affecting the plants survivability and
growth rate and leading to vegetation patches. It is understood that this hydric stress im-
plicates a symmetry-breaking instability or Turing instability [62,63,65], predicting periodic
configurations and the sequence of symmetry-breaking transitions that the patterns experi-
ment, as the aridity is increased. A well-known example of this type are the tiger bush, which
are banded periodic vegetation covers (see Fig. 2.18 a)), present in regions of Australia, West
Africa, and North America. On the other hand, the same mechanism predicts the existence
of aperiodic, randomly distributed patches of vegetation on bare soil [64, 73], or localized
spots of bare soil, surrounded by uniform vegetation cover [90]. One example of this latter
type are the fairy circles, discovered in Namib desert (see Fig. 2.18 b)).

The model that will be considered is a modified version of the integro-differential equation,
interaction-redistribution model, introduced in 1997 by Lefever and Lejeune to explain the
apparition of tiger bush [62]. In this model we define b(r, t) = mp(r, t)/mmax, wheremp(r, t) is
the bio-mass contained per unit area in a given position r and time t and mmax the maximum
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(a) (b)

Figure 2.18: Examples of vegetation patterns in nature: a) tiger bush [1] and b) fairly
circles [90].

amount that the species can produce. The spatiotemporal evolution of the normalized bio-
mass b(r, t) is modeled by the following non-local logistic equation

∂tb(r, t) = k1b(r, t)− k2b(r, t) +D

ˆ

[Φin(|r′|)b(r + r′, t)− Φout(|r′|)b(r, t)]dr′, (2.31)

where the first two terms account for the biomass gain and losses due to the natural growth
and decay of plants. The integral in the third term is extended to the whole space and
involves the ingoing and outgoing seed fluxes between neighbors, named as Φin and Φout,
respectively. The factor D is a phenomenological constant. Moreover, k1 and k2 are factors
that take into account the facilitation and competition mechanisms of the plant-to-plant
feedbacks, respectively. They are modeled as

k1 = [1− b(r, t)]Mf(r, t), k2 = µMc(r, t),

where µ is a phenomenological constant, accounting for the aridity. The terms Mf and Mc

are mean-fields factors describing facilitation and competition mechanisms, expressed as

Mf,c(r, t) = exp

(
χf,c

ˆ

Φf,c(|r′|)b(r + r′, t)
)
,

where χf and χc are positive parameters which fix the strength of the interactions. The
kernels Φf and Φc describes the spatial extension of feedback effects, where in the case of
facilitation processes are associated with the overground canopy, and in competition processes
with the root sphere size.

The homogeneous and stationary states of Eq. (2.31) are given by

µ = (1− b) exp(Λb),

where Λ = χf − χc is named as feedback balance, and corresponds to the difference between
the strengths of facilitative and competitive feedbacks. This parameter controls the stability
of the homogeneous states. In fact, for Λ > 1 the system exhibits a saddle-node transition
point.
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Considering that the kernels and the seed fluxes are Gaussian fields and performing an
expansion of the system dynamics in the neighborhood of the critical point Λ = 1 and small
bio-mass b, the Eq. (2.31) can be put in the form of a partial differential equation [90].
Defining a new variable b(r, t) = ξ1/2u(r, t), where ξ is a smallness parameter which is part
of the expansion, this equation reads (local interaction-redistribution model)

∂tu = −u[η − κu+ u2] + [∆− Γu]∇2u− αu∇4u, (2.32)

where η accounts for the aridity (like µ); κ is the facilitation-to-competition susceptibility
ratio, which controls the stability of the homogeneous states (like Λ); ∆, Γ and α are linear
and nonlinear diffusion coefficients. It can be proved that this equation can also be derived
not only using Gaussian kernels and seed fluxes. It is required however that these functions
do not diverge for r → ∞ and to be radially symmetric. We will not demonstrate this
here. Hence, close to super and subcritical transition the system is described by the Nagumo
nonlinearity [22,23] with linear and nonlinear diffusion.

This equation predicts the same solutions aforementioned (tiger bush and fairy circles)
and more besides [90]. Moreover, since it is simpler than Eq. (2.31), it is more suitable
to perform analytical calculations. For these reasons, we will restrict ourselves to use this
equation for our analysis. In the next sections, we will introduce some solutions predicted
by this model.

2.8.2 Periodic vegetation patterns

The homogeneous and stationary states of (2.32) are given by

u0 = 0, u± =
[
κ±

√
κ2 − 4η

]
/2, (2.33)

where u0 and u+ are the only physically acceptable solutions, due that it is required u ≥ 0.
The solution u− is positive for certain values of η and κ, but always unstable. Besides, the
solution u0 is stable for η > 0 and unstable for η < 0.

On the other hand, performing a linear stability analysis for u+, it is possible to predict
the formation of periodic configurations that invade the whole available territory. For such
purpose, let us propose the following ansatz u(~x, t) = u+ + Aeσt+

~k·~x. Introducing it into Eq.
(2.32), linearizing in A and after straightforward calculations, one gets the following relation
between the growth rate σ and wavenumber modulus k

σ = u+(κ− 2u+)− (∆− Γu+)k2 − αu+k
4.

Since this is a quartic equation in k, there exists a wavenumber kc for which the stability of
the state u+ become marginal, i.e., σ(kc) = 0. The conditions to fulfill this are

σ(k = kc) = 0,
dσ

dk
(k = kc) = 0,

d2σ

dk2
(k = kc) < 0,

which are nothing but to impose that the maximum of σ(k) be equal to zero and to occur
at kc. Thus, the critical wavelength, corresponding to the distance between two maxima or
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Figure 2.19: a) One dimensional stability diagram of steady states for parameters κ =
0.6,∆ = 0.02,Γ = 0.5, α = 0.125. The dotted lines represent unstable states. In ηc the
periodic patterns emerge with wavelength λ, with maximum and minimum values umax and
umin, respectively. The yellow stripe stands for the region where the localized patches can be
found. b) Periodic pattern with wavelength given by Eq. (2.34), using η = 0.05.

minima of the plant distribution, is given by

λ = 2π

√
2α

Γ−∆/uL
, (2.34)

where uL is solution of the cubic equation

4αu2
L(2uL − κ) = (ΓuL −∆)2,

and corresponds to the steady state threshold where stability changes. We discard imagi-
nary solutions since they do not have physical meaning. In Fig. 2.19 (a) it is shown the
corresponding stability diagram for κ > 0 for the one-dimensional case when there is only
one critical threshold uL (notice that through Eq. (2.33) we can calculate the aridity thresh-
old ηL). Here the dotted lines represent unstable states. In ηc periodic states emerge with
wavelength λ given by Eq. (2.34), which extend until ηII. This kind of instability that lead
to pattern formation is usually referred as Turing instability [92], which was studied in Sec.
2.3.

2.8.3 Localized structures

Localized vegetation patterns are composed of spatially localized structures, in the sense that
they are stable elemental structures with a well-defined size. In contrast with the periodic pat-
terns, apparently, they do not have a tendency to spread and invade the whole territory, but
rather to form isolated groups. As we have mentioned before, the interaction-redistribution
vegetation model predicts the formation of localized patches (or localized structures) of veg-
etation surrounded by bare soil. In this section we will introduce them.

The interaction-redistribution model predicts that for κ > 0, it is possible to find stable
localized patches (LPs) [13,64,73,90], in a certain range of positive η values beyond the saddle-
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node point. This range is represented in the yellow stripe between ηI and ηII showed Fig. 2.19
a). In general, this region is different in one and two dimensions. The corresponding spatial
profile of these radially symmetric LPs is illustrated in Fig. 2.20 for the two-dimensional
case. In Fig. 2.20 d) we show an example from nature of LPs surrounded by desert soil,
located in Western Australia. As it is shown, they seem to be randomly distributed and the
size is not variable.
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Figure 2.20: a) Localized structure profile in 2 dimensions, using κ = 0.6,∆ = 0.02,Γ =
0.5, α = 0.125 and η = 0.05. b) Spatial profile of a LP from the two dimensional Eq (2.32).
The dashed line stands for the spatial profile shown in c). d) Spinifex grassland, Yakabindi
station, Western Australia (courtesy of Vilis Nams, Dalhousie University, Canada) [2].

2.9 Diffraction theory

This and the next section serves as a brief theoretical background of the results discussed in
Chapter 5, where we will study a diffraction grating, resulting of applying a laser beam to a
nematic liquid crystal cell. This cell is characterized by exhibiting a zigzag wall lattice when
a voltage is applied. We consider this lattice as the natural extension to two dimensions of
the study of particle-like solutions.

In this section we will introduce the main aspects of Fraunhofer diffraction patterns, which
will be crucial for later discussions.
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2.9.1 Fraunhofer diffraction

When an emitting light point source is intersected by an obstacle, it will be deviate from its
rectilinear propagation. Roughly speaking, the wave will bend around it and form dark fringe
patterns. This can happen for example after a light passes through a very small aperture,
like a narrow slit, as in Young’s experiment. This phenomenon is named as diffraction [37].

A A

Fraunhofer diffraction Fresnel diffraction

(a) (b)

P
P

S
S

Figure 2.21: Wave diffracted by an aperture A. S and P are the source and receiving points,
respectively. (a) Fraunhofer diffraction: Incident and diffracted waves are planes. (b) Fresnel
diffraction: The waves curvature is significant.

The simplest way to analyze diffraction patterns is based on the Huygens-Fresnel principle,
which states that every point of the wavefront acts as the source of a second spherical wave,
of the same frequency, that spreads out in all directions [8,37,47]. The optical field at a point
beyond an obstacle will be the superposition of all such wavelets reaching that point.

We distinguish between two general cases of diffraction, known as Fraunhofer diffraction
and Fresnel diffraction. To illustrate their qualitative properties, let us consider the case
when a light source intersects an aperture, as shown in Fig. 2.21.

The Fraunhofer diffraction occurs when the source and the receiving point, represented as
S and P in Fig. 2.21(a), respectively, are far away from the aperture6. It is considered that if
w2/(fλ)� 1 the Fraunhofer diffraction occurs, where w is the aperture size, f the distance
from the aperture to the plane of observation and λ the light wavelength. If this is true, the
waves curvature can be neglected and the waves can be approximated as plane waves.

The mathematical expression for the pattern intensity profile comes from the Fresnel-
Kirchhoff formula, which gives the diffraction pattern of a monochromatic spherical wave
passing through an aperture. In the limit when S and P are at a large distance from the

6For this reason is also known as far field diffraction.
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aperture, this formula can be approximated by [37,78]

Up(x, y) =

ˆ ˆ

t(x′, y′) e−2πi(ux′+vy′)dx′ dy′, (2.35)

where
u =

x

λf
and v =

y

λf
,

are called the spatial frequencies, λ is the light wavelength and f the distance between the
aperture and the observation plane. The variables {x′, y′} integrate in the aperture plane,
marked as A in Fig. 2.22. The variables {x, y} are located in the plane of observation. The
function t(x′, y′) is called the transmission coefficient or aperture function, and tells how
much light passes through the aperture. Thereby t = 1 is when there is no obstruction and
light passes completely, while t = 0 is when there is an obstruction and no light passes. The
irradiance or intensity of the diffraction pattern is defined as I = |Up|2.

Figure 2.22: Schematic representation of a the Fraunhofer diffraction using positive lens.
Here A is the aperture plane and f the focal distance.

To visualize the Fraunhofer diffraction patterns it is common to use positive lens to focalize
the incident plane wave since this is equivalent to view the plane wave at infinity. Then f in
those cases correspond to the lens focal distance. A schematic representation of this case is
shown in Fig. 2.22. The peaks of the diffraction profile are called diffraction orders.

2.9.2 Multiple slits diffraction

Let us consider a simple case of Fraunhofer diffraction, composed by N slits of width b,
separated by a distance h as showed in Fig. 2.23. In this case, we only restrict our calculations
to one dimension. The transmission function is given by

t(x) =

{
1 nh < x < nh+ b for 0 ≤ n ≤ N − 1

0 otherwise,
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which replacing in Eq. (2.35) and after straightforward calculations, yields to

I = |Up|2 = I0

(
sin β

β

)2(
sinNγ

N sin γ

)2

, (2.36)

with β = 1
2
kb sin θ and γ = 1

2
kh sin θ, where k is the light wavenumber and θ is the angle

defined in Fig. 2.23 (a). This diffraction grating is plotted in Fig. 2.23 (b).
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Figure 2.23: (a) Schematic representation of N slits of width b, separated by h. (b) Corre-
sponding diffraction grating expressed in Eq. (2.36), with h = 2.5, b = 1 and N = 10. The
red line corresponds to the factor (sin β/β)2.

2.10 Liquid crystals

Although there are four popular categories for the states of matter, namely, solid, liquid, gas
and plasma, the borders or intersections between them are not always clear. There exists a
huge number of intermediate states, that is to say, states that have properties of two or more
of these states. A well known example are the liquid crystals [28], which exhibit properties
from both solid and fluid state. They have properties of solid, but also of liquids, e.g., they
may flow like a liquid, but their molecules exhibit orientational order [19]. They were first
described systematically by the Austrian botanical physiologist Friedrich Reinitzer in 1888
when he prepared cholesteryl benzoate. He found an anomalous opalescence behavior.

Liquid crystals are composed of molecules which tend to be elongated. They can be divided
into different phases, like thermotropic, lyotropic, met allotropic, polymeric and coloidal [19,
51]. We are particularly interested in thermotropic liquid crystals, which present different
phases depending on the temperature. We distinguish three principal cases: nematic, smectic
and cholesteric, classified by Georges Friedel in 1922 [39], represented schematically in Fig.
2.24.

36



Nematic CholestericSmectic

(a) (b) (c)

Figure 2.24: Different liquid crystal phases: nematic, smectic and cholesteric.

The nematic liquid crystals are by far the most important phase for applications. In this
phase, all the molecules are aligned approximately parallel to each other at long distances
(orientational order). In the cholesteric phase, the molecules have an additional property,
chirality, implying that the molecules have a twisting, forming a macroscopic helical structure.
In the smectic phase, the molecules have orientational and positional order, having them
ordered in layers [19].

The liquid crystals have also the property to exhibit complex behaviors in presence of elec-
tromagnetic fields, where can exhibit phenomena such as pattern formation, spatiotemporal
chaos, turbulences, etc. Moreover, their optical properties have been used for technological
applications such as the widely known Liquid Crystal Displays (LCD) [99].

2.10.1 Zigzag instability

As far as this thesis is concerned, we are interested in studying nematic liquid crystals filled
in a in-plane switching (IPS) cell, as the one illustrated in Fig. 2.25 (a). As it is shown, this
cell consists of two glass plates, separated by a few micrometers, where the liquid crystal is
injected by capillarity. The molecules have planar anchoring, meaning that they are fixed
at the borders and parallel to the glass plates. In contact with each surface of glass there
are located a patterned thin films made of indium tin oxide (ITO), which is a transparent
conductor (green in the figure). In addition, these films are connected to a generator, which
generates an electric field that will change the orientation of the molecules.

It has been reported [6] that in a certain region of parameters, the liquid crystal molecules
exhibit a zigzag instability in this IPS cell, as shown in Fig. 2.25 (b). In Chapter 5 we
will discuss the diffraction grating, formed because of applying a laser beam to this zigzag
configuration.
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Figure 2.25: (a) Schematic representation of the liquid crystal IPS cell, connected to a
generator. (b) Zig-zag instability exhibited by a nematic liquid crystal filled in this cell.

2.11 Numerical methods for integrating partial differen-
tial equations

It is common to encounter problems from different disciplines, like physics, economics, en-
gineering, biology, etc., where is necessary the use of numerical methods to find a solution,
that allows to figure out the phenomenon under study. This is due to the nonintegrability
of these problems when they are put into mathematical form. The choice of a numerical
method depends, among other things, on its error (how precise they are) and the time it
takes to integrate. In some way, a numerical method is similar to perform an experiment,
since it is used to corroborate theoretical predictions and to discover new behaviors, in some
cases unexpected.

Some of the methods developed to integrate differential equations are the Runge-Kutta
methods, the Richardson extrapolation method and the predictor-corrector method [35]. As
far as this thesis is concerned, we will use the fourth-order Runge-Kutta (RK4) method to
integrate every equation, which though is usually used to solve ordinary differential equations
can be used to solve partial differential equations [76]. We will approximate the spatial partial
derivatives using the finite differences method [86].

In general, the Runge-Kutta method propagates a solution over an interval by combin-
ing the information from several Euler-method steps [35]. Then, it is performed a Taylor
expansion to some order to match with the information obtained. The advantage of this
method is that, since it calculates step by step and does not need previous information, the
discretization step can be adjusted as the integration advances.

2.11.1 Fourth-order Runge-Kutta method

Let us consider the following first-order differential equation

du

dt
= f(u, t),
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where u and f are N-dimensional vectors7. The function f is known. Let the time be discrete,
with a discretization step dt ≡ tn+1 − tn. Then, u(tn) ≡ un, is the discrete solution. The
RK4 method advances to the next step un+1 in the following way

un+1 = un +
1

6
(k1 + 2k2 + 2k3 + k4) +O(dt5),

where

k1 = dt f(un, tn),

k2 = dt f(un + k1/2, tn + dt/2),

k3 = dt f(un + k2/2, tn + dt/2),

k4 = dt f(un + k3, tn + dt).

One disadvantage of this method is that it calls the function f four times, which makes it
slower than other methods. However, since the error is of order dt5, this is a precise and
stable method.

Figure 2.26: Screenshot of the software DimX, showing a real time simulation of the para-
metrically driven and damped sine-Gordon equation.

2.11.2 Interactive simulations

This thesis has been complemented by interactive simulations, by using the software DimX
developed by Pierre Coullet and collaborators, at the laboratory Institut Non Linéaire de

7This is the same scenario introduced in Eq. (2.1)
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Nice. This software has allowed us to appreciate in real time simulation the temporal evo-
lution of the equations under study, with the possibility to change its parameters as the
integration progresses. Fig. 2.26 shows a screenshot of this software.
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Chapter 3

Flaming kinks

In this chapter we will discuss and provide further analysis of the results presented in ar-
ticles included in Appendix A and Appendix B. In these works we reported and studied a
new type of kinks termed as flaming kinks, which are solutions of the sine-Gordon and φ4

equation under dissipation and parametric forcing. What characterizes them is the emission
of evanescent (or damped) waves that start from the kink center position and travel in coun-
terparts directions. Moreover, the interaction between a flaming kink and a flaming antikink
allows the formation of stable localized structures.

In the manuscript from Appendix A we explored the main properties of flaming kinks,
applied to a chain of coupled pendulums and a magnetic wire. We also studied the formation
of localized structures, characterising their phase space width numerically. Furthermore, in
the manuscript from Appendix B we characterized analytically the flaming kink-antikink
interaction, showing good agreement with numerical findings. Throughout next sections, we
will also cover aspects that were not treated in these articles.

3.1 Flaming kinks in the parametrically driven and damped
sine-Gordon equation

In this section we will briefly review and discuss some properties of flaming kinks introduced
in Appendix A, in the context of the parametrically driven and damped sine-Gordon equation.

