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Esta tesis analiza la formacion de redes como consecuencia de la biisqueda de los agentes
por informacion valiosa para ellos. La contribucion de este trabajo es la separacion de la
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Chapter 1

Introduction

1.1 Motivation

People form relationships among them because they expect some kind of benefit when
networking with cach other. For instance, in labor market, information about job opportuni-
ties may spread through contacts. All else equal, if an agent is working with a relatively high
salary, one might expect that almost all job vacancies that he or she hears about, will be of
no interest for him or her. On the other hand, if an agent has a salary low enough, almost
all information that arrives to him or her, will be about a job vacancy with better salary
prospectives. Therefore, individuals with higher salaries will pass the information through
the network more frequently than those with lower wages.

To what extent may having more contacts be beneficial? With whom will an agent be
better off when forming a link? The strategic interaction of agents trying to increase their
futures wages forms a network structure. This structure affects the value that each agent
has for the rest of the network when they decide to form or not a link. Initial asymmetries
in wages by itself may cause inequality in wages in a dynamic setting, differences in wage
growth due to inefficient information propagation through the network.

There is a lot of literature that explore the impacts of networks on different social topics.
Specifically people tend to bond with similar others and this may impact social outcomes.
The aim of this work is to show the impact of information on the network structure and
attempt to get as an endogenous result some of the known facts, such as formation of groups
with similar agents. So, in this work agents will be the same regarding their utility function.

It is worth to be noted that agents differ only on their information. So there are no
exogenous discrimination effects, such as homophily through increasing return on links formed
with similar agents or a higher matching rate with similar agents such as in Currarini et al.



(2009). This is an important aspect because in a dynamic extension everyone could be in
any place on the network if they manage to get the right information.

1.2 Literature review

There is a vast literature exploring the importance of network effects on different social
interactions, for instance, labor market and education '. In general the effects over a given
social environment are explored as in Lobel and Sadler (2015a). They study how homophily
impacts social learning or the information transmission over the networks.

Calvo-Armengol and Jackson (2004) explore the effects of social network structures on
employment inequality in terms of drop out from the labor market. This work states that
initial conditions of employment are crucial in determining consistent inequality in employ-
ment. Although the network structure is given they explore different settings, in terms of
number of connections and their distribution along the network, giving insights in how im-
portant the network structure can be in aggregate employment. Another important result is
the duration dependence of the probability of employment, the probability of getting hired
decreases in the time span of the unemployment state. They use a game where given a net-
work structure, agents have to decide whether to stay or not in the labor market. Assuming
that it is costly to stay in. Agents initially worse in terms of employability drop out, letting
their neighbors worse off. This may cause a consistent inequality in employment rate within
the network’s members. The agents connected with members with better initial conditions
face better employment rate than groups with worse initial conditions.

Jackson and Wolinsky (1996) studies pairwise stability and efficiency in network formation
models such as the co-author model and connections model. Such models are used by many
authors in later literature to explore new consequences of their research. In the co-author
model utility increases with the effort of the co-author in the project but decreases with
the time co-authors use on other research. In the connections model, players benefit from
connecting to other agents directly and indirectly, but they benefit the most from direct
connections, there is a cost for direct links.

Other works that shows the relevance of social networks include Morris (2000) which
study how an agent may affect the behavior of the rest of the network. Ballester et al.
(2006) study the effect of removing an important agent from the network over the remaining
players. Kranton and Minehart (2003) and Corominas-Bosch (2004) use networks to explain
interactions between buyers and sellers. Chwe (2000) studies how communication influence
information transmission, initial adopters start the process of communication that spreads
through the network. Moulin and Sethuraman (2013) show how the problem of resources

!Calvé-Armengol (2004), Calvé-Armengol and Jackson (2009)



division can be addressed using network analysis. Bramoullé and Kranton (2007) explore
the incentives of providing public goods using network analysis and Bramoullé et al. (2014)
study in a broad scope how a player’s action is amplified when there is a network involved.

