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MONOCHROMATIC CYCLE PARTITIONS

The first part of this thesis concerns monochromatic cycle partitions. We make the following
three contributions.

Our first result is that for any colouring of the edges of the complete bipartite graph Kn,n

with 3 colours there are 5 disjoint monochromatic cycles which together cover all but o(n)
vertices of the graph. In the same situation, 18 disjoint monochromatic cycles together cover
all vertices.

Next we show that given any 2-local edge-colouring of the edges of the balanced complete
bipartite graph Kn,n, its vertices can be covered with at most 3 disjoint monochromatic
paths. And, we can cover all vertices of any complete or balanced complete bipartite r-
locally edge-coloured graph with O(r2) disjoint monochromatic cycles. We also determine
the 2-local bipartite Ramsey number of a path: Every 2-local edge-colouring of the edges of
Kn,n contains a monochromatic path on n vertices.

Finally, we prove that any edge-colouring in red and blue of a graph on n vertices and
of minimum degree 2n/3 + o(n) admits a partition into three monochromatic cycles. This
confirms a conjecture of Pokrovskiy approximately.

The second part of this thesis contains two independent results about (proper) edge-colouring
and parameter estimation respectively.

Regarding edge-colouring, we conjecture that any graphG with treewidth k and maximum
degree ∆(G) ≥ k +

√
k satisfies χ′(G) = ∆(G). In support of the conjecture we prove its

fractional version.
Concerning parameter estimation we study, for any fixed monotone graph property P =

Forb(F), the sample complexity of estimating a bounded graph parameter zF that, for an
input graph G, counts the number of spanning subgraphs of G that satisfy P . Using a new
notion of vertex partitions, we improve upon previous upper bounds on the sample complexity
of estimating zF .
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MONOCHROMATIC CYCLE PARTITIONS

La primera parte de esta tesis es acerca de particiones de ciclos monocromáticos. Hacemos
las siguientes tres contribuciones.

Nuestro primero resultado es que por todos coloramientos de las aristas de un grafo
completo bipartito Kn,n con 3 colores hay 5 ciclos monocromáticos disjuntos que juntos
cubren todos menos o(n) vertices del grafo. En la misma situación, 18 ciclos monocromáticos
disjuntos juntos cubren todos de los vertices.

A continuación mostramos que dado cualquier coloramiento 2-local de las aristas del
grafo completo bipartito balanceado Kn,n, sus vertices pueden ser cubiertos por 3 caminos
monocromáticos disjuntos. Además, podemos cubrir todos los vertices de cualquier grafo
completo o bipartido completo r-localmente colorado con O(r2) ciclos monocromáticos dis-
juntos. También determinamos el numero de Ramsey 2-local bipartito: Todos coloramientos
2-locales de las aristas de Kn,n contienen un camino monocromático de n vertices.

Finalmente, probamos que todos los coloramientos en rojo y azul de un grafo con n ver-
tices y grado mínimo 2n/3 + o(n) permite una partición en 3 ciclos monocromáticos. Esto
confirma una conjetura de Porkovskiy aproximadamente.

La segunda parte de esta tesis contiene dos resultados independientes sobre coloramientos de
aristas (genuino) y estimación de parámetros respectivamente.

Con respeto coloramientos de aristas, conjeturamos que cualquier grafo G con tamaño de
arboles k y grado maximo ∆(G) ≥ k +

√
k satisfecha χ′(G) = ∆(G). Probamos la versión

fraccional de esta conjetura.
Relacionado a la estimación de parámetros estudiamos, por cualquier propriedad monó-

tona P = Forb(F), la complexidad de la muestra de estimar un parámetro limitado zF que,
por un grafo de input G , cuenta el numero de subgrafos generadores de G que satisfacen P .
Utilizando un nuevo concepto de particiones de vertices, mejoramos las cotas anteriores de
la complexidad de la muestra de estimar zF .
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Introduction

The field of monochromatic partitioning aims to combine Ramsey theory with covering prob-
lems. For instance, given a complete graph Kn whose edges are coloured in red and blue, how
many monochromatic cycles are needed to partition its vertices? Note that here we count
edges, single vertices and the empty set as cycles as well to omit some trivial cases. Lehel
conjectured that a red and a blue cycle are enough [9]. If we replace the cycles with paths
this is quickly seen to be true [45]. Gyárfás showed that in a red and blue edge coloured
complete graph one can find a red and a blue cycle which cover all vertices and intersect only
in a single vertex [52]. However, it took roughly twenty years to improve on that. Using the
regularity lemma and an approach of Łuczak [79], Łuczak and Rödl and Szemerédi gave a
proof of Lehel’s conjecture for sufficiently large complete graphs [80]. Later Allan showed
the same for graphs of smaller size (but still fairly large) [1]. Finally the conjecture was
completely resolved by Bessy and Tomassé relying on elemental arguments only [13].

Monochromatic partitioning has since then (and in particular lately) received a fair
amount of attention. The base question was generalized in many directions. The host graph
Kn has been replaced by bipartite graphs [64], tripartite graphs [97], graphs of bounded
minimum degree [10], graphs of fixed independence number [96], infinite graphs [88] and
hypergraphs [62]. The monochromatic cycles, have been changed for paths [84], trees [65],
k-regular graphs [43] and graphs of bounded degree [51]. The problem of monochromatic
partitioning and, in parts, the solutions can be generalized from r-edge-colourings to r-local
edge-colourings [25]. It is also worth mentioning that there is a whole branch of research
dedicated to studying similar problems in terms of covers instead of partitions. For more
details we refer the reader to the recent survey of Gyárfás [54].

0.1 Many colours
A natural generalization of the base problem is to ask what happens if the edges of the
complete graph are coloured with r > 2 colours. For example is it possible to partition Kn

into a number of monochromatic cycles independent of n? This was settled positively by
Erdős, Gyárfás and Pyber [31].

Theorem 0.1.1 (Erdős, Gyárfás and Pyber ’91). Any r-edge-coloured Kn admits a partition
into 25r2 log r monochromatic cycles.

The proof of Theorem 0.1.1 has been fairly influential and foreshadowed what is now
called the absorption method (see [89]). It is instructive to have a closer look. To this end
let us introduce the following auxiliary results.

Definition 0.1.2 (Crown). For k ≥ 3, a k-crown consists of a cycle (v1, . . . , vk) together
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with a set of tips, that is additional vertices A = {a1, . . . , ak} such that (vi, vi+1, ai) forms a
triangle for each i ∈ [k] (mod k).

Note that crowns are Hamiltonian and remain so after the deletion of any subset of tips.
Moreover, since the maximum degree is bounded by 4, the Ramsey number of crowns grows
linear in their size. This is made numerically precise in the following lemma, whose short but
technical proof we omit.

Lemma 0.1.3 ([31]). For k ≥ 3, any r-edge-colouring of Kn admits a monochromatic k-
crown with k ≥ n/(2r(r!)3.

We will also use a classic result of extremal graph theory.

Theorem 0.1.4 (Erdős and Gallai ’59). For k ≥ 3, any graph on n vertices and with at least
(n− 1)(k − 1)/2 edges contains a cycle of order at least k.

In particular Theorem 0.1.4 implies that any r-edge-coloured Kn contains a monochro-
matic cycle of order at least n/k. Finally we need the following lemma about bipartite
graphs.

Lemma 0.1.5 ([31]). Let H be an r-edge-coloured complete bipartite graph with biparti-
tion classes A,B and such that |A| ≥ r3|B|. Then B can be covered by r2 vertex disjoint
monochromatic cycles.

Now we are ready to prove Theorem 0.1.1.

Proof. We use Lemma 0.1.3 to pick a, say red, k-crown C0 with set of tips A and k ≥
n/(2r(r!)3). Fix a positive integer t. For 1 ≤ i ≤ t we apply Theorem 0.1.4 to pick a
monochromatic cycle Ci in the graph Kn −

⋃
0≤j≤i−1 V (Cj). Denote by B the vertices of

Kn −
⋃

0≤j≤t V (Cj) An elementary calculation shows that |A| ≥ r3|B| provided that t ≥
b24r2 log rc. Hence we can apply Lemma 0.1.5 to cover the vertices of B by r2 monochromatic
cycles. By design the remainder of the k-crown is Hamiltonian. Hence we have obtained a
monochromatic cycle partition of size 1 + 24r2 log r + r2.

Given Theorem 0.1.1 we can ask for the minimum number of monochromatic cycles
needed to partition the vertex set of an r-edge-coloured complete graph. It is not hard to see
that we need at least r cycles. For instance take a partition V1, . . . , Vr of K2r−1 with |Vi| = 2i,
and for i ≤ j give all Vi–Vj edges colour i. A cycle partition of this colouring contains a cycle
of colour i for each i ∈ [r]. (In fact the same holds for a monochromatic path cover.) Erdős,
Gyárfás and Pyber believed that this bound is sharp and generalized Lehel’s conjecture as
follows.

Conjecture 0.1.6 (Erdős, Gyárfás and Pyber ’91). Any r-edge-coloured complete graph
admits a partition into r monochromatic cycles.

Note that unlike Lehel’s conjecture the colours of the cycles are allowed to repeat. This
is necessary because there are colourings, where a partition into cycles of distinct colours is
not possible, e.g. Figure 1.

For r = 3 some progress towards Conjecture 0.1.6 has been made. Gyárfás, Ruszinkó,
Sárközy, Szemerédi showed that all but o(n) vertices of a 3-edge-coloured Kn can be parti-
tioned into 3 monochromatic cycles [61]. However, somewhat surprisingly Pokrovskiy recently
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7 13

10 13

Figure 1: The numbers indicate the size of the vertex set. Coloured like this, K43 has no
partition into two monochromatic paths or into three monochromatic paths of (pairwise)
distinct colours.

7 13

10 13

Figure 2: Pokrovskiy’s counterexample.
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found a counterexample, proving that Conjecture 0.1.6 is wrong [84]. He defined colourings
of (arbitrary large) complete graphs for all r ≥ 3, which require r monochromatic cycles and
an additional vertex for a proper partition. Let us give the details:

Example 0.1.7. We focus on the case r = 3 and n = 42. The examples for larger r, n are
very similar. Consider a colouring of H = K43 with colours {1, 2, 3} as in Figure 1. So in
particular H has no partition into two monochromatic paths or into three monochromatic
paths of (pairwise) distinct colours. Now we add three additional vertices v1, v2, v3 and
colour the edges between vi and V (H) and vi+1vi+2 with colour i mod 3 (see Figure 2). We
claim that the 3-edge-coloured complete graph obtained this way can not be partitioned into
3 monochromatic cycles. Indeed assume otherwise and let C1, C2, C3 be such a partition.
If, C1 say, consists only of edges v1v2, then C2 and C3 contain a partition of H into two
monochromatic paths. This is not possible. So none of cycles C1, C2, C3 contains an edge
of type vivj. However, since the edges between vi and V (H) have colour i, this implies that
the cycles C1, C2, C3 have pairwise distinct colours. Hence they contain a partition of H into
three monochromatic paths. A contradiction.

Nevertheless Pokrovskiy (and others) believes that Conjecture 0.1.6 is not too far off the
mark.

Conjecture 0.1.8 (Pokrovskiy [84]). For every r there is a number cr such that any r-edge-
coloured complete graph admits a partition into r monochromatic cycles and cr vertices.

In support of his conjecture Pokrovskiy recently proved the case of r = 3 with cr =
43000 [85]. Using completely different methods, Letzter independently obtained the same
result for large n but with a better constant of cr = 60 [75].

In general, i.e. for all r, the best known upper bound for monochromatic cycle partitioning
complete graphs has been obtained by Gyárfás, Ruszinkó, Sárközy, Szemerédi in 2006.

Theorem 0.1.9 ([58]). Provided n is large enough, every r-edge-colouring of Kn admits a
partition into at most 100r log r monochromatic cycles.

The better bound, in comparison to Theorem 0.1.1, is due to an improvement of Lemma 0.1.5,
where under the same conditions only 8r log r monochromatic cycles are needed to cover B,
and switching from crowns to dense matchings, which have better Ramsey numbers. Both of
these improvements require the Regularity Lemma either in their proof or in their implemen-
tation. However, as in the proof of Theorem 0.1.1, the majority of the vertices of the graph is
still covered by greedily applying Theorem 0.1.4. As noted in [58], it seems unlikely that the
bound can be improved significantly beyond O(r log r), without replacing this process with
a less greedy strategy.

0.2 Bipartite graphs

After proving Theorem 0.1.1 Erdős, Gyárfás and Pyber asked if similar results could be
obtained for bipartite graphs. Haxell solved this problem by proving the following [64].

Theorem 0.2.1 (Haxell ’97). Any r-edge-coloured Kn,n admits a partition into O(r2 log2 r)
monochromatic cycles.
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The main difficulty in adapting the proof of Theorem 0.1.1 to bipartite graphs is that
crowns are not bipartite. The other steps, i.e. covering the majority of the graph with The-
orem 0.1.4 and absorbing the leftover with Lemma 0.1.5 work as before. Haxell showed that
uniform graphs are a suitable replacement for crowns, i.e. they are bipartite and Hamiltonian,
even after deleting some vertices. Roughly speaking a bipartite graph is uniform, if it has
linear minimum degree and no (balanced) subgraph of linear size is empty (see Chapter 1
Section 1.5 for details). Large uniform graphs can be found in any sufficiently dense graph,
which in our case is the subgraph of the colour which has the most edges. Peng, Rödl and
Ruciński [83] lowered the bound of Theorem 0.2.1 to O(r2 log r), by finding larger uniform
graphs under the same density conditions. By replacing Theorem 0.1.4 in the step of covering
the majority of the graph, Stein and I recently improved this bound further to O(r2) (Theo-
rem 2.1.3 in Chapter 2). In the case of r = 3, Haxell showed that 1695 cycles are sufficient.
(Erdős had proposed 25$ to anyone who could show that 1995 cycles are sufficient.) Schaudt,
Stein and I improved this to 18 monochromatic cycles. We also obtained the stronger result
that, provided n is large enough, any 3-edge-colouring of Kn,n admits a partition of all but
o(n) vertices into 5 monochromatic cycles [72]. These results are presented in Chapter 1.

0.3 Local colourings

Local edge-colourings present a generalization of r-edge-colourings. An edge-colouring is r-
local if no vertex is adjacent to more than r edges of distinct colours. Local edge-colourings
have been studied in the context of Ramsey theory (see [57, 99, 103]). With respect to
monochromatic cycle partitions, Conlon and Stein recently generalised Theorem 0.1.1 to
r-local colourings [25].

Theorem 0.3.1 (Conlon and Stein 16). Any r-locally edge-coloured complete graph admits
a partition into O(r2 log r) monochromatic cycles.

Additionally they showed that if r = 2, then two cycles suffice. The proof of Theorem 0.1.1
follows the approach taken in 0.1.1. Since local Ramsey numbers are bounded (linearly) by
ordinary Ramsey numbers, monochromatic crowns and large cycles can be found without
difficulty. However Lemma 0.1.5 needs to be proved again in a local setting. Stein and I
improved the bound of Theorem 0.3.1 to O(r2) for sufficiently large n by avoiding the use of
Theorem 0.1.4 [73]. We also show that it is possible to partition 3-locally coloured complete
bipartite graphs into 3 monochromatic paths and determine the 3-local path Ramsey number.
The details are in Chapter 2.

0.4 Non-complete graphs

Motivated by ideas of Schelp, Balogh et al. asked if Lehel’s conjecture stays true for graphs
of bounded minimum degree [10]. They conjectured the following: given any graph G on n
vertices and of maximum degree 3n/4, for any colouring of the edges in red and blue, there
are a red and a blue cycle which together partition the vertices of G. Note that there are
graphs of minimum degree 3n/4− 1 that do not admit such a partition. In support of their
conjecture, Balogh et al. proved an approximate result [10]. They showed that, for every
ε there is an n0 such that for any graph G on n ≥ n0 vertices and with minimum degree
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at least (3/4 + ε)n, any colouring of the edges of G in red and blue admits disjoint red
and blue cycles which together cover all but εn vertices. DeBiasio and Nelsen were able to
improve on this by obtaining a proper partition into a red and a blue cycle under the same
condition [27]. Finally Letzter proved the conjecture for sufficiently large n [74]. All three
results use the method introduced in [79], which itself relies on the Regularity Lemma. Based
on these advances Pokrovskiy conjectured that similar results are true for graphs of lower
minimum degree. In particular, he conjectured that red and blue edge coloured graphs of
minimum degree 2n/3 (n/2) can be partitioned into 3 (4) monochromatic cycles [85]. There
are examples which show that these numbers are essentially tight. In Chapter 3 we confirm
the first part of his conjecture approximately. We prove that for every ε there is an n0 such
that for any graph G on n ≥ n0 vertices and with minimum degree at least (2/3 + ε)n, any
colouring of the edges of G in red and blue admits a partition into 3 monochromatic cycles.

0.5 Other results
Besides monochromatic partitioning I have worked on the following topics.

0.6 Edge-colouring of sparse graphs
Let us introduce two concepts. The chromatic index of a graph G is the least integer,
such that G admits an edge-colouring where no two adjacent edges receive the same colour.
Generally speaking, the tree-width of a graph indicates how similar a graph is to a tree (see
Chapter 4 for a proper definition). Here we are interested in the chromatic index of graphs
with fixed treewidth and high maximum degree. Nakano, Nishizeki and Zhou [82] showed
that a graph of treewidth k and maximum degree ∆ ≥ 2k has chromatic index ∆. Bruhn,
Gellert and I believe that this can be improved to ∆ ≥ k +

√
k. If true this would be best

possible as examples show. In support of our conjecture we proved its fractional version. The
proofs contain graph decomposition arguments to obtain structural properties and suitable
adjacency lemmas that can be applied to these. The details are presented in Chapter 4.

0.7 Parameter estimation
Together with Hoppen, Kohayakawa, Lefmann and Stagni I worked on a project about pa-
rameter estimation. For any fixed monotone graph property P = Forb(F), we studied the
sample complexity of estimating a bounded graph parameter zF that, for an input graph G,
counts the number of spanning subgraphs of G that satisfy P . To improve upon previous
upper bounds on the sample complexity, we showed that the vertex set of any graph that
satisfies a monotone property P may be partitioned equitably into a constant number of
classes in such a way that the cluster graph induced by the partition is not far from satisfy-
ing a natural weighted graph generalization of P . Properties for which this holds are said to
be recoverable, and the study of recoverable properties may be of independent interest. The
proofs use (weak) graph regularity and probabilistic arguments. The results are presented in
Chapter 5.
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Chapter 1

Almost partitioning a 3-edge-coloured
Kn,n into 5 monochromatic cycles1

Richard Lang, Oliver Schaudt and Maya Stein

Abstract

We show that for any colouring of the edges of the complete bipartite graph Kn,n with 3
colours there are 5 disjoint monochromatic cycles which together cover all but o(n) of the
vertices. In the same situation, 18 disjoint monochromatic cycles together cover all vertices.

1.1 Introduction

The monochromatic cycle partition problem is a Ramsey-type problem that originated in
work of Gerencsér and Gyárfás [45] and Gyárfás [52], and lately received a considerable
amount of attention from the community. Given a graph G, and a (not necessarily proper)
colouring of its edges with r colours, we are interested in covering V (G) with mutually disjoint
monochromatic cycles, using as few cycles as possible. (For technical reasons, single vertices,
single edges and the empty set count as cycles as well.) To state the problem more precisely,
the aim is to determine the smallest number m = m(r,G) such that for any r-edge colouring
of G, there are m disjoint monochromatic cycles that cover V (G).

The case G = Kn received the most attention so far. An easy construction shows that at
least r cycles are necessary to cover all the vertices, and Erdős, Gyárfás and Pyber [31] showed
that the number of cycles needed is a function of r (independent of n). The currently best
known upper bound of 100r log r (for large n) for this function is due to Gyárfás, Ruszinkó,
Sárközy and Szemerédi [58]. For r = 2, Bessy and Thomassé [13] showed that a partition
into 2 cycles (even of different colours) always exists, thus proving a conjecture of Lehel [9]
and extending earlier work of [80, 1]. (See also [85] for an alternative proof.) Motivated by
ideas of Schelp, Balogh et al. [10] suggested a strengthening of Lehel’s conjecture: Every 2-
coloured n-vertex graph of minimum degree at least 3n/4 can be partitioned into a red and a
blue cycle. As evidence for their conjecture, Balogh et al. [10] proved an asymptotic version:
All but o(n) vertices of any 2-coloured n-vertex graph of minimum degree (3/4 + o(1))n can

1The results of this chapter have been accepted for publication in SIAM J. Discrete Math [72].
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be partitioned into a red and a blue cycle. DeBiasio and Nelsen [27] adapted the absorbing
method of [90], to show that under the same conditions, all vertices of the graph can be
partitioned into a red and a blue cycle. Extending this technique, Letzter [74] proved the
conjecture of Balogh et al. for large n.