3.1.1 Main properties

In Sec. 2.7.1 we studied kink solutions from the sine-Gordon equation, in the context of
a chain of coupled pendulums. On the other hand, in Sec. 2.6.2 we studied the main
properties of parametric forcing in the context of a simple damped and driven pendulum with
a vertical oscillatory point. Let us now then introduce the sine-Gordon equation in presence of
dissipation and the same kind of parametric forcing, that is, the chain of pendulums support
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now is forced to oscillate vertically. The equation that describes the vertical deviation angle
θ(x, t) now is

∂ttθ = −(ω2
0 + γ sinωt) sin θ + κ2∂xxθ − µ∂tθ, (3.1)

with each parameter having the same physical meaning as in the aforementioned sections.
Notice now that unlike the sine-Gordon equation, this equation is not Lorentz invariant and
does not have analytical solutions. However, notice that since the sine-Gordon equation
appears in many physical fields, this equation gives a good description of the effect of para-
metric forcing on these systems. One example is the case of a magnetic wire under oscillatory
external electromagnetic fields in a particular limit.
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Figure 3.1: Flaming kinks obtained from numerical integration of Eq. (3.1) with ω0 =
1.0, γ = 0.3, ω = 1.4, µ = 0.1, κ = 1.0, dx = 0.5 and dt = 0.1. (a) Schematic representation of
a flaming kink. (b) Spatiotemporal evolution. (c) Spatial profile of the solution at a certain
instant marked with a dashed line in (b).

If we integrate numerically this equation, giving as an initial condition the kink solution
from the sine-Gordon equation (see Sec. 2.7.1), we will observe two main changes:

1. The kink speed decreases over time until the kink reaches a fixed position. This is a
consequence of the presence of dissipation.

2. Evanescent waves appear from the center position, traveling in opposite directions
towards x = ±∞, along the θ = 0 and θ = 2π state. This phenomenon is due to the
parametric forcing.

We consider that the waves propagation resembles the emission of flames, or, more specif-
ically, resembles a hopping pattern behavior observed in combustion under controlled con-
ditions [11, 50]. For this reason, these kinks have termed as flaming kinks. Their profile
is showed in Fig. 3.1. Moreover, as in the conservative case, this system admits flaming
antikinks, where the pendulums rotate from θ = 2π to θ = 0 as x increases.
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3.1.2 Resonant properties

As we discussed in Sec. 2.6.2, one of the properties of parametric forcing is that the ampli-
tude reaches its maximum value at different frequencies, not only at the natural frequency.
However, although the system considered here contains a parametric forcing, the flaming
kinks present resonant properties, that is, the amplitude of the waves reaches its maximum
value when ω approaches ω0. In Fig. 3.2 we illustrate this behavior. The tendency showed
when the dissipation is changed is similar to the one showed in Fig. 2.5, when we studied the
driven and damped harmonic oscillator. Besides, it has been demonstrated that the flaming
kinks evolve periodically in time, with period 2π/ω, which is also a resonant property.

The region of parameters where flaming kinks can be found in the Ince-Strutt diagram (see
Sec. 2.6.2) is showed in Fig. 3.2 (c). Notice that in this region the flaming kinks waves have
a bigger amplitude. For higher or lower frequencies than ω0, this amplitude is remarkably
smaller.
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Figure 3.2: Waves amplitude in function of the forcing frequency ω for: (a) constant γ = 0.1
and different values of the damping coefficient µ. (b) constant µ = 0.1 and different values
of the forcing amplitude γ. (c) Phase space as a function of frequency and amplitude of
the forcing with µ = 0.1. The green zone accounts for the region where flaming kinks are
observed.

One way to understand this resonant property is studying the dynamics of a small pertur-
bation around de kink solution of the conservative sine-Gordon equation. Thus, we propose
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θ(x, t) = θk(x, t) + ϕ(x, t), where θk is the kink solution and ϕ a small perturbation. Then,
replacing it in Eq. (3.1), linearizing in ϕ. After straigthforward calculations we obtain

∂ttϕ = −ω2
0ϕ cos θk − γϕ cos θk sinωt− γ sin θk sinωt+ ∂xxϕ− µ(∂tθk + ∂tϕ),

where the first two terms of the right-hand side tell us that ϕ reaches its maximum value
at the natural frequency ω0. The variable ϕ is nothing but the amplitude of the waves of a
flaming kink.

3.1.3 Localized structures

In Section IV of the manuscript included in Appendix A we discussed that the interaction
between a flaming kink and a flaming antikink allows the formation of stable localized struc-
tures. Their profile is showed in Fig. 3.3. As it is shown in the spatiotemporal diagram, the
superposition of evanescent waves creates stationary waves between the kinks. Besides, the
distance of separation ∆ is stable and oscillates in time.
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Figure 3.3: Localized structures formed due to the flaming kink-antikink interaction. (a)
Schematic representation of the solution. (b) Spatiotemporal evolution. (c) Spatial profile of
the solution at a certain instant marked with a dashed line in (b). The parameters δ and ∆
account for the width and position of the localized structure, respectively.

Temporal width evolution

The width ∆ determines an integer number of stationary waves between a flaming kink and
a flaming antikink. If we perturb a localized structure increasing the width with a large
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Figure 3.4: (a) Temporal width evolution under a perturbation. Notice that it reaches a
new equilibrium. (b) Phase space {∆̇,∆} of the localized structures, obtained monitoring
periodically the width evolution. The lower panels show the respective profiles of equilibrium
widths.

enough perturbation, the width can reach a new equilibrium. This behavior is shown in Fig.
3.4 (a). Notice from this figure that the width oscillates in time.

Since the flaming kinks are periodic in time, if we monitor the width over one period
2π/ω, we will see a frozen localized structure, that is, with no oscillation in ∆ (stroboscopic
monitoring). Using this strategy we have constructed the phase space diagram showed in
Fig. 3.4 (b).

Interaction law

The dynamical equation that ∆ follows was proposed in Appendix A article as a phenomeno-
logical model. This one reads

∆̈ + µ∆̇ = −aΓe−λ∆ sin

(
2π∆

σ
+ ϕ0

)
, (3.2)

where a,Γ, λ, σ and ϕ0 can be computed numerically. This equation predicts the existence of
widths equilibriums, as the ones showed in Fig. 3.4 (b). In the manuscript from Appendix
B we derived this equation from a perturbative analysis, considering the flaming kinks from
the φ4 scalar field equation under parametric forcing and dissipation.

3.2 Flaming kinks in a ferromagnetic wire

In Section II of the manuscript presented in Appendix A, we introduced a ferromagnetic wire
under oscillatory external electromagnetic fields and showed that this system admits flaming

45



kink solutions. We also illustrated how in certain limit the dynamics of this system can be
described by the sine-Gordon. In this section, we will make in detail this derivation.

As we discussed in the manuscript, the ferromagnetic wire is described by the normalized
magnetization m(z, t), where z and t correspond to the spatial coordinate along the wire and
time (see Fig. 3.5). The dynamics of m(z, t) is described by the Landau-Lifshitz-Gilbert
equation [69], which in Cartesian coordinates reads

∂tm = −m× (hx̂− βmz ẑ + ∂zzm− α∂tm), (3.3)

where {x̂, ŷ, ẑ} are the Cartesian unit vectors, h is the electromagnetic external field intensity
applied in the x direction, β > 0 accounts for the anisotropy of the wire, favouring config-
urations where the magnetization lies in the xy plane, the term ∂zzm corresponds to the
Laplacian operator accounting for short-range magnetic interactions, and the term propor-
tional to α is a Rayleigh-like dissipation function known as Gilbert damping, and it accounts
for energy losses [69]. The dynamics of this equation is characterized by preserving the norm
of magnetization.

m(z, t)

z
yx

Figure 3.5: Schematic representation of the magnetization vector.

Let us consider a spherical representation of m(z, t),

m = sin θ[cosφ x̂+ sinφ ŷ] + cos θẑ,

where θ(z, t) and φ(z, t) are the polar and azimuthal angle, respectively. Introducing this
expression into Eq. (3.3), we can derive the following relations

∂tθ =− h sinφ+ αh cosφ cos θ +
αβ

2
sin 2θ + 2 cos θ ~∇φ · ~∇θ

+ sin θ~∇2φ+ α~∇2θ − α

2
sin 2θ (~∇φ)2

(3.4)

and

sin θ ∂tφ =− αh sinφ− h cosφ cos θ − β

2
sin 2θ + 2α cos θ ~∇φ · ~∇θ

+ α sin θ~∇2φ− ~∇2θ +
1

2
sin 2θ(~∇φ)2.

(3.5)

Considering the following scaling expansions

θ =
π

2
+ εδθ0, h = εh0, ∂zz = ε∂z̃z̃, α = εα0 and β =

β0

ε
, (3.6)

where ε is a small parameter, we notice that Eq. (4.8) yields to

sin θ ∂tφ = β0 sin θδθ0 +O(ε2),
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which combining with the first and last relations in Eq. (3.6), gives us at leading order

θ =
π

2
+
∂tφ

β
,

i.e., the polar angle becomes a slave variable of φ in this limit. Therefore, introducing it into
Eq. (3.4) and using the aforementioned relations, we can obtain a dynamical equation for φ

ε∂ttφ

β0

= −εh0 sinφ− εα0β0δθ0 + ε∂z̃z̃φ+O(ε2),

⇒ ∂ttφ = −h0β0 sinφ− α0β0∂tφ+ β0∂z̃z̃φ+O(ε2),

which at leading order can be written as the dissipative sine-Gordon equation [74]

∂ttφ = −ω2
0 sinφ− µ∂tφ+ κ2∂z̃z̃φ, (3.7)

if we set ω0 =
√
h0β0, µ = α0β0 and κ =

√
β0.
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Figure 3.6: Schematic representation of a kink solution in the ferromagnetic wire, obtained
by integrating numerically Eq. (3.3), using h = 0.8, β = 10 and α = 0.02.

This means that in the limit when the anisotropy β is large compared to the other pa-
rameters, that is, when the magnetization is mostly restricted to the xy plane (θ ≈ π/2),
the azimuthal angle φ satisfies, at leading order, the sine-Gordon equation in presence of
dissipation. Then, it is expected that this system admits kink solutions, as the one showed
in Fig. 3.6.

If the electromagnetic external field h0 varies over time like h0 = H0/β0 + γ/β0 sinωt,
namely, if it is composed by a constant component H0 and a oscillatory part, the Eq. (3.7)
will contain a parametric forcing like the one discussed in the previous section, i.e., the
dynamics of the azimuthal angle φ will be described by the parametrically driven and damped
sine-Gordon equation. Therefore, as we showed in Section II of the Appendix A article, this
system admits flaming kinks.
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3.3 Flaming kinks in the parametrically driven and damped
φ4 equation

In Sec. 2.7.2 we introduced the analytical kink solution of the conservative φ4 scalar field
equation. Let us now add parametric forcing and dissipation to this system, following the
same idea of how were introduced into the sine-Gordon equation. Thus, the φ4 equation
under these conditions reads

∂ttφ = (εφ− φ3)(1− γ sinωt) + ∂xxφ− µ∂tφ,

where γ and ω are the effective forcing amplitude and frequency, respectively, as before.

In this equation we can also observe flaming kinks, showing that this phenomenon is robust,
that is, it can be observed in different physical contexts. Their properties are essentially the
same as in the sine-Gordon equation, namely, they evolve periodically in time and exhibit
resonant properties. Notice however that unlike the sine-Gordon equation, the resonance
occurs when1 ω ≈

√
2ε.
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Figure 3.7: Flaming kinks in the parametrically and damped φ4 scalar field equation. In (a)
we show the spatial profile at one instant, marked with a dashed line in the spatiotemporal
diagram in (b). We have used ε = 1, γ = 0.5, ω = 1 and µ = 0.1.

3.3.1 Flaming kink-antikink interaction

As we studied in Sec. 2.7.3, the φ4 scalar field equation in presence of dissipation, does
not admit localized structures. The kink-antikink interaction turns out to be attractive
and leads to an eventual annihilation. However, as we have shown in the parametrically
driven and damped sine-Gordon equation, the interaction between a flaming kink and a
flaming antikink allows the formation of a family of localized structures. Then, since the
parametrically driven and damped φ4 equation admits flaming kinks, it is expected that this
system contains localized structures.

1This condition can be obtained by performing a linear expansion around the equilibria ±√ε.
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As it is detailed in Section 2 in the manuscript from Appendix B, using a strategy of
time-scale separation, similar to the one proposed by Kapitza to study the stability of the
upside-down pendulum (see Sec. 2.6.3), we can derive an effective equation independent of
time, which admits frozen flaming kinks solutions. In other words, this equation describes
the dynamics of an average variable u(x, t), representing kinks with stationary oscillatory
profiles. This equation is indeed

∂ttu =

(
1− γ2

2ω2
(ε− 3u2)

(
1− 1

ω2
∂xx +

1

ω4
∂xxxx

))
(εu− u3)− µ∂tu+ ∂xxu.

Notice that it contains spatial derivatives of fourth order, which ensure the presence of
evanescent waves.

The procedure to derive the dynamical equation for ∆ is essentially the same as in the
dissipative φ4 equation (see Sec. 2.7.3), but with the difference that the kinks now have
oscillatory tails. Because of this is that we propose the following asymptotic behavior

lim
x→x1�x0

uk(x)−√ε = −2
√
ε e−2

√
ε
2

(x1−x0) cos (κ(x1 − x0) + δ0) ,

with κ and δ0 constants, to take into account this property. Since this is the main change
made when we add parametric forcing, it is fair to say that what allows the possibility
of creating localized structures is the interaction of the evanescent waves from the flaming
kinks. The detailed derivation of the dynamical equation of ∆ (see Eq. (3.2)) can be found
in Section 3.2 of Appendix B.

3.4 Perturbative analysis using Inverse Scattering Trans-
form method

3.4.1 General framework of the IST method

The Inverse Scattering Transform (IST) method is a useful technique to obtain analytical
solutions of integrable systems under small perturbations [3,4,52]. Some well-known examples
where this method is used are the Korteweg-de Vries equation, the nonlinear Schrödinger
equation, the sine-Gordon equation and the Toda lattice equation.

To apply this method it is necessary to represent a nonlinear equation for the function
u(x, t) in the form of the Lax’s representation [60],

dL
dt

+ [L,A] = 0,

where the operators L and A are the so-called Lax pair, which depend on u(x, t) and its
derivatives, and [L,A] = LA−AL is the commutator. These operators satisfy

LΨ = λΨ and
dΨ

dt
= AΨ,
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where Ψ is an unknown function usually referred as the Jost function. The basic idea of
IST is to find the time evolution of the eigenvalues λ and eigenfunctions Ψ of this problem,
or in other words, to find scattering data. The problem is solved by performing the inverse
scattering procedure by solving the Gelfand-Levitan-Marchenko integral equation [67].

3.4.2 IST method applied to the sine-Gordon equation

This section is not intended to provide a detailed derivation of the equations obtained by the
IST method. We will restrict ourselves to apply it to the sine-Gordon equation, considering as
perturbation the dissipation and parametric forcing. For that, let us write the parametrically
driven and damped sine-Gordon equation as

∂ttθ + sin θ − ∂xxθ = εP [θ],

where
P [θ] = −µ∂tθ − γ sinωt sin θ (3.8)

and ε is a small parameter. Remind from Sec. 2.7.1 that the SG equation admits analytical
kink solutions of the form

θk(x, t) = 4 arctan (eσz) ,

with
z = −γ(v)(x− x0 − vt),

where
γ(v) =

1√
1− v2

and σ = ±1, depending if it is a kink or antikink solution, respectively. Through the IST
method, it is possible to obtain dynamical equations for v and x0, which now are considered
as functions of time. These equations are indeed [52]

dv

dt
= −εσ

4
(1− v2)3/2

ˆ +∞

−∞
P [θk(z)] sech z dz

and
dx0

dt
= −εσ

4
v(1− v2)

ˆ +∞

−∞
P [θk(z)]z sech z dz.

Note that the perturbation P is evaluated in the θk solution from the unperturbed SG
equation. Likewise, the same expressions can also be obtained by means of applying a
perturbative analysis, as showed in [71].

To calculate the integrals from these equations, let us first to express P [θk(z)] as a function
of z. Notice that since θk is the solution of the unperturbed SG equation, the time derivative
present in P [θk(z)] does not affect v and x0. After straightforward calculations, we obtain

P [θk(z)] =
2µσv√
1− v2

sech z + 2 γ sinωt sinh (σz) sech2 (σz).
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However, since sinh(·) is an odd function and sech2(·) is even, it is satisfied that

sinh (σz) sech2 (σz) = σ sinh z sech2 z,

and therefore, after solving the integrals, the equations for v and x0 result in
dv

dt
= −εσ2µv(1− v2)

and
dx0

dt
= −εσ

2γ

2
v(1− v2) sinωt.

It is easy to realize that σ2 = 1.

The analytical solution for the velocity is

v(t) = ±v0
1√

v2
0 + e2εµt(1− v2

0)
,

which, as mentioned in past sections, decays to zero because of the presence of dissipation µ.
The term v0 is the velocity in t = 0. On the other hand, the analytical solution for x0 is not
easy to calculate, but we can still predict its behavior by writing

dx0

dt
=
γ sinωt

2µ

dv

dt
,

i.e., its temporal derivative is proportional to dv/dt, which tends to zero as time grows up.
Thus, the position x0 tends to a constant value, as also mentioned in past sections.

In conclusion, the IST method predicts that the kink solution from the SG equation tends
to be static under dissipation and parametric forcing. But, unfortunately, it does not predict
the emergence of the evanescent waves. The reason for the previous result is that the validity
of this method is in the neighborhood of the integrable system. However, the flaming kinks
are observed far from this limit.
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Figure 3.8: Phase diagram of the flaming kinks instabilities in the Ince-Stutt diagram for
µ = 0.1. The colors account for the different instabilities observed. In the region marked as
unstable, we do not observe kink solutions.
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3.5 Flaming kinks instabilities

The region where the flaming kinks can be found was presented in Fig. 3.2 (c). In this region,
the flaming kinks share some properties in common, although they present differences in the
amplitude and steepness of the waves. For instance, their central position does not move and
their evolution in time is periodic, with the period of the parametric forcing. However, as
we approach the Arnold tongues in the space of parameters {ω, γ}, the flaming kinks exhibit
some instabilities, characterized by not present the aforementioned properties, namely, their
position could star to move and they could do not evolve periodically in time.

In this section, we present some flaming kinks instabilities found numerically by simulating
the parametrically driven and damped sine-Gordon equation (see Eq. 3.1). We will restrict
ourselves to present the main properties. Study in this direction is still in progress.

Let us start by presenting the phase diagram of these instabilities. In Fig. 3.8 we show
the different regions where they can be found in the Ince-Stutt diagram (see section 2.6.2)
for µ = 0.1. As we can see, these instabilities emerge near the Arnold tongues. In the region
marked as unstable, the system becomes highly complex and the kinks no longer exist.

We will name the different regions showed in the figure simply as the yellow region, blue
region, purple region and green region.

Yellow region

In this region, the flaming kinks center position starts to move erratically and the waves
propagation is not symmetric. We have not determined yet if the nature of the position
dynamics (that clearly is of complex nature), namely, if it follows a chaotic rule, semi-periodic,
etc.
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Figure 3.9: (a) Spatial profile of the solutions from yellow region. (b) Spatiotemporal evolu-
tion. The dashed line corresponds to the profile showed in (a).

52



Blue region

In the blue region, the states θ = 0 and θ = 2π turn unstable, exhibiting irregular oscillatory
patterns, which are not symmetric with respect to the center position. There not propagating
waves, but irregular stationary waves. Besides, the kink position does not move.

20 60 100 140
0

28π/ω

0

2π

x(a.u.)

t

35 80 125

0

π

2π

x(a.u.)

θ

(a) (b)

Figure 3.10: (a) Spatial profile of the solutions from blue region. (b) Spatiotemporal evolu-
tion. The dashed line corresponds to the profile showed in (a).

Purple region

Here the flaming kinks position moves, but in a more ordered way than in the yellow re-
gion. The flaming kinks emit waves in an asymmetrical form, that is, sometimes to +x and
sometimes to −x.
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Figure 3.11: (a) Spatial profile of the solutions from purple region. (b) Spatiotemporal
evolution. The dashed line corresponds to the profile showed in (a).
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Green region

In this region, the flaming kinks do not move. The particular feature of this region is that
the kink width widens periodically, and returns to its original value. When the kink returns
to its original shape some waves emerge from the center and also to the center, that is, there
are waves propagating in opposite directions in θ = 0 and θ = 2π.
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Figure 3.12: (a) Spatial profile of the solutions from green region. (b) Spatiotemporal evolu-
tion. The dashed line corresponds to the profile showed in (a).