The topic explored in this work is most similar to that of Bala and Goyal (2000) (because
the model in this work is superficially studied), they explore network formation when agents
contact to share information, they benefit linearly on the number of player they observe and
the same behavior for the costs. Here there is no competition for information and there is no
difference in the information players have, also they all have the same volume of information
(one unit). Jackson (2005) offers a survey on network formation and applications to games
in networks.

1.3 Notation

We use the same notation as in Calvé-Armengol and Ilkihic (2009). A link between two
players is denoted /;;, meaning that player ¢ is connected to player j. In the case of undirected
network l;; = l;;. A network is denoted g, [;; € g means that player ¢ is connected to player j
in the network g. The network is the set containing the links between players. A network is
complete if all player are connected. Given a set of player N, gy denotes a complete network,
and G the set of all possible networks.

Given a network g, a player 4, utility function w; and a link {;; mu;(g,l;;) is defined as
follows:

mu;(g, lij) = ui(g) — ui(g — lij)

1.4 Organization

Firstly the model is presented with some examples. Then some results regarding equilib-
rium networks and efficient networks are proposed.



Chapter 2

The model

In this model every agent is endowed with a set of information. Information can be
classified in two types. Players have levels for each of the two types of information they
could have. The intuition behind this can be stated with the following tale:

FEach agent has a page of a book, the book represents the universe of information. With
each page agents can deduct more information but some pages allow agents to know more
about the universe than other pages. Agents can connect with others and share the pages they
have. Adding more pages will increase the level of knowledge but there are some pages that
will increase the utility of all the other pages due to key words on them.

We use the static game of network formation due to Myerson (1991): there is a set of
players N = {1, ...,n}, strategies S; = {0,1}"1. Then a strategy profile (si, ..., 8,) € X;enS;
defines a network g(s).

~ We take the equilibrium concept of Pairwise-Nash equilibrium from Calvé-Armengol and
[kilig (2009) citing that paper we use the following definition of equilibrium network:

Definition 2.1 (Pairwise-Nash equilibrium) A network g is a Pairwise-Nash equilibrium
(PNE) network if g = g(s*) with s* a pure Nash equilibrium strategy profile and Vi,j €
N, li; & g then mu;(g + 1;;) > 0 implies mu;(g + 1;;) < 0.

Mutually beneficial links are always formed.



2.1 The setting

Agents have a utility function u(h,n) where h stands for the amount of information of
type H, and n for that of type N, h € R,n € R. This utility function has the following
properties

e 1 is increasing on both h and n.
e u(-,n) is strictly concave.

e u(h,-) is convex.

e 1 is supermodular.

u(-,0) = u(0,-) = 0.

The set of players is I and consider the following subsets of 1,

I, = {¢ € I : i has information of type N}

I, = {i € I : i has information of type H}

Players in each set have different types, which are the amounts of information they have.
As an assumption, players have different information.

We assume that information flows both ways and the cost must be paid by both sides.
For each link, there is a constant cost ¢, so the expenditure function is the following,

ei(h7 n) =cC: #Pl(h'v n)

With P; the set of players whose information agent ¢ is observing in network g in order to
gather the set of information (h,n). For player ¢ we denote the information as (h;, n;).

2.2 Examples

For the sake of illustration it is assumed in the examples below that the utility function
have the following form,

u;i(h,n) =nh®, a € (0,1)



This function clearly satisfies the assumptions required.

We may think of this as information of type N as directions or contact information of
clients. H may be any service or good that clients are willing to buy.

Example 2.2 The agents within a box represent the initial state while the graph outside the
box represents the equilibrium network. Both players want to connect if ¢ < 102+,

ORNO

(0,10) (10,0)
(10,10) (10,10)

Figure 2.1: Example 2.2, one connection.

Example 2.3 Consider the following example, where we have relatively richer agents en-
dowed with hierarchical information,

(1000,0) (1000,0)
(0,10) (0,10)

Figure 2.2: Example 2.3 initial state.

For players 1 and 2 we have the following



Table 2.1: Agent 1 and 2, expenditure, information and utility.

e (hn) u

0 1000,0 O

¢ 1000,10 103«*!

2 1000,20 2. 10%+!

3¢ 200020 2¢t!.qp3et!