The conjecture [31] that r monochromatic cycles suffice to partition any r-coloured com-
plete graph for all r ≥ 3, was disproved by Pokrovskiy [84]. However, his examples allow
partitions of all but one vertex. In light of this, it has been proposed to tone down the
conjecture, allowing for a constant number of uncovered vertices [10, 84]. On the positive
side, for r = 3, three monochromatic cycles suffice to partition of all but o(n) vertices of Kn,
and, for large enough n, 17 monochromatic cycles partition all of V (Kn); this was shown
by Gyárfás, Ruszinkó, Sárközy, and Szemerédi [61]. (Actually, by a slight modification of
their method, one can replace the number 17 with 10, see Section 1.5.3). Very recently,
Pokrovskiy [85] showed that it is indeed possible to partition all but a constant number of
vertices of a 3-coloured complete graph into at most 3 cycles [85]. This was independently
confirmed by Letzter with a better constant [75].

For G being the balanced complete bipartite graphKn,n, first upper bounds for monochro-
matic cycle partitions were given by Haxell [64] and by Peng, Rödl and Ruciński [83]. The
current best known result is that 4r2 monochromatic cycles suffice to partition all vertices of
Kn,n, if n is large [73].

For a lower bound, an easy construction shows we need at least 2r− 1 cycles to cover all
the vertices. For instance, starting out with a properly r-edge-coloured Kr,r, blow up each
vertex in one partition class to a set of size r, while in the other partition class only blow up
one vertex to a set of size r(r − 1) + 1. A similar construction is given in [84].

We believe that the lower bound of 2r− 1 might be the correct answer to the monochro-
matic cycle partition problem in balanced complete bipartite graphs. This suspicion has
recently been confirmed for r = 2 by Letzter [75], after preliminary work of Schaudt and
Stein [97]. (See also [76] for a short proof for a partition into 4 cycles. Our contribution here
is that the lower bound of 2r − 1 is asymptotically correct also for r = 3.

Theorem 1.1.1. For any 3-edge-colouring of Kn,n,

(a) there is a partition of all but o(n) vertices of Kn,n into five monochromatic cycles, and

(b) if n is large enough, then the vertices of Kn,n can be partitioned into 18 monochromatic
cycles.

The second part of our theorem improves the formerly best bound of 1695 disjoint
monochromatic cycles for covering any 3-edge coloured Kn,n [64]. We remark that in [97] it is
shown that 12 monochromatic cycles suffice to partition all the vertices of any two-coloured
Kn,n.

A related result for r = 2 and for partitions into paths, is due to Pokrovskiy [84]. He
showed that a 2-edge-coloured Kn,n can be partitioned into two monochromatic paths, unless
the colouring is a split colouring, that is, an edge-colouring that has a colour-preserving homo-
morphism to a properly edge-colouredK2,2. In a split colouring, three disjoint monochromatic
cycles (or paths) are always enough to cover all vertices. Pokrovskiy [84] conjectures 2r − 1
disjoint monochromatic paths suffice for arbitrary r.

We now briefly sketch the proof of our main result, Theorem 1.1.1, thereby explaining
the structure of the paper. The proof of Theorem 1.1.1(a) involves the construction of
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large monochromatic connected matchings (see below) and an application of the Regularity
Lemma [102]. This method has been introduced by Łuczak [79] and became a standard
approach.

A monochromatic connected matching is a matching in a connected component of the
graph spanned by the edges of a single colour, and such a component is called a monochro-
matic component. Slightly abusing notation, we treat matchings as both edge subsets and
1-regular subgraphs. The following is our key lemma. Its proof is given in Section 1.2.

Lemma 1.1.2. Let the edges of Kn,n be coloured with three colours. Then there is a partition
of the vertices of Kn,n into five or less monochromatic connected matchings.

Now for the proof of Theorem 1.1.1(a), apply the Regularity Lemma to the given 3-edge-
coloured Kn,n. The reduced graph Γ is almost complete bipartite and inherits a 3-colouring
(via majority density of the pairs). A robust version of Lemma 1.1.2, namely Lemma 1.3.1
(see Section 1.3), permits us to partition almost all of R into five monochromatic connected
matchings. In the subsequent step, presented in Section 1.4, we apply a specific case of the
Blow-up Lemma [60, 70, 79] to get from our matchings to five monochromatic cycles which
together partition almost all vertices of Kn,n.

The proof of Theorem 1.1.1(b) is given in Section 1.5.2. It combines ideas of Haxell [64]
and Gyárfás et al. [61] with Theorem 1.1.1(a). First, we fix a large monochromatic subgraph
H, which is Hamiltonian and remains so even if some of the vertices are deleted from it. Then,
using Theorem 1.1.1(a), we cover almost all vertices of Kn,n−V (H) with five vertex-disjoint
monochromatic cycles. The amount of still uncovered vertices being much smaller than the
order of H, we can apply a Lemma from [58] in order to absorb these vertices using vertices
from H, and producing only a few more cycles. We finish by taking one more monochromatic
cycle, which covers the remainder of H.

1.2 Covering with connected matchings
In this section we give the proof of the exact version of Lemma 1.1.2. Its proof has been
written with the proof of the more technical robust counterpart (Lemma 1.3.1 in Section 1.3)
in mind, in order to ease the transition between the two proofs. It may therefore appear to
be a bit overly lengthy in some of its parts.

1.2.1 Preliminaries

This subsection contains some preliminary results for the proof of our key lemma, Lemma 1.1.2,
which is given in the subsequent subsection. We start with some definitions. The biparts of
a bipartite graph H are its partition classes, which we denote by H and H. If X ⊆ H and
Y ⊆ H, or if X ⊆ H and Y ⊆ H, we write [X, Y ] for the bipartite subgraph induced by the
edges between X and Y .

Definition 1.2.1 (empty graph, trivial graph). A bipartite graph is empty if it has no
vertices and trivial if one of its biparts has no vertices.

For a colouring of the edges of H with colours red, green and blue, a red component R
is a connected component in the subgraph obtained by deleting the non-red edges and a
red matching is a matching whose edges are red. The same terms are defined for colours
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green and blue. We now introduce two types of colourings for 2-coloured bipartite graphs.
We call an edge colouring of a bipartite graph H in red and blue a V -colouring if there are
monochromatic components R and B of distinct colours such that

1. each of R and B is non-trivial;

2. R ∪B is spanning in H;

3. |V (R ∩B)| = |V (H)| or |V (R ∩B)| = |V (H)|.

A colouring of E(H) in red and blue is split, if

1. all monochromatic components are non-trivial;

2. each colour has exactly two monochromatic components.

The following lemma classifies the component structure of a 2-coloured bipartite graph.

Lemma 1.2.2. If the bipartite 2-edge-coloured graph H is complete, then one of the following
holds:

(a) There is a spanning monochromatic component,

(b) H has a V -colouring, or

(c) the edge-colouring is split.

Proof. Let R be a non-trivial component in colour red, say. Set X := H − R and note that
all edges in [R,X] and [R,X] are blue.

We first assume that |X| = 0. If also |X| = 0, we are done, since then R is spanning.
Otherwise, |X| > 0, and thus the colouring is a V -colouring.

So by symmetry we can assume that both |X| > 0 and |X| > 0. If there is a blue edge in
R or in X, then H is spanned by one blue component. Hence, all edges inside R and X are
red and the colouring is split.

Corollary 1.2.3. If a bipartite 2-edge-coloured graph H is complete, then

(a) there are one or two non-trivial monochromatic components that together span H, and

(b) if the colouring is not split, then there is a colour with exactly one non-trivial component.

Let us now turn to monochromatic matchings.

Lemma 1.2.4. Let H be a balanced bipartite complete graph whose edges are coloured red
and blue. Then either

(a) H is spanned by two vertex disjoint monochromatic connected matchings, one of each
colour, or

(b) the colouring is split and

• H is spanned by one red and two blue vertex disjoint connected monochromatic
matchings and
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• H is spanned by one blue and two red vertex disjoint connected monochromatic
matchings.

Proof. First assume that the colouring is split. We take one red maximum matching in each
of the two red components. This leaves at least one of the blue components with no vertices
on each side. We extract a third maximum matching from the leftover of the other blue
component, thus leaving one of its sides with no vertices. Thus the three matchings together
span H. Note that we could have switched the roles of red and blue in order to obtain two
blue and one red matching that span H.

So by Lemma 1.2.2, we may assume that either there is a colour, say red, with a spanning
component R, or H has a V -colouring, with components R in red and B in blue, say. In
either case, we take a maximum red matching M in R. Then there is an induced balanced
bipartite subgraph of H, whose edges are all blue, which contains all uncovered vertices of
each bipart of H. If this subgraph is trivial, we are done. Otherwise, we finish by extracting
from it a maximum blue matchingM ′ ⊆ B. As H is complete and there are no leftover edges
in said subgraph, we obtain that M ∪M ′ spans H, and we are done.

We continue with a lemma about the component structure of 3-edge-coloured bipartite
graphs.

Lemma 1.2.5. Let the edges of the complete bipartite graph H be coloured in red, green
and blue, such that each colour has at least four non-trivial components; then there are three
monochromatic components that together span H.

Proof. Let R be a red non-trivial component. Since there are three more red non-trivial
components, the three graphs X := H−R, [R,X] and [R,X] are each non-trivial. Moreover,
the edges of the latter two graphs are green and blue. By Corollary 1.2.3(a) there are one
or two non-trivial monochromatic components that together span [R,X]. So, if [R,X] has a
spanning monochromatic component, then we can span H with at most three components,
which is as desired. Therefore and by symmetry we may assume from now on that none of
[R,X] and [R,X] has a spanning monochromatic component. Suppose [R,X] has a split-
colouring. By Lemma 1.2.2, either [R,X] is split or one of R and X is contained in the
intersection of a blue and a green monochromatic component. In the latter case the union of
three monochromatic components of the same colour contains one of the biparts of H. But
this is impossible as each colour has at least four non-trivial components. On the other hand,
if both [R,X] and [R,X] have a split colouring, then each bipart of H is contained in the
union of four green components as well as in the union of four blue components, and thus
all edges in X are red. But then there are only two non-trivial red components, R and X, a
contradiction.

So by Lemma 1.2.2, and by symmetry, we know that [R,X] and [R,X] both have
green/blue V -edge-colourings. Thus each of [R,X] and [R,X] has a non-trivial blue com-
ponent and a non-trivial green component, say these are B1, G1 and B2, G2 respectively.
Furthermore, X or R is contained in the intersection B1 ∩G1, and X or R is spanned by the
intersection B2 ∩G2.

We first look at the case where X is contained in B1 ∩G1. If R is contained in B2 ∩G2,
then both green and blue have at most two spanning components, which is a contradiction.
On the other hand, if X is contained in B2 ∩G2, then H is spanned by the union of R and
the blue components in H that contain B1 and B2, and we are done.
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Consequently we can assume by symmetry and by Lemma 1.2.2 that R is spanned by
B1 ∩G1 and R is spanned by B2 ∩G2. Observe that [G1, G2] is coloured red and blue and
[B1, B2] is coloured red and green, since otherwise, we obtain the desired cover. Suppose there
is a red component of [G1, G2] that is spanning in [G1, G2]. Such a component, together with
B1 and B2, spans H. So, we can assume [G1, G2] has no red spanning red component.
Moreover, since there are at least four non-trivial blue components, [G1, G2] contains two
blue components, which are non-trivial each.

Since these blue components are non-trivial in H, [G1, G2] does not have a V -colouring
(in itself). Thus, by Lemma 1.2.2, [G1, G2] is split coloured in red and blue. Similarly we see
that [B1, B2] is split coloured in red and green.

Consider the edges in [G1, B2] and [B1, G2]. If any of these edges is green or blue, then
our graph is spanned by three green or by three blue components. On the other hand, if all
edges in [G1, B2] and [B1, G2] are red, then H has only three non-trivial red components, a
contradiction.

1.2.2 Proof of Lemma 1.1.2

We are now ready to prove Lemma 1.1.2. Let H be a balanced bipartite complete graph of
order 2n. Our aim is to show that H can be spanned with five vertex disjoint monochromatic
connected matchings. We suppose that this is wrong in order to obtain a contradiction. We
prove a series of claims in order to reduce the problem to a specific colouring, which then
receives a distinct treatment.

Claim 1.2.6. Each colour has at least three non-trivial components.

Proof. Suppose the claim is wrong for colour red, say. By assumption, there are two (possibly
trivial) red components R1 and R2 in H, such that all other red components are trivial. Let
M be a maximum red matching in R1 ∪ R2. Then every edge in the balanced bipartite
subgraph X := H −M is green or blue. By Lemma 1.2.4, H can be spanned with three
vertex-disjoint monochromatic connected matchings. So in total we found at most five vertex-
disjoint monochromatic connected matchings that together span H.

Claim 1.2.7. There are no two monochromatic components that together span H.

Proof. Suppose the claim is wrong and there are monochromatic components R and B that
together span H. By Claim 1.2.6 we can assume that they have distinct colours, say R is red
and B is blue. Take a red matchingM red of maximum size in R and a blue matchingMblue of
maximum size in B−V (M red). Set R′ := R−V (M red∪Mblue) and B′ := B−V (M red∪Mblue).
By maximality, any edge between B′ and R′ is green. The same holds for the edges between
B′ and R′.

If [B′, R′] is empty, we finish by picking a maximum matching in [R′, B′]. We proceed
analogously if [R′, B′] is empty. Assuming that both are non-empty we now pick now pick a
maximum matching in each of the green components of H − V (M red ∪Mblue) that contain
[B′, R′], [B′, R′]. (If this is the same component, we only pick one matching. If R′ or B′ is
empty, we let the matchings be empty.) Call these green matchings Mgreen

1 resp. Mgreen
2 . Let

B′′ := B′ − V (Mgreen
1 ∪Mgreen

2 ) and R′′ := R′ − V (Mgreen
1 ∪Mgreen

2 ).
Observe that by the maximality ofMgreen

1 andMgreen
2 , if one of R′′, B′′ is non-empty, then

the other one is empty. The same holds for the sets B′′, R′′. Thus one of the two graphs R′′,
B′′ is empty, say this is B′′.
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The edges in R′′ are green and blue. If R′′ contains no green edges, we can pick another
blue matching of maximum size and are done. Then again, if R′′ contains a green edge, it
follows by maximality of Mgreen

1 and Mgreen
2 that both of them are empty, which implies that

there are no green edges in R′ ∪ B′. In this case we ignore Mgreen
1 and Mgreen

2 and finish as
follows: By Lemma 1.2.4, R′ can be spanned by at most 3 vertex disjoint monochromatic
connected matchings. This proves the claim.

Claim 1.2.8. Let Y and Z be monochromatic components of distinct colours such that Y ∩Z
is non-trivial. Then Y − Z is not empty.

Proof. Let Y be a red component, Z be a blue component, and let X := H − (Y ∪ Z).
Suppose that Y − Z is empty. We first note that all edges in [Y ∩ Z,X] and [Y ∩ Z,X] are
green. Moreover, by Claim 1.2.6, there is another non-trivial blue component in H, which
implies that X is non-trivial.

The subgraphs [Y ∩ Z,X] and [Y ∩ Z,X] cannot belong to the same green component,
since otherwise H is spanned by the union of said green component and Z, which is not
possible by Claim 1.2.7. Consequently, X has no green edges. By Claim 1.2.6 there is a
green non-trivial component G ⊆ Y ∪ Z. As H = Z ∪ (Y − Z) ∪X and Y − Z is empty, we
obtain that G ∩ Z is non-trivial in H and G − Z ⊆ Y − Z is empty. Thus G has the same
properties as Y with respect to Z and we can repeat the same arguments as above to obtain
that all edges in X are blue. But this is a contradiction to Claim 1.2.7, as X and Z together
span H.

Claim 1.2.9. There is a colour that has exactly three non-trivial components.

Proof. We show that there is a colour with at most three non-trivial components. This
together with Claim 1.2.6 yields the desired result. So suppose otherwise. Then each colour
has at least four non-trivial components. By Lemma 1.2.5, there are components X, Y and
Z that together span H.

By assumption, not all of X, Y and Z have the same colour. If two of these components,
say X and Y , have the same colour, say red, then H − (X ∪ Y ) contains a red component
that is non-trivial, by the assumption that our claim is false. The intersection of this red
component with Z is non-trivial. Hence we get a contradiction to Claim 1.2.8.

So assume X is red, Y is blue and Z is green. We claim that (after possibly swapping
top and bottom parts)

(Y ∩ Z)−X is empty. (1.2.1)

Indeed, otherwise (Y ∩Z)−X is non-trivial. Then, as [X, (Y ∩ Z)−X] is non-trivial and its
edges are green and blue, we get X ⊆ Y ∪ Z since every vertex in X sees a vertex in Y ∩ Z.
In the same way we obtain X ⊆ Y ∪ Z. Thus Z ∪ Y is spanning, which is not possible by
Claim 1.2.7. This proves (1.2.1).

By assumption, H − X contains three non-trivial red components R1, R2 and R3, say.
For i 6= j, [Ri ∩ (Y − Z), Rj ∩ (Z − Y )] has no red, blue or green edges and thus is trivial.
So for at most one i ∈ {1, 2, 3} the subgraph Ri ∩ [Y − Z,Z − Y ] is non-trivial. The same
holds for [Ri ∩ (Y − Z), Rj ∩ (Z − Y )]. Consequently, and by the pigeonhole principle, we
can assume that,

R1 ∩ [Y − Z,Z − Y ] and R1 ∩ [Y − Z,Z − Y ] are both trivial. (1.2.2)
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As R1 is non-trivial, we can suppose that without loss of generality R1 ∩ Y is non-trivial.
Thus, by (1.2.1) R1 ∩ (Y − Z) is non-empty. Hence, by (1.2.2) we get:

|R1 ∩ Z − Y | = 0. (1.2.3)

Moreover, Claim 1.2.8 (applied to R1 and Y ) implies that R1 has at least one vertex in Z − Y
or Z − Y . By (1.2.3) we have the latter case and hence

R1 ∩ (Z − Y ) and R1 ∩ (Y − Z) are each non-empty. (1.2.4)

The fact that [Y − (X ∪ Z), R1 ∩ (Z − Y )] and [Z − (X ∪ Y ), R1 ∩ (Y − Z)] only have red
edges, together with (1.2.2) and (1.2.4), yields that

Y − (X ∪ Z) and Z − (X ∪ Y ) are each empty (1.2.5)

Now by (1.2.5) (and by the existence of R1, R2, R3), we know that (Y ∩ Z)−X is non-
empty. So each vertex of X has a neighbour in (Y ∩ Z)−X and hence X ⊆ Y ∪ Z. Since,
by Claim 1.2.7, H is not spanned by Y ∪ Z, we have that X − (Y ∪ Z) is non-empty. This
and (1.2.4) imply that [X − (Y ∪ Z), Y − (X ∪ Z)] and [X − (Y ∪ Z), Z − (X ∪ Y )] are non-
trivial each. As the edges of these subgraphs are green and blue respectively, there are green
and blue components G and B such that H −X − [(G ∩ Y ) ∪ (B ∩ Z)] is empty.

Now let G′ be another non-trivial green component. Then G′ −X is empty, while G′ ∩X
is non-empty. By (1.2.5) it follows that G′ −X is empty, while G′ ∩X is non-empty. This
is not possible by Claim 1.2.8 and completes the proof.

Using Claim 1.2.9 we assume from now on that without loss of generality, colour red has
exactly three non-trivial components R1, R2 and R3. For i = 1, 2, 3, letMi be a red matching
of maximum size in Ri.