3.6 Flaming kinks in two dimensions

In this section, we will extend our study of flaming kinks considering now two spatial di-
mensions. We will discuss the emergence of an interface instability formed in the kink center
position. Study in this direction is still in progress.

Sine-Gordon in two dimensions

Let us start considering the two dimensional extension of the sine-Gordon equation,

∂ttθ = − sin θ +∇2θ,

where now θ = θ(x, y, t) and ∇2 is the two dimensional Laplacian. This equation admits the
same analytical kink solutions of the one dimension case

θ(x, y, t) = 4 arctan (exp{−σγ(v)(x− x0 − vt)}) with γ(v) =
1√

1− v2
,

that is, their profile does not change in the y direction. Besides, as in the one-dimensional
case, these solutions can travel with a constant velocity in the x direction. Fig. 3.13 shows
their profile in one and two dimensions.

What motivates us to study the sine-Gordon in two dimensions is because it models sys-
tems more realistic and suitable for applications. One example of this are the Josephson
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Figure 3.13: (a) Spatial profile of two dimensional sine-Gordon kinks. The dashed line
corresponds to the one dimensional profile shown in (b).

junctions, composed of two superconducting layers separated by a nonsuperconducting ma-
terial (see Fig. 3.14 (a)). These devices are named after Brian Josephson, who in 1962
predicted that pairs of superconducting electrons could travel through the nonsuperconduct-
ing barrier by tunneling effect. When these layers are large (y direction in the figure), the
phase difference of the macroscopic wavefunctions in every superconductor is described by the
sine-Gordon equation [26, 83]. Then, it is expected that this system admits kink solutions2
as the one showed in Fig. 3.14 (b).
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Figure 3.14: (a) Schematic representation of a Josephson junction. The green layers represent
superconductors and the red one an insulator material. The terms Ψ1 and Ψ2 account for
the macroscopic wavefunctions in every layer. (b) Kink (or fluxon) solution of the phase
difference ψ = θ1 − θ2.

Other examples that could be well described by the two-dimensional sine-Gordon equation
are a two-dimensional array of magnetic wire or crystal dislocations. In each one of these
systems, the parametric forcing needs to be reinterpreted.

2It is usual to name as fluxons to the kink solutions in this context.
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Two dimensional parametrically driven and damped sine-Gordon equation

If we now add dissipation and parametric forcing, the equation reads

∂ttθ = −(1 + γ sinωt) sin θ +∇2θ − µ∂tθ,

with γ and µ the forcing amplitude and damping coefficient, respectively, as before. Under
these conditions, it is not surprising to expect the same behavior as in the one-dimensional
case. Namely, the kink speed should tend to zero due to dissipation, and evanescent waves
traveling in opposite directions should appear from the center position line (red line in the
figure) because of the parametric forcing. However, in addition to these features, we observe
another phenomenon: The flaming kinks exhibit an interface instability on its center line
position, that is, where θ(x, y, t) = π (red line in the figure). We illustrate this in Fig. 3.15,
where it can be observed that this line exhibits an oscillatory profile, both in space and time.
We have not determined yet the region of parameters where this feature can be observed.
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Figure 3.15: (a) Flaming kink spatial profile in two dimensions. (b) The upper figure corre-
sponds to the dotted line showed in (a). The lower figure is the spacetime evolution of this
profile, illustrating a typical stationary waves profile.

Hysteresis in the interface amplitude

The traveling evanescent waves exhibit the same properties as in one dimension, that is, they
exhibit resonant properties. Nevertheless, the center kink position now oscillates due to the
interface instability. Its frequency of oscillation is half the forcing frequency, which makes us
understand that this is a parametric resonance. Moreover, the amplitude of oscillation of this
interface exhibits hysteresis as we change the forcing frequency. We illustrate this behavior
in Fig. 3.16.
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Figure 3.16: Interface amplitude in function of the forcing frequency. The blue (red) line
corresponds to the amplitude when the forcing frequency is decreased (increased).

Localized structures in two dimensions

This system also admits localized structures, resulting from the interaction of a flaming kink
with a flaming antikink, shown in Fig. 3.17 (a). As in the one-dimensional case, they also
exhibit stationary waves between the kinks. Until now we have not found localized structures
with other forms, as circular for instance.
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Figure 3.17: (a) Localized structure profile, resulting from the two dimensional flaming kink-
antikink interaction. (b) Flaming kink spatial profile for the two dimensional driven and
damped φ4 equation. We have set ε = 1, µ = 0.1, ω = 0.5 and γ = 0.8.

Two dimensional φ4 scalar field equation

We would like to specify that these two-dimensional flaming kinks are not restricted only
to the sine-Gordon equation. They are also present in the φ4 scalar field equation in two
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dimensions, submitted to the same kind dissipation and parametric forcing

∂ttφ = εφ− φ3 +∇2φ− µ∂tφ, (3.9)

where φ = φ(x, y, t) and ∇2 is the two dimensional Laplacian. Their profile can be seen in
Fig. 3.17 (b). The same properties aforementioned can be found in this equation.

Experimental motivation

To conclude this chapter, we would like to show some experimental data that resembles the
interface instability found, particularly an experiment that consists of vertically vibrated
granular layers. The details of this experiment can be found in Ref. [94]. In Figure 3.18
we show a figure of this work, illustrating the different pattern observed when the forcing
amplitude and frequency are varied. As it is shown, for certain values there is a regime where
the granular layers reorganize, in such a way that form a zigzag instability, similar to the
one observed in our simulations. Moreover, this instability can derive in different forms, as
circular for instance. We have not found this behavior yet. Similar patterns can also be
found in [10,46].

Figure 3.18: Fronts between domains with opposite phase in a 7-particle deep layer for
different values of the forcing amplitude and frequency. This picture was taken from [94].
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Chapter 4

Localized structures lattices in vegetation

In this chapter, we will discuss how the interaction between the localized structures intro-
duced in Sec. 2.8.3 can lead to the formation of stable localized structure lattices. We will
analyze both one-dimensional and two-dimensional cases, deriving in each case the interac-
tion law between localized structures. As we will see, their interaction is repulsive, that is,
they tend to move away. This feature is crucial for the formation of stable lattices.

4.1 Lattices in one dimension

4.1.1 Properties of one dimensional localized structures

In Sec. 2.8.1 we discussed a model for the dynamics of vegetation in semi-arid climates,
which in one dimension writes (interaction-redistribution local model)

∂tu = −u[η − κu+ u2] + [∆− Γu]∂xxu− αu∂xxxxu, (4.1)

where u(x, t) accounts for the normalized phytomass at the spatial position x in an instant t.
We discussed that when κ > 0, between some range of η values it is possible to find localized
structures surrounded by bare soil, which in one dimension have the profile shown in Fig.
4.1. This profile corresponds to the steady state, reached after a transient evolution.

Asymptotic behavior

As we can see from the figure, the tails seem to tend to zero exponentially. To probe if this is
true or not, we perform a linear analysis around u = 0 of the stationary equation (∂tu = 0).
Then, linearizing in u we get

0 = −uη + ∆∂xxu, (4.2)

which confirms the exponential behavior of a localized structure uLS

uLS(|x− x0| → ∞) ∝ e−γ|x−x0| with γ =
√
η/∆, (4.3)
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where x0 is the center position (see Fig. 4.1). This feature can be confirmed numerically by
performing a curve fitting in the tails. The details of the fitting are presented in the figure.

170 174 178 182
0

0.2

0.4

0.6

0.8

x

u

x0

Figure 4.1: One dimensional localized structure profile. The parameters used are η =
0.17, κ = 0.8,∆ = 0.02,Γ = 0.5 and α = 0.13. The red line corresponds to the expo-
nential fitting, using Eq. (4.3). For this case the theoretical value of γ is 2.91 and from the
fitting 3.06. The coefficient of determination results R2 = 0.9978.

Localized structures repulsion

A single localized structure will remain static after reaching the equilibrium. Due to the
spatial symmetries in Eq. (4.1), it will remain axially symmetric. However, if we put an
additional localized structure at a certain distance, we will see that they start to move,
repelling each other. This repulsion initially is quick, i.e., the LSs start to move fast, but
as time goes by they will move slower. This evolution is presented in Fig. 4.2 (b), where
we have measured numerically the distance of separation r(t) in function of time. We have
considered r as the distance between the center positions.

(a) (b)
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Figure 4.2: (a) Two localized structures separated by a distance r. (b) Numerical data
of r in function of time, showing the repulsion between LSs. The parameters used are
η = 0.12, κ = 0.6,∆ = 0.02,Γ = 0.5, α = 0.125 and dx = 0.4.

The time evolution of r seems to follow a logarithmic rule, implying that its temporal
derivative follows an exponential law in r (ṙ ∝ e−Ar), which makes sense since the asymptotic
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behavior of the LSs tails is exponential. In the next section, we will derive analytically the
dynamic equation that r satisfies in a particular limit and will compare with numerical data.

4.1.2 Interaction between two localized structures

In this section, we will derive the interaction dynamics between two localized structures,
following a similar strategy used for the kink-antikink interaction from the φ4 model equation
(see Sec. 2.7.3) and for the flaming kink-antikink interaction (see Appendix B).

To start, we propose the following ansatz,

u(x, t) = u−LS(x− x−(t)) + u+
LS(x− x+(t)) +W (x−(t), x+(t), x), (4.4)

which accounts for the interaction dynamics between two localized structures, u−LS and u+
LS,

with central positions x−(t) and x+(t), respectively, as it is illustrated in Fig. 4.2(a). These
positions have been promoted as functions of time. Moreover, the function W accounts for
the corrections of the profile due to the interaction dynamics, which will be assumed small,
i.e., nonlinear terms will be neglected. The terms proportional to the product of W with
ẋ−(t) or ẋ+(t) also will be neglected, since it will be considered that the LSs travel slow.

To simplify our calculations, we define

r(t) ≡ x+(t)− x−(t) and x0(t) ≡ x+(t)− x−(t)

2
, (4.5)

as the distance and central position between the LSs, respectively, and

z±(t) ≡ x− x±(t). (4.6)

We will also assume that the distance r is large compared to the size of the localized struc-
tures. Therefore, introducing this ansatz into Eq. (4.1) and after straightforward calculations,
we get the following linear system

LW = b, (4.7)

where the linear operator is

L =− η + 2κ(u−LS + u+
LS)− 3(u−LS + u+

LS)2 + ∆∂xx

− Γ
[
(u−LS + u+

LS)∂xx + ∂xx(u
−
LS + u+

LS)
]

− α
[
(u−LS + u+

LS)∂xxxx + ∂xxxx(u
−
LS + u+

LS)
] (4.8)

and

b =
ṙ

2

(
∂z−u

−
LS − ∂z+u+

LS

)
− ẋ0

(
∂z−u

−
LS + ∂z+u

+
LS

)

− 2κu−LSu
+
LS + 3u−LSu

+
LS

(
u−LS + u+

LS

)

+ Γ
(
u−LS∂xxu

+
LS + u+

LS∂xxu
−
LS

)

+ α
(
u−LS∂xxxxu

+
LS + u+

LS∂xxxxu
−
LS

)
.

(4.9)
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Adjoint operator

As we have discussed in previous sections, this linear system has solution if the Fredholm
solvability condition is fulfilled (see Sec. 2.4). This condition will help us to determine the
dynamical equations for r(t) and x0(t). To apply it, we define the following inner product

〈f |g〉 =

ˆ +∞

−∞
fg dx, (4.10)

through which the adjoint operator L† can be obtained. Since this is defined as
〈
L†f

∣∣g
〉

=
〈f |Lg〉, all the terms of L remain the same in L†, expect

Γ(u−LS + u+
LS)∂xx and α(u−LS + u+

LS)∂xxxx. (4.11)

The adjoint of these terms can be obtained by integrating by parts two and four times,
respectively. To illustrate this idea, let us consider the first of these terms

〈
f
∣∣Γ(u−LS + u+

LS)∂xxg
〉

=

ˆ +∞

−∞
f Γ(u−LS + u+

LS)∂xxg dx, (4.12)

which under one integration by parts reads

f Γ(u−LS + u+
LS)∂xg

∣∣∣
∞

−∞
−
ˆ +∞

−∞
∂x[f Γ(u−LS + u+

LS)]∂xg dx. (4.13)

Notice that the first term vanishes, since (u−LS + u+
LS) is zero in ±∞. Applying again inte-

gration by parts we get

∂x[f Γ(u−LS + u+
LS)]g

∣∣∣
∞

−∞
−
ˆ +∞

−∞
∂xx[f Γ(u−LS + u+

LS)]g dx. (4.14)

And therefore, 〈
f
∣∣Γ(u−LS + u+

LS)∂xxg
〉

=
〈
∂xx[f Γ(u−LS + u+

LS)]
∣∣g
〉
, (4.15)

gives us the term applied to f , which will be write as ∂xx[Γ(u−LS + u+
LS)·]. This term is the

adjoint of the first term in (4.11). Proceeding in the same way with the second term, we
finally obtain the adjoint operator

L† =− η + 2κ(u−LS + u+
LS)− 3(u−LS + u+

LS)2 + ∆∂xx

− Γ
{

(u−LS + u+
LS)∂xx + ∂xx

[
(u−LS + u+

LS)·
]}

− α
{

(u−LS + u+
LS)∂xxxx + ∂xxxx

[
(u−LS + u+

LS)·
]}
,

(4.16)

which is different to L.

Kernel of L†

Remind that to apply the Fredholm solvability condition we need to calculate the Kernel
components of L†, that is, the elements that fulfill 〈f | L† = 0. However, due to the complexity
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of L†, is preferable to obtain them numerically. To do that, let us discretize the derivatives
in f(x) when we apply 〈f | L†, using central differencing with the 4 nearest neighbors. Thus,
defining

c0 =− η + 2κU − 3U2 − 2Γ∂xxU − 2α∂xxxxU,

c1 =− 2Γ∂xU − 4α∂xxxU,

c2 =∆− ΓU − 6α∂xxU,

c3 =− 4α∂xU,

c4 =− αU∂xxxx,

(4.17)

where U = u−LS + u+
LS, the result of applying L† to 〈fj|, with fj ≡ f(x = dxj), is

〈fj| L† =

(
7c4

240dx4 −
7c3

240dx3 −
c2

560dx2 +
c1

280dx

)
fj−4

+

(
− 2c4

5dx4 +
3c3

10dx3 +
8c2

315dx2 −
4c1

105dx

)
fj−3

+

(
169c4

60dx4 −
169c3

120dx3 −
c2

5dx2 +
c1

5dx

)
fj−2

+

(
− 122c4

15dx4 +
61c3

30dx3 +
8c2

5dx2 −
4c1

5dx

)
fj−1

+

(
91c4

8dx4 −
205c2

72dx2 + c0

)
fj

+

(
− 122c4

15dx4 −
61c3

30dx3 +
8c2

5dx2 +
4c1

5dx

)
fj+1

+

(
169c4

60dx4 +
169c3

120dx3 −
c2

5dx2 −
c1

5dx

)
fj+2

+

(
− 2c4

5dx4 −
3c3

10dx3 +
8c2

315dx2 +
4c1

105dx

)
fj+3

+

(
7c4

240dx4 +
7c3

240dx3 −
c2

560dx2 −
c1

280dx

)
fj+4,

(4.18)

where dx is the discretization used. Then, using this system of equations we can construct a
matrix M that satisfies

M ~f = ~0 with ~f =




f1
...

fj−1

fj
fj+1
...
fN




, (4.19)

where N is the number of points considered. Notice that to obtain the Kernel of L†, we only
need to calculate the null eigenvectors of M . The advantage of this procedure is that it this
is not a difficult task, even if the dimension of M is large. Nevertheless, let us first take a
look at the eigenvalues spectrum of M .
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Using the same parameters as in Fig. 4.1, dx = 0.1 and N = 30, and setting u−LS and u+
LS

at a distance of 150 points, we got the eigenvalues spectrum showed in Fig. 4.3, where we
confirm the stability of the localized structures since every eigenvalue has real part negative.
Moreover, the lowest eigenvalues, in this case, are −0.022 and −0.024, which decrease as
the distance r increases. These eigenvalues are the null eigenvalue that we are looking for,
although they are not equal to zero due to the numerical approximation made.
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Figure 4.3: (a) Eigenvalues spectrum of matrix M , defined in Eq. 4.19, using the same
parameters from Fig. 4.1, dx = 0.1 and N = 30. (b) Zoom of the dashed region marked in
(a). (c) Null eigenvector τ . (c) Null eigenvector χ.

Finally, the linear combination of the eigenvectors associated with the null eigenvalues
calculated gives us the elements of the Kernel of L†. These will be labeled as 〈τ | and 〈χ|,
shown in Fig. 4.3.

Interaction dynamical equations

Now that we have the Kernel of L†, the dynamical equations of r and x0 are determined by
applying the Fredholm solvability condition, which reads

〈τ |b〉 = 0 (4.20)

and
〈χ|b〉 = 0. (4.21)
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In the first of these products, because τ is odd around x0, the only term that remains is
〈
τ
∣∣ẋ0

(
∂z−u

−
LS + ∂z+u

+
LS

)〉
= 0, (4.22)

implying that
ẋ0 = 0, (4.23)

i.e., the central position of the LSs does not move. This result is obtained from the numerical
simulations, which is expected due to the symmetries of the equation. On the other hand, in
the product from Eq. (4.21) the terms that remain are

〈
χ

∣∣∣∣
ṙ

2

(
∂z−u

−
LS − ∂z+u+

LS

)〉
+

〈χ| − 2κu−LSu
+
LS + 3u−LSu

+
LS

(
u−LS + u+

LS

)

+ Γ
(
u−LS∂xxu

+
LS + u+

LS∂xxu
−
LS

)

+ α
(
u−LS∂xxxxu

+
LS + u+

LS∂xxxxu
−
LS

)
〉 = 0.

(4.24)

The integrals involved in this equation can be approximated analytically. For that, it is
convenient to write

χ(x) = χ−(x− x−) + χ+(x− x+), (4.25)

that is, we divide χ into to parts, one localized around x− and other around x+. To illustrate
how to approximate analytically, let us take a look at the second product of this equation

〈
χ
∣∣2κu−LSu+

LS

〉
= 2κ

ˆ ∞

−∞

[
χ−(x− x−) + χ+(x− x+)

]
u−LS(x− x−)u+

LS(x− x+)dx

= 2κ

[
ˆ ∞

−∞
χ−(z−)u−LS(z−)u+

LS(z− − r)dz− +

ˆ ∞

−∞
χ+(z+)u−LS(z+ + r)u+

LS(z+)dz+

]
.

(4.26)

In the second equality we have changed our variables to z− = x − x− in the first integral
and to z+ = x− x+ in the second one. We have also used r = x+ − x−. These integrals are
exponentially close to zero in the whole region of integration, except when they are evaluated
near zero. Therefore, we approximate them by setting the integral limits from −r/2 to r/2.
Moreover, since r is large, the terms u+

LS(z− − r) and u−LS(z+ + r) are exponentially small in
the region of integration. Thus, it is valid to use the asymptotic behavior of u−LS and u+

LS

(see Eq. (4.3)) and write
〈
χ
∣∣2κu−LSu+

LS

〉
≈

2κ

[
ˆ r/2

−r/2
χ−(z−)u−LS(z−)e−γ|z−−r|dz− +

ˆ r/2

−r/2
χ+(z+)e−γ|z++r|u+

LS(z+)dz+

]
.