Agents 3 and 4 have the following

Table 2.2: Agent 3 and 4, expenditure, information and utility.
¢ (hn) u

0,10 0

¢ 1000,10 103+

2¢c 1000,20 2 - 10%0+!
3¢ 2000,20 20+1. 103+l

In this example there are different cases, if ¢ > 103! the equilibrium network is the empty
network, if ¢ < %2““ -10%+L the complete network is the equilibrium. If %2““ S10%t <
c < 10%** the equilibrium network is the following graph

(1000,10) e a (1000,10)

(1000,20)

(1000,20)

Figure 2.3: Example 2.3 equilibrium network 32271 . 10371 < ¢ < 103,

Remark 2.4 Note the fact that in the equilibrium network, initially richer agents in terms
of hierarchical information are poorer regarding total utility relative to initial poorer agents
but with non hierarchical information.

Example 2.5 The following example shows a situation where segregation of an agent occurs,



O © ©
(10,0) (10,0) (10,0)
©® O
(0,10) (0,10)

Figure 2.4: Example 2.5 initial state.

Table 2.3: Agent 1,2 and 5, expenditure, information and utility.
¢ (hn) u

10,0 0
¢ 10,10 100+
2¢ 10,20 2-10°"
3¢ 20,20 20Fl.10o+!
4 30,20 2-3%.10oF

Table 2.4: Agent 3 and 4, expenditure, information and utility.

e (hn) u

0 0,10 0

¢ 10,10 100+

2¢c 10,20 2-10+!
3¢ 20,20 20FL. 100t
dc 30,20 2-3%.10°+!




(10,0)

(10.20) (10,20)

Figure 2.5: Example 2.5 equilibrium network %20‘“ S1007 < ¢ < 100t

Example 2.6 The following example shows the effect of non homogeneous amounts of in-

formation among agents,

(10,0) (2,0) (1,0)

(0,10)

Figure 2.6: Example 2.6 initial state.

Table 2.5: Example 2.6: Agent 4 expenditure, information and utility.
e (hn) u

0 100 0

¢ 10,10 100+
2¢ 12,10 10-12¢
3¢ 13,10 10-13¢




(10,10)

Figure 2.7: Example 2.6 equilibrium network 5 - 12% < ¢ < 109+,

2.3 Equilibrium networks

Proposition 2.7 If there is only one type for I, and 1, and I,N 1, = 0, then they are willing
to connect with all agents in I, or with no one.

Proor. Let us take an agent initially endowed with only H information, so this agents starts
with information (hg,0). Suppose that this agent want to connect with at least one agent
with N information (cach one with n as volume of N information), so we have

u(ho,n) > ¢

Note that the assumption regarding agents having the same volume of information can be
stated for fixed hq as
ei(ho, Pn) = P

P; € N the number of connections with agents with N information.

Give the fact that u(h,-) is convex and that the available volumes of N information are
multiples of n we have, we restrict the proof to a countable set {n, 2n, ..., Nn}. We can think
of u(h,-) being defined as a convex function over a discrete space using the definition on
Yiiceer (2002).

10



w(ho, 2nt) < u(hg,0)(1 — t) + u(ho, 2n)t ,t€10,1]
=

u(hg, 2nt) < u(hg,2n)t ,t€0,1]
=

u(ho, 2n)

DO | —

u(hg,n) <

=
2u(ho,n) < u(hg, 2n)
=
2¢ < u(hg, 2n)

Note that if the agent is not indifferent, u(hg,n) > ¢ then
2¢ < 2u(hg,n) < u(hg,2n) = 2¢ < u(hg, 2n)

So if the agent is willing to accept the first connection, he or she wants a second connection.
Using the same argument we get the inductive step,

u(ho, N) > Nc
=
u(ho, N +1) —u(ho, N) > ¢
=
u(ho, N +1) > (N +1)c

So if an agent is willing to connect with one agent, they are willing to connect with
everyone with N information. Analogously, if an agent does not want to connect with one
agent with N information, he or she does not want to connect with any one.