The remaining graph Y := H −M1 −M2 −M3 has no red edges. If Y is trivial, then
as |Y | = |Y |, the graph Y is empty, and so we are done. If Y can be spanned by two
disjoint monochromatic connected matchings, we are also done, since in that case, we found
five matchings which together span H. So we can assume that the colouring of Y is split,
by Lemma 1.2.4 and as the edges of Y are green and blue. We denote the blue and green
components of Y by B′1, B′2, respectively G′1, G′2, where B′1 = G′1, B′2 = G′2, B′1 = G′2, and
B′2 = G′1. Note that the subgraph

B′1 ∪B′2 ∪M1 ∪M2 ∪M3 is spanning in H. (1.2.6)

By Lemma 1.2.4, Y can be spanned by two blue matchings M4 ⊆ B′1, M5 ⊆ B′2 and an
additional green matching. If any of the matchings Mi is trivial, we can ignore it and still
have a sufficiently large cover of H. Thus we get that

B′1, B
′
2, G

′
1, G

′
2, M1, M2, and M3 are non-trivial. (1.2.7)

Moreover, let B1 and B2 be the blue components in H that contain B′1 and B′2, respec-
tively. We define G1 and G2 analogously. If B1 = B2, we are done as M4∪M5 is a connected
matching. This and symmetry imply

B1 6= B2 and G1 6= G2. (1.2.8)

The colouring so far is shown in Figure 1.1.
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red
green
blue

B′1 = G′1 B′2 = G′2 M1 M2 M3

B′2 = G′1 B′1 = G′2 M1 M2 M3

Figure 1.1: The structure of the colouring before Claim 1.2.10

Claim 1.2.10. For each i = 1, 2, 3 we have that

(a) • if |Mi \G1 ∪G2| > 0, then B′1 ⊆ Ri or B′2 ⊆ Ri;

• if |Mi \B1 ∪B2| > 0, then G′1 ⊆ Ri or G′2 ⊆ Ri;

(b) • if |Mi \G1 ∪G2| > 0, then B′1 ⊆ Ri or B′2 ⊆ Ri;

• if |Mi \B1 ∪B2| > 0, then G′1 ⊆ Ri or G′2 ⊆ Ri;

(c) • if |Mi \G1 ∪G2 ∪B1 ∪B2| > 0, then B′1 ∪B′2 = G′1 ∪G′2 ⊆ Ri;

• if |Mi \G1 ∪G2 ∪B1 ∪B2| > 0, then B′1 ∪B′2 = G′1 ∪G′2 ⊆ Ri.

Proof. For the first part of (a), assume |M1 \ G1 ∪G2| > 0. Note that there is no green
edge between M1 \ G1 ∪G2 and G′1. First assume that M1 ∩B1 \ G1 ∪G2 is non-empty.
Then, by 1.2.8, any edge between M1 ∩B1 \ G1 ∪G2 and B′2 = G′1 is red. So, by (1.2.7)
the result follows. So we can assume that this is not true. Similarly the result holds if
|M1 ∩B2 \ G1 ∪G2| > 0. Therefore we can assume that M1 \ B1 ∪B2 ∪G1 ∪G2 is non-
empty. In this case, since all edges between M1 \ G1 ∪G2 ∪B1 ∪B2 and B′1 are red, the
result follows again by (1.2.7). Statement (b) and the second part of (a) follow similarly.

For the first part of (c), note that any edge betweenMi\G1 ∪G2 ∪B1 ∪B2 and B′1 ∪B′2 =
G′1 ∪G′2 has to be red and use (1.2.7). The second part of (c) is analogous.

By Claim 1.2.6 there are green and blue non-trivial components G3 6= G1, G2 and B3 6=
B1, B2 in H.

Claim 1.2.11. It holds that |V (G3 ∩B3 ∩ (M1 ∪M2 ∪M3))| > 0.

Proof. Assume otherwise. That is, assume

|V (G3 ∩B3 ∩ (M1 ∪M2 ∪M3))| = 0.

The components B3 and G3 do not meet with B′1 ∪ B′2 = G′1 ∪ G′2 and by (1.2.6), there are
no vertices outside of B′1 ∪B′2 ∪M1 ∪M2 ∪M3. We conclude that B3 ∩ (M1 ∪M2 ∪M3) and
G3 ∩ (M1 ∪M2 ∪M3) are each non-trivial. Hence there are indices i, i′, j, j′ such that there
is a blue non-trivial subgraph B′3 ⊆ B3 and a green non-trivial subgraph G′3 ⊆ G3 such that
B′3 ⊆ Mi and B′3 ⊆ Mi′ , and G′3 ⊆ Mj and G′3 ⊆ Mj′ . Actually, we can choose these indices
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such that i 6= i′ and j 6= j′. Since if i = i′, say, Claim 1.2.8 yields that (B3 ∩H) \Mi is not
empty and therefore, by (1.2.6), there is some index k 6= i such that B3 ∩Mk is not empty,
which allows us to swap i′ for k.

For an index k 6= i, the edges between B′3 ⊆ R1 ∩Mi and G′3 ∩Mk are blue and green. As
by our initial assumption |V (G3∩B3∩(M1∪M2∪M3))| = 0, this implies that |G3 ∩Mk| = 0.
In the same way we obtain that |G3 ∩Mk| = 0 for k 6= i′ or |B′3 ∩Mi| = 0, but the latter
cannot happen by the choice of B′3. Hence we have i = j′ and i′ = j; in other words,

|Mi ∩G3| > 0, |Mj ∩G3| > 0, |Mi ∩B3| > 0 and |Mj ∩B3| > 0.

So by Claim 1.2.10 (a) and (b), either we have B′1 ⊆ Ri and B′2 ⊆ Rj, or we have G′1 ⊆ Ri

and G′2 ⊆ Rj. Indeed, the fact that |Mi ∩G3| > 0 together with Claim 1.2.10 (b) implies
that one of B′1 = G′1 ⊆ Ri, B′2 = G′2 ⊆ Ri holds. Without loss of generality, we assume the
latter. Next, as |Mi ∩B3| > 0, Claim 1.2.10 (a) implies that G′1 = B′2 ⊆ Ri or G′2 = B′1 ⊆ Ri.
Without loss of generality, we assume the former. We repeat the same with index j, and
since we already know that B′2 ⊆ Ri, the output of Claim 1.2.10 has to be B′1 = G′2 ⊆ Rj for
|Mj ∩G3| > 0 and B′1 = G′1 ⊆ Rj for |Mj ∩B3| > 0. For the remainder, let us assume that
B′1 ⊆ Ri and B′2 ⊆ Rj.

Then G′1∩Rk = ∅ = G′2∩Rk, where k is the third index, which together with Claim 1.2.10
(a) and (b), gives that |Rk ∩ (G3 ∪ B3)| = 0. The edges between B′2 = G′1 ⊆ G1 ∩Rj and
B′3 ∩Ri have to be green, which implies B′3 ⊆ G1. As any edge between B′3 and Rk −B3 has
to be green this implies |Rk ∩G1| > 0 since Rk is non-trivial and |Rk ∩B3| = 0. This also
implies that |Rk −G1| = 0.

By repeating the same argument with B′1 = G′1 ⊆ G1 and B′3, it follows that |Rk ∩G1| > 0

and |Rk −G1| = 0. So Rk ∩ G1 is non-trivial and Rk − G1 is empty, a contradiction to
Claim 1.2.8.

Claim 1.2.11 and the symmetry between the Mi in both biparts allow us to assume that
without loss of generality

|M3 ∩G3 ∩B3| > 0. (1.2.9)

This implies |M3 \G1 ∪G2 ∪B1 ∪B2| > 0 and thus by Claim 1.2.10(c) with i = 3 we obtain

B′1 ∪B′2 = G′1 ∪G′2 ⊆ R3. (1.2.10)

This implies that (R1 ∪R2) ∩ (G′1 ∪G′2) = ∅. Since the edges between M3 ∩G3 ∩B3 and
R1 ∪R2 are coloured green and blue, we have by 1.2.9 that

M1 ∪M2 ⊆ R1 ∪R2 ⊆ G3 ∪B3. (1.2.11)

So, by (1.2.7) and Claim 1.2.10(b) with i = 1, we can assume that without loss of generality

B′1 = G′1 ⊆ R1 (1.2.12)

and hence by (1.2.7) and Claim 1.2.10(b) with i = 2 it follows that

B′2 = G′2 ⊆ R2. (1.2.13)

The structure of the colouring so far is sketched in Figure 1.2. The assertions (1.2.12)
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red
green
blue

B′1 = G′1 ⊆ R1 B′2 = G′2 ⊆ R2 M1 M2 M3 \ (G3 ∪B3) M3 ∩G3 ∩B3

B′2 = G′1 ⊆ R3 B′2 = G′1 ⊆ R3 M1 ⊆ G3 ∪B3 M2 ⊆ G3 ∪B3 M3

Figure 1.2: The structure of the colouring after (1.2.13).

and (1.2.13) imply that R3 ∩ G′1 ∪G′2 = ∅. Suppose that there is an x ∈ R1 ∪R2 \
G1 ∪G2 ∪B1 ∪B2. By 1.2.10, the edges between x and G′1 ∪G′2 = B′1 ∪B′2 are not red,
and neither green or blue by choice of x. As G′1 and G′2 are both non-trivial in H by (1.2.7)
and H is complete, we obtain a contradiction. Hence

M1 ∪M2 \G1 ∪G2 ∪B1 ∪B2 = ∅. (1.2.14)

In the same fashion, suppose there is an x ∈ (M3 \ G1 ∪G2) ∪ (M3 \ B1 ∪B2). By (1.2.12)
and (1.2.13), the edges between x and B′1 = G′1 respectively B′2 = G′2 are neither green nor
blue by choice of x. Again, using (1.2.7) and the completeness ofH, we obtain a contradiction
as

M3 \G1 ∪G2 = M3 \B1 ∪B2 = ∅. (1.2.15)

Finally, suppose there is an x ∈ B3 ∪G3 ∩M1 ∪M2. By (1.2.7), x sees vertices in M3. This,
however, contradicts (1.2.15) and thus

B3 ∪G3 ∩M1 ∪M2 = ∅. (1.2.16)

Next, we restore the symmetry between the colours.

Claim 1.2.12. Each colour has exactly three components.

Proof. We already know that R1, R2 and R3 are the only red components in H. Suppose
there is a (possibly trivial) green component G4 distinct from G1, G2 and G3. Assume first
that G4 6= ∅. Note that any edge between G4 and G′1 ∪G′2 is red or blue. By 1.2.8, no vertex
of G4 can send blue edges to both G′1 and G′2. Moreover, by (1.2.12) and (1.2.13), no vertex
of G4 can send red edges to both G′1 and G′2. Since H is complete and G′1 = B′1 and G′2 = B′2
are non-trivial, we derive G4 ⊆ R1 ∪R2 ∩ B1 ∪B2. But this contradicts (1.2.9), because H
is complete.

Now let us assume that G4 = ∅, and so, G4 6= ∅. In other words, G4 consists of a single
vertex with no incident green edges. Suppose that G4 ∩M3 = ∅. So by (1.2.7) and (1.2.10),
the edges between G4 and G′1 ∪G′2 are blue, which contradicts that B′1 and B′2 lie in distinct
blue components, as asserted by 1.2.8. Therefore G4 ⊆M3. As G4 = ∅, all edges between G4

and M1 ∪M2 are blue. By (1.2.15) and (1.2.16), B3 ⊆ [M1 ∪M2,M3]. Since H is complete
and B3 is non-trivial, we obtain that G4 ⊆ B3. We also have that G3 ⊆ [M1 ∪M2,M3]
by (1.2.15) and (1.2.16). Since G3 is non-trivial it follows that, G3 ∩M1 ∪M2 is non-empty.
Since the edges between G4 and G3 are blue, we obtain that M1 ∪M2 ∩ G3 ∩B3 6= ∅. But
this represents a contradiction to (1.2.12) or (1.2.13), since there is no colour left for the
edges between G3 ∩B3 and B′1 ∪B′2. Since a fourth blue component would behave the same
way as G4, this finishes the proof of the claim.
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By (1.2.10) it follows that Ri = Mi for i = 1, 2. In the same way (1.2.12) and (1.2.13)
imply that

R3 = M3. (1.2.17)

For 1 ≤ i, j, k ≤ 3 we denote i|j|k := Ri ∩Gj ∩Bk and i|j|k := Ri ∩Gj ∩Bk. From 1.2.7, 1.2.9, 1.2.12
and 1.2.13 we obtain that

|1|1|1|, |2|2|2|, |3|3|3| > 0. (1.2.18)

Note that by definition and completeness it follows that for all i, i′, j, j′, k, k′ with i 6= i′, j 6= j′

and k 6= k′ we have (modulo switching biparts)

if |i|j|k| > 0, then |i′|j′|k′| = 0. (1.2.19)

Let us show that i|j|k = ∅, unless i, j, k are pairwise different. Indeed, otherwise, if
say 1|1|k 6= ∅ for k = 1, 2 or 3, we obtain a contradiction to (1.2.19) as |2|2|2|, |3|3|3| > 0
by (1.2.18).

Hence H can be decomposed into sets i|j|k, where 1 ≤ i, j, k ≤ 3 are pairwise different.
So we have:

1|3|2 ∪ 1|2|3 ∪ 2|3|1 ∪ 2|1|3 ∪ 3|2|1 ∪ 3|1|2 = H. (1.2.20)

Claim 1.2.13. We have H = 1|1|1 ∪ 2|2|2 ∪ 3|3|3 ∪ 3|1|2 ∪ 3|2|1.

Proof. First, we show there is no i|j|k 6= ∅ such that exactly two of i, j, k are equal. If
3|1|1 6= ∅, say, then |1|2|3|, |1|3|2| = 0 by (1.2.19). Together with (1.2.20), this implies that
R1 is trivial, a contradiction. Second, note that 1.2.10 implies that 3|1|2 and 3|2|1 are non-
empty. Again, by (1.2.19), it follows that i|j|k = ∅, if i 6= 3 and 3 ∈ {j, k}. This proves the
claim.

Claim 1.2.14. We have H = 1|1|1 ∪ 2|2|2 ∪ 3|3|3.

Proof. By the previous claim it remains to show that 3|1|2 = 3|2|1 = ∅. To this end, sup-
pose that 3|1|2 6= ∅ and thus |1|2|3|, |2|3|1| = 0 by (1.2.19). If 3|2|1 6= ∅ as well, then
by (1.2.19) also |1|3|2| = 0 which, by Claim 1.2.13 and 1.2.20 gives the contradiction that
R1 ⊆ [1|1|1, 1|2|3 ∪ 1|3|2] is trivial. So we have

H = 1|1|1 ∪ 2|2|2 ∪ 3|3|3 ∪ 3|1|2,

with 3|1|2 6= ∅. This partition is shown in Figure 1.3.
Ignoring from now on the matchings M1 and M2, we aim at covering H with M3 and four

other matchings. To this end take a green matching Mgreen
1 of maximum size in G1−M3 and

next a blue matching Mblue
2 of maximum size in B2 −M3 −Mgreen

1 . Denote

• i|j|k
′
:= i|j|k \M3 ∪Mgreen

1 ∪Mblue
2 and

• i|j|k′ := i|j|k \M3 ∪Mgreen
1 ∪Mblue

2 .

We can assume that M3 ∪ Mgreen
1 ∪ Mblue

2 is not spanning. Thus, as H is complete, the
maximality of the matchings M3, M

green
1 and Mblue

2 implies that 3|1|2
′
, 3|1|2′ = ∅.

Moreover it follows that
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red
green
blue

1|1|1 2|2|2 3|3|3 3|1|2

1|3|2 3|2|12|1|3 3|1|2

Figure 1.3: The colouring from the proof of Claim 1.2.14

• |1|1|1
′
| = 0 or |2|1|3′| = 0 by maximality of Mgreen

1 ⊆ G1,

• |2|2|2
′
| = 0 or |1|3|2′| = 0 by maximality of Mblue

2 ⊆ B2,

• 3|3|3
′
= ∅ as R3 = M3 by (1.2.17).

If |1|1|1
′
|, |2|2|2

′
| = 0, then we have found three disjoint connected matchings that span H,

contradicting our assumption. If |2|1|3′|, |1|3|2′| = 0, we take a green matching in G2 and a
blue maximum matching in B1, among the yet unmatched vertices. After this step, there are
no vertices of 3|2|1′ left uncovered and therefore all vertices of H are covered. Thus, as H
is balanced, we have found five disjoint monochromatic connected matchings which together
span H. So, either |2|2|2

′
|, |2|1|3′| = 0, or |1|1|1

′
|, |1|3|2′| = 0. In either case we can find

two disjoint monochromatic connected matchings that cover all vertices of the two other sets
from the previous sentence and all vertices of 3|2|1′. So we have five disjoint monochromatic
connected matchings spanning H, a contradiction.

For ease of notation we set

X := |1|1|1|, Y := |2|2|2|, Z := |3|3|3| and

A := |1|3|2|, B := |1|2|3|, C := |2|3|1|, D := |2|1|3|, E := |3|2|1|, F := |3|1|2|.

By Claim 1.2.14 and 1.2.20 we have |H| = X + Y + Z and |H| = A+ B + C +D + E + F .
Note that the edges between any upper and lower part are monochromatic (see Figure 1.4).

Also note that we reached complete symmetry between the colours and the indices of the
components, so we will from now on again treat them as interchangeable.

Observe that for (at least) one index i ∈ {1, 2, 3} it holds that |Ri| ≤ |Ri|. We shall call
such an index i a weak index for the colour red. If furthermore |Ri| < |Ri ∩Bj| = |Ri ∩Gk|
and |Ri| < |Ri ∩Bk| = |Ri ∩Gj|, where j, k are the other two indices from {1, 2, 3}, then we
call i very weak for colour red. Analogously define (very) weak indices for colours blue and
red.

Claim 1.2.15. If index i is weak for colour c, then

(a) the indices in {1, 2, 3} − {i} are not weak for colour c, and
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red
green
blue

X = |1|1|1| Y = |2|2|2| Z = |3|3|3|

A = |1|3|2|B = |1|2|3|C = |2|3|1|D = |2|1|3|E = |3|2|1|F = |3|1|2|

Figure 1.4: The partition of Kn,n.

(b) index i is very weak for colour c.

Proof. Let us show this for i = 2 and colour red (the other cases are analogous). By assump-
tion, Y ≤ C + D. Since X < A + B and Z < E + F cannot both hold, we can assume
without loss of generality that Z ≥ E + F . Now if X ≤ A + B, then we pick maximal red
matchings in [1|1|1, 1|3|2 ∪ 1|2|3], [2|2|2, 2|3|1 ∪ 2|1|3] and [3|2|1 ∪ 3|1|2, 3|3|3], thus covering
all vertices of 1|1|1 ∪ 2|2|2 ∪ 3|2|1 ∪ 3|1|2. To finish we cover all of the remaining vertices
in 3|3|3 ∪ (H \R3) with a blue and a green matching, a contradiction. Hence X > A + B.
Using this fact, Z > E + F follows by symmetry. This proves (a).

In order to show (b), let us first prove that Y < C. We pick a maximal red matching in
each of R1 and R3, thus covering all vertices of R1 ∪R3. Now if Y ≥ C, then all vertices of
2|3|1 are contained in a maximal red matching that also contains all vertices of 2|2|2. We cover
all of the remaining vertices in R1 ∪R3 with a blue and a green matching, a contradiction.
The fact that Y < D follows analogously.

Suppose two of the three indices 1, 2, 3 are weak for different colours, say 1 is weak for red
and 2 is weak for green. Then Claim 1.2.15(b) gives that X < A and Y < E. Thus we can
match all vertices of 1|1|1 into 1|3|2 and all vertices of 2|2|2 into 3|2|1 with two matchings,
one red and one green, and cover all of the remaining vertices with three disjoint matchings,
one from each of R3, G3, B3, a contradiction.

Hence, since each colour has a weak index, there is an index i that is weak for all three
colours, i = 2 say. We match all vertices of 2|2|2 into 3|1|2 with a blue matching M . Let us
from now work with the remaining set 3|1|2′ = 3|1|2 \ V (M) of cardinality F ′ = F − Y . Set
n′ = n−Y . (So instead of five we will have to find four monochromatic connected matchings
covering all vertices of H −M .) Without loss of generality assume Z ≥ X. Claim 1.2.15(a)
gives that

X > A+B,C + E,D + F ′ and Z > A+ C,B +D,E + F ′. (1.2.21)

Hence X > n′/3. So, one of the three sums A+ C,B +D,E + F ′ has to be strictly smaller
than X, say A+ C < X. Consequently, Z = n′ −X < B +D + E + F ′.

If Z ≥ D +E + F ′, then we cover all vertices of R3 −M with a red matching, and cover
all vertices of the remains of 3|3|3 with a blue matching that also covers all vertices of 2|1|3.
Now all that is left on the top is 1|1|1, which we can match with a red and a blue matching
into the remains of 1|3|2∪ 1|2|3∪ 2|3|1. Thus we found four connected matchings that cover
all vertices of H − V (M), and are done.
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So we may assume Z < D + E + F ′ and thus X > A + B + C. If X ≤ A + B + C + E,
then we can proceed similarly as in the previous paragraph to find four matchings covering
all vertices of H. Hence X > A + B + C + E, implying that Z < D + F ′. But by (1.2.21)
we have D+ F ′ < X a contradiction to our assumption that X ≤ Z. This finishes the proof
of Lemma 1.1.2.