(4.27)

where |z− − r| = r − z− and |z+ + r| = z+ + r in this region of integration. Therefore,
〈
χ
∣∣−2κu−LSu

+
LS

〉
≈ −2κe−γrI1, (4.28)

where

I1 = −
[
ˆ r/2

−r/2
χ−(z−)u−LS(z−)eγz−dz− +

ˆ r/2

−r/2
χ+(z+)e−γz+u+

LS(z+)dz+

]
. (4.29)
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Proceeding in the same way with the others integral in Eq (4.24), we finally obtain the
dynamical equation for r

ṙ = Ae−γr +Be−2γr, (4.30)

where
A =

2 [(αγ4 + Γγ2 − 2κ)I1 + 3I2 + ΓI4 + αI5]〈
χ
∣∣∂z−u−LS − ∂z+u+

LS

〉 (4.31)

and
B =

6I3〈
χ
∣∣∂z−u−LS − ∂z+u+

LS

〉 , (4.32)

with

I2 = −
[
ˆ r/2

−r/2
χ−(z−)(u−LS(z−))2eγz−dz− +

ˆ r/2

−r/2
χ+(z+)e−γz+(u+

LS(z+))2dz+

]
, (4.33)

I3 = −
[
ˆ r/2

−r/2
χ−(z−)u−LS(z−)e2γz−dz− +

ˆ r/2

−r/2
χ+(z+)e−2γz+u+

LS(z+)dz+

]
, (4.34)

I4 = −
[
ˆ r/2

−r/2
χ−(z−)∂z−z−u

−
LS(z−)eγz−dz− +

ˆ r/2

−r/2
χ+(z+)e−γz+∂z+z+u

+
LS(z+)dz+

]
(4.35)

and

I5 = −
[
ˆ r/2

−r/2
χ−(z−)∂(4)

z− u
−
LS(z−)eγz−dz− +

ˆ r/2

−r/2
χ+(z+)e−γz+∂(4)

z+
u+
LS(z+)dz+

]
. (4.36)
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Figure 4.4: Curve fitting of numerical data of r(t). The red curve is the fitting obtained
using Eq. (4.38). The parameters used were η = 0.12, κ = 0.6,∆ = 0.02,Γ = 0.5, α = 0.125,
dt = 0.01 and dx = 0.4. The γ obtained was 2.40, which is close to the theoretical gamma
γ =

√
η/∆ = 2.45. The R2 of the fitting is 0.9977.

We have checked numerically that the factors A and B are positive. In addition, because
r is large, we can neglect the e−2γr term in Eq. (4.30) and write

ṙ = Ae−γr, (4.37)
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from where we can derive the temporal dependence of r

r(t) =
1

γ
ln(t− t0) +

1

γ
ln(Aγ), (4.38)

which agrees with numerical data, as shown in the curve fitting in Fig. 4.4, for large r. In
fact, the fitting is better when the distance of separation is more than 2.3 times the LSs
width w. The γ factor obtained from the fitting is close to the theoretical prediction.
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Figure 4.5: (a) Spatiotemporal diagram of the evolution of multiple LSs at different distances.
After some time they reach an equilibrium with constant distance of separation between
them. The boundary conditions have been set as periodic. The dashed lines correspond
to the instant ti and tf , showed in (b) and (c), respectively. The parameters used were
η = 0.13, κ = 0.7,∆ = 0.01,Γ = 0.5, α = 0.1, dx = 0.3 and dt = 0.01.

4.1.3 Multiple localized structures

Now that we have derived the interaction law between two LSs, let us analyze the case
when multiple LSs interact. Note that since the interaction between them is repulsive, we
can consider this system as particles interacting with repulsive forces. Then, it is expected
that they will reach an equilibrium when the sum of these forces be equal to zero. In Fig.
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4.5 we show what the evolution of an initial condition of LSs at different distances, with
periodic boundary conditions. As we can see, they reorganize and reach an equilibrium with
a constant distance of separation.

Moreover, the previous situation shows us that if we remove one LS of a periodic config-
uration, the LSs will reorganize again to a new distance of separation between them. We
illustrate this situation in Fig. 4.6.
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Figure 4.6: Evolution of periodic one-dimensional configurations, after removing one localized
structure. The figures (a), (b) and (c) show the evolution of a seven, six, and five LSs periodic
profile evolution, after removing one LS. The upper and lower profiles show the initial and
final profile of each case, respectively. In all cases the LSs rearrange, reaching a new periodic
profile with a larger wavelength. The parameters used were η = 0.13, κ = 0.7,∆ = 0.01,Γ =
0.5, α = 0.1, dx = 0.26 and dt = 0.01.

Thus, the mechanism of pattern formation that we have presented here differs from the
one discussed in Sec. 2.8.2, the Turing instability. In the Turing instability, the wavelength
of a periodic pattern is intrinsic to the system, meaning that the wavelength formed does not
depend on the size of the system. Otherwise, if we remove a wavelength, another will emerge
to maintain the initial wavelength.

4.2 Lattices in two dimensions

Let us now follow the same strategy to study lattices in two dimensions.
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4.2.1 Asymptotic behavior of two dimensional localized structures

In the previous section, we showed that the asymptotic behavior of one-dimensional localized
structures follows an exponential law for large distances. However, this is not true in two
spatial dimensions. To prove that, let us consider the two-dimensional model

∂tu = −u[η − κu+ u2] + [∆− Γu]∇2u− αu∇4u, (4.39)

where ∇2 is the two dimensional Laplacian. Linearizing around u = 0 in the stationary
equation (∂tu = 0), we obtain

0 = −uη + ∆∇2u, (4.40)

which in spherical coordinates reads

0 = −uη + ∆

(
∂2

∂r2
+

1

r

∂

∂r

)
u, (4.41)

since the localized structures are radially symmetric (∂θu = 0). This equation admits ana-
lytical solution, which is

u(r) = AK0(γr), (4.42)

where A > 0 is a constant, γ =
√
η/∆ and K0 is the modified Bessel function of second kind,

which is a real function for r > 0. For large values of r we can approximate this function by

K0(r) ≈
√
π

2

e−r√
r

(4.43)

and then,

uLS(r →∞) ∝ e−γr√
r

(4.44)

is the asymptotic behavior of the two dimensional localized structures.

4.2.2 Interaction dynamical equations

To derive the dynamical equations of the interaction between two localized structures, we will
follow a similar strategy used in the one-dimensional case. We will restrict our calculations
to the x axis that passes through the center of the localized structures, as shown in Fig. 4.7.
This is justified if we assume that the LSs are located at a very large distance r, that we can
neglect the interactions in other directions. Therefore, we approximate the Laplacian and
Bi-Laplacian as one-dimensional operators

∇2 = ∂xx and ∇4 = ∂xxxx. (4.45)

The ansatz we propose for the two LSs interacting at a distance r is

uLS(x) = u−LS(x+ r/2) + u+
LS(x− r/2) +W (r, x), (4.46)
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Figure 4.7: Two-dimensional structures located at a distance r. The dashed line passes
through the centers and will be the axis where we restrict our calculations.

because the origin is located in the middle of the LSs. Since it was showed in one dimension
that the center position does not have dynamics, we will assume the same here.

Notice that the procedure to obtain the dynamical equation for r(t) is essentially the same
as in one dimension, due to our restriction to the x axis. The only difference is the asymptotic
behavior of the localized structures. In fact, the linear system obtained after replacing the
ansatz will be

LW = b, (4.47)

with the same operator L as in one dimension, and

b =
ṙ

2

(
∂z−u

−
LS − ∂z+u+

LS

)

− 2κu−LSu
+
LS + 3u−LSu

+
LS

(
u−LS + u+

LS

)

+ Γ
(
u−LS∂xxu

+
LS + u+

LS∂xxu
−
LS

)

+ α
(
u−LS∂xxxxu

+
LS + u+

LS∂xxxxu
−
LS

)
,

(4.48)

with z± = x∓r/2. We choose the same inner product as in one dimension, and in consequence,
the Kernel of L† remains the same. The Fredholm solvability condition reads 〈χ|b〉 = 0, from
where we derive the dynamical equation for r. The analytical approximations that we do are
slightly different than in one dimension. To illustrate them, let us consider the inner product
between χ and 2κu−LSu

+
LS, as in Eq. (4.26)

〈
χ
∣∣2κu−LSu+

LS

〉

= 2κ

[
ˆ ∞

−∞
χ−(z−)u−LS(z−)u+

LS(z− − r)dz− +

ˆ ∞

−∞
χ+(z+)u−LS(z+ + r)u+

LS(z+)dz+

]
.
(4.49)

Again, we restrict the integral limits only from −r/2 to r/2 and replace u+
LS(z− − r) and

u−LS(z+ + r) by their asymptotic behavior . Since now we have restricted to the x axis, using
Eq. (4.44) the asymptotic behavior reads

uLS(|x− x0| → ∞) ∝ e−γ|x−x0|√
|x− x0|

, (4.50)
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where x0 is the LSs central position, thus,
〈
χ
∣∣2κu−LSu+

LS

〉
≈

2κ

[
ˆ r/2

−r/2
χ−(z−)u−LS(z−)

e−γ|z−−r|√
|z− − r|

dz− +

ˆ r/2

−r/2
χ+(z+)

e−γ|z++r|
√
|z+ + r|

u+
LS(z+)dz+

]
.

(4.51)

Notice that |z− − r| = r − z− and |z+ + r| = z+ + r in this region of integration. Moreover,
performing a Taylor expansion we get

1√
z± ± r

≈ 1√
r
± z±

2r3/2
. (4.52)

The second term of this expansion can be neglected because r is large. Therefore,
〈
χ
∣∣2κu−LSu+

LS

〉
≈

2κ
e−γr√
r

[
ˆ r/2

−r/2
χ−(z−)u−LS(z−)eγz−dz− +

ˆ r/2

−r/2
χ+(z+)e−γz+u+

LS(z+)dz+

]
,

(4.53)

i.e.,
〈
χ
∣∣2κu−LSu+

LS

〉
≈ 2κ

e−γr√
r
I1, with I1 as it was defined in the previous section. Proceeding

in the same way with the other integrals from 〈χ|b〉 = 0, we get

ṙ = A
e−γr√
r

+B
e−2γr

r
, (4.54)

with A and B as in the previous section.

In Fig. 4.8 we present a curve fitting of ṙ in function of r obtained numerically. The
fitting was performed only considering the first term in Eq. (4.54), assuming that r is large.

1.8 2 2.2 2.4
0

0.5

1

1.5

2

x 10-3

r/w

dr/dt

0 0.5 1 1.5 2
×104

1.8

2

2.2

2.4

time(a.u.)

r/w

(a) (b)

Figure 4.8: (a) Numerical data of the distance of separation r in function of time, in units of
the width w. (b) Curve fitting of numerical data of ṙ in function of r, using first term of Eq.
(4.54). The distance r is normalized with the LSs width. The parameters used in simulations
were η = 0.12, κ = 0.6,∆ = 0.02,Γ = 0.5, α = 0.125, dx = dy = 0.3 and dt = 0.001. The R2

obtained was 0.9924.
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4.2.3 Lattices of multiple two dimensional localized structures

Let us now study the evolution of multiple two-dimensional LSs. As in the one-dimensional
case, the equilibrium is reached when the sum of the interactions acting on a LS is equal to
zero. We consider this as particles interacting with repulsive forces decaying exponentially
with the distance, and then, the equilibrium is reached when the sum of these forces vanish.
In Fig. 4.9 we present some possible configurations in equilibrium.
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Figure 4.9: Different equilibrium configuration of two dimensional localized structures. We
have used periodic boundary conditions. The parameters used were η = 0.12, κ = 0.6,∆ =
0.02,Γ = 0.5, α = 0.125, dx = dy = 0.3 and dt = 0.001, with periodic boundary conditions.
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Chapter 5

Diffraction grating in a zigzag lattice in
nematic liquid crystals

This chapter serves as a complement of the calculations from the manuscript presented in
Appendix D. In this work, we analyzed the diffraction grating produced by applying a laser
beam to a nematic liquid crystal cell submitted to a voltage, which exhibits a zigzag insta-
bility (see Sec. 2.10.1) that varies with the applied signal. We investigated a theoretical
model, based on Fraunhofer diffraction theory, to predict the different patterns observed.
Our findings are in good agreement with experimental data.

5.1 Diffraction grating in an empty in-plane switching
cell

In this section, we will derive in detail the diffraction profile of applying a laser beam to an
empty IPS cell (without liquid crystal) presented in Section 3A of the manuscript. We will
base our calculations on the Fraunhofer diffraction theory discussed in Sec. 2.9.

To start, let us consider the empty IPS cell (see Fig. 2.25 (a)) from the experiment. A
sketch of its different components is shown in Fig. 5.1 (a). As a simple approximation, we
consider the transmission coefficient of this cell as a periodic function, with its maximum
value normalized to 1 (tmax = 1) and restricted only to one dimension. This has the form1

t(x) =





α nγ < x < nγ + γ−ε
2
,

1 nγ + γ−ε
2
< x < nγ + γ+ε

2
,

α nγ + γ+ε
2
< x < (n+ 1)γ,

(5.1)

that is, it has period γ, which is the electrodes width. The zones where its value is α
correspond where the electrodes are located. We consider a lattice composed by N electrodes,
meaning that 0 ≤ n ≤ N − 1.

1Notice that the origin is different than in Appendix D article.

73



air
glass

ITO air
glass

air

x

z x

t(x)

a tmax

(a) (b) (c)

x

Figure 5.1: (a) Schematic representation of the different zones of the empty IPS cell. (b)
One dimensional transmission coefficient model in x direction. (c) Cell picture taken from a
microscope.

As we discussed in Sec. 2.9, the diffraction profile intensity is given by

I(u) = |E(u)|2 =

∣∣∣∣
ˆ Nγ

0

t(x) e−2πiuxdx

∣∣∣∣
2

. (5.2)

The integration includes the N electrodes. Since t(x) is periodic, it is convenient to use Eq.
(5.1) to write

E(u) =
N−1∑

n=0

(
α

ˆ nγ+ γ−ε
2

γn

+

ˆ nγ+ γ+ε
2

nγ+ γ−ε
2

+α

ˆ (n+1)γ

nγ+ γ+ε
2

)
e−2πiuxdx

=
N−1∑

n=0

(
α

ˆ (n+1)γ

γn

+ (1− α)

ˆ nγ+ γ+ε
2

nγ+ γ−ε
2

)
e−2πiuxdx.

(5.3)

Then, solving the integrals, without performing the summation, we obtain

E(u) =
N−1∑

n=0

e−πiuγ(2n+1)

(
α

sin πuγ

πu
+ (1− α)

sin πuε

πu

)

=

(
α

sin πuγ

πu
+ (1− α)

sin πuε

πu

)
e−πiuγ

N−1∑

n=0

(
e−πiuγ2

)n
.

(5.4)

The last summation can be solved using
∑N−1

n=0 x
n = (1 − xN)/(1 − x). Therefore, after

straightforward calculations we get

E(u) = e−πiuγN sin πuγN

sin πuγ

(
α

sin πuγ

πu
+ (1− α)

sin πuε

πu

)
, (5.5)

and so,

I(u) =
sin2 πuγN

sin2 πuγ
[αγ sinc(πuγ) + (1− α)ε sinc(πuε)]2 , (5.6)

where sinc(x) = sin(x)/x.
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Notice that the exponential factor that appears in Eq. (5.5) is not relevant in I(u) after
applying the modulus. In fact, depending on the origin of our spatial system this factor can
change, without affecting the final result. Also notice that if we set α = 0, we recover the
result from Sec. 2.9.2, the diffraction grating of N slits, as expected.

5.1.1 Diffraction orders

The diffraction orders correspond to the peaks of the irradiance I(u). These are obtained
by evaluating this function in u = m/γ, with m an integer number. However, remind that
u = d

λf
, where d is the spatial variable in the diffraction profile. Hence, the position of the

mth diffraction order, with the origin at order 0, is given by

dm = m
λf

γ
, (5.7)

and so, the distance between them is

∆ =
λf

γ
. (5.8)

Therefore, the diffraction orders distance increases with the light wavelength of the laser
beam and the focal distance but decreases for higher values of α, the transmission coefficient
of the cell ITO sections. This value is typically about some millimeters and coincides with
experimental observations.

5.2 Diffraction grating in a perfect zigzag liquid crystal
lattice

Let us now turn to analyze the case when the cell is filled with nematic liquid crystal and
exhibits the zigzag instability. Using Fraunhofer diffraction theory we will derive in detail
the two-dimensional irradiance I(u, v) of a perfect zigzag lattice, that is, periodic in x and
y directions, with constant amplitude and wavelength. This result was presented in Section
4A from Appendix D.

The perfect zigzag lattice at issue is shown in Fig. 5.2 (a), with c the period in the x
direction and 2b in y direction. For simplicity, it will be assumed that the transmission
coefficient t(x, y) is 0 in the black zones, where the zigzag is formed, and normalized to 1 in
the remaining area. Moreover, the white zones width will be a and θ the angle of the zigzag
lines with the vertical axis y, as shown in the figure.

The transmission coefficient, as expected, will be periodic like the zigzag lattice, with the
same periods in x and y. We choose our coordinate system origin in such a way that t(x, y)
be

t(x, y) =





1, cn− a/2 + |y − 2m| tan θ ≤ x ≤ cn+ a/2 + |y − 2m| tan θ

−b+ 2bm ≤ y ≤ b+ 2bm

0, otherwise
(5.9)
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where 0 ≤ n ≤ N − 1 and 0 ≤ m ≤ M − 1. For some fixed {n,m} values, the t(x, y) profile
is illustrated in Fig. 5.2 (b). This region is repeated along the zigzag lattice.
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Figure 5.2: (a) Sketch of a perfect zigzag lattice, with constant amplitude and wavelength.
(b) Transmission coefficient t(x, y) values for some {n,m} values.

As we have discussed, the diffraction grating profile is given by I(u, v) = |E(u, v)|2, where

E(u, v) =

ˆ ˆ

t(x, y)e−2πi(ux+vy)dxdy

=
N−1∑

n=0

M−1∑

m=0

ˆ b+2bm

−b+2bm

ˆ cn+a/2+|y−2m| tan θ

cn−a/2+|y−2m| tan θ

e−2πi(ux+vy)dxdy.

(5.10)

The integral limits are the limits of Eq. (5.9). Performing the integration in x, yields to

E(u, v) =
N−1∑

n=0

M−1∑

m=0

e−2πiucn

(
sin πua

πu

)
ˆ b+2bm

−b+2bm

e−2πi(vy+u|y−2m| tan θ)dy. (5.11)

Then, under the change of variables y′ = y − 2bm, we obtain

E(u, v) =
N−1∑

n=0

M−1∑

m=0

e−2πiucn

(
sin πua

πu

)
e−2πiv2bm

ˆ b

−b
e−2πi(vy′+u|y′| tan θ)dy′, (5.12)

and performing the summations,

E(u, v) =

(
sin πcuN

sin πcu

)(
sin πv2bM

sin πv2b

)(
sinπua

πu

)
ˆ b

−b
e−2πi(vy′+u|y′| tan θ)dy′. (5.13)

To remove the absolute value in y′ of the remaining integral, we split it into two parts
ˆ b

−b
e−2πi(vy′+u|y′| tan θ)dy′ =

ˆ 0

−b
e−2πiy′(v−u tan θ)dy′ +

ˆ b

0

e−2πiy′(v+u tan θ)dy′

= e−bπiu tan θ

(
ebπiv sin(πb(v − u tan θ))

π(v − u tan θ)
+ e−bπiv sin(πb(v + u tan θ))

π(v + u tan θ)

)
,

(5.14)
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finally obtaining,

E(u, v) =ab

(
sinπcuN

sin πcu

)(
sin πv2bM

sin πv2b

)
sinc(πua)

× e−bπiu tan θ
(
ebπivsinc(πb(v − u tan θ)) + e−bπivsinc(πb(v + u tan θ))

) (5.15)

and

I(u, v) =

[
ab

(
sin πcuN

sin πcu

)(
sin πv2bM

sin πv2b

)
sinc(πua)

]2

× [sinc2(πb(v − u tan θ)) + sinc2(πb(v + u tan θ))

+ 2 cos(πv2b) sinc(πb(v − u tan θ)) sinc(πb(v + u tan θ))].