Take an agent initially endowed with only type N information, it is clear that if no agent
with H information (each one with A as volume of H information) want to connect with him
or this first connection is not optimal for the agent with /N information, then the agent with
N information will not make any connection with other agents with this type of information,
given that u(0,-) = 0 and u(-,n) is concave. If this agent wants to connect with one agent of
type H, then we are in the same problem as in the agent of type H. Note that in the case of
indifference (if in the dimension of N the function is linear), having more N does not matter
itself, but it increase the marginal value of type H "for free” given the supermodularity. O

11



Proposition 2.8 If there is only one type for I and I,, and I N I, = 0, there is HeR
such that if 32;crhi > H then every Pairwise Nash Equilibrium Network is a disconnected
graph. H 1is non decreasing on Y ;crn;.

Proor. The fact that every agent has the same volume of information or have only one
type (also in the same volume for all agents) implies that the expenditure function has the
following form,

ei(P'h + ho, P"'n 4+ ng) = (P! 4+ P")e, P P! e N

{I}nen is a finite family of sets implies there is a maximum amount of information an
agent can get, let us call this value (Amaz, Mmaz)

Given the fact that for each n € N u;(-,n) is strictly concave, we have that there is Pl(n)
such that for P! > P/*(n) we have

w((PZh + 1)h + hg,n) — u,-(Pihh + ho,n) < e,-((Pih + 1)h + hg,n) — 67;(Pihh + ho,m)

Therefore, clearly no agent is willing to have more than P/*(n) links with H information
owners and the same for P*(nmae), then take H = Yic; PMNpaz) - b If Yyiep by > H there
would be more H information than any possible demand for this on any network and therefore
some H information owners would not be linked to any agent.

H non-decreasing on Y _;c; n; comes from v being supermodular and Topkis’s monotonicity
theorem . O

Proposition 2.9 If there is only one type for I, and I,, and I,N I, = (), there is a link cost ¢
such that for every cost ¢ < ¢ in every Pairwise Nash Equilibrium network agents in I, form
a complete network between them. Also there are cost levels ¢; < ¢ such that every agent in
I, is connected to j agents in Iy, .

Proor. From proposition 2.7 we know that agents want to connect with all agents with type
N information or no one, the limit ¢ could be taken as the cost that makes an agent to be
indifferent regarding a connection. If they are willing to have some H information then all
agents in I, want the same amount and because [, are willing to connect with all or no one
in I,,, agents on the latter set get the same amount of connections to I, . If agents in [,
are willing to connect then all agents with information of type N will be linked, creating a
complete network between them. O

12



The basic unit in this network may look like the figure below, where I,, = {5}, I, =
{0,1,2,3,4} for different cost levels we will have a different number of I, connected to the
agents on I, but the same for all I,,.

Figure 2.8: PNE networks example proposition 2.9.

Example 2.10 Consider the following example of PNE where I, = {0,1,2,3,4} and I, =
{5,6}

13



Figure 2.9: Pairwise Nash Equilibrium Network. [, complete network. Example 2.10.

Example 2.11 The following network may be Pairwise-Nash, I,, = {2,3}, I, = {1}.
—O—O
G N

Figure 2.10: PNE network. Example 2.11.

Proposition 2.12 If I, N I, = 0 in any Pairwise Network Equilibrium g C gy, Vi €
I, U, 3 h € R such that l;; € g = h; > h

Proor. In order to be Pairwise Nash it should be Nash, so mu;(g,l;;) > 0 this implies that
wi(h; + hj,n;) — u;(hi,n;) > ¢ given the fact that w is increasing we know there is a lower
bound for h; so the last incquality is satisfied. O
Proposition 2.13 If I, N I, = 0 in any Pairwise Network Equilibrium g C gy, Vi,j € I

14



such that 3 k € I, i, L, € g,30, € R |h; — h;| < 8. O is non-increasing on ny.

Proor. Suppose not, then the difference between h; and h; may be very large, but one can
take a difference high enough so muy(g,lx) < 0 or muy(g,l;x) < 0. Thus information of
type H can not be highly concentrated on equilibrium networks. Given supermodularity
differences are amplified with ny, therefore ¢ is non-increasing on ny. U

Remark 2.14 Agents in I, compete for information of type N, the agents with the greatest
amount of H set the connections of other agents from I, because agents with much less
volumes of H can not be connected to the same agent from I, as the endowed with highest
values of H (if there is enough variance on types).