1.3 Covering almost all vertices with connected match-
ings

1.3.1 Preliminaries

The goal of this section is to prove a version of Lemma 1.1.2 for almost complete graphs.
This result is given in Lemma 1.3.1.

Let G be a graph with biparts A and B and let H be a subgraph of G. We call H γ-dense
in G if it has at least γ|A||B| edges. If H = G, we often simply say G is γ-dense. Let H be
a subgraph of G. If H has biparts X ⊆ A and Y ⊆ B such that |X| ≥ γ|A| and |Y | ≥ γ|B|,
then we call H γ-non-trivial (in G), or we say G is γ-spanned by H. Usually, we use the
term γ-non-trivial when γ ≈ 0 and we use the term γ-spanned when γ ≈ 1.

Lemma 1.3.1. There is an ε0 > 0 such that for each 0 < ε ≤ ε0 there are n0 and ρ = ρ(ε)
such that for all n ≥ n0 the following holds.

Every 3-edge-coloured balanced bipartite (1− ε)-dense graph of size 2n is (1− ρ)-spanned
by at most five disjoint monochromatic connected matchings.

For the proof of Lemma 1.3.1 we need some more notation. Again, let G be a graph with
biparts A and B and let H be a subgraph of G. We say H has γ-complete degree in G if
degH(y) > γ|A| for y ∈ B ∩ V (H) and degH(x) > γ|B| for x ∈ A ∩ V (H). Clearly, if H has
γ-complete degree in G, then in particular, H is γ-dense in G.

The following lemmas are well-known and follow from standard averaging arguments.

Lemma 1.3.2. For ε > 0 let H be a (1− ε)-dense bipartite graph. Then H has a (1−
√
ε)-

spanning subgraph H ′ with (1− 2
√
ε)-complete degree (in H).

Lemma 1.3.3. For 1/4 > ε > 0 let H be a bipartite graph with biparts A,B, having (1− ε)-
complete degree. Then any 2ε-non-trivial subgraph of H is connected.

We omit the easy proofs of the next two lemmas.

Lemma 1.3.4. For δ, ε > 0 let H be a (1− ε)-dense bipartite graph with a δ- subgraph H ′.
Then H ′ is (1− ε/δ2)-dense in H ′.

Lemma 1.3.5. For δ, ε > 0 let H be a bipartite graph of (1− ε)-complete degree and H ′ be
a δ-non-trivial subgraph. Then H ′ has (1− ε/δ)-complete degree in itself.

The proof of the next lemma is given as a warm-up. In the remainder of this section H
is a bipartite graph with biparts H and H.

Lemma 1.3.6. For 1/5 ≥ ε > 0 let H be a 2-edge-coloured bipartite graph of (1−ε)-complete
degree, with bipartition A,B. Then H has a ((1−ε)/2)-spanning monochromatic component.
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Proof. Having (1 − ε)-complete degree, H has a monochromatic component R with |R| ≥
(1−ε)|H|/2. If R is ((1−ε)/2)-spanning we are done. Otherwise the monochromatic subgraph
[R,H −R] is ((1− ε)/2)-spanning, and it is connected by Lemma 1.3.3.

In order to formulate a dense version of Lemma 1.2.2 we need to define dense variants
of V -colourings and split colourings. We say a colouring of E(H) in red and blue is an
ε-V -colouring if there are monochromatic components R and B of distinct colours such that

1. each of R and B is ε-non-trivial in H;

2. R ∪B is (1− ε)-spanning in H;

3. |V (R ∩B)| ≥ (1− ε)|V (H)| or |V (R ∩B)| ≥ (1− ε)|V (H)|.

A colouring of E(H) in red and blue is ε-split, if

1. all monochromatic components are ε-non-trivial;

2. each colour has exactly two monochromatic components.

The following is a robust analogue of Lemma 1.2.2.

Lemma 1.3.7. Let ε < 1/6. If the bipartite 2-edge-coloured graph H has (1 − ε)-complete
degree, then one of the following holds:

(a) There is a (1− 3ε)-spanning monochromatic component,

(b) H has a 3ε-V -colouring, or

(c) the edge-colouring is 2ε-split.

Proof. Let R be an ((1 − ε)/2)-spanning component in colour red, say. Such a component
exists by Lemma 1.3.6. Set X := H − R and note that all edges in [R,X] and [R,X] are
blue.

We first assume that |X| < 3ε|V (H)|. If also |X| < 3ε|V (H)|, we are done, since then
R is (1 − 3ε)-spanning. Otherwise, |X| ≥ 3ε|V (H)|, and thus the blue subgraph [X,R] is
connected by Lemma 1.3.3 and the colouring is a 3ε-V -colouring.

So by symmetry we can assume that both |X| ≥ 3ε|V (H)| and |X| ≥ 3ε|V (H)|. If there is
a blue edge in R or in X, then H is spanned by one blue component by Lemma 1.3.3. Hence,
all edges inside R and X are red and the colouring is 2ε-split, again using Lemma 1.3.3.

Corollary 1.3.8. Let ε < 1/6. If a bipartite 2-edge-coloured graph H has (1 − ε)-complete
degree, then

(a) there are one or two 2ε-non-trivial monochromatic components that together (1− 3ε)-
span H, and

(b) if the colouring is not 2ε-split, then there is a colour with exactly one 3ε-non-trivial
component.

Now we prove an analogue of Lemma 1.2.4.

Lemma 1.3.9. Let ε < 1/6, and let H be a balanced bipartite graph of (1 − ε)-complete
degree whose edges are coloured red and blue. Then either
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(a) H is (1− 5ε)-spanned by two vertex disjoint monochromatic connected matchings, one
of each colour, or

(b) the colouring is 2ε-split and

• H is (1 − 2ε) is spanned by one red and two blue vertex disjoint monochromatic
connected matchings and

• H is (1 − 2ε) is spanned by one blue and two red vertex disjoint monochromatic
connected matchings.

Proof. First assume that the colouring is 2ε-split. We take one red maximum matching in
each of the two red components. This leaves at least one of the blue components with less
than ε|H| vertices on each side. We extract a third maximum matching from the leftover of
the other blue component, thus leaving one of its sides with less than ε|H| vertices. All three
matchings are clearly connected (or possibly empty, in case of the third matching) Thus the
three matchings together (1− 2ε)-span H. Note that we could have switched the roles of red
and blue in order to obtain two blue and one red matching that (1− 2ε)-span H.

So by Lemma 1.3.7, we may assume that either there is a colour, say red, with an (1−3ε)-
spanning component R, or H has a 3ε-V -colouring, with components R in red and B in blue,
say. In either case, we take a maximum red matching M in R. Then there is an induced
balanced bipartite subgraph of H, whose edges are all blue, which contains all but at most
3ε|V (H)| of the uncovered vertices of each bipart of H. If this subgraph is not 2ε-non-trivial,
we are done. Otherwise, we finish by extracting from it a maximum blue matching M ′ ⊆ B,
note that M ′ is connected by Lemma 1.3.3. As H has (1 − ε)-complete degree and there
are no leftover edges in said subgraph, we obtain that M ∪M ′ (1− 4ε)-span H, and we are
done.

We now prove a robust analogue of Lemma 1.2.5.

Lemma 1.3.10. Let 1/66 > ε > 0. Let the edges of the bipartite graph H of (1− ε)-complete
degree be coloured in red, green and blue, such that each colour has at least four ε1/6-non-trivial
components; then there are three monochromatic components that together (1−ε1/6)-span H.

Proof. Set γ := ε1/6 and let R be a red γ-non-trivial component. Throughout the proof we
shall make use of Lemma 1.3.3 without mentioning it explicitly. Since there are three more
red γ-non-trivial components, the three graphs X := H − R, [R,X] and [R,X] are each γ-
non-trivial and by Lemma 1.3.5, each of them has (1− γ2)-complete degree (in themselves).
Moreover, the edges of the latter two graphs are green and blue. By Corollary 1.3.8(a) there
are one or two 2γ2-non-trivial monochromatic components that together (1−3γ2)-span [R,X].
So, if [R,X] has a (1−3γ2)-spanning monochromatic component, then we can (1−3γ2)-span
H with at most three components, which is as desired. Therefore and by symmetry we may
assume from now on that none of [R,X] and [R,X] has a (1−3γ2)-spanning monochromatic
component. Suppose [R,X] has a 2γ2-split-colouring. By Lemma 1.3.7, either [R,X] is 2γ2-
split or a fraction of (1 − 3γ2) of one of R and X is contained in the intersection of a blue
and a green monochromatic component. In the latter case the union of three monochromatic
components of the same colour contains a fraction of (1− 3γ2) vertices of one of the biparts
of H. But this is impossible as each colour has at least four γ-non-trivial components, and
γ > 3γ2. On the other hand, if both [R,X] and [R,X] have a 2γ2-split colouring, then each
bipart of H is contained in the union of four green components as well as in the union of four
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blue components, and thus all edges in X are red. But then there are only two γ-non-trivial
red components, R and X, a contradiction.

So by Lemma 1.3.7, and by symmetry, we know that [R,X] and [R,X] both have
green/blue 3γ2-V -edge-colourings. Thus each of [R,X] and [R,X] has a 3γ2-non-trivial
blue component and a 3γ2-non-trivial green component, say these are B1, G1 and B2, G2

respectively. Furthermore, a fraction of (1− 3γ2) of X or R is contained in the intersection
B1 ∩G1, and a fraction of X or R is contained in the intersection B2 ∩G2.

We first look at the case where a fraction of (1 − 3γ2) of X is contained in B1 ∩G1. If
a fraction of (1 − 3γ2) of R is contained in B2 ∩G2, then, as γ > 6γ2, both green and blue
have at most two γ-non-trivial components, which is a contradiction. On the other hand, if a
fraction of (1− 3γ2) of X is contained in B2 ∩G2, then H is (1− 3γ2)-spanned by the union
of R and the blue components in H that contain B1 and B2, and we are done.

Consequently we can assume by symmetry and by Lemma 1.3.7 that a fraction of (1−3γ2)
of R is contained in the intersection B1 ∩G1 and a fraction of (1 − 3γ2) of R is contained
in the intersection B2 ∩G2. Observe that [G1, G2] is coloured red and blue and [B1, B2] is
coloured red and green, since otherwise, we obtain the desired cover. As these two graphs are
each 3γ3-non-trivial subgraphs of H, and as ε/(3γ3) = γ3/3, Lemma 1.3.5 implies they have
(1 − γ3/3)-complete degree (in themselves). Suppose there is a red component of [G1, G2]

that is (1− γ)-spanning in [G1, G2]. Such a component, together with B1 and B2, (1− 2γ)-
spans H as γ < 1/3. So, we can assume [G1, G2] has no (1 − γ)-spanning red component.
Moreover, since there are at least four γ-non-trivial blue components, [G1, G2] contains two
blue components, which are γ/2-non-trivial each as γ/2 > 3γ2.

Since these blue components are γ-non-trivial in H, [G1, G2] does not have a γ3-V -
colouring (in itself). Thus, by Lemma 1.3.7 with input εLem1.3.7 = γ3/3, [G1, G2] is 2γ3/3-split
coloured in red and blue. Similarly we see that [B1, B2] is 2γ3/3-split coloured in red and
green.

Consider the edges in [G1, B2] and [B1, G2]. If any of these edges is green or blue, then our
graph is (1−2γ3/3)-spanned by three green or by three blue components. On the other hand,
if all edges in [G1, B2] and [B1, G2] are red, then [G1 ∪B1, B2 ∪G2] is connected in red by
Lemma 1.3.3, and thus, H has only three γ-non-trivial red components, a contradiction.

1.3.2 Proof of Lemma 1.3.1

We are now ready to prove Lemma 1.3.1. We will not give specific bounds for ε0 > 0 and
n0 but assume that they are sufficiently small respectively large as we go through the proof.
For 0 < ε ≤ ε0 let n ≥ n0 and H be a balanced bipartite (1 − ε)-dense graph which has
(1− ε)-complete degree and order 2n, where n ≥ n0.

We choose numbers δ, γ, ρ such that

ε� δ � γ � ρ < 1. (1.3.1)

Although these numbers could in principle be specified, we refrain from doing so in order
to not spoil the neatness of the argumentation. Our aim is to show that H can be (1 − ρ)-
spanned with five vertex disjoint monochromatic connected matchings. We suppose that this
is wrong in order to obtain a contradiction. Lemma 1.3.1 then follows by Lemma 1.3.2.

The next claim is the robust analogue of Claim 1.2.6.

Claim 1.3.11. Each colour has at least three γ-non-trivial components.
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Proof. Suppose the claim is wrong for colour red, say. Let Y be the set of all red components
with top bipart smaller than γn and let Z be the set of all red components with bottom bipart
smaller than γn. The total number of edges in red components that are not γ-non-trivial is
less than ∑

Y ∈Y

γn|Y |+
∑
Z∈Z

γn|Z| < 2γn2.

Thus, deleting the (red) edges of all Y ∈ Y ∪Z, we obtain a spanning subgraph H ′ of H that
is (1− 3γ)-dense in itself and in which each red component is either γ-non-trivial or trivial.

By assumption, there are two (possibly trivial) red components R1 and R2 in H ′, such
that all other red components are trivial. Let M be a maximum red matching in R1 ∪ R2.
Then every edge in the balanced bipartite subgraph X := H ′ −M is green or blue.

If the (at most) two connected matchings in M together (1 − ρ)-span H, we are done.
Otherwise X is ρ-non-trivial in H ′, and thus (1− (ρ/20)2)-dense, by Lemma 1.3.4 and since
we assume 3γ ≤ (ρ2/20)2.

We apply Lemma 1.3.2 to obtain a subgraph H ′′ ⊆ X that (1 − ρ/20)-spans X and has
(1−ρ/10)-complete degree. By Lemma 1.3.9, H ′′ can be (1−ρ/2)-spanned with three vertex-
disjoint monochromatic connected matchings. So in total we found at most five vertex-disjoint
monochromatic connected matchings that together (1− ρ)-span H.

A subgraph X ⊆ H is called ε-empty, if both |X| < ε|H| and |X| < ε|H| hold. The next
claim is a robust version of Claim 1.2.7.

Claim 1.3.12. There are no two monochromatic components that together (1 − γ/2)-span
H.

Proof. Suppose the claim is wrong and there are monochromatic components R and B that
together (1− γ/2)-span H. By Claim 1.3.11 we can assume that they have distinct colours,
say R is red and B is blue. Take a red matching M red of maximum size in R and a blue
matching Mblue of maximum size in B − V (M red). Set R′ := R − V (M red ∪ Mblue) and
B′ := B−V (M red ∪Mblue). By maximality, any edge between B′ and R′ is green. The same
holds for the edges between B′ and R′.

If [B′, R′] is γ-empty, we finish by picking a maximum matching in [R′, B′]. We proceed
analogously if [R′, B′] is γ-empty. So at least one R′ or B′ is γ-non-trivial. Thus, since H
has (1− ε)-complete degree, all edges of [B′, R′] lie in the same green component. The same
holds for [R′, B′].

Assuming that both are non-empty we now pick now pick a maximum matching in each
of the green components of H −V (M red∪Mblue) that contain [B′, R′], [B′, R′]. (If this is the
same component, we only pick one matching. If R′ or B′ is γ-empty, we let the matchings be
empty.) Call these green matchings Mgreen

1 resp. Mgreen
2 . Let B′′ := B′ − V (Mgreen

1 ∪Mgreen
2 )

and R′′ := R′ − V (Mgreen
1 ∪Mgreen

2 ).
Observe that by the maximality of Mgreen

1 and Mgreen
2 , if one of R′′, B′′ has size at least

εn, then the other one is empty. The same holds for the sets B′′, R′′. Thus one of the two
graphs R′′, B′′ is ε-empty, say this is B′′. If R′′ is 2γ-empty, we are done, so we can assume
that R′′ is γ-non-trivial.

The edges in R′′ are green and blue. If R′′ contains no green edges, we can pick another
blue matching of maximum size and are done. Then again, if R′′ contains a green edge, it
follows by maximality of Mgreen

1 and Mgreen
2 that both of them have a size of less than 2εn.

In this case we ignore Mgreen
1 and Mgreen

2 and finish as follows: By Lemma 1.3.5, R′′ has
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(1 − ε/γ)-complete degree in itself. So, by Lemma 1.3.9, R′′ can be (1 − 5ε/γ)-spanned by
at most 3 vertex disjoint monochromatic connected matchings. This proves the claim.

Claim 1.3.13. Let Y and Z be monochromatic components of distinct colours such that
Y ∩ Z is 2ε-non-trivial. Then Y − Z is not γ/4-empty.

Proof. Let Y be a red component, Z be a blue component, and let X := H − (Y ∪ Z).
Suppose that Y −Z is γ/4-empty. We first note that all edges in [Y ∩ Z,X] and [Y ∩ Z,X]
are green. Moreover, by Claim 1.3.11, there is another γ-non-trivial blue component in H
and hence, X is 2ε-non-trivial in H, since γ − γ/4 > 2ε by (1.3.1).

Thus the subgraphs [Y ∩ Z,X] and [Y ∩ Z,X] are connected in green by Lemma 1.3.3.
But they cannot belong to the same green component, since otherwise H is (1 − γ/4)-
spanned by the union of said green component and Z, which is not possible by Claim 1.3.12.
Consequently,X has no green edges. By Claim 1.3.11 there is a green γ-non-trivial component
G ⊆ Y ∪ Z. As H = Z ∪ (Y − Z) ∪X and Y − Z is (γ/4)-empty, we obtain that G ∩ Z is
(3γ/4)-non-trivial inH and G−Z ⊆ Y −Z is (γ/4)-empty. Thus G has the same properties as
Y with respect to Z and we can repeat the same arguments as above to obtain that all edges
in X are blue. Hence X is connected in blue by Lemma 1.3.3. But this is a contradiction to
Claim 1.3.12, as X and Z together (1− γ/4)-span H.

Claim 1.3.14. There is a colour that has exactly three δ-non-trivial components.

Proof. We show that there is a colour with at most three δ-non-trivial components. This
together with Claim 1.3.11 yields the desired result. So suppose otherwise. Then each colour
has at least four δ-non-trivial components. By Lemma 1.3.10, there are components X, Y
and Z that together (1− ε1/6)-span H.

By assumption, and as δ > ε1/6 by (1.3.1), not all of X, Y and Z have the same colour.
If two of these components, say X and Y , have the same colour, say red, then H − (X ∪ Y )
contains a red component that is δ-non-trivial in H, by the assumption that our claim is
false. As δ ≥ ε1/6 + 2ε by (1.3.1), we have that the intersection of this red component with Z
is 2ε-non-trivial in H. Hence we get a contradiction to Claim 1.3.13 as γ/4 > ε1/6 by (1.3.1).

So assume X is red, Y is blue and Z is green. We claim that (after possibly swapping
top and bottom parts)

(Y ∩ Z)−X has less than εn vertices. (1.3.2)

Indeed, otherwise (Y ∩ Z) − X is ε-non-trivial. Then, as [X, (Y ∩ Z)−X] is ε-non-trivial
and its edges are green and blue, we get X ⊆ Y ∪ Z since every vertex in X sees a vertex in
Y ∩ Z. In the same way we obtain X ⊆ Y ∪ Z. Thus Z ∪ Y is (1− ε1/6)-non-trivial, which
is not possible by Claim 1.3.12. This proves (1.3.2).