(5.16)

This formula predicts that in the Fourier space {u, v} there are lines at θ degrees, as in the
zigzag lattice.

The zigzag instability exhibits variations in amplitude and wavelength, depending on the
voltage tension and frequency applied to the cell [6]. Then, the perfect zigzag lattice will not
predict the observed patterns. To carry out this problem, in section 4B of the manuscript
from Appendix D we consider an imperfect zigzag lattice, by perturbing the constant zigzag
wavelength and width with randoms functions. Since it is not possible to obtain an analytical
solution, in this case, we have obtained the diffraction grating by applying the 2D Fourier
Transform to the imperfect zigzag lattice. The results are presented and discussed in Section
5 of Appendix D, concluding that this approximation based on the Fraunhofer diffraction
theory allows us to explain qualitatively the different diffraction profiles.
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Figure 5.3: Spatiotemporal diagram of the diffraction grating for a square signal of 16 Vpp
and 1 kHz. Around t = 1.5 seconds the generator is turned on. The distance is measured
from the order 0. The intensity variation is notorious in order 0 and 6.
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5.3 Diffraction grating temporal evolution

To conclude this chapter, let us complement our study by presenting how the light intensity
of the diffraction grating changes over time when the generator is turned on.

When the generator connected to the IPS liquid crystal cell is turned on, we observe a
temporal evolution in the diffraction grating intensity. This evolution is barely noticeable
to the human eye. Processing the diffraction images, we observe that the diffraction orders
intensity evolves in time tending to a constant value, in average, which depends on the gen-
erator signal features. In Fig. 5.3 we show the spatiotemporal evolution when the generator
is turned on. We recognize two general behaviors presented in Figure 5.4 (b) and (c): the
intensity can decrease or increase from its original value. Moreover, just when the signal is
turned on, both cases show that the intensity performs a peak of short time before relaxing
to a constant value. The noise showed in the intensities are attributed mainly to fluctuations
in the laser beam.
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Figure 5.4: Plots (a) and (b) show the light intensity of diffraction orders 0 and 3 in function
of time, for a applied signal of 16 Vpp and 18 Vpp, respectively. In both cases the signal is
sinusoidal, with a frequency of 1 kHz.
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Chapter 6

Conclusions

In the last three decades, considerable progress has been made in the understanding of
localized structures. Thanks to fast computers, numerical simulations have allowed studying
more deeply their properties, which has motivated the realization of many experiments for
their observation and manipulation in a wide range of physical contexts. Several interesting
behaviors of these structures have been discovered, with potential applications.

In this thesis, we have studied localized structures with particle-like properties in different
contexts: coupled oscillators, vegetation, and optics. Our main goal has not been the under-
standing of their formation, but in the properties that arise because of their interaction or
due to the presence of an external factor.

In the first context, coupled oscillators, we studied the effect of an external oscillatory
parametric forcing and dissipation in kink solutions of the sine-Gordon equation, finding a
new type of kinks, the flaming kinks. For simplicity the physical system considered was
a chain of pendulums, with each pendulum coupled to its nearest neighbor with a linear
spring. We found that these solutions are persistent under this forcing and that, contrary
to our expectations, they exhibit resonant properties instead of parametric resonance. We
demonstrate that the interaction between a flaming kink and a flaming antikink allows the
formation of a family localized structures, with well-defined equilibrium widths. Furthermore,
we also found that the flaming kinks are present in the φ4 scalar field equation under the
same kind of dissipation and parametric forcing, meaning that they correspond to a robust
phenomenon. Using a perturbative analysis in this system we derived the dynamical equation
that follows the width of the localized structures, with qualitatively good agreement with
numerical observations. Moreover, we applied our results to a magnetic wire submitted to
an external oscillatory magnetic field, which its magnetization is described by the Landau-
Lifshitz-Gilbert equation. By simulating this equation, in a certain limit in the parameters,
we verified the presence of flaming kinks. This is explained since this system is described by
the parametrically driven and damped sine-Gordon equation in this limit.

In the second context under study, vegetation, we studied the interaction between particle-
like localized structures, consisting in a localized amount of vegetation surrounded by bare
soil. We were focused on studying the formation of stable lattices, i.e., arranges composed of
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these structures. For that purpose we characterized the interaction dynamics between them
through a perturbative analysis, finding good agreement with numerical data. We found that
this interaction is indeed repulsive, that is, they tend to repel each other, which motivated
us to consider this system as particles interacting by repulsive forces. Thus, the equilibrium
of several localized structures located arbitrarily is reached when the sum of these forces
is zero. We showed that in one dimension the equilibrium corresponds to periodic profiles,
while in two dimensions it can take configuration with nontrivial symmetries. This can be
understood since the interaction forces decay exponentially to zero with the distance, which
makes more complex the possible equilibrium configurations. In every analysis performed
we considered the one and two-dimensional cases. Furthermore, we showed that when a
stable configuration is reached, and we remove a single localized structure, the system will
rearrange to another stable configuration. This mechanism differs from the Turing instability
used to explain pattern formation since in this case, a new localized structure appears after
it is removed. We consider that the mechanism presented here is a more realistic view of the
dynamics of localized patches in vegetation.

Finally, in the third context considered in this thesis, optics, we were focused on studying
the effect of light applied to a zigzag interface instability, or more precisely, a transverse
particle-like solution. This zigzag instability is produced in a nematic liquid crystal in-plane
switching cell submitted to a generator, which is modified as the frequency and voltage
tension are varied. We studied the diffraction grating produced by applying a laser beam
to this interface, finding rich complex diffraction patterns. To explain the different profiles
observed experimentally, we proposed a simple theoretical model based on the Fraunhofer
diffraction theory. To test our model we first considered an empty cell, finding good agreement
with experimental observations. Then, as a first approximation, we proposed a model for a
perfect zigzag instability, that is, with constant width and wavelength, deriving analytically
the diffraction intensity profile. As expected, it does not explain the diffraction grating
observed. To carry out this problem we modified the perfect zigzag by adding aleatory
functions to its wavelength and width. Since is not possible to make analytical calculations,
in this case, the diffraction grating was calculated numerically by applying a two dimensional
Fourier Transform, finding good agreement with the patterns observed. We consider that
this work is a proof of concept of manipulable diffraction gratings, which could open the
possibility of new optical data processing.
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Appendix A

Flaming 2π kinks in parametrically
driven systems

In this appendix we introduce flaming kinks in the sine-Gordon equation in the context of
driven coupled oscillators and driven magnetic wire.
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Macroscopic extended systems with dissipation and injection of energy can exhibit particlelike solutions.
Dissipative kinks with an oscillatory cloak and a family of localized states that connect uniform symmetric states
in a magnetic wire forced with a transversal oscillatory magnetic field and in a parametrically driven damped
pendula chain are studied. The oscillatory cloak is composed of evanescent waves emitted at the kink position
and generated by a resonant mechanism. These waves mediate the kink interaction and generate a family of
localized states.
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I. INTRODUCTION

Macroscopic particlelike solutions in extended dissipative
systems have been observed in different fields, such as domains
in magnetic materials, chiral bubbles in liquid crystals, inter-
faces in chemical reactions, kinks in granular media, fronts
in populations dynamics, liquid crystals, and nonlinear optics,
among others [1–3]. Hence, one can infer the universality of
particlelike solutions in nonequilibrium systems [4]. Although
these states are spatially extended, they exhibit properties
typically associated with particles. Consequently, one can
characterize them with a family of continuous parameters
such as the position and the core width. A natural strategy
to obtain these solutions would be to integrate the systems
under small variations corresponding to energy dissipation [5].
These types of systems are termed “quasireversible” [6]. Since
integrable systems exhibit natural frequencies, a way to force
these systems is through temporal modulation of parameters
that characterize the system under study. This type of forcing is
called parametric [7]. In the past few decades, scientific efforts
were focused on improving our understanding of kinks [8].
These solutions are characterized by connecting two equivalent
symmetric states. Methods such as variation of parameters and
inverse scattering have played a key role in understanding the
dynamics of particlelike solutions. However, for dissipative
systems—with large injection and dissipation of energy—the
dynamic characterization of particlelike solutions remains an
open question.

The aim of this article is to study dissipative kinks with
an oscillatory cloak and a family of localized states that
connect uniform symmetric states. We consider two physical
systems that exhibit these structures, namely a magnetic
wire forced with a transversal oscillatory magnetic field, and
a parametrically driven damped pendula chain. These kink
solutions are characterized by the emission of evanescent
waves from the front position (cf. Fig. 1). Using an analogy of
hopping pattern behavior observable in combustion carried
out under controlled conditions [9,10], we consider that
propagation of evanescent waves observed in our simulations
could be, for want of a more descriptive name, referred to as
“flaming 2π kinks.” The oscillatory cloaks are generated by
a resonance mechanism between the natural frequency and
external forcing. These evanescent waves mediate the kink
interaction and generate a family of localized states.

II. FLAMING 2π KINKS IN PARAMETRICALLY DRIVEN
MAGNETIC WIRE

The dynamics of ferromagnetic wires are characterized
by the normalized magnetization m(t,z) [11], where {z,t}
account for the spatial coordinate along the wire and time,
respectively. A one-dimensional easy-plane ferromagnetic
macroscopic wire is described by the dimensionless Landau-
Lifshitz-Gilbert equation [11],

∂tm = −m × (hex − βmzez + ∂zzm − α∂tm), (1)

where {ex,ey,ez} are the unit vectors along the respective
Cartesian axes, β > 0 accounts for the anisotropy of the wire
and it favors configurations where the magnetization lies on
the xy plane, the term proportional to α is a Rayleigh-like
dissipation function known as Gilbert damping, and it accounts
for energy losses, h is the dimensionless intensity of the
external magnetic field in the x direction, and the term
∂zzm corresponds to the Laplacian operator accounting for
short-range magnetic interactions [11]. To get an idea of
the magnitude of the parameters, for example for CsNiF3,
|m| ≈ 2.2 × 105 A/m, β ≈ 39, temporal and spatial scales
are around 20 ps and 5 nm, and the dissipation parameter is of
the order α ≈ 0.02 [12].

For a positive external field, h > 0, the stable equilibrium
of the system is the magnetization pointing along the magnetic
field, m = ex , a magnetization vector aligned with the vertical
axis [see Fig. 1(a)]. Perturbations around this equilibrium
are characterized by a natural frequency ω0 = √

hβ [13].
The dissipation can be counterbalanced by considering a
combination of a constant and an oscillatory external magnetic
field, h(t) = H0 + h0 cos(ωt). Notice that the dynamics of the
above model (1) conserve the norm of m. Hence, spherical
coordinates are an adequate representation to describe the
magnetic dynamics of the driven wire. This system has kink
solutions. The orientation of magnetization vectors creates a
marked spatial pattern: at the left and right ends of the chain,
magnetization vectors are predominantly directed along the
external field, while at the central part of the chain they undergo
a complete rotation, clearly revealing the presence of a kink
solution [8]. Figure 1 shows a schematic representation of the
magnetic kink solution. Here the spatiotemporal evolution and
magnetization components of this particlelike solution were
obtained from numerical simulations of Eq. (1). Numerical

2470-0045/2016/94(5)/052217(6) 052217-1 ©2016 American Physical Society
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FIG. 1. Flaming 2π kink in a parametrically driven magnetic
wire obtained from numerical simulation of Eq. (1) with h(t) =
H0 + h0 cos(ωt), H0 = 2, h0 = 0.8, ω = 6, β = 10, and α = 0.02.
(a) Schematic representation of magnetization m(z) upon a driven
magnetic wire. (b) Magnetization components of the flaming mag-
netic kink. (c) Spatiotemporal evolution of the flaming kink. The
horizontal dashed line in the diagrams shows the time when the
images of (b) were obtained. (d) Corresponding φ profile in the
spherical representation of the magnetization. {�,σ,λ} are the ampli-
tude, wavelength, and steepness of the evanescent wave, respectively.
(e) Corresponding θ profile in the spherical representation of the
magnetization.

simulations were conducted using the fifth-order Runge-Kutta
method scheme for temporal integration, finite differences of
sixth order for spatial discretization, and Neumann boundary
conditions (∂zm = 0 at the borders). From the spatiotemporal
evolution, we can infer that the kink solution is characterized
by the emission of evanescent waves from the front position
(see Fig. 1). In the quasireversible limit, these waves disap-
pear [5].

To study in detail the flaming kinks, we consider the
following spherical representation for magnetization vector
m = sin(θ )[cos(φ)ex + sin(φ)ey] + cos(θ )ez. In this represen-
tation, the magnetization is described by the polar θ (t,z)
and azimuthal φ(t,z) angles [see Figs. 1(d) and Fig. 1(e)].
When the magnetic anisotropy coefficient is large enough
(β � 1), the magnetization vector is located mainly in the
xy plane, and the magnetic field acts in the same way
as gravity for coupled mechanical oscillators [14,15]. In
addition, let us consider small dissipation, an external field, and
the scaling relations |θ − π/2| ∼ α ∼ h ∼ ∂zzφ ∼ 1/β � 1
and φ ∼ ∂tφ ∼ 1. Using a spherical representation and this
scaling in Eq. (1), one finds at leading order that the polar
angle becomes a slave variable θ [φ] ≈ π/2 + ∂tφ/β, and the

FIG. 2. Flaming 2π kink in a vertically driven chain of
coupled pendula obtained from numerical simulation of Eq. (2) with
ω2

0(t) = ω2
0 + γ cos(ωt), ω2

0 = 1, γ = 0.3, ω = 1.4, and μ = 0.1.
(a) Schematic representation of a vertically driven dissipative chain
of coupled pendula. (b) Spatiotemporal evolution of a motionless
flaming kink. (c) Profile of a flaming kink; {�,σ,λ} are the amplitude,
wavelength, and steepness of the evanescent wave, respectively.

azimuthal angle satisfies [14]

∂ttφ = −ω2
0(t) sin(φ) + ∂ξξφ − μ∂tφ, (2)

where μ ≡ αβ, ξ ≡ z/β1/2 is a normalized spatial coordinate,
and ω2

0(t) = βH0 + βh0 cos(ωt). The aforementioned model
stands for a vertically driven dissipative chain of cou-
pled pendula [16]. The parameters {ω0 ≡ βH0,γ ≡ βh0,μ}
account for the natural frequency, the amplitude of the applied
force, and the oscillation damping coefficient. Hence, the
parametric-driven dissipative sine-Gordon model produces
results that considerably resemble the magnetization dynamics
in a magnetic chain described with the Landau-Lifshitz-Gilbert
equation.

In the next section, we introduce a pendula chain. This set
of coupled oscillators is well-described by the sine-Gordon
model.

III. FLAMING 2π KINKS IN A PARAMETRICALLY
DRIVEN PENDULA CHAIN

Let us consider a plane pendulum of length l0. The
pendulum oscillates in the x-y plane in the presence of
gravitation acceleration g pointing along −ex , as illustrated
in Fig. 2. The mechanical motion is governed by dttφ =
−ω2

0 sin(φ) − μdtφ, where the natural frequency is ω2
0 = g/l0,

and the damping parameter μ accounts for dissipation. Notice
that the above equation is the same as Eq. (2) when the
magnetization is uniform, ∂zzm = 0. In the pendulum, as
well as in the magnetic system, the angle φ accounts for the
dynamics in the xy plane. On the other hand, the polar angle
of the magnetization vector, θ = arccos(mz), is related to the
angular velocity of the pendulum, β(θ − π/2) ≈ ∂tφ.
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FIG. 3. Characterization of a flaming 2π kink for a vertically
driven chain of pendula with βH0 = 1. (a) Phase space as a function of
frequency and amplitude forcing with μ = 0.1. The tongues account
for the strong resonances (1 : 1 and 1 : 2). The flaming 2π kinks are
observed in the dark region. (b) Amplitude of evanescent waves � as
a function of forcing frequency by different dissipation coefficients
and forcing intensities (c). Wavelength σ (d) and steepness λ (e) of
evanescent waves as a function of frequency forcing ω.

A pendula chain is a system composed of several of the
oscillators described above, where each one of them couples
to its neighbors by torsion springs, as shown in Fig. 2(a). In the
continuum limit, the linear coupling between a pendulum and
its neighborhood is written in terms of a Laplacian operator,
∂ξξφ. The torsion spring mechanism is equivalent to the short-
range magnetic interaction that couples magnetic moments in
ferromagnetic materials. This system in the continuum limit is
described by the sine-Gordon model Eq. (2).

Numerical simulations of the sine-Gordon Eq. (2), for
small forcing intensities and large dissipation, exhibit 2π kink
solutions, that is, the zero equilibrium is connected with the
2π state [8]. Figure 2 shows a schematic representation, a
spatiotemporal evolution, and a profile of a flaming 2π kink
observed in a vertically driven dissipative chain of coupled
pendula. The evanescent waves are well characterized by
an amplitude �, a steepness λ, and a wavelength σ [see
Fig. 2(b)]. Notice there is a good agreement between flaming
2π kinks observed in a forced magnetic wire and a forced
chain of pendula. Figure 3(a) illustrates the region of parameter

space where the flaming 2π kinks are observed. This region
was obtained numerically from Eq. (2) by the persistence
of the flaming 2π kink under the small modification of the
parameters. From this figure, one can conclude that the flaming
2π kinks are observed in a wide range of frequencies and
forcing amplitudes.

To identify the mechanism of flaming 2π kinks, we
have computed the amplitude �, the wavelength σ , and the
spatial damping λ (steepness) [see Figs. 1(d) and 2(c)] of the
evanescent waves as a function of the dissipation, frequency,
and amplitude of the forcing. The lower panels of Fig. 3
show these results. The amplitude of evanescent waves as a
function of the forcing frequency exhibits a resonance when
the forcing frequency coincides with the natural frequency
(ω/ω0 ≈ 1). Figure 3 shows this resonance for different
dissipation and intensity forcing coefficients. The behavior
of these curves is not well described by linear or weakly
nonlinear resonance [7,17]. Therefore, one can conclude that
the appearance of evanescent waves is the result of a resonance
between the parametric forcing and the natural frequency
of the pendula. That is, at close to 1 : 1 resonance, the
amplitude of the evanescent wave is large (ω/ω0 ≈ 1), which is
disclosed in Figs. 3(b) and 3(c). Moreover, in the quasireversal
limit ({γ,μ} � 1), the amplitude of the evanescent waves
is negligible, and the flaming 2π kinks and 2π kinks
are indistinguishable. Likewise, we have characterized the
wavelength σ and steepness λ of the evanescent waves as
a function of frequency forcing (see the bottom panels of
Fig. 3). The steepness increases with frequency higher than the
natural frequency. The wavelength exhibits a resonance when
the forcing frequency coincides with the natural frequency.
This wavelength does not match with the wavelength of
the dispersion relation obtained from linear theory around
a vertical state. Hence, from the above observations, the
properties of evanescent waves are of a nonlinear type.