2.4 Efficient networks

Given the convexity on the dimension of type N information, it may be efficient to con-
centrate this information. Given the fact that the utility function is strictly concave on the
information of type H, it may be inefficient to do the same with this.

Proposition 2.15 If there is only one type for I, and I,, and I,N1I,, = (0, there is a link cost ¢
such that for every cost ¢ < ¢ in every efficient network agents in I,, form a complete network
between them. Also there are cost levels c; < ¢ such that every agent in I,, is connected to j
agents in I, and every agent in I, is connected to all agents in I, or no agents.

Proor. Given the increasing returns on information of type N it is clear that agents in I, will
form a complete network between them for any low enough link cost (such that the network
is not empty).

Given the decreasing returns on type H information, there is a maximum amount of links
that agents are willing to make with agents on I;,. For cach cost there is a maximum of links
(we call it j) to make until the marginal utility of H is lower than ¢;. Agents on I;, always
wants connections with agents in I, (unless the network is the empty one). This give us that
for every cost ¢; < ¢ agents in [, make connections to j agents in Ij,.

Given an agent in [, if a connection with an agent in I, increase the total utility more than
twice the link cost, then any other additional connection with an agent in I, will increase the
total utility more than the previous connection and therefore every agent in I, will connect
that agent in I, in an efficient network. If there is no enough N information such that the
network can reach that pivotal agent, then the link cost will remain greater than marginal
utility and no connection with agents in I,, will be made. U

15



Proposition 2.16 (Meritocracy) In every efficient network g € G, information of type N is
shared firstly with agents with the highest amounts of H type information.

Given i € H, j € N such that l;; ¢ g = 3k € H, h; < hiV j is disconnected.

Proor. We do not consider the trivial case (empty network). If [;; ¢ g,i € H.j € N then it
is clear that there is a better option for the society (given supermodularity assumption), this
is there is an agent with a greater amount of type H information. If not, simply the amount
of type H information is not enough to make the total marginal utility greater than twice
the link cost. O

2.5 Equilibrium networks and efficiency

Further research is needed relating equilibrium networks and efficient networks. Some
examples are given below.

Example 2.17 The following network may be Pairwise Nash, I, = {1}, 1, = {2,3,4} and

h2=h3 <h4.

16
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Figure 2.11: PNE networks, first example efficiency. Example 2.17.

Both networks above may be Pairwise Nash equilibrium but the total utility is different,
so depending on the link cost and the information endowments one of this networks may be
efficient.

The following example may clearly show the point

Example 2.18 The following network may be Pairwise Nash, I, = {5,6,7,8,9} 1, =
{0,1,2,3,4}.

17
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Figure 2.12: PNE concentrated information. Example 2.18.

The following network is a PNE where everyone gets some information
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Figure 2.13: PNE bipartite network. Example 2.18.

Again, given the convexity on N dimension, it may be efficient to concentrate the infor-
mation on one agent from Ij,.
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Conclusion

In this work we have shown that without deep differences between agents, that is, with
agents sharing exactly the same utility function, groups with similar agents arises endoge-
nously. In certain cases, agents with information of type N form groups, and those with
information of type H in general are close in the equilibrium networks to agents with similar
levels of this information. This is the contribution, the difference on the type of information
explains the role on the network. Agents theoretically can be on any role if they get the right
information, this could be interesting for a dynamic version because agents share the same
utility function.

The convexity of information of type N implies that concentration of this information
may increase the marginal value, but on the other hand concentration of information of
type H may be inefficient given its strict concavity on this dimension. This is an important
trade off in social interactions. In PNE network agents in N play a central role, while in
efficient networks agents in H seem to play that central role. We call it meritocracy and gives
some interesting first ideas about the difference between equilibrium networks and efficient
networks, and the impact on welfare that not meritocracy-based social networks may have.

As continuation of this work it could be interesting to explore the effect of differences on
link cost, for instance, agents may agree to pay cach one a fraction of the link cost. Also,
allowing for more than one link transmission.

20
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