By assumption, H −X contains three δ-non-trivial red components R1, R2 and R3, say.
For i 6= j, [Ri ∩ (Y − Z), Rj ∩ (Z − Y )] has no red, blue or green edges and thus cannot
be ε-non-trivial. So for at most one i ∈ {1, 2, 3} the subgraph Ri ∩ [Y − Z,Z − Y ] is ε-
non-trivial. The same holds for [Ri ∩ (Y − Z), Rj ∩ (Z − Y )]. Consequently, and by the
pigeonhole principle we can assume that

none of R1 ∩ [Y − Z,Z − Y ] and R1 ∩ [Y − Z,Z − Y ] is ε-non-trivial. (1.3.3)
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By (1.3.3) and as R1 is δ-non-trivial, at least one of R1 ∩ Z, R1 ∩ Y is 3ε-non-trivial. We
will assume the former. Thus, by (1.3.2) R1 ∩ (Y − Z) has a size of at least 2εn. Hence,
by (1.3.3) we get:

|R1 ∩ Z − Y | < εn. (1.3.4)

Moreover, Claim 1.3.13 (applied to R1 and Y implies that R1 has at least γn/4−ε1/6n > 2εn
vertices in Z − Y or Z − Y . By (1.3.4) we have the latter case and hence

R1 ∩ (Z − Y ) and R1 ∩ (Y − Z) each have a size of at least 2εn. (1.3.5)

The fact that [Y − (X ∪ Z), R1 ∩ (Z − Y )] and [Z − (X ∪ Y ), R1 ∩ (Y − Z)] only have red
edges, together with (1.3.3) and (1.3.5), yields that

Y − (X ∪ Z) and Z − (X ∪ Y ) each have less than εn vertices. (1.3.6)

Now by (1.3.6) (and by the existence of R1, R2, R3), we know that (Y ∩ Z)−X has at least
εn vertices. So each vertex of X has a neighbour in (Y ∩ Z)−X and hence X ⊆ Y ∪ Z.
Since, by Claim 1.3.12, H is not (1−ε1/6−2ε)-spanned by Y ∪Z, we have that X − (Y ∪ Z)
has a size of at least 2εn. This and (1.3.5) imply that [X − (Y ∪ Z), Y − (X ∪ Z)] and
[X−(Y ∪Z), Z − (X ∪ Y )] are 2ε-non-trivial each. As the edges of these subgraphs are green
and blue respectively and as Lemma 1.3.3 applies, there are green and blue components G
and B such that H −X − [(G ∩ Y ) ∪ (B ∩ Z)] has a size of less than εn+ ε1/6n by (1.3.2).

Now let G′ be another δ-non-trivial green component. Then G′ −X has at most ε1/6n
vertices, while G′ ∩X has at least 2εn vertices. By (1.3.6) it follows that G′ −X has at
most εn + ε1/3n vertices, while G′ ∩X has at least 2εn vertices. This is not possible by
Claim 1.3.13 and completes the proof.

Using Claim 1.3.14 we assume from now on that without loss of generality the colour red
has exactly three δ-non-trivial components R1, R2 and R3. For i = 1, 2, 3 let Mi be a red
matching of maximum size in Ri.

None of the red edges in Y := H −M1 −M2 −M3 is in a red δ-non-trivial component.
As seen in the proof of Claim 1.3.11, the number of red edges which are not in δ-non-trivial
red components sums up to at most 2δn2. Therefore the number of red edges in Y is at most
2δn2. Let Y ′ be the subgraph of Y where these edges have been deleted. Note that the edges
of Y ′ are coloured in blue and green. Moreover, H is still (1− 3δ)-dense after the removal of
the red edges of Y .

If Y ′ is not (3δ)1/3-non-trivial, then we are done as Y ′ is balanced. Otherwise Y ′ is
(1− (3δ)1/3)-dense by Lemma 1.3.4 and thus contains a (1− (3δ)1/6)-spanning subgraph Y ′′
of Y with (1 − 2(3δ)1/6)-complete degree, by Lemma 1.3.2. By removing at most (3δ)1/6n
vertices from Y ′′ we can assure that Y ′′ is balanced. If Y ′′ can be (1− 10(3δ)1/6)-spanned by
two disjoint monochromatic connected matchings, we are done, since in that case, we found
five matchings which together (1−11(3δ)1/6)-span H. Otherwise, as the edges of Y ′′ are green
and blue the colouring of Y ′′ is 4(3δ)1/6-split in Y ′′, by Lemma 1.3.9. We denote its blue and
green components by B′1, B′2, respectively G′1, G′2, with B′1 = G′1, B′2 = G′2, B′1 = G′2, and
B′2 = G′1.

Since Y ′′ is (1− (3δ)1/6)-spanning in Y ′ it is also (1− (3δ)1/6)-spanning in Y . Therefore
the subgraph

B′1 ∪B′2 ∪M1 ∪M2 ∪M3 is (1− (3δ)1/6)-non-trivial in H. (1.3.7)
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By Lemma 1.3.9, Y ′′ can be (1−4(3δ)1/6)-spanned by two blue matchingsM4 ⊆ B′1,M5 ⊆ B′2
and an additional green matching. If any of the matchings Mi has less than γn edges, we
can ignore it and still have a sufficiently large cover of H. Thus we get that

B′1, B
′
2, G

′
1, G

′
2, M1, M2, and M3 are γ-non-trivial in H. (1.3.8)

Moreover, let B1 and B2 be the blue components in H that contain B′1 and B′2, respectively.
We define G1 and G2 analogously. If B1 = B2, we are done as M4 ∪ M5 is a connected
matching. This and symmetry implies

B1 6= B2 and G1 6= G2. (1.3.9)

Claim 1.3.15. For each i = 1, 2, 3 we have that

(a) • if |Mi \G1 ∪G2| > 6εn, then B′1 ⊆ Ri or B′2 ⊆ Ri;

• if |Mi \B1 ∪B2| > 6εn, then G′1 ⊆ Ri or G′2 ⊆ Ri;

(b) • if |Mi \G1 ∪G2| > 6εn, then B′1 ⊆ Ri or B′2 ⊆ Ri;

• if |Mi \B1 ∪B2| > 6εn, then G′1 ⊆ Ri or G′2 ⊆ Ri;

(c) • if |Mi \G1 ∪G2 ∪B1 ∪B2| > 2εn, then B′1 ∪B′2 = G′1 ∪G′2 ⊆ Ri;

• if |Mi \G1 ∪G2 ∪B1 ∪B2| > 2εn, then B′1 ∪B′2 = G′1 ∪G′2 ⊆ Ri.

Proof. For the first part of (a), assume |M1\G1 ∪G2| > 6εn. Note that there is no green edge
betweenM1 \G1 ∪G2 and G′1. First assume thatM1 ∩B1 \G1 ∪G2 has a size of at least 2εn.

Then, by 1.3.9, any edge betweenM1 ∩B1\G1 ∪G2 and B′2 = G′1 is red. So, by Lemma 1.3.3
and (1.3.8) the result follows. So we can assume that this is not true. Similarly, the result
holds if |M1 ∩B2 \G1 ∪G2| ≥ 2εn. Therefore, we can assume that M1 \ B1 ∪B2 ∪G1 ∪G2

has a size of at least 2εn. In this case, since all edges between M1 \ B1 ∪B2 ∪G1 ∪G2 and
B′1 are red, the result follows again by Lemma 1.3.3 and (1.3.8). Item (b) and the second
part of (a) follow similarly.

For the first part of (c), note that any edge betweenMi\G1 ∪G2 ∪B1 ∪B2 and B′1 ∪B′2 =
G′1 ∪G′2 has to be red and use Lemma 1.3.3 with (1.3.8). The second part of (c) is analogous.

By Claim 1.3.11 there are green and blue γ-non-trivial components G3 6= G1, G2 and
B3 6= B1, B2 in H.

Claim 1.3.16. It holds that |V (G3 ∩B3 ∩ (M1 ∪M2 ∪M3))| > 36εn.

Proof. Assume otherwise. That is, assume

|V (G3 ∩B3 ∩ (M1 ∪M2 ∪M3))| ≤ 36εn.

The components B3 and G3 do not meet with B′1∪B′2 = G′1∪G′2 and by (1.3.7), there are not
more than 2(3δ)1/6n vertices outside of B′1∪B′2∪M1∪M2∪M3. As γ > 2(3δ)1/6+δ by (1.3.1),
we conclude that B3∩(M1∪M2∪M3) and G3∩(M1∪M2∪M3) are each δ-non-trivial. Hence
there are indices i, i′, j, j′ such that there is a blue 37ε-non-trivial subgraph B′3 ⊆ B3 and a
green 37ε-non-trivial subgraph G′3 ⊆ G3 such that B′3 ⊆ Mi and B′3 ⊆ Mi′ , and G′3 ⊆ Mj
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and G′3 ⊆ Mj′ . Actually, we can choose these indices such that i 6= i′ and j 6= j′. Since if
i = i′, say, Claim 1.3.13 yields that (B3 ∩H) \Mi is not γ/4-emptyand therefore, by (1.3.1)
and (1.3.7), there is some index k 6= i such that B3 ∩Mk is not 37ε-empty, which allows us
to swap i′ for k.

For an index k 6= i, the edges between B′3 ∩Mi and G′3 ∩Mk are blue and green. As by our
initial assumption |V (G3∩B3∩(M1∪M2∪M3))| ≤ 36εn, this implies that |G3 ∩Mk| ≤ 36εn.
In the same way we obtain that |G3 ∩Mk| ≤ 36εn for k 6= i′ or |B′3 ∩Mi| ≤ 36εn, but the
latter cannot happen by the choice of B′3. Hence we have i = j′ and i′ = j; in other words,

|Mi ∩G3| ≥ 37εn, |Mj ∩G3| ≥ 37εn, |Mi ∩B3| ≥ 37εn and |Mj ∩B3| ≥ 37εn.

So by Claim 1.3.15 (a) and (b), either we have B′1 ⊆ Ri and B′2 ⊆ Rj, or we have
G′1 ⊆ Ri and G′2 ⊆ Rj. Indeed, the fact that |Mi ∩G3| ≥ 37εn together with Claim 1.3.15
(b) implies that B′1 = G′1 ⊆ Ri or B′2 = G′2 ⊆ Ri. Without loss of generality, we assume the
latter. Next, since |Mi ∩B3| ≥ 37εn, and by Claim 1.3.15 (a), we get that G′1 = B′2 ⊆ Ri or
G′2 = B′1 ⊆ Ri. Without loss of generality, we assume the former. We repeat the same with
index j, but as we already have B′2 ⊆ Ri, the output of Claim 1.3.15 has to be B′1 = G′2 ⊆ Rj

for |Mj ∩G3| ≥ 37εn and B′1 = G′1 ⊆ Rj for |Mj ∩B3| ≥ 37εn. For the remainder of the
proof, let us assume that B′1 ⊆ Ri and B′2 ⊆ Rj. Then G′1 ∩ Rk = ∅ = G′2 ∩ Rk, where k
is the third index, which together with Claim 1.3.15 (a) and (b) gives that Rk ∩ (G3 ∪ B3)
is 6ε-empty. The edges between B′2 = G′1 ⊆ G1 ∩Rj and B′3 ∩Ri have to be green, which
implies that B′3 ⊆ G1. As any edge between B′3 and Rk −B3 has to be green we deduce
that |Rk ∩G1| ≥ 2εn since Rk is γ-non-trivial and |Rk ∩B3| ≤ 6εn. This also implies that
|Rk −G1| ≤ 6εn.

By repeating the same argument with B′1 = G′1 ⊆ G1 and B′3, it follows that |Rk ∩G1| ≥
2εn and |Rk −G1| ≤ 6εn. SoRk∩G1 is 2ε-non-trivial andRk−G1 is 6ε-empty, a contradiction
to Claim 1.3.13.

Claim 1.3.16 allows us assume that without loss of generality

|M3 ∩G3 ∩B3| > 6εn. (1.3.10)

This implies |M3 \G1 ∪G2 ∪B1 ∪B2| > 2ε and thus by Claim 1.3.15(c) with i = 3 we obtain

B′1 ∪B′2 = G′1 ∪G′2 ⊆ R3. (1.3.11)

This implies that (R1 ∪R2) ∩ (G′1 ∪G′2) = ∅. Since the edges between M3 ∩G3 ∩B3 and
R1 ∪R2 are coloured green and blue, we have by 1.3.10 and Lemma 1.3.3 that

M1 ∪M2 ⊆ R1 ∪R2 ⊆ G3 ∪B3. (1.3.12)

So, by (1.3.8) and Claim 1.3.15(b) with i = 1, we can assume that without loss of generality

B′1 = G′1 ⊆ R1, (1.3.13)

and hence, by (1.3.8) and Claim 1.3.15(b) with i = 2 it follows that

B′2 = G′2 ⊆ R2. (1.3.14)
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The last two assertions imply that R3∩G′1 ∪G′2 = ∅. Suppose that there is an x ∈ R1 ∪R2 \
G1 ∪G2 ∪B1 ∪B2. By 1.3.11, the edges between x and G′1 ∪G′2 = B′1 ∪B′2 are not red, and
neither green or blue by choice of x. As G′1 and G′2 are both γ-non-trivial in H by (1.3.8)
and H has (1− ε)-complete degree, we obtain a contradiction. Hence

M1 ∪M2 \G1 ∪G2 ∪B1 ∪B2 = ∅. (1.3.15)

In the same fashion, suppose there is an x ∈ (M3 \ G1 ∪G2) ∪ (M3 \ B1 ∪B2). By (1.3.13)
and (1.3.14), and by the choice of x, the edges between x and B′1 = G′1 respectively B′2 = G′2
are neither green nor blue. Again, using (1.3.8) and the (1−ε)-completeness of H, we obtain

M3 \G1 ∪G2 = M3 \B1 ∪B2 = ∅. (1.3.16)

Finally, suppose there is an x ∈ B3 ∪G3∩M1 ∪M2. By (1.3.8) and the (1− ε)-completeness
of H, x sees vertices in M3. This, however, contradicts (1.3.16) and thus

B3 ∪G3 ∩M1 ∪M2 = ∅. (1.3.17)

Now let us turn to back the graph H, for reasons that will become clear below. Assume
that H has a red edge vw outside of M1 ∪M2 ∪M3. By maximality of the matchings Mi,
vw is not part of R1, R2 or R3. By (1.3.8), (1.3.13) and (1.3.14) we have vw ∈ G1 ∩ B2 or
vw ∈ G2 ∩B1. However, both cases contradict (1.3.10). This yields

V (H) = V (B′1) ∪ V (B′2) ∪ V (M1) ∪ V (M2) ∪ V (M3). (1.3.18)

Next, we restore the symmetry between the colours.

Claim 1.3.17. Each colour has exactly three components.

Proof. By (1.3.18) there are no red edges in Y = H−V (M1∪M2∪M3) and hence Y = Y ′ =
Y ′′. By (1.3.11), (1.3.13) and (1.3.14) R1, R2 and R3 are the only red components in H.

Suppose there is a (possibly trivial) green component G4 distinct from G1, G2 and G3.
Assume first that G4 6= ∅. Note that any edge between G4 and G′1 ∪G′2 is red or blue.
By 1.3.9, no vertex of G4 can send blue edges to both G′1 and G′2. Moreover, by (1.3.13)
and (1.3.14), no vertex of G4 can send red edges to both G′1 and G′2. Since H has (1 − ε)-
complete degree and G′1 = B′1 and G′2 = B′2 are γ-non-trivial, we derive G4 ⊆ R1 ∪R2 ∩
B1 ∪B2. But this contradicts (1.3.10), because H is (1− ε)-complete.

Now let us assume that G4 = ∅, and so, G4 6= ∅. In other words, G4 consists of a single
vertex with no incident green edges. Suppose that G4 ∩M3 = ∅. So by (1.3.8) and (1.3.11),
the edges between G4 and G′1 ∪G′2 are blue, which contradicts that B′1 and B′2 lie in distinct
blue components, as asserted by 1.3.9. Therefore G4 ⊆M3. So as G4 = ∅, all edges between
G4 and M1 ∪M2 are blue. By (1.3.16), (1.3.17) and (1.3.18), B3 ⊆ [M1 ∪M2,M3]. Since
H is (1 − ε)-complete and B3 is γ-non-trivial, we obtain that G4 ⊆ B3. We also have that
G3 ⊆ [M1 ∪M2,M3] by (1.3.16), (1.3.17) and (1.3.18). Since G3 is γ-non-trivial it follows
that, G3 ∩M1 ∪M2 has a size of at least γn. Since the edges between G4 and G3 are blue,
we obtain that M1 ∪M2 ∩ G3 ∩B3 6= ∅. But this represents a contradiction to (1.3.13)
or (1.3.14), since there is no colour left for the edges between G3 ∩B3 and B′1 ∪B′2. Since
a fourth blue component would behave the same way as G4, this finishes the proof of the
claim.
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By (1.3.11) and (1.3.18) it follows thatRi = Mi for i = 1, 2. In the same way (1.3.13), (1.3.14)
and (1.3.18) imply that

R3 = M3. (1.3.19)

For 1 ≤ i, j, k ≤ 3 we denote i|j|k := Ri ∩Gj ∩Bk and i|j|k := Ri ∩Gj ∩Bk. From 1.3.8, 1.3.10, 1.3.13
and 1.3.14 we obtain that

|1|1|1|, |2|2|2|, |3|3|3| > 6εn. (1.3.20)

Note that by definition and (1− ε)-completeness it follows that for all i, i′, j, j′, k, k′ with
i 6= i′, j 6= j′ and k 6= k′ we have (modulo switching biparts)

if |i|j|k| ≥ εn, then |i′|j′|k′| = 0. (1.3.21)

Let us show that i|j|k = ∅, unless i, j, k are pairwise different. Indeed, otherwise, if say
1|1|k 6= ∅ for k = 1, 2 or 3, we obtain a contradiction to (1.3.21) as |2|2|2|, |3|3|3| ≥ 6εn

by (1.3.20). Then the edges of the graph [1|1|k, 2|2|2 ∪ 3|3|3] are all blue as H has (1 − ε)-
complete degree, implying that 2 = k = 3, a contradiction. Hence H can be decomposed
into sets i|j|k, where 1 ≤ i, j, k ≤ 3 are pairwise different. So we have:

1|3|2 ∪ 1|2|3 ∪ 2|3|1 ∪ 2|1|3 ∪ 3|2|1 ∪ 3|1|2 = H. (1.3.22)

Claim 1.3.18. We have H = 1|1|1 ∪ 2|2|2 ∪ 3|3|3 ∪ 3|1|2 ∪ 3|2|1.

Proof. First, we show there is no i|j|k 6= ∅ such that exactly two of i, j, k are equal. If
3|1|1 6= ∅, say, then |1|2|3|, |1|3|2| ≤ εn by (1.3.21). Together with (1.3.22), this implies that
R1 is not γ-non-trivial, a contradiction. Second, note that 1.3.11 implies that 3|1|2 and 3|2|1
have each a size of at least γn. Again, by (1.3.21), it follows that i|j|k = ∅, if i 6= 3 and
3 ∈ {j, k}. This proves the claim.

Claim 1.3.19. We have H = 1|1|1 ∪ 2|2|2 ∪ 3|3|3.

Proof. By the previous claim it remains to show that 3|1|2 = 3|2|1 = ∅. To this end, sup-
pose that 3|1|2 6= ∅ and thus |1|2|3|, |2|3|1| ≤ εn by (1.3.21). If 3|2|1 6= ∅ as well, then
by (1.3.21) also |1|3|2| ≤ εn which, by Claim 1.3.18 and 1.3.22 gives the contradiction that
R1 ⊆ [1|1|1, 1|2|3 ∪ 1|3|2] is not γ-non-trivial. So we have

H = 1|1|1 ∪ 2|2|2 ∪ 3|3|3 ∪ 3|1|2,

with 3|1|2 6= ∅. This partition is shown in Figure 1.3.
Ignoring from now on the matchings M1 and M2, we aim at covering H with M3 and four

other matchings. To this end take a green matching Mgreen
1 of maximum size in G1−M3 and

next a blue matching Mblue
2 of maximum size in B2 −M3 −Mgreen

1 . Denote

• i|j|k
′
:= i|j|k \M3 ∪Mgreen

1 ∪Mblue
2 and

• i|j|k′ := i|j|k \M3 ∪Mgreen
1 ∪Mblue

2 .

We can assume that M3 ∪ Mgreen
1 ∪ Mblue

2 is not (1 − ε)-spanning. Thus, as H has (1 −
ε)-complete degree, the maximality of the matchings M3, M

green
1 and Mblue

2 implies that
3|1|2

′
, 3|1|2′ = ∅.

Moreover it follows that

31



• |1|1|1
′
| ≤ εn or |2|1|3′| ≤ εn by maximality of Mgreen

1 ⊆ G1,

• |2|2|2
′
| ≤ εn or |1|3|2′| ≤ εn by maximality of Mblue

2 ⊆ B2,

• 3|3|3
′
= ∅ as R3 = M3 by (1.3.19).

If |1|1|1
′
|, |2|2|2

′
| ≤ εn, then we have found three disjoint connected matchings that (1− 2ε)-

span H, contradicting our assumption. If |2|1|3′|, |1|3|2′| ≤ εn, we take a green matching
in G2 and a blue maximum matching in B1, among the yet unmatched vertices. After this
step, there are at most εn vertices of 3|2|1′ left uncovered and therefore all but at most 3εn
vertices of H are covered. Thus, as H is balanced, we have found five disjoint monochromatic
connected matchings which together (1 − 3ε)-span H. So, either |2|2|2

′
|, |2|1|3′| ≤ εn, or

|1|1|1
′
|, |1|3|2′| ≤ εn. In either case we can find two disjoint monochromatic connected

matchings that cover all but at most 2εn vertices of the two other sets from the previous
sentence and all but at most 2εn vertices of 3|2|1′. So we have five disjoint monochromatic
connected matchings (1− 4ε)-spanning H, a contradiction.