IV. LOCALIZED FLAMING STATES

Due to the space reflection invariance ξ → −ξ , both kinks
connecting 0-2π and 2π -0 exist. The last state is usually
termed “antikink.” Both states correspond to a front solution
connecting two symmetric states. The interaction between spa-
tially monotone fronts in one-dimensional dynamical systems
is attractive [18,19], i.e., the fronts attract and eventually an-
nihilate. This scenario changes when fronts exhibit stationary
spatial damped oscillations, the front interaction decays at
large distance, and it alternates between attractive and repul-
sive [19]. Therefore, under these conditions, the system under
study shows a family of localized structures characterized
by having a collapsed snaking bifurcation diagram [19,20].
Namely, in the parameter region that corresponds to the
coexistence of localized states, one can clearly see that
localized states characterized with a shorter width occur in a
wider range of parameters; in contrast, the localized structures
of considerable length require precise parameter fine-tuning.
In the case of fronts connecting two standing waves (not
evanescent), the interaction does not decay quickly with
distance, alternating between attractive and repulsive modes.
Hence, a family of localized structures with a homoclinic
snaking bifurcation diagram is expected [21]. At variance with
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FIG. 4. Localized flaming states in a vertically driven chain of
coupled pendula obtained from numerical simulation of Eq. (2) with
the same parameters as in Fig. 2. (a) Schematic representation of
a bound state composed of a flaming 2π kink and a 2π antikink.
Profile at a given time (b) and spatiotemporal temporal evolution (c)
of a localized flaming structure. (d) Phase space of the flaming 2π

kink position {�,�̇} and their stationary localized flaming states,
respectively.

the previous description, localized structures obtained from
kink interaction coexist simultaneously.

In our case of flaming 2π kinks, the interaction is governed
by evanescent waves. Figure 4 shows a localized structured
composed of a flaming 2π kink and a flaming 2π antikink
observed in a vertically driven chain of coupled pendula.
Monitoring periodically the flaming 2π kink with forcing
frequency ω (extended Poincaré section), the flaming 2π kinks
are motionless. Indeed, in the extended Poincaré section, the
flaming 2π kinks are stationary and characterized with spatial
damping oscillations [similar to that shown in Fig. 2(b)],
that is, in the extended Poincaré section φ(x → ±∞) →
φ0e

∓λx sin( 2πx
σ

). Hence, it is natural to expect that the inter-
action between the kinks will be dominated by contributions
from the oscillation tails. To prove this, let us consider a pair
of a kink and an antikink, located a considerable distance from
each other. Let � be the distance between the positions of
each kink [see Fig. 4(b)]. Using the general theory of kink
interaction [19] and assuming a temporal scale separation, for
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FIG. 5. Flaming localized states in a magnetic wire forced with
a transversal oscillatory magnetic field. (a) Arrow representation
of a bound state composed of a flaming 2π kink and a flaming
2π antikink at a given time. (b) Cartesian components of the
magnetization for three particlelike states with different widths. For
every magnetization component, the magnetization profile is shown
above the corresponding spatiotemporal diagram. The horizontal line
in the diagram shows the instant when the profiles were obtained. For
this figure, we used the same parameters as in Fig. 1.

systems with inertia upon the extended Poincaré section, the
dynamics between the kink could be described by

�̈ + μ�̇ = −a�e∓λ� sin

(
2π�

σ
+ ϕo

)
, (3)

where the phenomenological coefficients {a,ϕo,�} are nu-
merically computed. The dynamics of the kink interaction
satisfies a Newton-type equation with a force that decays
exponentially with distance and alternates between positive
and negative values. Hence, the system has a family of
steady states of the form �n = (πn − ϕo)/σ for large enough
n = {1,2, . . . }, which alternate between node and saddle
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equilibria. Figure 4(d) illustrates in its lower panels three
stable localized structures with different sizes. To confirm
the dynamics predicted by the previous phenomenological
model, Eq. (3), we have reconstructed the phase space for
the flaming kink interaction by numerically measuring the
evolution of the position �(t) and the rate of change �̇(t)
of a pair of kinks. Figure 4(d) shows the phase space of the
flaming 2π kink position and its stationary localized flaming
states, respectively. This phase space presents a quite good
agreement with the phenomenological model Eq. (3). Then
the results extracted from the extended Poincaré section are
consistent.

We can infer that the interaction between flaming kinks
is mediated by the evanescent waves, which permits the
generation of bound states (cf. Fig. 4). To verify the
robustness of this property, we have conducted numerical
simulations of magnetic wire forced with a transversal
oscillatory magnetic field. Figure 5 shows three of the flaming
localized states obtained for the same parameters used in
Fig. 1. Those figures were obtained using the following type
of initial condition: m = cos[φk(z − zk) + φak(z − zak)]ex +
sin[φk(z − zk) + φak(z − zak)]ey , where {φk(z − zak),φak(z −
zak)} are, respectively, the flaming 2π kink and the flaming
2π antikink solution of sine-Gordon, and the coordinates
{zk,zak} stand for the positions of the flaming kinks. These
numerical simulations show that the family of localized states
formed by the flaming kinks are a common phenomenon of
parametric systems that exhibit kinks. Note that for small
bound states there is a standing wave connecting the kink
positions [see Fig. 5(c)]. However, as the width of the flaming
localized states becomes larger, a standing wave is observed
in the center only, while propagative waves are observed
near kink positions. This structure is a direct consequence
of the evanescent nature of the waves emitted by the
flaming kinks.

V. CONCLUSIONS AND REMARKS

We have studied dissipative kinks with an oscillatory cloak
and a family of flaming localized states that connect uniform
symmetrical states in a magnetic wire forced with a transversal
oscillatory magnetic field and in a parametrically driven
damped pendula chain. We have termed these particlelike
solutions “flaming kinks.” The oscillatory cloak is composed
of evanescent waves from the kink position and is generated
by a resonant mechanism between the frequency of parametric
forcing and the natural frequency of the extended oscillator.
These evanescent waves mediate the kink interaction and
generate a family of localized states. Using an extended
Poincaré section and numerical simulations, we have inferred
the flaming kink interaction. Numerical simulations of a
magnetic wire forced with a transversal oscillatory magnetic
field and a parametrically driven damped pendula chain show
quite fair agreement with our findings.

We have characterized the parameter space for a parametri-
cally driven damped pendula chain where the flaming 2π kinks
are observed. However, elucidating the mechanisms by which
these flaming 2π kinks disappear is in progress. Localized
particles in two dimensions with evanescent waves have been
observed in droplets on a vertically driven fluid [22]. The
dynamics of these two-dimensional particles is similar to those
seen in the flaming kinks. Study in this direction is in progress.
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Appendix B

Flaming kink-antikink interaction in
parametrically driven systems

In this appendix we derive in detail the flaming kink-antikink interaction law analytically,
using the driven and damped φ4 scalar field equation.
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Abstract. Particle-like solutions are of great importance to explain complex dynamics in
several physical systems. Of particular interest are the so-called kink solutions, characterized
by connecting two symmetric states. Recently a new type of kink solutions was reported, the
flaming kinks, which are solutions of the sine-Gordon and φ4 model equations under dissipation
and parametric oscillatory forcing. They are characterized by the emission of evanescent waves
from the center position in two counterparts directions. Besides, their interaction allows the
formation of stable localized structures. In this work the flaming kink-antikink interaction
is studied both numerically and analytically, characterizing the dynamics of the distance of
separation between the kinks. Numerical simulations show fair agreement with our theoretical
findings.

1. Introduction
The sine-Gordon equation has attracted attention in many fields of physics due to its modeling
of, e.g., dislocations in crystals, domain walls in ferromagnets, flux in Josephson transmission
lines, among others [1–4]. One of the interesting properties of this equation is the presence of
kink soliton solutions [1]. These solutions are particle-like states for classical field equations,
that is, they are solutions that can be characterized by a finite number of parameters such as
position, width, charge, and so forth.

The φ4 model equation also admits kink soliton solutions and it is often used as a prototype
model [5] for more complex configurations of the field theory, in areas like particle physics [6]
and cosmology [7, 8]. One particular interest of particle-like dynamics is the possibility to
make quantum analogies, as the kink-antikink interaction, due to its similarity with particle-
antiparticle behavior.

Both sine-Gordon and φ4 model equation admit analytical kink solutions that travel with a
constant speed [1–8]. The interaction between them shows some interesting features: the kink-
kink collision results in a change of direction in the velocity of each kink, while the kink-antikink
collision is perfectly permeable, since they pass through each other [9, 10].

The above scenario changes drastically in presence of dissipation and oscillatory parametric
forcing [11], i.e., when a parameter of the system is modulated in time [12]. Firstly, as it is
expected, the speed drops to zero because of the damping. Besides, because of the parametric
forcing, evanescent waves appear from the center position of the kinks, moving in opposite
directions. To illustrate this phenomenon, let us consider a simple mechanical model of a
parametrically driven and damped chain of pendulums connected by linear springs to their first



neighbors. In the conservative continuous limit the dynamics of the vertical deviation angle of the
chain of pendulums is described by the sine-Gordon equation [13]. The kink solutions in this case
correspond to a localized rotation of pendulums in 2π, since the system has multi stability due
to the degeneracy of the angle. Moreover, the pendulums interaction with air causes dissipation
and the parametric forcing considered corresponds to a vertical synchronized oscillation of the
chain support, at a certain frequency and amplitude. The corresponding equation of this system
writes [14]

∂ttθ = −(ω2
0 + γ sinωt) sin θ − µ∂tθ + κ2∂xxθ, (1)

where θ(x, t) accounts for the vertical deviation in position x and time t, ω0 is the natural
frequency of a single pendulum, γ ≡ aω2/l where a and ω account for the amplitude and
forcing frequency, respectively. Besides, l is the length of every pendulum, µ account for the
dissipation and κ is the coupling constant of springs. Figure 1 shows the solution obtained from
the numerical integration, clearly revealing the presence of traveling waves in opposite directions
from the kink center position. All numerical simulations of this work have been performed with
the fourth-order Runge-Kutta method with Neumann boundary conditions (∂xθ = 0 at the
borders).
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Figure 1. Flaming kinks of a chain of coupled pendulums, under dissipation and parametric
forcing, obtained from numerical integration of Eq. (1) with ω0 = 1.0, γ = 0.3, ω = 1.4, µ =
0.1, κ = 1.0, dx = 0.5 and dt = 0.1. (a) Schematic representation of a flaming kink. (b)
Spatiotemporal evolution. (c) Spatial profile of the solution at a certain instant marked with a
dashed line in (b). (d) Phase space as a function of frequency and amplitude of the forcing with
µ = 0.1. The green zone accounts for the region where flaming kinks are observed.

In a recent previous work [15], these solutions have been named as flaming kinks, since
the propagation of waves resembles a hopping pattern behavior observed in combustion under
controlled conditions [16, 17]. Additionally, it has been demonstrated that the amplitude of
the traveling waves is maximum when the frequency of the forcing coincides with the natural
frequency, and that the system evolves periodically to the same state at a time 2π/ω. This
implies that this phenomenon has a resonant nature. Furthermore, it has been established the
region of parameters where these solutions exist as it is illustrated in phases space of Fig. 1(d),
obtained numerically by means of looking for the persistence of the flaming kink solutions. The
1 : 1 and 1 : 2 tongues specify the region where the solution θ = 0 is unstable. This stability
chart is known as the Ince-Strutt diagram [18].



The flaming kinks are a robust phenomenon, that is, they can be observed in different contexts
such as the φ4 model equation under the same kinds of dissipation and parametric forcing. This
equation writes

∂ttφ = (εφ− φ3)(1− γ sinωt)− µ∂tφ+ ∂xxφ, (2)

where φ(x, t) is a scalar field and ε is a parameter which controls the size of the kink.

1.1. Localized structures
Let us first show some properties of the flaming kink-antikink interaction which allows the
formation of a family of localized structures.
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Figure 2. Flaming localized structures of a chain of coupled pendulums, under dissipation and
parametric forcing, obtained from numerical integration of Eq. (1) with the same parameters
as in Figure 1. (a) Schematic representation of the solution. (b) Spatiotemporal evolution.
(c) Spatial profile of the solution at a certain instant marked with a dashed line in (b). The
parameters ∆ and δ account for the width and position of the localized structure, respectively.
(d) Phase space {∆, ∆̇} of the localized structures. The lower panels show the respective profiles
of equilibrium widths.

Since the flaming kinks are characterized by the emission of waves, their interaction is
governed by the superposition of contributions from the oscillatory tails. As a consequence,
numerical simulations show the presence of stationary waves between a flaming kink and a
flaming antikink [15]. In Fig. 2 it is shown a typical profile of these flaming localized structures
in the chain of coupled pendulums obtained through numerical integration of Eq. (1). As the
spatiotemporal diagram illustrates, there are stationary waves between the kinks.

Moreover, it has been observed that the distance of separation between the kinks is stable.
However, the most interesting fact of these structures is shown in the phase space in Fig. 2(d).
It reveals the presence of equilibrium widths, with a length determined by a integer number of
the stationary waves formed. It also shows how the width evolves under a perturbation, with
the possibility to reach a new equilibrium. A detailed study of this behavior has not been done.

The aim of this article is to study numerically and analytically in detail the interaction
between a flaming kink and a flaming antikink. To carry out this study we will perform a
time-scale analysis in the dissipative φ4 equation under parametric forcing to derive a time



independent equation. From this equation we will study the interaction law of these kinks, i.e.
the dynamics of the position and distance of separation, by performing a perturbative analysis.

2. Time-scale separation in dissipative φ4 model under parametric forcing
Since the flaming kink-antikink interaction evolves slower compared to the dynamics of the
waves, which is of the order of the period of the forcing, it is expected that at certain limit the
system exhibits a separation of scales in time. Then, following a similar strategy proposed by
Kapitza [19], we propose that the flaming kink solutions in Eq. (2) can be written as

φ(x, t) = u(x, t) + ξ(x, t), (3)

where u accounts for the average shape of the flaming kink solution and ξ for the traveling
waves, such that

u(x, t)� ξ(x, t),

due to the smallness of the waves compared to the kink. Furthermore, we will impose that

∂ttu(x, t)� ∂ttξ(x, t),

to take into account the different time-scales. Replacing (3) in (2) and linearizing in ξ we obtain

∂ttu+ ∂ttξ =
(
εu− u3 + ξ(ε− 3u2)

)
(1− γ sinωt)

− µ(∂tu+ ∂tξ) + ∂xxu+ ∂xxξ.
(4)

Considering the limit when µ� ω the dominant terms of this equation are

∂ttξ = −(εu− u3)γ sinωt+ ∂xxξ, (5)

because gamma accounts for the acceleration of the support bar of the chain of pendulums,
i.e. γ ∝ ω2. Since ξ is a fast time-scale variable, the spatial derivatives can be put out of the
integration. Using the Laplace method [20] for the time integration, we obtain

ξ ≈ (εu− u3)
γ

ω2
sinωt+ ϕ, (6)

where ϕ is a correction that accounts for the spatial dependence of ξ spatial derivative. Thus,
replacing (6) in (5) we derive

∂ttϕ = −∂xx(εu− u3)γ sinωt+ ∂xxϕ,

and integrating in time again as before, we get

ϕ ≈ −∂xx(εu− u3)
γ

ω4
sinωt+ ψ,

with ψ also a correction.
If we repeat the same procedure and after some straightforward calculations we can derive

the following approximation for ξ

ξ =
γ

ω2
sinωtF(εu− u3),

where the operator F is defined as

F =

(
1− 1

ω2
∂xx +

1

ω4
∂xxxx

)
.



Since the variable ξ takes into consideration the propagation of waves, which are periodic in
time, it is expected that its temporal average over one or few periods vanish. Moreover, the
variable u does not change significantly in this scale and can be considered unaffected by taking
the temporal average. Then, defining the temporal average as

〈f(t)〉 =
ω

2π

∫ 2π/ω

0
f(t)dt,

over one period 2π/ω and applying it in (4) results in

∂ttu = (εu− u3)− γ(ε− 3u2)〈ξ sinωt〉 − µ∂tu+ ∂xxu, (7)

and because 〈sin2 ωt〉 = 1/2, it is straightforward that this equation becomes

∂ttu =

(
1− γ2

2ω2
(ε− 3u2)F

)
(εu− u3)− µ∂tu+ ∂xxu, (8)

which is an effective equation of the slow variable u. Since it contains fourth-order derivatives
in space, it ensures the presence of damped waves. Notice that this equation does not depend
on time explicitly. Also note that the terms contained in F become smaller as ω grows. Hence,
the scaling method allow us to obtain an effective time independent equation. In Fig. 3 it is
shown the spatial profile of a stationary solution of this equation, illustrating the presence of
evanescent waves.
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Figure 3. (a) Profile of the stationary flaming kink solution of equation (8). The dashed
rectangle corresponds to a zoom showed in (b). (b) Stationary evanescent waves present in the
kink solution.

3. Flaming kink-antikink interaction
3.1. Asymptotic approximations
The analytical kink solution of the stationary φ4 model equation is [8]

φk(x) =
√
ε tanh

(√
ε

2
(x− x0)

)
(9)

where x0 is the center position. The width of this kink is defined as
√

2
ε . Its spatial profile is

shown in Fig. 4(a).



Performing a Taylor expansion it is straightforward that at dominant order is fulfilled that

lim
x→x1�x0

φk(x)−√ε = −2
√
ε e−2

√
ε
2

(x1−x0),

i.e., the solutions decays exponentially far away from the center position.
However, to take into account the evanescent waves of solutions of Eq. (8), we propose the

following limit

lim
x→x1�x0

uk(x)−√ε = −2
√
ε e−2

√
ε
2

(x1−x0) cos (κ(x1 − x0) + δ0) , (10)

where κ and δ0 can be computed numerically.
The same analysis can be applied to the antikink solution, after a change of sign since

φk = −φak.
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Figure 4. (a) Profile of the analytical kink solution of the φ4 equation expressed in Eq. (9).
(b) Profile of the ansatz uloc proposed in Eq. (11). The position and width are labeled as δ and
∆, respectively.

3.2. Interaction dynamics
Now let us propose the following ansatz for the localized structures [21]

uloc(x, t) = uk(x− x−(t)) + uak(x− x+(t))−√ε+W (x, x+, x−), (11)

where x−(t) and x+(t) are the central positions of the kinks. We define

∆(t) ≡ x+(t)− x−(t)

as the width of the localized structure, which is promoted as a function of time. It will be
assumed that the kinks are very far apart, implying that ∆ will be much larger than the kink
width. On the other hand, the function W accounts for the effect of the parametric forcing,
which we assume small, and the deformation of the kink as result of the presence of the other
one. In addition, it will be assumed that the kinks travel slowly, implying that the temporal
derivatives of x−(t) and x+(t) are small compared with the speed of propagation of waves. The
spatial profile of this ansatz at a certain instant is illustrated in Fig. 4 (b).

In order to take into account all these considerations, the non linear terms in W will be
neglected, as well as the terms proportional to the product of W with ẋ− or ẋ+.



Let us define the following interaction variables to simplify our calculations

δ(t) =
x−(t) + x−(t)

2
,

z±(t) = x− x±(t).

Notice that δ is the central position of the localized structures.
Therefore, introducing the ansatz (11) into Eq. (2), after linearizing in W and performing

straightforward calculations we obtain
LW = b,

with the linear operator

L = ε− 3v2 + ∂xx +
γ2

2ω2

[
6vF(εv − v3)− (ε− 3v2)F(ε− 3v2)

]
,

where
v = uk + uak −

√
ε.

On the other hand,

b =
1

2

(
∆̈ + µ∆̇

)
(∂z−uk − ∂z+uak)−

(
δ̈ + µδ̇

)
(∂z−uk + ∂z+uak)

+

(
δ̇2 +

∆̇2

4

)
(∂z−z−uk + ∂z+z+uak)− δ̇∆̇(∂z−z−uk − ∂z+z+uak)

−
(

1− γ2

2ω2
F
)(

3uk(uak −
√
ε)2 + 3u2

k(uak −
√
ε)− 3

√
εuak(uak −

√
ε)
)
.