For ease of notation we set

X := |1|1|1|, Y := |2|2|2|, Z := |3|3|3| and

A := |1|3|2|, B := |1|2|3|, C := |2|3|1|, D := |2|1|3|, E := |3|2|1|, F := |3|1|2|.

By Claim 1.3.19 and 1.3.22 we have |H| = X + Y + Z and |H| = A+ B + C +D + E + F .
Note that the edges between any upper and lower part are monochromatic (see Figure 1.4).
Also note that we reached complete symmetry between the colours and the indices of the
components, so we will from now on again treat them as interchangeable.

Observe that for (at least) one index i ∈ {1, 2, 3} it holds that |Ri| ≤ |Ri|. We shall call
such an index i a weak index for the colour red. If furthermore |Ri| < |Ri ∩Bj| = |Ri ∩Gk|
and |Ri| < |Ri ∩Bk| = |Ri ∩Gj|, where j, k are the other two indices from {1, 2, 3}, then we
call i very weak for colour red. Analogously define (very) weak indices for colours blue and
red.

Claim 1.3.20. If index i is weak for colour c, then

(a) the indices in {1, 2, 3} − {i} are not weak for colour c, and

(b) index i is very weak for colour c.

Proof. Let us show this for i = 2 and colour red (the other cases are analogous). By assump-
tion, Y ≤ C + D. Since X < A + B and Z < E + F cannot both hold, we can assume
without loss of generality that Z ≥ E + F . Now if X ≤ A + B, then we pick maximal red
matchings in [1|1|1, 1|3|2 ∪ 1|2|3], [2|2|2, 2|3|1 ∪ 2|1|3] and [3|2|1 ∪ 3|1|2, 3|3|3], thus covering
all but at most 3εn vertices of 1|1|1 ∪ 2|2|2 ∪ 3|2|1 ∪ 3|1|2. To finish we cover all but 4εn of
the remaining vertices in 3|3|3∪ (H \R3) with a blue and a green matching, a contradiction.
Hence X > A+B. Using this fact, Z > E + F follows by symmetry. This proves (a).

In order to show (b), let us first prove that Y < C. We pick a maximal red matching in
each of R1 and R3, thus covering all but at most 2εn vertices of R1 ∪R3. Now if Y ≥ C,
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then all but at most εn vertices of 2|3|1 are contained in a maximal red matching that also
contains all but at most εn vertices of 2|2|2. We cover all but 4εn of the remaining vertices
in R1 ∪R3 with a blue and a green matching, a contradiction. The fact that Y < D follows
analogously.

Suppose two of the three indices 1, 2, 3 are weak for different colours, say 1 is weak for red
and 2 is weak for green. Then Claim 1.3.20(b) gives that X < A and Y < E. Thus we can
match all but at most εn vertices of 1|1|1 into 1|3|2 and all but at most εn vertices of 2|2|2
into 3|2|1 with two matchings, one red and one green, and cover all but 6εn of the remaining
vertices with three disjoint matchings, one from each of R3, G3, B3, a contradiction.

Hence, since each colour has a weak index, there is an index i that is weak for all three
colours, i = 2 say. We match all but at most εn vertices of 2|2|2 into 3|1|2 with a blue
matching M . Further choose a subset F ⊆ 3|1|2 \ V (M) of size |2|2|2| − |V (M)/2| ≤ εn,
and let us from now work with the remaining set 3|1|2′ = 3|1|2 \ (V (M) ∪ F ) of cardinality
F ′ = F − Y . Set n′ = n − Y . (So instead of five we will have to find four monochromatic
connected matchings covering all but few vertices of H −M .) Without loss of generality
assume Z ≥ X. Claim 1.3.20(a) gives that

X > A+B,C + E,D + F ′ and Z > A+ C,B +D,E + F ′. (1.3.23)

Hence X > n′/3. So, one of the three sums A+ C,B +D,E + F ′ has to be strictly smaller
than X, say A+ C < X. Consequently, Z = n′ −X < B +D + E + F ′.

If Z ≥ D + E + F ′, then we cover all but at most εn vertices of R3 −M with a red
matching, and cover all but at most εn vertices of the remains of 3|3|3 with a blue matching
that also covers all but at most εn vertices of 2|1|3. Now all that is left on the top is 1|1|1,
which we can match with a red and a blue matching into the remains of 1|3|2 ∪ 1|2|3 ∪ 2|3|1
(except for εn vertices). Thus we found four connected matchings that cover all but at most
γn vertices of H − V (M), and are done.

So we may assume Z < D + E + F ′ and thus X > A + B + C. If X ≤ A + B + C + E,
then we can proceed similarly as in the previous paragraph to find four matchings covering
all vertices of H. Hence X > A+B+C +E, implying that Z < D+F ′. But by (1.3.23) we
have D+ F ′ < X a contradiction to our assumption that X ≤ Z. This proves Lemma 1.3.1.

1.4 From connected matchings to cycles
In this section we prove Theorem 1.1.1(a). We basically follow the approach of Łuczak [79],
which has become a standard method in this field. Therefore we present only an outline of
the proof, omitting most of the tedious details that have been discussed in earlier works in
more general contexts. We refer the interested reader to [10, 27, 58, 61, 63, 80].

For a graph G the bipartite subgraph H = [A,B] ⊆ G is (ε,G)-regular if

X ⊆ A, Y ⊆ B, |X| > ε|A|, |Y | > ε|B| imply |dG(X, Y )− dG(A,B)| < ε.

A vertex-partition {V0, V1, . . . , Vl} of l + 1 clusters of a graph G is called (ε,G)-regular, if

(a) |V1| = |V2| = . . . = |Vl|;

(b) |V0| < εn;
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(c) apart from at most ε
(
l
2

)
exceptional pairs, the graphs [Vi, Vj] are (ε,G)-regular.

Lemma 1.4.1 (Regularity Lemma with prepartition and colours). For every ε > 0 and
positive integers m, r, s ∈ N there are m ≤ M ∈ N and n0 ∈ N such that for n ≥ n0 the
following holds. For any set of mutually edge-disjoint graphs G1, G2, . . . , Gr with V (G1) =
V (G2) = . . . = V (Gr) = V , with |V | = n, and any partition W1 ∪ . . . ∪Ws = V , there is a
partition V0 ∪ V1 ∪ . . . ∪ Vl of V into l + 1 clusters such that

(a) m ≤ l ≤M ;

(b) for each 1 ≤ i ≤ l there is 1 ≤ j ≤ s such that Vi ⊆ Wj;

(c) V0 ∪ V1 ∪ . . . ∪ Vl is (ε,Gi)-regular for each 1 ≤ i ≤ r.

Let us now prove Theorem 1.1.1(a). Let n � 0 and 0 < ε � 1. Let the edges of Kn,n

with biparts W1 and W2 be coloured in red, green and blue. We denote by G1, G2 and G3

the graphs induced by the edges of each of the colours.
For m� 0 and ε� d� 0, Lemma 1.4.1 provides a vertex-partion V0, V1, . . . , Vl of Kn,n

satisfying Lemma 1.4.1(a)–(c) for someM ≥ m. As usual, we define the (ε, d)-reduced graph
Γ by identifying a new vertex vi with each cluster Vi for 1 ≤ i ≤ l. For 1 ≤ i, j ≤ l and
1 ≤ q ≤ 3 we place an edge of colour q between two vertices vi, vj if the subgraph [Vi, Vj]
of the respective clusters has edge-density at least d in Gq and is (ε,Gq)-regular. To get a
simple graph, we keep an arbitrary edge from each multi-edge.

Since the clusters have the same size, we can, if necessary, remove some of them to
obtain a balanced bipartite (1 − 2ε)-complete subgraph of Γ, which we will continue to call
Γ. Therefore Lemma 1.3.1 can be used to cover all but at most ρ|V (Γ)| vertices of Γ by
five vertex-disjoint monochromatic connected matchings M1, . . . ,M5. We finish the proof by
turning these five matchings into monochromatic cycles of Kn,n using the following lemma
from [79].

Lemma 1.4.2. Let 0 < ε� ρ� d ≤ 1 and let Γ be the (ε, d)-reduced graph of G1, G2, . . . , Gr,
obtained from Lemma 1.4.1. Assume that there is a set of disjoint monochromatic connected
matchings M in Γ. Let U ⊆ V (G) be the set of vertices, which are in clusters associated to
the vertices of V (M). Then there are |M| monochromatic cycles in G partitioning all but
(1− ρ)|U | vertices of U .

1.5 Covering all vertices

1.5.1 Preliminaries

We call a balanced bipartite subgraph H of a 2n-vertex graph (1 − ε)-Hamiltonian, if any
balanced bipartite subgraph of H with at least 2(1− ε)n vertices is Hamiltonian. The next
lemma is a combination of results from [64, 83].

Lemma 1.5.1. For any 1 > γ > 0, there is an n0 ∈ N such that any balanced bipartite graph
on 2n ≥ 2n0 vertices and of edge density at least γ has a (1− γ/4)-Hamiltonian subgraph of
size at least γ3024/γn/3.

34



We make no attempt to optimise the bounds in Lemma 1.5.1. For the proof, we need
some definitions and tools. For a graph G, and disjoint A,B ⊆ V (G) let e(A,B) denote the
number of edges in [A,B]. For 0 < ε, σ < 1, [A,B] is called (ε, σ)-dense if e(X, Y ) ≥ σ|A||B|
for every X ⊆ A, Y ⊆ B with |X| ≥ ε|A| and and |Y | ≥ ε|B|.
Theorem 1.5.2 (Peng et. al [83]). Given a bipartite balanced graph of size 2n and edge
density 0 < γ < 1. Then for all 0 < ε < 1 there is an (ε, γ/2)-dense balanced subgraph on at
least γ12/εn/2 vertices.

For 0 < ε, δ < 1, we say that the balanced subgraph H = [A,B] is (ε, δ)-uniform in G,
if it has minimum degree at least δ|A|, and any ε-non-trivial subgraph of H has at least
one edge. The next result, due to Haxell, shows that sufficiently strong uniformity implies
hamiltonicity.

Theorem 1.5.3 (Haxell [64]). Let ε > 0 be given, and suppose that H = [A,B] is a bipartite
graph with |A| = |B| ≥ 1

ε
such that H is (ε, δ)-uniform for δ > 7ε. Then H is Hamiltonian.

Proof of Lemma 1.5.1. Set ε := γ/253 and n0 := 2γ−12/εε−1. Let H be a balanced bipartite
graph of density γ and size 2n ≥ 2n0. Apply Theorem 1.5.2 to obtain a balanced (ε, γ/2)-
dense subgraph [A,B] ⊆ H of size at least γ12/εn/2. Deleting at most ε|A| vertices on either
side, we arrive at a (2ε, γ/3)-uniform subgraph [X, Y ] ⊆ [A,B] of size at least γ12/εn/3.

In order to see that [X, Y ] is (1-γ/4)-Hamiltonian, delete an arbitrary fraction of at most
γ/4 < 1/4 vertices from each of X, Y . Clearly, the obtained subgraph [X ′, Y ′] is (3ε, γ

12
)-

uniform, and has size at least γ12/εn0/4 ≥ 1/(3ε). Thus Theorem 1.5.3 applies and we are
done.

Finally, we make use of the following lemma due to Gyárfás et al. It allows us to absorb
small vertex sets with few monochromatic cycles.

Lemma 1.5.4 (Gyárfás et al. [59]). There is a constant n0 ∈ N such that for n ≥ n0 and
m ≤ n

(8r)8(r+1) , and for any r-colouring of Kn,m, there are 2r disjoint monochromatic cycles
covering all m vertices on the smaller side.

1.5.2 Proof of Theorem 1.1.1(b)
Let A and B be the two partition classes of the 3-edge-coloured Kn,n. We assume that
n ≥ n0, where we specify n0 later. Pick subsets A1 ⊆ A and B1 ⊆ B of size dn/2e each.
Say red is the majority colour of [A1, B1]. Lemma 1.5.1 applied with γ = 1/3 yields a red
(1− 1/12)-Hamiltonian subgraph [A2, B2] of [A1, B1] with

|A2| = |B2| ≥ 39999|A1| ≥ 3−104n.

Set H := G − (A2 ∪ B2), and note that each bipart of H has order at least bn/2c. Let
δ := 24−32 · 3−104 . Assuming n0 is large enough, Theorem 1.1.1(a) yields five monochromatic
vertex-disjoint cycles covering all but at most 2δn vertices of H. Let XA ⊆ A (resp. XB ⊆
B) be the set of uncovered vertices in A (resp. B). Since we may assume none of the
monochromatic cycles is an isolated vertex, we have |XA| = |XB| ≤ δn.

By the choice of δ, and since we assume n0 to be sufficiently large, we can apply Lemma 1.5.4
to the bipartite graphs [A2, XB] and [B2, XA]. We obtain a union C of twelve vertex-disjoint
monochromatic cycles that together cover XA ∪ XB. As |XA| = |XB| ≤ δn ≤ 3−104/12, we
know that [A2, B2]− V (

⋃
C) contains a red Hamiltonian cycle. Thus, in total, we covered G

with at most 5 + 12 + 1 = 18 vertex-disjoint monochromatic cycles.
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1.5.3 A remark on 3-coloured complete graphs

The number of 17 cycles needed to partition a 3-coloured complete graph, obtained by Gyárfás
et al. [61], is not expected to be optimal. By a slight modification of their method, one can
replace the number 17 with (the still not optimal number) 10.

Erdős et al. [31] have shown that any large enough 3-coloured Kn has a monochro-
matic triangle cycle of linear size. That is, a union of two cycles (u1, u2, . . . , uk, u1) and
(u1, v1, u2, v2, . . . , uk, vk, u1). Clearly, after the deletion of an arbitrary subset of the outer
vertices, {v1, . . . , vk}, the triangle cycle still has a Hamiltonian cycle.

Given a sufficiently large 3-coloured Kn, we proceed as follows. First we reserve the vertex
set of a linear sized monochromatic triangle cycle T for later use. We cover the remaining
graph, except for some small set X, with three vertex-disjoint monochromatic cycles, using
the result of Gyárfás et al. [61]. We then use Lemma 1.5.4 to cover all of X with six vertex-
disjoint monochromatic cycles, which use some of the outer vertices of T (and X). This can
be done since T is of linear size while |X| is a vanishing fraction of n. We finish by covering
the remains of T with a monochromatic Hamiltonian cycle.
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Chapter 2

Local colourings and monochromatic
partitions in complete bipartite graphs1

Richard Lang and Maya Stein

Abstract

We show that for any 2-local colouring of the edges of the balanced complete bipartite graph
Kn,n, its vertices can be covered with at most 3 disjoint monochromatic paths. And, we can
cover the vertices of any complete or balanced complete bipartite r-locally coloured graph
with O(r2) disjoint monochromatic cycles.
We also determine the 2-local bipartite Ramsey number of a path: Every 2-local colouring
of the edges of Kn,n contains a monochromatic path on n vertices.

2.1 Introduction

The problem of partitioning a graph into few monochromatic paths or cycles, first formulated
explicitly in the beginning of the 80’s [52], has lately received a fair amount of attention.
Its origin lies in Ramsey theory and its subject are complete graphs (later substituted with
other types of graphs), whose edges are coloured with r colours. Call such a colouring an
r-colouring; note that this need not be a proper edge-colouring. The challenge is now to find
a small number of disjoint monochromatic paths, which together cover the vertex set of the
underlying graph. Or, instead of disjoint monochromatic paths, we might ask for disjoint
monochromatic cycles. Here, single vertices and edges count as cycles. Such a cover is called
a monochromatic path partition, or a monochromatic cycle partition, respectively. It is not
difficult to construct r-colourings that do not allow for partitions into less than r paths, or
cycles.2

At first, the problem was studied mostly for r = 2, and the complete graph Kn as the host
graph. In this situation, a partition into two disjoint paths always exists [45], regardless of
the size of n. Moreover, we can require these paths to have different colours. An extension of
this fact, namely that every 2-colouring of Kn has a partition into two monochromatic cycles

1The results of this chapter have been published in the European Journal of Combinatorics [73].
2For instance, take vertex sets V1, . . . , Vr with |Vi| = 2i, and for i ≤ j give all Vi–Vj edges colour i.
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of different colours was conjectured by Lehel, and verified by Bessy and Thomassé [13], after
preliminary work for large n [1, 80].

A generalisation of these two results for other values of r, i.e. that any r-coloured Kn can
be partitioned into r monochromatic paths, or into r monochromatic cycles, was conjectured
by Gyárfás [53] and by Erdős, Gyárfás and Pyber [31], respectively. The conjecture for
cycles was recently disproved by Pokrovskiy [84]. He gave counterexamples for all r ≥ 3,
but he also showed that the conjecture for paths is true for r = 3. Gyárfás, Ruszinkó,
Sárközy and Szemerédi [58] showed that any r-coloured Kn can be partitioned into O(r log r)
monochromatic cycles, improving an earlier bound from [31].

Monochromatic path/cycle partitions have also been studied for bipartite graphs, mainly
for r = 2. A 2-colouring of Kn,n is called a split colouring if there is a colour-preserving
homomorphism from the edge-coloured Kn,n to a properly edge-coloured K2,2. Note that any
split colouring allows for a partition into three paths, but not always into two. However, split
colourings are the only ‘problematic’ colourings, as the following result shows.

Theorem 2.1.1 (Pokrovskiy [84]). Let the edges of Kn,n be coloured with 2 colours; then
Kn,n can be partitioned into two paths of distinct colours or the colouring is split.

Split colourings can be generalised to more colours [84]. This gives a lower bound of
2r − 1 on the path/cycle partition number for Kn,n. For r = 3, this bound is asymptot-
ically correct [72]. For an upper bound, Peng, Rödl and Ruciński [83] showed that any
r-coloured Kn,n can be partitioned into O(r2 log r) monochromatic cycles, improving a result
of Haxell [64]. We improve this bound to O(r2).

Theorem 2.1.2. For every r ≥ 1 there is an n0 such that for n ≥ n0, for any r-locally
coloured Kn,n, we need at most 4r2 disjoint monochromatic cycles to cover all its vertices.

Theorem 2.1.2 follows immediately from Theorem 2.1.3 (b) below. Let us mention that
the monochromatic cycle partition problem has also been studied for multipartite graphs [97],
and for arbitrary graphs [10, 96], or replacing paths or cycles with other graphs [43, 94, 95].

Our main focus in this paper is on monochromatic cycle partitions for local colourings
(Theorem 2.1.2 being only a side-product of our local colouring results). Local colourings
are a natural way to generalise r-colourings. A colouring is r-local if no vertex is adjacent to
more than r edges of distinct colours. Local colourings have appeared mostly in the context
of Ramsey theory [14, 22, 56, 57, 92, 99, 103, 104].

With respect to monochromatic path or cycle partitions, Conlon and Stein [25] recently
generalised some of the above mentioned results to r-local colourings. They show that for
any r-local colouring of Kn, there is a partition into O(r2 log r) monochromatic cycles, and,
if r = 2, then two cycles suffice. In this paper we improve their general bound for complete
graphs, and give the first bound for monochromatic cycle partitions in bipartite graphs. In
both cases, O(r2) cycles suffice.

Theorem 2.1.3. For every r ≥ 1 there is an n0 such that for n ≥ n0 the following holds.

(a) If Kn is r-locally coloured, then its vertices can be covered with at most 2r2 disjoint
monochromatic cycles.

(b) If Kn,n is r-locally coloured, then its vertices can be covered with at most 4r2 disjoint
monochromatic cycles.
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We do not believe our results are best possible, but suspect that in both cases (Kn and
Kn,n), the number of cycles needed should be linear in r.

Conjecture 2.1.4. There is a c such that for every r, every r-local colouring of Kn admits
a covering with cr disjoint cycles. The same should hold replacing Kn with Kn,n.

Our second result is a generalisation of Theorem 2.1.1 to local colourings:

Theorem 2.1.5. Let the edges of Kn,n be coloured 2-locally. Then Kn,n can be partitioned
into 3 or less monochromatic paths.

So, in terms of monochromatic path partitions, it does not matter whether our graph is
2-locally coloured, or if the total number of colours is 2. For more colours this might be
different, but we have not been able to construct r-local colourings of Kn,n which need more
than 2r − 1 monochromatic paths for covering the vertices.

We prove Theorem 2.1.3 in Section 2.2 and Theorem 2.1.5 in Section 2.3. These proofs
are totally independent of each other.

Theorem 2.1.5 relies on a structural lemma for 2-local colourings, Lemma 2.3.1. This
lemma has a second application in local Ramsey theory. As mentioned above, some effort
has gone into extending Ramsey theory to local colourings. In particular, in [57], Gyárfás
et al. determine the 2-local Ramsey number of the path Pn. This number is defined as the
smallest number m such that in any 2-local colouring of Km a monochromatic path of length
n is present. In [57], it is shown that the 2-local Ramsey number of the path Pn is d3

2
n− 1e.

Thus the usual 2-colour Ramsey number of the path, which is b3
2
n − 1c and the 2-local

Ramsey number of the path Pn only differ by at most 1 (depending on the parity of n).
The bipartite 2-colour Ramsey number of the path Pn is defined as a pair (m1,m2), with

m1 ≥ m2 such that for any pair m′1,m′2 we have that m′i ≥ mi for both i = 1, 2 if and only if
every 2-colouring of Km′1,m

′
2
contains a monochromatic path Pn. Gyárfás and Lehel [55] and,

independently, Faudree and Schelp [35] determined the bipartite 2-colour Ramsey number
of P2m to be (2m − 1, 2m − 1). The authors of [35] also show that for the odd path P2m+1

this number is (2m + 1, 2m − 1). Observe that suitable split colourings can be used to see
the sharpness of these Ramsey numbers.

We use our auxiliary structural result, Lemma 2.3.1, and the result of [55] to determine
the 2-local bipartite Ramsey number for the even path P2m. As for complete host graphs, it
turns out this number coincides with its non-local pendant.

Theorem 2.1.6. Let K2m−1,2m−1 be coloured 2-locally. Then there is a monochromatic path
on 2m vertices.

It is likely that similar arguments can be applied to obtain an analogous result for odd
paths (but such an analogue is not straightforward). Clearly, the result from [35] together
with Theorem 2.1.6 (for m+ 1) imply that the 2-local bipartite Ramsey number for the odd
path P2m+1 is one of (2m+ 1, 2m− 1), (2m+ 1, 2m), (2m+ 1, 2m+ 1).

In view of the results from [25] and our Theorems 2.1.3, 2.1.5 and 2.1.6, it might seem
that in terms of path- or cycle-partitions, r-local colourings are not very different from r-
colourings. Let us give an example where they do behave differently, even for r = 2.

It is shown in [97] that any 2-coloured complete tripartite graph can be partitioned into
at most 2 monochromatic paths, provided that no part of the tripartition contains more than
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half of the vertices. This is not true for 2-local colourings: Let G be a complete tripartite
graph with triparts U , V and W such that |U | = 2|V | = 2|W | ≥ 6. Pick vertices u ∈ U ,
v ∈ V and w ∈ W and write U ′ = U \ {u}, V ′ = V \ {v} and W ′ = W \ {w}. Now colour
the edges of [W ′ ∪ {v}, U ′] red, [V ′ ∪ {w}, U ′] green and the remaining edges blue. This is
a 2-local colouring. However, since no monochromatic path can cover all vertices of U ′, we
need at least 3 monochromatic paths to cover all of G.

Note that in our example, the graph G contains a 2-locally coloured balanced complete
bipartite graph. This shows that in the situation of Theorem 2.1.5, we might need 3 paths
even if the 2-local colouring is not a split colouring (and thus a 2-colouring). Blowing this
example up, and adding some smaller sets of vertices seeing new colours, one obtains examples
of r-local colourings of balanced complete bipartite graphs requiring 2r − 1 monochromatic
paths.

2.2 Proof of Theorem 2.1.3
In this section we will prove our bounds for monochromatic cycle partitions, given by Theo-
rem 2.1.3. The heart of this section is Lemma 2.2.1. This lemma enables us to use induction
on r, in order to prove new bounds for the number of monochromatic matchings needed to
cover an r-locally coloured graph. In particular, we find these bounds for the complete and
the complete bipartite graph. All of this is the topic of Subsection 2.2.1.

To get from monochromatic cycles to the promised cycle cover, we use a nowadays stan-
dard approach, which was first introduced in [79]. We find a large robust Hamiltonian graph,
regularise the rest, find monochromatic matchings covering almost all, blow them up to cy-
cles, and the absorb the remainder with the robust Hamiltonian graph. The interested reader
may find a sketch of this well-known method in Subsection 2.2.2.

2.2.1 Monochromatic matchings

Given a graph G with an edge colouring, a monochromatic connected matching is a matching
in a connected component of the subgraph that is induced by the edges of a single colour.

Lemma 2.2.1. For k ≥ 2, let the edges of a graph G be coloured k-locally. Suppose there
are m monochromatic components that together cover V (G), of colours c1, . . . , cm.
Then there are m vertex-disjoint monochromatic connected matchingsM1, . . . , Mm, of colours
c1, . . . , cm, such that the inherited colouring of G \ V (

⋃m
i=1 Mi) is a (k − 1)-local colouring.

Proof. Let G be covered by m monochromatic components C1, . . . , Cm of colours c1, . . . , cm.
Let M1 ⊆ C1 be a maximum matching in colour c1. For 2 ≤ i ≤ m we iteratively pick
maximum matchings Mi ⊆ Ci \ V (

⋃
j<iMj) in colour ci. Set M :=

⋃
j≤mMj.

Now let v be any vertex in H := G \ V (M). Say v ∈ V (Ci \ V (M)). In particular, vertex
v sees colour ci in G. However, by maximality of Mi, vertex v does not see the colour ci in
H. Thus in H, vertex v sees at most k − 1 colours. Hence, the inherited colouring of H is a
(k − 1)-local colouring, which is as desired.

Corollary 2.2.2. If Kn is r-locally edge coloured, and H is obtained from Kn by deleting
o(n2) edges, then

(a) V (Kn) can be covered with at most r(r+1)/2 monochromatic connected matchings, and
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(b) all but o(n) vertices of H can be covered with at most r(r + 1)/2 monochromatic con-
nected matchings.

Note that the matchings from (b) are connected in H.

Proof. The proof is based on the following easy observation. In any colouring ofKn, the closed
monochromatic neighbourhoods of any vertex v together cover Kn. Since the colouring is a
k-local colouring, we can cover all of V (Kn) with k components. Now apply Lemma 2.2.1
successively to obtain the bound from (a).

For (b), it suffices to observe that we can choose at each step a vertex v that has o(n)
non-neighbours in the current graph. For, if at some step, there is no such vertex, then a
simple calculation shows we have already covered all but o(n) of V (Kn), and can hence abort
the procedure.

Corollary 2.2.3. If Kn,n is r-locally edge coloured, and H is obtained from Kn,n by deleting
o(n2) edges, then

(a) V (Kn,n) can be covered with at most (2r − 1)r monochromatic connected matchings,
and

(b) all but o(n) vertices of H can be covered with at most (2r−1)r monochromatic connected
matchings.

Note that the matchings from (b) are connected in H.

Proof. The proof very similar to the proof Corollary 2.2.2. We only note that in any colouring
of Kn,n the two closed monochromatic neighbourhoods of any edge form a vertex cover of
size at most 2r − 1.

2.2.2 From matchings to cycles

2.2.2.1 Regularity

Regularity is the key for expanding our partition of an r-locally coloured Kn or Kn,n into
monochromatic connected matchings to a partition of almost all vertices into monochromatic
cycles. We follow an approach introduced by Łuczak [79], which has become a standard
method for cycle embeddings in large graphs. We will focus on the parts where our proof
differs from other applications of this method (see [58, 61, 72]).

The main result of this section is:

Lemma 2.2.4. If Kn and Kn,n are r-locally edge coloured, then

(a) all but o(n) vertices of Kn can be covered with at most r(r+1)/2 monochromatic cycles.

(b) all but o(n) vertices of Kn,n can be covered with at most (2r−1)r monochromatic cycles.

Before we start, we need a couple of regularity preliminaries. For a graph G and disjoint
subsets of vertices A,B ⊆ V (G) we denote by [A,B] the bipartite subgraph with biparts A
and B and edge set {ab ∈ E(G) : a ∈ A, b ∈ B}. We write degG(A,B) for the number of
edges in [A,B]. If A = {a} we write shorthand degG(a,B).
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The subgraph [A,B] is (ε,G)-regular if

| degG(X, Y )− degG(A,B)| < ε

for all X ⊆ A, Y ⊆ B with |X| > ε|A|, |Y | > ε|B|. Moreover, [A,B] is (ε, δ,G)-super-regular
if it is (ε,G)-regular and

degG(a,B) > δ|B| for each a ∈ A and degG(b, A) > δ|A| for each b ∈ B.

A vertex-partition {V0, V1, . . . , Vl} of the vertex set of a graph G into l + 1 clusters is called
(ε,G)-regular, if

(i) |V1| = |V2| = . . . = |Vl|;

(ii) |V0| < εn;

(iii) apart from at most ε
(
l
2

)
exceptional pairs, the graphs [Vi, Vj] are (ε,G)-regular.

The following version of Szemerédi’s regularity lemma is well-known. The given preparti-
tion will only be used for the bipartition of the graph Kn,n in Lemma 2.2.4 (b). The colours
on the edges are represented by the graphs Gi.

Lemma 2.2.5 (Regularity lemma with prepartition and colours). For every ε > 0 and
m, t ∈ N there are M,n0 ∈ N such that for all n ≥ n0 the following holds.
For all graphs G0, G1, G2, . . . , Gt with V (G0) = V (G1) = . . . = V (Gt) = V and a partition
A1 ∪ . . . ∪As = V , where r ≥ 2 and |V | = n, there is a partition V0 ∪ V1 ∪ . . . ∪ Vl of V into
l + 1 clusters such that

(a) m ≤ l ≤M ;

(b) for each 1 ≤ i ≤ l there is a 1 ≤ j ≤ s such that Vi ⊆ Aj;

(c) V0 ∪ V1 ∪ . . . ∪ Vl is (ε,Gi)-regular for each 0 ≤ i ≤ t.

Observe that the regularity lemma provides regularity only for a number of colours
bounded by the input parameter t. However, the total number of colours of an r-local
colouring is not bounded by any function of r (for an example, see Section 2.3.1). Luckily,
it turns out that it suffices to focus on the t colours of largest density, where t depends only
on r and ε. This is guaranteed by the following result from [56].

Lemma 2.2.6. Let a graph G with average degree a be r-locally coloured. Then one colour
has at least a2/2r2 edges.

Corollary 2.2.7. For all ε > 0 and r ∈ N there is a t = t(ε, r) such that for any r-local
colouring of Kn or Kn,n, there are t colours such that all but at most εn2 edges use these
colours.

Proof. We only prove the corollary for Kn,n, as the proof for Kn is very similar. Let t :=

d−2r2

ε
log εe. We iteratively take out the edges of the colours with the largest number of

edges. We stop either after t steps, or before, if we the remaining graph has density less than
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ε. At each step Lemma 2.2.6 ensures that at least a fraction of ε
2r2

of the remaining edges
has the same colour.3 Hence we can bound the number of edges of the remaining graph by(

1− ε

2r2

)t
n2 ≤ e−εt/2r

2

n2 ≤ εn2.

2.2.2.2 Proof of Lemma 2.2.4

We only prove part (b) of Lemma 2.2.4, since the proof of part (a) is very similar and actually
simpler. For the sake of readability, we assume that n0 � 0 is sufficiently large and 0 < ε� 1
is sufficiently small without calculating exact values.

Let the edges of Kn,n with biparts A1 and A2 be coloured r-locally and encode the
colouring by edge-disjoint graphs G1, . . . , Gs on the vertex set of Kn,n. By Corollary 2.2.7,
there is a t = t(ε, r) such that the union of G1, . . . , Gt covers all but at most εn2/8r2 edges of
Kn,n. We merge the remaining edges into G0 :=

⋃s
i=t+1Gi. Note that the colouring remains

r-local and by the choice of t, we have

|E(G0)| ≤ εn2/8r2. (2.2.1)

For ε, t and m := 1/ε, the regularity lemma (Lemma 2.2.5) provides n0 and M such for
all n ≥ n0 there is a vertex-partition V0, V1, . . . , Vl of Kn,n satisfying Lemma 2.2.5(a)–(c) for
G0, G1, . . . , Gt.

As usual, we define the reduced graph R which has a vertex vi for each cluster Vi for
1 ≤ i ≤ l. We place an edge between vertices vi and vj if the subgraph [Vi, Vj] of the
respective clusters is non-empty and forms an (ε,Gq)-regular subgraph for all 0 ≤ q ≤ t.
Thus, R is a balanced bipartite graph with at least (1− ε)

(
l
2

)
edges.

Finally, the colouring of the edges of Kn,n, induces a majority colouring of the edges of R.
More precisely, we colour each edge vivj of R with the colour from {0, 1, . . . , t} that appears
most on the edges of the subgraph [Vi, Vj] ⊆ G (in case of a tie, pick any of the densest
colours). Note that if vivj is coloured i then by Lemma 2.2.6,

[Vi, Vj] has at least 1
2r2

( n
2l

)2 edges of colour i. (2.2.2)

Our next step is to verify that the majority colouring is an r-local colouring of R. To this
end we need the following easy and well-known fact about regular graphs.

Fact 2.2.8. Let [A,B] be an ε-regular graph of density d > ε. Then at most ε|A| vertices
from A have no neighbours in B.

Claim 2.2.9. The colouring of the reduced graph R is r-local.

Proof. Assume otherwise. Then there is a vertex vi ∈ V (R) that sees r + 1 different colours
in R. By Fact 2.2.8, all but at most (r+ 1)ε|Vi| < |Vi| of the vertices in Vi see r+ 1 different
colours in Kn,n, contradicting the r-locality of our colouring.

3Here we use that in a balanced bipartite graph H with 2n vertices, m edges, average degree a and density
d we have a2 = 4m2

4n2 = dm.
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By (2.2.1), and by (2.2.2), we know that R has at most |E(G0)|4l2·2r2
n2 ≤ εl2 edges of

colour 0. Delete these edges and use Corollary 2.2.3 to cover all but o(l) vertices of R with
(2r − 1)r vertex-disjoint monochromatic matchings M1, . . . ,M (2r−1)r of spectrum 1, . . . , t.

We finish by applying Łuczak’s technique for blowing up matching to cycles [79]. This is
done by using the following (by now well-known) lemma.

Lemma 2.2.10. Let t ≥ 1 and γ > 0 be fixed. Suppose R is the edge-coloured reduced
graph of an edge-coloured graph H, for some γ-regular partition, such that each edge vw of
R corresponds to a γ-regular pair of density at least √γ in the colour of vw.
If all but at most γ|V (R)| vertices of R can be covered with t disjoint connected monochromatic
matchings, then there is a set of at most t monochromatic disjoint cycles in H, which together
cover all but at most 10

√
γ|V (H)| vertices of H.

For completeness, let us give an outline of the proof of Lemma 2.2.10.

Sketch of a proof of Lemma 2.2.10. We start by connecting in H the pairs corresponding to
matching edges with monochromatic paths of the respective colour, following their connec-
tions in R. We do this in a cyclic manner, that is, if vi1vj1 , . . . , visvjs forms the matching,
then we take paths P1, . . . , Ps in a way that P` connects Vj` and Vi`+1

(modulo `). The
end-vertex of each P` can be taken as a typical vertex of the graph [Vi` , Vj` ] or [Vi`+1

, Vj`+1
]

(this is important as we later have to ‘fill up’ the matching edges accordingly). We find the
connecting paths simultaneously for all matchings.

Note that, as t is fixed, the paths chosen above together consume only a constant number
of vertices of H. So we can we connect the monochromatic paths using the matching edges,
blowing up the edges to long paths, where regularity and density ensure that we can fill up
all but a small fraction of the corresponding pairs. This gives the desired cycles.

A more detailed explanation of this argument can be found in the proof of the main result
of [59].

2.2.3 The absorbing method

In this subsection we prove Theorem 2.1.3. We apply a well known absorbing argument
introduced in [31]. To this end we need a few tools.

Call a balanced bipartite subgraph H of a 2n-vertex graph ε-Hamiltonian, if any balanced
bipartite subgraph of H with at least 2(1− ε)n vertices is Hamiltonian. The next lemma is a
combination of results from [64, 83] and can be found in [72] in the following explicit form.

Lemma 2.2.11. For any 1 > γ > 0, there is an n0 ∈ N such that any balanced bipartite
graph on 2n ≥ 2n0 vertices and of edge density at least γ has a γ/4-Hamiltonian subgraph of
size at least γ3024/γn/3.

The following lemma is taken from [25].

Lemma 2.2.12. Suppose that A and B are vertex sets with |B| ≤ |A|/rr+3 and the edges of
the complete bipartite graph between A and B are r-locally coloured. Then all vertices of B
can be covered with at most r2 disjoint monochromatic cycles.

Sketch of a proof of Theorem 2.1.3. Here we only prove part (b) of Theorem 2.1.3, since the
proof of (a) is almost identical. The differences are discussed at the end of the section.
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Let A and B be the two partition classes of the r-locally edge coloured Kn,n. We assume
that n ≥ n0, where we specify n0 later. Pick subsets A1 ⊆ A and B1 ⊆ B of size dn/2e each.
Say red is the majority colour of [A1, B1]. Then by Lemma 2.2.6, there are at least n2/8r2

red edges in [A1, B1].
Lemma 2.2.11 applied with γ = 1/10r2 yields a red γ/4-Hamiltonian subgraph [A2, B2]

of [A1, B1] with
|A2| = |B2| ≥ γ3024/γ|A1|/3 ≥ γ3024/γn/7.

Set H := G − (A2 ∪ B2), and note that each bipart of H has order at least bn/2c. Let
δ := γ4000/γ. Assuming n0 is large enough, Lemma 2.2.4(b) provides (2r−1)r monochromatic
vertex-disjoint cycles covering all but at most 2δn vertices of H. Let XA ⊆ A (resp. XB ⊆
B) be the set of uncovered vertices in A (resp. B). Since we may assume none of the
monochromatic cycles is an isolated vertex, we have |XA| = |XB| ≤ δn.

By the choice of δ, and since we assume n0 to be sufficiently large, we can apply Lemma 2.2.12
to the bipartite graphs [A2, XB] and [B2, XA]. This gives 2r2 vertex-disjoint monochromatic
cycles that together cover XA ∪ XB. Again, we assume none of these cycles is trivial. As
|XA| = |XB| ≤ δn, we know that the remainder of [A2, B2] contains a red Hamilton cycle.
Thus, in total, we found a cover of G with at most (2r − 1)r + 2r2 + 1 ≤ 4r2 vertex-disjoint
monochromatic cycles.

As claimed above, the proof of Theorem 2.1.3(a) is very similar. The main difference is
that instead of an ε-Hamiltonian subgraph we use a large red triangle cycle. A triangle cycle
Tk consists of a cycle on k vertices {v1, . . . , vk} and k additional vertices A = {a1, . . . ak},
where ai is joined to vi and vi+1 (modulo k). Note that Tk remains Hamiltonian after
the deletion of any subset of vertices of A. We use some classic Ramsey theory to find
a large monochromatic triangle cycle Tk in an r-locally coloured Kn, as shown in [25]. Next,
Lemma 2.2.4(a) guarantees we can cover most vertices of Kn \ Tk with r(r+ 1)/2 monochro-
matic cycles. We finish by absorbing the remaining vertices B into A with only one applica-
tion of Lemma 2.2.12, thus producing r2 additional cycles. As noted above, the remaining
part of Tk is Hamiltonian and so we have partitioned Kn into r(r + 1)/2 + r2 + 1 ≤ 2r2

monochromatic cycles.

2.3 Bipartite graphs with 2-local colourings
In this section we prove Theorem 2.1.5 and Theorem 2.1.6. We start by specifying the
structure of 2-local colourings of Kn,n. Let G be any graph, and let the edges of G be
coloured arbitrarily with colours in N. We denote by Ci the subgraph of G induced by
vertices that are adjacent to any edge of colour i. Note that Ci can contain edges of colours
other than i. If for colours i, j the intersection V (Ci) ∩ V (Cj) is empty, we can merge i and
j as we are only interested in monochromatic paths. We call an edge colouring simple, if
V (Ci) ∩ V (Cj) 6= ∅ for all colours i, j that appear on an edge.