(12)

Defining the following inner product

〈f |g〉 =

∫ +∞

−∞
fg dx,

we can see that the operator L is self-adjoint, i.e., L† = L, where L† is the adjoint operator.
To derive the equations for δ and ∆ we can apply the Fredholm solvability condition to

this linear system. This condition establishes that the system has solution if the inner product
between the elements of the Kernel of L†, the eigenvectors that satisfy 〈v| L† = 0, with b is zero,
i.e, 〈v|b〉 = 0 [22]. Nevertheless, given the fact that L† is not suitable to perform analytical
calculations it is necessary to make some simplifications. Let us propose the followings pseudo-
eigenvectors [23]

τ = ∂z−uk + ∂z+uak, (13)

χ = ∂z−uk − ∂z+uak, (14)

meaning that both products 〈τ | L† and 〈χ| L† are exponentially close to zero. To show this
notice that since uk satisfy the stationary Eq. (7), its spatial derivatives fulfil

0 =

[
ε− 3u2

k + ∂xx +
γ2

2ω2
6ukF(εuk − u3

k)− (ε− 3u2
k)F(ε− 3u2

k)

]
∂z−uk.

The terms that remain when we apply L† to ∂z−uk are proportional to uk(uak −
√
ε)∂z−uk,

which in the limit of large ∆ is very close to zero according to (10). Similarly, applying the
same analysis to uak, it is straightforward that the remaining terms of L† applied to ∂z+uak are
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Figure 5. Profile of translation and interaction modes τ and χ defined in Eqs. (13) and (14).
We have used ε = 0.5 and µ = 0.1.

also small. Then, applying L† to τ and χ result in a exponentially small number and can be
considered as pseudo-eigenvectors. They will be named as translation and interaction modes,
respectively. Their spatial profile is showed in Fig. 5.

Using that τ and χ are pseudo-eigenvectors, we can now apply the Fredholm solvability
condition. Thus, we impose that

〈τ |b〉 = 0, (15)

and
〈χ|b〉 = 0. (16)

Performing numerical integration of the inner product 〈τ |b〉 using formula (12), we observe

that the term proportional to the expression
(
δ̈ + µδ̇

)
is the only relevant in b and that the

other can be neglected. In fact, setting ε = 1, x− = −100 and x+ = 100, the inner product of τ
with this term is more than 1010 larger than the others terms in b. Therefore, from (15) we can
conclude that

δ̈ + µδ̇ = 0,

which means that the central position of the localized structures tends to a constant value. This
behavior is expected since the system must keep its spatial symmetry.

On the other hand, applying the same analysis to the inner product 〈χ|b〉, we observe that
the relevant terms are

1

2

(
∆̈ + µ∆̇

)
〈χ|χ〉 −

〈
χ
∣∣3uk(uak −

√
ε)2 + 3u2

k(uak −
√
ε)− 3

√
εuak(uak −

√
ε)
〉

= 0, (17)

which can be approximated analytically. Let us first consider the fact that

3uk(uak −
√
ε)2 + 3u2

k(uak −
√
ε)− 3

√
εuak(uak −

√
ε) =

3uak(uk −
√
ε)2 + 3u2

ak(uk −
√
ε)− 3

√
εuk(uk −

√
ε).

Then, the second inner product of (17) can be written as

〈
∂z−uk

∣∣3uk(uak −
√
ε)2 + 3u2

k(uak −
√
ε)− 3

√
εuak(uak −

√
ε)
〉

−
〈
∂z+uak

∣∣3uak(uk −
√
ε)2 + 3u2

ak(uk −
√
ε)− 3

√
εuk(uk −

√
ε)
〉
.



Here, the dominant inner products are

−
〈
∂z−uk

∣∣3√εuak(uak −
√
ε)
〉

+
〈
∂z+uak

∣∣3√εuk(uk −
√
ε)
〉
. (18)

Let us expand the second of these inner products using the change of variables y = x− x+ and
∆ = x+ − x−. We obtain

〈
∂z+uak

∣∣3√εuk(uk −
√
ε)
〉

= 3
√
ε

∫ +∞

−∞
∂z+uak(y) uk(y + ∆) (uk(y + ∆)−√ε)dy.

The integrand of this expression is zero in the whole integration region, except where y is close
to zero. Given the fact that we are considering ∆ very large, we can use the approximation (10)
to write

〈
∂z+uak

∣∣3√εuk(uk −
√
ε)
〉
≈ 3
√
ε

∫ +∞

−∞
∂z+uak(y)

√
ε (−2

√
ε) e−2

√
ε
2

(y+∆) cos (κ∆ + δ0) dy

= 6ε
√
ε e−2

√
ε
2

∆ cos (κ∆ + δ0) Iak,

where Iak = −
∫ +∞
−∞ ∂z+uak(y)e−2

√
ε
2
ydy. Performing the same analysis to the first inner product

in (18) we obtain

〈
∂z−uk

∣∣3√εuak(uak −
√
ε)
〉
≈ −6ε

√
ε e−2

√
ε
2

∆ cos (κ∆ + δ0) Ik,

where Ik =
∫ +∞
−∞ ∂z−uk(y)e−2

√
ε
2
ydy. It is easy to see that Iak = Ik and that they are positive.

These integrals will be labeled simply as I.
Finally, replacing in (17) it is obtained the kink-antikink interaction law

∆̈ + µ∆̇ = −24
I

〈χ|χ〉ε
√
ε e−2

√
ε
2

∆ cos (κ∆ + δ0) ,

which has the form a Newton-type equation with dissipation and a force that decays
exponentially with the distance, alternating between positive and negative values. Notice that

it predicts the existence of equilibriums of the form ∆n = (2n+1)π/2−δ0
κ , as showed in the zeros

of Fig. 2(d). Moreover, it predicts how the width evolves to an equilibrium, performing spirals
in the phase space. This means that the width oscillates around an equilibrium before reaching
it. Also, the equation predicts that under a larger perturbation these is a possibility to reach a
new equilibrium, with a larger width.

4. Conclusions
In this work, the flaming kink-antikink interaction was studied analytically and numerically by
means of applying perturbative theory to an effective time independent equation in a particular
limit, when the frequency of the forcing is large. The findings showed good agreement with
numerical results. Although the calculations were derived in the large frequency limit, they can
predict the general behavior observed numerically.
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Appendix C

Pattern formation mediated by repulsive
interaction between localized structures

In this appendix we include our results of formation of stable lattices, composed by localized
structures surrounded by bare soil.
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Non-equilibrium processes often lead to the formation of spatial periodic structures developed
from a homogeneous state through the spontaneous breaking of symmetries. Based on the differ-
ence in transport or coupling processes in chemical reactions, Turing established the first mechanism
of pattern formation. Here, we show that the pattern formation process conducted by repulsive lo-
calized vegetation patches produces pattern formation. The observed patterns unlike those predicted
by the Turing mechanism do not have an intrinsic length. The characteristic length and type of
the pattern depend on the number of the initial localized states. Pair interaction law of localized
patches allows us to understand all these behaviors.

PACS numbers: 75.78.-n, 89.75.-k, 05.45.-a

Macroscopic systems maintained out of equilibrium, under the influence of injection and dissipation of energy and
momenta, are characterized by exhibiting self-structuring phenomena [1–5]. This phenomenon is characterized by the
formation of spatial periodic structures, patterns. In the course of the last decades, much effort has been devoted
to the study of pattern formation or dissipative structures arising in natural sciences (see the textbooks [5, 6] and
the references therein). In many physical systems, these structures emerge as a spatial instability of a uniform state
when a control parameter is changed and surpasses a critical value, which usually corresponds to a force imbalance
or transport optimization of energy, momenta and/or particles. Indeed, these bifurcations correspond to spontaneous
symmetry breaking [1–4]. The first mechanism proposed to understand the pattern formation is based on the difference
in transport or coupling processes in chemical reactions, known as Turing instability [7]. The patterns based on this
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Figure 1. (color online) Localized vegetation patches. (a) snapshot of a typical tussocks of Festuca orthohylla in the north of
Chile (courtesy of Luis Faúndez Yancas, Universidad de Chile). (b) Satellite images of localized vegetation patches in Zambia
[15]. (c) A numerical localized vegetation patch of the interaction-redistribution model Eq. (1). (d) Bifurcation diagram,
showing homogeneous states of model Eq. (1). Full (dotted) lines represent stable (unstable) states. The localized structures
can be found for aridities between ηI and ηII .

mechanism are characterized by having an intrinsic wavelength that does not depend on the edge conditions and
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system size. The origin of this intrinsic length is due to the different transport or coupling processes. This mechanism
has been applied from biology to optics, passing through chemistry and physics [4–6, 8]. Likewise, macroscopic systems
under the influence of injection and dissipation of energy, often lead to the formation of localized spatial structures
[9–11]. Localized structures in dissipative media have been observed in various fields of nonlinear science such as fluid
dynamics, optics, laser physics, chemistry, and plant ecology. Localized structures consist of isolated or randomly
distributed spots surrounded by regions in the uniform state. Their main feature is to allow the confinement of energy,
chemical concentration, light or phytomass density, etc [12]. They may consist of dips embedded in the homogeneous
background. They are often called spatial solitons, dissipative solitons, localized patterns, cavity solitons, or auto-
solitons, depending on the physical contexts in which theirs were observed. Coexistence between extended states is a
prerequisite condition for localized structures formation. However, in the presence of a symmetry breaking instability,
the coexistence between a single uniform solution and a patterned state allows for the stabilization of localized state
[9–11].

Although localized states are spatially extended, they exhibit properties typically associated with particles. Con-
sequently, one can characterize them with a family of continuous parameters such as position, amplitude, and width.
A characteristic property of particle-like solutions is that their interaction can be described simply in terms of contin-
uous parameters describing the localized states. Usually, the interaction of localized structures in two dimensions is
attractive or alternates between repulsive and attractive [13, 14]. In the latter case, the system can display bounded
states.

The aim of this letter is to show that the pattern formation process conducted by repulsive localized vegetation
patches produces pattern formation. Based on an interaction-redistribution local model for vegetation, we show that
localized vegetation patches are repulsive. Using an asymptotic method, we characterize the repulsive pair interaction
law of localized patches. This type of interaction allows us to infer the possibility of inducing patterns. The observed
patterns, unlike those predicted by the Turing mechanism, do not have an intrinsic length. The characteristic length
and type of the pattern depend on the number, initial and boundary conditions of the localized states. Numerically,
we observe hexagonal, square, and superlattice patterns when the density of localized patches is decreasing.
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Figure 2. (color online) Localized patches of the interaction-redistribution model Eq. (1) with κ = 0.6, ∆ = 0.02, Γ = 0.5, and
α = 0.125. Top panels account for tridimensional and profile representation of localized patches for η = 0.12. The parameters
h and w stand for the high and the waist of the localized patch, respectively. Bottom panels present the variation of the high
and the waist of the localized patch as function of aridity.

Theoretical description.- Pattern formation in vegetated environments has attracted the interest of the community
in the last decades [16, 17]. The competition for resources, such as water and nutrients can lead to spatial self-
organization. Several models describing vegetation patterns and self-organization in arid and semiarid landscapes
have been proposed. They can be classified into three types: interaction-redistribution models that are based on the
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relationship between the structure of individual plants and the facilitation-competition interactions existing within
plant communities [18–22], reaction-diffusion type of models that take into account the influence of water transport
by below ground diffusion and/or above ground run-off [17, 23–25], and stochastic models focuses on the role of
environmental randomness as a source of noise-induced symmetry breaking transitions [26]. Considering the first of the
description strategies, for the idealized situation of a strictly isotropic and homogeneous environment, the phytomass
density ρ(r, t) evolves according to the dimensionless kinetic equation (the interaction-redistribution model) [27, 28]

∂tρ = ρ(η + κρ− ρ2) + (∆− Γρ)∇2ρ− αρ∇4ρ (1)

where η accounts for the aridity, κ stands for the difference between the interaction strengths associated with the
competitive and facilitative process, susceptibility, ∆ is the rate at which plants diffuse, the parameters Γ and α are,
respectively, the nonlinear diffusion coefficients. Γ and α are determined by the difference of the second moments of
competition and facilitation kernel of vegetation coupling and the fourth moment of the competition kernel [27].

Depending on aridity, model (1) may exhibit monostability or bistability of uniform solutions. For large aridity
the only homogeneous state is non-vegetation or bare state (ρ = 0). When the aridity is decreasing the bare state
exhibits a subcritical bifurcation, given rise the emergence of a vegetation uniform states ρv ≡ (κ +

√
κ2 − 4η)/2.

This vegetation state extends up to the limit point ρcv = κ/2 and ηsn = κ2/4. At this point, the system has a saddle-
node bifurcation. Figure 1 shows the typical bifurcation diagram of model (1). The vegetation state undergoes a
spatial instability characterized by a wavelength λ = 2π

√
2α/

√
Γ−∆/ρL, where ρL is solution of the cubic equation

4αρ2
L(2ρL − κ) = (ΓρL − ∆)2. Hence, model Eq. (1) has coexistence between the bare and periodic state. This

coexistence is a prerequisite condition to observe localized structure states [9–11]. These states correspond to localized
patches of vegetation. Figure 1 illustrates a typical localized patches observed in model Eq. (1) and in nature. These
localized states are observed in the shadow region in the bifurcation diagram between ηI < η < ηII (cf. Fig. 1).
These solutions appear by saddle-node bifurcation at η = ηII and disappear by curvature instability at η = ηI [29].
There is not an analytical characterization of the localized patches. Figure 2 shows a numerical characterization of
the high and the waist of localized patches as function of the aridity parameter. From this figure, we can infer that
when aridity is increasing the phytomass of a localized patch decreases.
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Figure 3. (color online) Interaction of two localized patches of the interaction-redistribution model Eq. (1) with η = 0.12,
κ = 0.6, ∆ = 0.02, Γ = 0.5, and α = 0.125. (a) Two localized patches separates by a R0 distances. (b) Temporal evolution
of the distance between localized patches R0(t), points and solid line account for numerical evolution of model eq. (1) and
analytical temporal evolution using Eq. (4). (c) Profile of interacting localized patches. (d) and (e) profile of the translation
and the interaction mode of L†.

Interaction of localized patches.- Field observations show a rich self-organization of vegetation mediated by localized
patches as is illustrated in Fig. 1. To figure out this complex dynamics is indispensable to grasp the interaction between
a pair of localized patches. Figure 3 depicts the repulsive interaction of two localized patches. Indeed, to optimize
the scare resource localized patches segregate one state to the other one. Let’s consider the following ansatz to pair
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interaction dynamics [13, 14]

ρ(~r, t) = ρ−
(
~r +

R0(t)

2
r̂

)
+ ρ+

(
~r − R0

2
r̂

)
+W, (2)

where ρ±(~r∓R0/2r̂) is a localized patch of vegetation places at ±R0/2r̂, ~r = rr̂ accounts to spatial coordinates with
origin at the left localized patch, r̂ and R0(t) are, respectively, the unitary vector in the direction and the distance
between localized patches, and W (~r,R0(t)) is a small correction function. Introducing the above ansatz in Eq. (1),
linearizing in W and after straight forward calculations, one gets

LW=
Ṙ0

2
(∂rρ

− − ∂rρ+)− 2κρ+ρ− + 3ρ+ρ−ρ̄+

Γ(ρ+∂rρ
− + ρ−∂rρ

+) + α(ρ+∂rρ
− + ρ−∂rρ

+), (3)

where the linear operator L ≡ η + 2κρ̄ − 3ρ̄2 + ∆∂rr − Γ(ρ̄∂2
r + ∂2

r ρ̄) − α(ρ̄∂4
r + ∂4

r ρ̄) and ρ̄ ≡ ρ−LP + ρ+
LP . To solve

the above linear equation, we consider that the localized patches are separate enough (R0/w � 1 and w is the
localized patch waist) and the tail of localized patches can be approach by a modified Bessel function of second kind,
ρ±(|r| → ∞) → K0(r) = e

√
η/∆r/

√
r. Introducing, the inner product 〈f |g〉 =

´

fgdr, the linear operator L is not
self-adjoint (L 6= L†). Numerically, we have characterized the two kernel elements of L†, which are related to the
translation (|τ〉) and the interaction mode (|ι〉). Figure 3 shows these modes. Applying solvability condition in the
linear Eq. (3) with respect to interaction mode [30] and at dominate order we obtain (pair interaction law)

Ṙ0 = A
e−
√
η/∆R0

√
R0

, (4)

where A is a positive constant determined by numerical integration. Therefore, the pair interaction law of localized
patches is isotropic, of repulsive nature, and decaes exponentially with the distance of localized states. Indeed, the
interaction is of short range type.
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Figure 4. (color online) Localized patches lattice of the interaction-redistribution model Eq (1) with periodic boundary condi-
tions, κ = 0.6, ∆ = 0.02, Γ = 0.5, and α = 0.125 and different quantity of vegetation localized patches 96 (a), 72 (b), 48 (c),
and 32 (d).
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Self-assembling of localized patches.- From pair interaction law, we can describe the dynamics of several vegetation
localized patches. As a matter of fact, due to the exponential decay of interaction, the dynamics of localized patches
is ruled by nearest localized patch neighbors. From this dynamics, one expects as equilibrium a regular pattern or
lattice. When the density of localized patches is high, we observe as equilibrium hexagonal pattern (cf. Fig. 4a).
This type of pattern is expected because it corresponds to close packing of isotropic particles. However, when
the density of localized patches is decreased, the equilibrium state changes to other lattices type. Figure 4 shows
hexagonal, square, and two superlattice dissipative structures obtained numerically from the interaction-redistribution
model Eq (1) changing the density of localized patches. Hence, the pattern formation is mediated by the localized
structure interaction. At variance of Turing patterns, the observed lattice of vegetation localized patches does not
have an intrinsic wavelength. The characteristic wavelength depends on the localized patches density and the initial
conditions. Namely, when one deletes or adds a localized state the characteristic wavelength adapts to a novel value.
To emphasize this mechanism of pattern formation, we have conducted numerical simulations of the interaction-
redistribution model (1) in one-dimension with periodic boundary conditions, in the region of parameters where
localized states are observed. Analogously to the previous analysis, one can calculate and characterize the pair
interaction law of localized structures. In this case, the interaction is of repulsive nature and is characterized by
decaying exponentially with the distance between localized states. Figure 5 illustrates the pattern formation process
mediated by localized structures interaction. Numerically, we observe that from a set of disorder initially localized
structures (see top profile Fig. 5a) begin to repel until the system finds a pattern state as equilibrium (see bottom
profile Fig. 5a). The wavelength of this pattern is the system size L divided by the number of localized structure
N (λN ≡ L/N = 85/6). Subsequently, a localized structure is eliminated and the system evolves to its novel
equilibrium with wavelength λN = 85/5 (cf. Fig. 5b). This process is repeated once again and the system finds
another periodic structure with λN = 85/4. It is important to note that a similar dynamical behavior observed with
Neumann boundary conditions. Therefore, the observed pattern does not have a characteristic wavelength. Indeed,
the wavelength is determined by the initial conditions as is illustrated by Fig. 5.
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Figure 5. (color online) Pattern formation process mediated by localized structures, obtained from one-dimension interaction-
redistribution model with periodic boundary conditions. Spatiotemporal evolution with different initial conditions (top profile)
and the final states are represented in the bottom profiles.

In conclusions, we have shown that the pattern formation process conducted by repulsive localized vegetation
patches produces pattern formation. The patterns, unlike those predicted by the Turing mechanism, do not have
an intrinsic length. The characteristic length and type of the pattern depend on the number, initial and boundary
conditions of the localized states. Numerically, we observe hexagonal, square, and superlattice patterns when the
density of localized patches is decreasing.

M. G. C. thanks for the financial support of FONDECYT projects 1150507. E. B-C thanks the financial support
of CONICYT though Becas Magister Nacional 2015, Contract nº 22151824.
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Appendix D

Harnessing diffraction grating in an
in-plane switching cell submitted to
zigzag lattice

In this appendix we include our results of an experiment consisting in applying a laser beam
to an in-plane switching liquid crystal cell, submitted to a generator.
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Programmable diffraction gratings are relevant in optical data processing. One of the adequate device candidates
is the in-plane switching liquid crystal cell. This technology, developed initially for liquid crystal screens, has also
been studied with two inter-digital electrodes as a diffraction grating. Recently, the apparition of programmable
zigzag wall lattices in an in-plane switching configuration has been reported. Here, we report a theoretical and
experimental study of programmable diffraction grating in an in-plane switching cell. © 2016 Optical Society of

America
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1. INTRODUCTION

In-plane-switching (IPS) technology was developed initially for
liquid crystal displays (LCD) to solve the twisted nematic (TN)
field limitations. Since its introduction in 1996 [1,2], this tech-
nology has allowed for the improvement of screen qualities,
especially color contrast and vision angles [3]. Moreover, IPS
technology was also used as inter-digital electrodes, combined
with liquid crystals, for switchable optical diffraction. A lot of
liquid crystal phase grating designs have been reported that use
this electrode configuration [4–7]. Their applications range
from optical data processing and beam steering [8] to optical
communication networking devices [9], which emphasize the
relevance to controlling and understanding the different mech-
anisms existing in this kind of diffraction grating. Some works
have studied the high voltage impact on the diffracted grating
[10] or tested a new configuration with carbon nanotubes [11].
Latterly, the apparition of zigzag lattice in an IPS cell filled with
nematic liquid crystal beyond a certain voltage threshold has
been reported [12]. Recently, we have studied in detail, theo-
retically and experimentally, the zigzag instability of a wall lat-
tice in a nematic liquid crystal with an IPS configuration [13].
We have also evidenced the importance of the liquid crystal
molecule anchoring on their own dynamics when they are sub-
mitted to an external electrical forcing [14,15].

The aim of this paper is to investigate the zigzag wall lattice
influence on the diffraction grating. We study an IPS cell used
without liquid crystal. We confirm the diffractive nature of the
empty cell, which works as diffraction grating with a low con-
trast. This property changes when we consider this cell filled
with a nematic liquid crystal subjected to a given voltage.

We propose an analytical model to reproduce a zigzag lattice,
which gives us the typical x signature of the diffraction image.
Numerical simulations of a more realistic/imperfect zigzag lat-
tice, taking into account the different experimental properties,
show quite good agreement with the experimental observa-
tions. This method allows us make evident a dispersion of
the amplitude and the wavelength of the zigzag lattice inside
the sample.

2. EXPERIMENTAL SETUP

The experimental setup is depicted in Fig. 1. We use two
identical cells, one empty (without liquid) and the second
one filled with a nematic liquid crystal. We consider IPS cells
with a homogeneous planar alignment [following the x-axis, cf.
Fig. 1(a)] and a parallel rubbing to the electric field (Instec,
IPS02A89uX90). The indium tin oxide (ITO) electrode width
and the gap width are the same; ϵ � 15 μm. The height of the
electrodes is negligible (∼25 nm) compared to the cell thick-
ness (d � 8.9� 0.2 μm). The active zone is a square of side
l � 1 cm. Under these settings, we can consider the cell in a
good approximation as an infinite media. The liquid crystal cell
is composed of a layer of E7 nematic liquid crystal, which
is inserted between two glass plates (thickness g � 1.1 mm).
The elastic constants of the liquid crystal are, respectively,
K 1 � 11.2, K 2 � 6.8, and K 3 � 18.6�×10−12 N�. The par-
allel and the perpendicular dielectrical constants are ε∥ �
18.96 and ε⊥ � 5.16 [16,17]. The cell electrodes are con-
nected to a function generator. The typical parameter range
for the frequency is ∼200 mHz − 2 MHz and for the ampli-
tude ∼10 Vpp − 20 Vpp (volt peak-to-peak). We illuminate
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the cell with a vertically polarized helium–neon laser beam at
632.8 nm, as shown in Fig. 1(b). The beam is previously colli-
mated, using a telescope, in order to consider the Fraunhofer
approximation valid. The beam waist is w � 1.1 mm. The
laser power is sufficiently weak to prevent the molecular reor-
ientation, which is typically P0 � 1 mW. A linear polarizer is
placed behind the cell. We generate, on a screen, the diffraction
figure placed in the focal plane of a convergent lens. We record
the diffusive light of the diffraction figure on the screen with a
CCD monochrome camera. By replacing the screen by a power
meter, we have the possibility of recording the power value of
every diffracted order until the sixth one.

3. DIFFRACTION THEORY WITH AN EMPTY
CELL

In the literature, there are several reports about liquid crystal
phase grating based on IPS [9,10,18]. However, to the best
of our knowledge, no works study the transmission of the
empty cell. We propose a simple diffraction grating model,
which evidences the ITO electrodes as a diffraction grating.

A. One-dimensional Frauhofer Diffraction Theory
We consider the most simple model to reproduce the
Fraunhofer diffraction phenomenon with an empty IPS cell.
The cell is constituted by two parallel glass layers and two elec-
trode combs of ITO, which are stuck on one glass layer (inside
the cell), as represented in Fig. 2(a).

One can calculate the diffraction figure from the intensity
transmission function t�x� (diffraction grating) [19,20]. This
one is a crenel function, following the x axis, as represented

in Fig. 2(b). To simplify, we evaluate tmax � 1, which is
the light part that crosses only the two glass layers, and we con-
sider α as the transmission coefficient in amplitude of the light
which crosses the glass layers and the electrodes. ϵ is the elec-
trode width, and γ is the distance between two electrodes.
Hence,

t�x� �
�

1; − ϵ
2 � nγ < x < ϵ

2 � nγ
1 − α ϵ

2 � nγ < x < 3ϵ
2 � nγ: (1)

The diffraction figure is given by

I�u� � jE j2 �
����
Z

γ∕2

−γ∕2

XN
n�0

t�x − xn�e−2πiuxdx
����
2

; (2)

where N is the electrode numbers illuminated by the light
source, t�x� is the amplitude transmission function, and 2πu
is the wavenumber. After the straightforward calculations from
Eq. (2), we obtain the diffraction figure in the Fourier space.

I�u� � sin2�πuγN �
sin2�πuγ� � αγ sin c�πuγ� � �1 − α�ϵ sin c�πuϵ�� 2:

(3)

Considering the experimental electrode sizes, we have
γ � 2ϵ. We calculate the zero diffraction order from the equa-
tion above:

I�0� � N 2ϵ2�1� α�2: (4)

The other diffraction orders are given by

I�2m∕γ� � 0; (5)

and

I��2m� 1�∕γ� � 4N 2ϵ2

π2�2m� 1�2 �1 − α�
2; (6)

where m is an integer number.
The experimental procedure to determine the coefficient α

is done by measuring the different diffraction orders. Indeed,
the theoretical α determination can be distorted by other phe-
nomena, such as glass layer interferences, anchoring treatment,
inhomogeneities, and imperfection, among others.

(a)

(b)
E

fP

ε ε

l

d
g

y
z

x

x

z
y

l

Fig. 1. (a) Schematic representation of the liquid crystal IPS cell,
connected to a generator. Thickness between the two glass plates,
d � 8.8� 0.2 μm. Thickness of a glass plate, g � 1 mm. Active
zone, l × l � 1 cm2. Gap between two electrodes, ϵ � 15 μm.
(b) Sketch of the experimental setup: E⃗ , vertically polarized collimated
beam; P, vertical linear polarizer; f , focal distance of the imaging lens.
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Fig. 2. (a) Sketch of an empty IPS cell that is constituted by two
parallel glass layers and two electrode combs of ITO, and (b) the cell
intensity transmission function.
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B. Experimental Transmission Coefficient
Determination
The α value is determined experimentally by evaluating the dif-
fraction order ratio. We consider the six first diffraction orders.
The experimental values are reported in Table 1.

From Eqs. (4) and (6), we calculate the three following dif-
fraction order ratios:

I�0�
I�1∕γ�theo

� π2

4

�
1� α

1 − α

�
2

; (7)

I�1∕γ�
I�3∕γ�theo

� 9; (8)

I�1∕γ�
I�5∕γ�theo

� 25: (9)

Note that the odd diffraction orders do not depend on the
α value. The theoretical ratios from Eqs. (8) and (9) present a
good agreement with their experimental observations:

I�1∕γ�
I�3∕γ�exp

� 9.9; (10)

I�1∕γ�
I�5∕γ�exp

� 23.6: (11)

By rewriting Eq. (7), we find

α �
2

ffiffiffiffiffiffiffiffiffi
I�0�
I�1∕γ�

q
− π

2
ffiffiffiffiffiffiffiffiffi
I�0�
I�1∕γ�

q
� π

: (12)

The experimental ratio I�0�∕I�1∕γ� gives us α � 0.70.
Hence, the empty cell plays the role of a diffraction grating,
however, with a lower efficiency (low contrast). Indeed, the vis-
ibility, for the empty cell is V � 0.09.

4. DIFFRACTION THEORY WITH A LIQUID
CRYSTAL CELL

A lot of studies have evaluated the diffraction efficiency of the
one-dimensional (1D) spot pattern [9,18,21,22]. In particular,
Han has presented the diffraction efficiency, with a sample
where the zigzag instability exists [12]. We complete this char-
acterization by adding a frequency study. Figure 3 shows the
diffraction efficiency of our sample depending on the voltage
amplitude, between T � 0 Vpp and T � 100 Vpp, and the

frequency, between f � 10 Hz and f � 1 MHz. The diffrac-
tion efficiency is defined as

De � I∕I 0; (13)

where I is the order of diffracted intensity, and I 0 is the total
transmitted light. Figure 3(a) qualitatively gives the same results
as the Han evaluation, given that the liquid crystal mixture is
the same, E7, and the liquid crystal cells have a small difference
around the electrode gaps. We observe in Fig. 3(a) a strong
diffraction order modification between T � 8 Vpp and T �
30 Vpp for a fix frequency value of f � 1 kHz. For a fixed
tension amplitude value T � 20 Vpp, we also observe, in
Fig. 3(b), a strong modification of the diffraction orders
between f � 10 Hz and f � 1 kHz. This information helps
us evaluate the region of parameters, where the liquid crystal
dynamics change a lot and, consequently, its diffraction figure.

Recently, we have observed that below a voltage threshold
(amplitude or frequency), the cell filled with a liquid crystal
exhibits an Ising wall lattice which becomes a zigzag instability
[13]. To confirm these phenomena, we have used parallel po-
larizers and observe black bands (Ising wall lattice) and black
zigzags (zigzag instability). We use this configuration to gener-
ate a programmable diffraction grating.

Table 1. Experimental Intensity of the First Diffraction
Orders of an Empty In-plane Switching Cell

Diffraction Order Power Values (μW)

0 576
1 31.8
2 1.1
3 3.20
4 0.89
5 1.36
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Fig. 3. Diffraction efficiencies of the zeroth to fourth order.
(a) Voltage evolution for f � 1 kHz, and (b) frequency evolution
for T � 20 Vpp.
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A. Perfect Zigzag Lattice: Two-dimensional
Fraunhofer Diffraction Theory
In a first approximation, we assume to have a perfect two-
dimensional (2D) diffraction mask, with a periodic black zig-
zag, as represented in Fig. 4(a). The zigzag pattern presents a
constant amplitude and a constant wavelength. The lattice does
not present a phase shift between the different zigzag instabil-
ities. In this ideal case, we assume to have a visibility of V � 1,
so α � 0. θ is the angle between the y axis and the zigzag lines.
The diffraction mask, represented in Fig. 4(a), gives the follow-
ing diffraction figure in the Fourier space:

I�u;v�

�
����
Z

b∕2

−b∕2

Z
a∕2−y tan α

−a∕2−y tan α

XN
n�0

XM
m�0

t�x − xn;y − ym�e−2πi�ux�vy�dxdy
����
2

:

(14)

After straightforward calculations, we obtain

I�u;v�� sin�πucN �
sin�πuc�

sin�2πvbM�
sin�2πvb� ab sin c�πua�:

�sin c�πb�v−u tan�θ����sin c�πb�v�u tan�θ����; (15)

where c is the period of the grating following the x axis. Its value
is imposed by the distance between two electrodes in the cell
(c � γ, cf. Fig. 2). a is the thickness of the white bands. We
have the condition a > ϵ. Physically, a represents the distance
where liquid crystal molecules are not subjected to electro-
reorientation [13]. 2b is the period of the zigzag instability.
θ is the zigzag angle. N is the number of electrodes illuminated
by the light, and cN is the transverse size of the illuminated cell
following the x axis. M is the number of zigzags illuminated
by the light, and bM is the transverse size of the illuminated
cell following the y axis. With a Gaussian beam, we have the
following equality: bM � cN .

The diffraction figure, obtained from Eq. (15), is depicted in
Fig. 4(b). Notice the presence of two lines at θ degrees in the
Fourier plane. Indeed, these two lines are a signature of the
zigzag lattice.

However, the diffraction figure does not correspond exactly
to the experimental diffraction figure, presented in Fig. 4(c).
Indeed, the near field of the zigzag lattice presents some irregu-
larities that are not taken into account in this perfect zigzag
lattice. We will now consider a more realistic zigzag lattice.

B. Imperfect/Real Zigzag Lattice: 2D Fast Fourier
Transform
To have an adequate description of the experimental findings,
we consider an imperfect zigzag grating. We present a portion
of the zigzag grating in Fig. 5, used as near field. The matrix
used contains 8192 × 8192 pixels with a spatial resolution of
Δx � Δy � 0.1 μm and a distance between two electrodes
that is γ � 30 μm. The wavelength, λ�x; y�, and the thickness,
D�x; y�, of the black zigzag lattice have a small variation
depending on the location in the cell. We define for every
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Fig. 4. (a) 2D perfect diffraction zigzag grating. (b) Diffraction
image obtained from a 2D perfect diffraction zigzag grating using
Eq. (15). (c) Experimental diffraction image obtained from an IPS cell
with a zigzag lattice. Inset accounts for a snapshot of the cell,
f � 100 Hz, and T � 20 Vpp.
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period a wavelength λ�x; y� � λ0 � δλ�x; y�, where δλ�x; y� �
λ0η�x; y�∕B1, and η�x; y� is a random function giving a value
between zero and one with a uniform distribution. In the same
way, we define the thickness D�x; y� � d � δd�x; y�, where
δd �x; y� � dη�x; y�∕B2. The observation on the experimental
pictures of the sample by a microscope provides a more com-
plex intensity profile than the crenel function, as presented in
Fig. 2(b). Consequently, we had another grating on the zigzag
grating. The cell is illuminated by a delimited laser source. We
also take into account this effect in Fig. 5.

We calculate the diffraction image by using the 2D fast
Fourier transform. We evaluate the parameters B1 and
B2 by a quantitative comparison between the experimental
(top) and numerical diffraction (bottom) figure presented in
Fig. 6. Notice that we have chosen these parameters to obtain
numerically diffractive images similar to those observed exper-
imentally. Hence, experimental diffractive images can be repro-
duced qualitatively by the use of a simple model.

5. EXPERIMENTAL RESULTS

A. Low Frequency: f � 10 Hz
At f � 10 Hz and with a voltage tension of T � 20 Vpp, the
liquid crystal cell exhibits a roll lattice in the near field, see the
inset in Fig. 6(a), which corresponds to a snapshot of the cell.
The experimental image in the Fourier space is a 1D pattern
with a wavenumber of k10Hz � 0.104 μm−1. This wavenum-
ber corresponds to a diffraction image with a diffraction step
of λ10Hz � 60.4 μm. We explain the factor of 2 difference
(λ10Hz � 2γ, where γ is the diffraction grating step) by the fact

that at this low frequency the black bands appear and disappear
successively on the first electron comb and then on the second
one. However, this temporal oscillation is not recorded on the
near field image, which corresponds to a temporal average of
the roll lattice dynamics. Considering this effect, the diffraction
grating step is exactly 2γ, then we have a quite good agreement
between the experimental and the numerical far field figure in
Figs. 6(a) and 6(d).

B. Middle Frequency: f � 100 Hz
At f � 100 Hz with a voltage tension T � 20 Vpp, the sys-
tem presents a zigzag lattice. The zigzag signature in the Fourier
space is the X structure with an angle�θ. We note the presence
of different bands. The band’s thickness is directly linked to the
λ dispersion. In this case, we evaluate B1 � 5. The dispersion
of D erases the vertical black lines due to destructive interfer-
ences. We evaluate B2 ≃ 7. By taking into account these two
dispersion parameters, we have a fairly good agreement between
the experimental and the numerical diffraction figures, repre-
sented in Figs. 6(b) and 6(e).

C. High Frequency: f � 1.3 MHz
At f � 1.3 MHz with a voltage tension T � 20 Vpp, we ob-
serve a sinusoidal lattice. We detect in the Fourier space two
opposite (following ky � 0) and intense lines. They represent
the fundamental frequency of the sinusoidal functions. Some
harmonics can also be seen. To confirm this observation, we
modify the theoretical lattice with sinusoidal functions, and
we evaluate B1 � 5 and B2 ≃ 14. We qualitatively obtain
the same diffraction image.
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of 20 Vpp. The top and bottom panels correspond to experimental and numerical observations, respectively.
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D. Very Low Frequency: f � 200 mHz
At a very low frequency of f � 200 mHz with the same volt-
age, the system cannot be considered stationary. The liquid
crystal exhibits a conductive regime. The liquid crystal space
charges oscillate with the electrical field. This phenomenon
can be attributed to the gradient flexoelectric effects [23]. It
has temporal dynamics directly linked to the voltage frequency.
Figure 7 shows four pictures during the half period of the sinus-
oidal voltage. At t � 0 s, the central electrode in the near field
presents a zigzag instability with a not well defined wavelength.
Consequently, the diffraction image presents a X with large
arms. We evaluate for our model B1 � 0.5 and B2 ≃ 7, which
has a good agreement with the experimental observations.

E. Application
We have highlighted the results of programmable lattice that
shows that one can generate more complex diffraction figures
than those presented in the literature. First, these diffraction
images give us some information about the molecular reorien-
tation inside the cell, as well as the dispersion of the wavelength
and the amplitude of the zigzag lattice. Second, the formation
of a 2D diffraction image extends the possibility of beam steer-
ing and optical communication networking devices and the
characterization of atomic spectra. Finally, this type of diffrac-
tion may allow for information about spatial structures of com-
plex light sources.

6. CONCLUSION

Programmable diffraction gratings open the possibility of new
optical data processing, characterization of atomic spectra with
applications in astronomical observations, space flight instru-
ments, and synchrotron spectrometers, among others. In this
work, we have established the possibility of creating this kind

of programmable grating. We have characterized an empty IPS
cell and seen that it is like a bad diffraction grating. In contrast,
an IPS cell filled with a nematic liquid crystal subjected to
a given voltage exhibits a rich complex diffraction pattern.
Applying a small voltage into a wide range of frequencies,
the sample exhibits a stripe diffraction grating. Increasing
the voltage, this diffractive pattern presents a spatial instability
generating an undulating diffraction grating, and at higher volt-
ages it becomes a zigzag type. We have analytically given a first
approximation of the diffraction image obtained with a perfect
zigzag lattice. Then, we have studied, experimentally and
numerically, the diffractive image and observed a complex
structure in the perpendicular direction to the “traditional
1D pattern” in the diffraction image. We have evidenced with
this structure a variation/dispersion of the amplitude and the
wavelength of the zigzag instability.

One of the limitations of our programmable diffraction gra-
tings is that the time response of liquid crystals is slow on the
order of milliseconds. However, this allows us to establish the
proof of concept of manipulable diffraction grating. The pos-
sibility of faster programmable diffraction gratings using soft or
solid materials is a still open question.
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