In [57] it was shown that the number of colours in a simple 2-local colouring of Kn is
bounded by 3. In the next lemma we will see that for Kn,n the number of colours in a simple
2-local colouring is bounded by 4. For r ≥ 3, however, simple r-local colourings can have an
arbitrary large number of colours: take a t × t grid G and colour the edges of the column
i and row i with colour i for 1 ≤ i ≤ t. Then add edges of a new colour t + 1 until G is
complete (or complete bipartite) and observe that G is 3-locally edge coloured and simple,
but the total number of colours is t+ 1.
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Colour 1
Colour 2
Colour 3
Colour 4

C1 ∩ C2 C3 ∩ C4

C1 ∩ C3 C1 ∩ C4 C2 ∩ C3 C2 ∩ C4

Figure 2.1: The four colour case of Lemma 2.3.1.

In what follows, we denote partition classes of a bipartite graph H (which we imagine as
either top or bottom) by H and H.

Lemma 2.3.1. Let Kn,n have a simple 2-local colouring. Then the total number of colours
is at most four. In particular, if there are (edges of) colours 1,2,3 and 4, then

• Kn,n = C1 ∩ C2 ∪ C3 ∩ C4 and

• Kn,n = C1 ∩ C3 ∪ C1 ∩ C4 ∪ C2 ∩ C3 ∪ C2 ∩ C4

as shown in Figure 2.1 (modulo swapping colours and swapping Kn,n with Kn,n).

Proof of Lemma 2.3.1. We can assume there are at least four colours in total, as otherwise
there is nothing to show. We start by observing that for any four distinct colours i, j, k, `, if
v ∈ V (Ci∩Cj) and w ∈ V (Ck∩C`), then, by 2-locality, v and w cannot lie in opposite classes
of Kn,n. Thus either V (Ci ∩ Cj) ∪ V (Ck ∩ C`) ⊆ Kn,n or V (Ci ∩ Cj) ∪ V (Ck ∩ C`) ⊆ Kn,n.
Fixing four colours 1, 2, 3, 4, and considering their six (by simplicity non-empty) intersections,
the pigeon-hole principle gives that (after possibly swapping colours and/or top and bottom
class of Kn,n),

V (C1 ∩ C3) ∪ V (C2 ∩ C4) ∪ V (C1 ∩ C4) ∪ V (C2 ∩ C3) ⊆ Kn,n. (2.3.1)

As every colour must see both top and bottom ofKn,n, we have that V (C1∩C2)∪V (C3∩C4) ⊆
Kn,n. By 2-locality there are no other colours.

2.3.1 Partitioning into paths

In this subsection we prove Theorem 2.1.5. For the sake of contradiction, assume that Kn,n

is 2-locally edge-coloured such that there is no partition into three monochromatic paths.
Since we are not interested in the actual colours of the path we can assume the colouring to
be simple. Furthermore Theorem 2.1.1 implies that there are at least three colours.

A path is even if it has an even number of vertices.

Claim 2.3.2. There is no even monochromatic path P such that Kn,n \ P is contained in
Ci ∩ Cj for distinct colours i, j.
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Proof. Suppose the contrary and let P be as described in the claim and of maximum length.
Since the colouring is 2-local and Kn,n \ P ⊆ Ci ∩ Cj, the graph on Kn,n \ P is 2-coloured.
Using Theorem 2.1.1, we are done unless the colouring on Kn,n \ P is split.

In that case, let p be the endpoint of P in Kn,n. Since Kn,n \ P ⊆ Ci ∩ Cj, the edges
between p and Kn,n \ P have colours i or j. So P has colour k /∈ {i, j}, as otherwise we could
use the splitness of Kn,n \ P to extend P with two extra vertices. But then, p can only see
one more colour apart from k, so we may assume that all the edges between p and Kn,n \ P
have colour i. Now cover Kn,n \ P by two paths P1 and P2 of the colour i and one path of
the colour j. The paths P1 and P2 can be joined using the vertex p to give the three required
paths.

Now the case of four colours of Lemma 2.3.1 is easily solved: without loss of generality
suppose that |C1 ∩ C2| ≤ n/2. By symmetry between colours 1 and 2 we can assume that
|C2| ≤ |C2|. So there exists an even colour 2 path P covering C2 = C1 ∩ C2 and we are done
by Claim 2.3.2. This proves the following claim.

Claim 2.3.3. The total number of colours is three.

Our next aim is to show that the colouring looks like in Figure 2.2, that is, that every
vertex sees two colours. For this, we need the next claim and the following definition. We
say that a subgraph of H ⊆ Kn,n is connected in colour i, if every two vertices of H are
connected by a path of colour i in H.

Claim 2.3.4. There is no even monochromatic path P such that Kn,n \ P is connected in
some colour i.

Proof. Assume the opposite and let P be as described in the claim. Simplify the colouring
of Kn,n \ V (P ) to a 2-colouring by merging all colours distinct from i. (Note that since all
vertices see i, by 2-locality no vertex can see more than one of the merged colours.) The new
colouring is not a split colouring by the assumption on i. Hence Theorem 2.1.1 applies, and
we are done.

Claim 2.3.5. Each vertex sees two colours.

Proof. Suppose that there is a vertex in Kn,n that sees only colour, 1 say. Then by 2-
locality C2 ∩ C3 = ∅. Since the colouring is simple we know that C2 ∩ C3 6= ∅. Therefore
Kn,n ⊆ (C1 ∩ C2) ∪ (C1 ∩ C3). If |C2 ∩ C3| > |C1 ∩ C3|, we can choose an even path of colour
3 that contains all vertices of C1 ∩ C3 and apply Claim 2.3.2. Otherwise, let P be an even
path of colour 3 between |C2 ∩ C3| and |C1 ∩ C3| that covers all vertices of C2 ∩ C3. Since all
remaining vertices lie in C1, the subgraph Kn,n \ P is connected in colour 1 and we are done
by Claim 2.3.4.

Claims 2.3.3 and 2.3.5 ensure that for the rest of the proof we can assume that the
colouring is exactly as shown in Figure 2.2 (with some of the sets possibly being empty).
Now, let us see how Claim 2.3.2 implies that we easily find the three paths if one of the Ci

is complete bipartite in colour i.

Claim 2.3.6. For i ∈ {1, 2, 3}, the graph Ci is not complete bipartite in colour i.
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Colour 1
Colour 2
Colour 3

C1 ∩ C2 C1 ∩ C3 C2 ∩ C3

C1 ∩ C2 C1 ∩ C3 C2 ∩ C3

Figure 2.2: There are three colours and each vertex sees exactly two colours.

Proof. Suppose the contrary and let Ci contain only edges of colour i. Take out a longest even
path of colour i in Ci. This leaves us either with only Cj ∩ Ck in the bottom partition class,
or with only Cj ∩ Ck in the top partition class (where j and k are the other two colours). We
may thus finish by applying Claim 2.3.2, after possibly switching top and bottom parts.

Claim 2.3.7. For i ∈ {1, 2, 3}, the graph Ci is connected in colour i.

Proof. For contradiction, suppose that C3 is not connected in colour 3 (the other colours are
symmetric). Then there are two edges e, f of colour 3 belonging to C3 that are not joined
by a path of colour 3. First assume we can choose e in E(C2 ∩ C3). Since all edges between
C1 ∩ C3 and C2 ∩ C3 have colour 3, we get f ∈ E(C2 ∩ C3), and C1 ∩ C3 has no vertices.
But this contradicts our assumption that the colouring is simple. Therefore, C2 ∩C3 and, by
symmetry, C1 ∩ C3 contain no edges of colour 3.

By symmetry (between the top and bottom partition) we can assume that |C1 ∩ C3| ≥
|C1 ∩ C3|. Further, we have |C1 ∩ C3| < |C1 ∩ C2|+ |C1 ∩ C3|, since otherwise we could find
an even path of colour 1 that covers all of C1 ∩ C2 ∪C1 ∩ C3 and use Claim 2.3.2. So we can
choose an even path P of colour 1, alternating between C1 ∩ C3 and C1 ∩ C2 ∪C1 ∩ C3, that
contains both C1 ∩ C3 and C1 ∩ C3. Thus Kn,n \ P is connected in colour 2 and Claim 2.3.4
applies.

Let us now show that for pairwise distinct i, j, k ∈ {1, 2, 3} we have

at least one of Ci ∩ Cj, Ci ∩ Ck is not empty. (2.3.2)

To see this, note that the edges between Ci ∩ Cj and Ci ∩ Ck are of colour i. Thus if (2.3.2)
does not hold, we can find a colour i (possibly trivial) path P that covers one of these two
sets. Hence either in the top or in the bottom part of Kn,n, the path P covers all but Cj∩Ck.
We can thus finish with Claim 2.3.2.

Together with the fact that every colour must see both top and bottom class, (2.3.2)
immediately implies that for pairwise distinct i, j, k ∈ {1, 2, 3} we have

at least one of Ci ∩ Cj, Ci ∩ Ck meets both Kn,n and Kn,n. (2.3.3)

So, of the three bipartite graphs Ci ∩ Cj, two have non-empty tops and bottoms. Hence,
after possibly swapping colours, we know that the four sets C1 ∩ Ci, C1 ∩ Ci, i = 2, 3, are
non-empty. Observe that after possibly swapping colours 2 and 3, and/or switching partition
classes of Kn,n, we have one of the following situations:
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(i) |C1 ∩ C2| ≥ |C1 ∩ C3| and |C1 ∩ C2| ≥ |C1 ∩ C3|, or

(ii) |C1 ∩ C2| ≥ |C1 ∩ C3| and |C1 ∩ C2| ≤ |C1 ∩ C3|.

In either of these situations, note that as all involved sets are non-empty, by Claim 2.3.7
there is an edge e1 of colour 1 in E(C1 ∩ C2) ∪ E(C1 ∩ C3). So if we are in situation (ii), we
can find an even path of colour 1 covering all of C1 ∩ C3 ∪C1 ∩ C2. Now Claim 2.3.2 applies,
and we are done. So assume from now on we are in situation (i).

Similarly as above, by (2.3.3), there is an edge e2 of colour 2 in E(C3 ∩C2)∪E(C1 ∩C2).
By Claim 2.3.6, C3 is not complete bipartite in colour 3. So we can assume that at least one
of e1 or e2 is chosen in C3 and hence the two edges are not incident.

Extend e1 to an even colour 1 path P covering all of C1 ∩ C3, using (apart from e1) only
edges from [C1 ∩ C3, C1 ∩ C2] and from [C1 ∩ C2, C1 ∩ C3], while avoiding the endvertices of
e2, if possible. If we had to use one of the endvertices of e2 in P , then P either covers all of
C1 ∩ C2 or all of C1 ∩ C2. In either case we may apply Claim 2.3.2, and are done. On the
other hand, if we could avoid both endvertices of e2 for P , then Claim 2.3.4 applies and we
are done. This finishes the proof of Theorem 2.1.5.

2.3.2 Finding long paths

In this subsection we prove Theorem 2.1.6. We will use the following theorem, which resolves
the problem for the case of of 2-colourings.

Theorem 2.3.8 ([35, 55]). Every 2-edge-coloured Kp+q−1,p+q−1 contains a colour 1 path of
length 2p or a colour 2 path of length 2q.

As in the last section, Ci denotes the subgraph induced by the vertices that have an edge
of colour i. Recall that the length of a path is the number of its vertices.

Lemma 2.3.9. Let K2m−1,2m−1 be 2-locally coloured with colours 1, 2, 3. Then for distinct
colours i, j there is a monochromatic path of length at least

min{2m, 2 max(|Ci ∩ Cj|, |Ci ∩ Cj|)}.

Proof. By symmetry, we can assume that |Ci ∩ Cj| ≥ |Ci ∩ Cj|. Moreover, we can assume
that Ci ∩ Cj 6= ∅, as otherwise there is nothing to prove. Then by 2-locality,

Ck \ (Ci ∪ Cj) = ∅, (2.3.4)

where k denotes the third colour.
We apply Theorem 2.3.8 to a balanced subgraph of Ci ∩ Cj with p = m − |Ci \ Cj| and

q = m− |Cj \ Ci|. For this, note that we have

p+ q − 1 = 2m− 1− |Ci \ Cj| − |Cj \ Ci|
(2.3.4)

= |Ci ∩ Cj| ≤ |Ci ∩ Cj|.

By symmetry between i and j we can assume that the outcome of Theorem 2.3.8 is a colour
i path P of length 2(m− |Ci \ Cj|). Let R ⊆ [Ci ∩ Cj \ P ,Ci \ Cj] be a path of colour i and
length

r = min(2|Ci ∩ Cj \ P |, 2|Ci \ Cj|).
If r = 2|Ci \ Cj|, then we can join P and R to a path of length of 2m. Otherwise r =

2|Ci ∩ Cj \ P | and we can join P and R to a path of length of 2|Ci ∩ Cj|.
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Now let us prove Theorem 2.1.6 by contradiction. To this end, assume that K2m−1,2m−1 is
coloured 2-locally and has no monochromatic path on 2m vertices. Since we are not interested
in the actual colours of the path we can assume the colouring to be simple, as in the previous
subsection. Furthermore Theorem 2.3.8 implies that there are at least three colours.

We now apply Lemma 2.3.1. The four colour case of Lemma 2.3.1 is quickly resolved:
Without loss of generality suppose that |C1 ∩ C2| ≥ m. By symmetry between colours 1 and
2, we can assume that |C1 ∩ C3∪C1 ∩ C4| ≥ m. Thus we easily find a colour 1 path of length
2m alternating between these sets. This proves:

Claim 2.3.10. The total number of colours is three.

We can now exclude vertices that see only one colour.

Claim 2.3.11. Each vertex sees two colours.

Proof. Suppose that there is a vertex in K2m−1,2m−1 that sees only colour 1, say. Then by
2-locality, C2 ∩ C3 = ∅. Since the colouring is simple we know that C2 ∩ C3 6= ∅. Therefore
K2m−1,2m−1 ⊆ (C1 ∩ C2) ∪ (C1 ∩ C3). Since one of C1 ∩ C2 and C1 ∩ C3 must have size at
least m, we are done by Lemma 2.3.9.

Put together, Claims 2.3.10 and 2.3.11 allow us to assume that the colouring is as shown
in Figure 2.2. The next claim follows instantly from Lemma 2.3.9.

Claim 2.3.12. For distinct colours i, j we have max(|Ci ∩ Cj|, |Ci ∩ Cj|) < m.

As the three top parts sum up to 2m−1, and so do the three bottom parts, we immediately
get:

Claim 2.3.13. Ci ∩ Cj, Ci ∩ Cj 6= ∅ for all distinct i, j ∈ {1, 2, 3}.

The next claim requires some more work. Recall that a subgraph ofH ⊆ Kn,n is connected
in colour i, if every two vertices of H are connected by a path of colour i in H.

Claim 2.3.14. If the subgraph Ci is connected in colour i, then there are distinct j, k ∈
{1, 2, 3}\{i} such that |Ci ∩ Cj| ≥ |Ci ∩ Ck|, |Ci ∩ Cj| > |Ci ∩ Ck| (modulo swapping top and
bottom partition classes) and |V (Ci ∩ Ck)| < m.

Proof. Suppose that Ci is connected in colour i and let j, k ∈ {1, 2, 3} \ {i} be such that
|Ci ∩ Cj| ≥ |Ci ∩ Ck| (after possible swapping top and bottom partition). By Claim 2.3.13,
and as Ci is connected in colour i, we find an edge ei ∈ E(Ci ∩ Cj) ∪ E(Ci ∩ Ck) of colour
i. Choose an even path P ⊆ [Ci ∩ Cj, Ci ∩ Ck] which covers Ci ∩ Ck and ends in one of the
vertices of ei.

For the first part of the claim, assume to the contrary that |Ci ∩ Cj| ≤ |Ci ∩ Ck|. Take
an even path P ′ ⊆ [Ci ∩ Cj, Ci ∩ Ck] which covers Ci ∩ Cj and ends in a vertex of ei. Since
P and P ′ are joined by ei we infer that |Ci ∩ Ck| + |Ci ∩ Cj| < m. But then |Cj ∩ Ck| ≥ m

in contradiction to Claim 2.3.12. This shows that |Ci ∩ Cj| > |Ci ∩ Ck|, as desired.
This allows us to pick an even path P ′′ ⊆ [Ci ∩ Cj, Ci ∩ Ck] of colour i, which covers

Ci ∩ Ck and ends in one of the vertices of ei. Join P and P ′′ via ei to obtain a colour i path
of length at least 2|Ci ∩ Ck| + 2|Ci ∩ Ck| = 2|V (Ci ∩ Ck)|. So by our assumption that there
is no monochromatic path of length 2m, we obtain |V (Ci ∩ Ck)| < m, as desired.
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Claim 2.3.15. For at most one pair of distinct indices i, j ∈ {1, 2, 3} it holds that |V (Ci ∩
Cj)| < m.

Proof. Suppose, on the contrary, that C1 ∩ C2 and C1 ∩ C3 each have less than m vertices.
Then C2 ∩C3 has at least 2m vertices. Therefore one of its partition classes has size at least
m, a contradiction to Claim 2.3.12.

We are now ready for the last step of the proof of Theorem 2.1.6. We start by observing
that if for some i ∈ {1, 2, 3}, the subgraph Ci is not connected in colour i, then (letting j, k
be the other two indices) the edges of the graphs Ci ∩ Cj and Ci ∩ Ck are all of colour j,
or colour k, respectively, and thus both Cj and Ck are connected in colour j, or colour k,
respectively. So we can assume that there are at least two distinct indices j, k ∈ {1, 2, 3},
such that the subgraphs Cj, Ck are connected in colour j, or in colour k, respectively. Say
these indices are 1 and 3.

We use Claim 2.3.14 twice: For C1 it yields that one of C1 ∩C3 and C1 ∩C2 has less than
m vertices. For C3 it yields that one of C1 ∩C3 and C2 ∩C3 has less than m vertices. So by
Claim 2.3.15 we get that necessarily,

|V (C1 ∩ C3)| < m, |V (C1 ∩ C2)| ≥ m, |V (C2 ∩ C3)| ≥ m. (2.3.5)

Again using Claim 2.3.14, this implies that C2 is not connected in colour 2. So by Claim 2.3.13
and the fact that the edges between C1 ∩C2 and C2 ∩C3 are complete bipartite in colour 2,
we have that

C1 ∩ C2 is complete bipartite in colour 1. (2.3.6)

Also, in light of (2.3.5), Claim 2.3.14 with input i = 1 gives j = 2 and k = 3 and
thus |C1 ∩ C2| ≥ |C1 ∩ C3|, |C1 ∩ C2| > |C1 ∩ C3| (after possibly swapping top and bottom
partition). Choose two balanced paths of colour 1: The first path P ⊆ [C1 ∩ C2, C1 ∩ C3]

such that it covers C1 ∩ C3. The second path P ′ ⊆ [C1 ∩ C2, C1 ∩ C3] such that it covers
C1 ∩ C3. As by (2.3.6) we know that C1 ∩C2 is complete bipartite in colour 1, we can join P
and P ′ with a path of colour 1 in C1 ∩C2, such that the resulting path P ′′ covers one of C1,
C1. Since by assumption, P ′′ has less than 2m vertices, we obtain that C2 ∩ C3 or C2 ∩ C3

has size at least m, a contradiction to Claim 2.3.12. This finishes the proof of Theorem 2.1.6.
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Chapter 3

Partitioning a red and blue edge coloured
graph of minimum degree 2n/3 + o(n)
into three monochromatic cycles

Peter Allen, Julia Böttcher, Richard Lang,
Jozef Skokan and Maya Stein

Abstract
It is proved that any edge colouring in red and blue of a graph on n vertices and of minimum
degree 2n/3 + o(n) admits a partition into three monochromatic cycles.

3.1 Introduction
In the late 90’s Łuczak, Rödl and Szemerédi confirmed a conjecture of Lehel and proved
that every edge colouring of Kn in red and blue admits a partition into a red and a blue
cycle, provided that n is large enough [80]. This was later generalized to smaller and finally
all n by Allen [1] and Bessy and Thomassé [13]. (Note that here we count edges, single
vertices and the empty set as cycles as well, to omit some trivial cases.) Motivated by
ideas of Schelp, Balogh et al. asked if Lehel’s conjecture stays true for graphs of bounded
minimum degree [10]. They conjectured the following: given any graph G on n vertices and
of maximum degree 3n/4, for any colouring of the edges in red and blue, there are a red and a
blue cycle which together partition the vertices of G. Note that there are graphs of minimum
degree 3n/4 − 1 that do not admit such a partition. In support of their conjecture, Balogh
et al. proved an approximate version [10]. They showed that, for every β there is an n0 such
that for any graph G on n ≥ n0 vertices and with minimum degree at least (3/4 + β)n, any
colouring of the edges of G in red and blue admits disjoint red and blue cycles which together
cover all but βn vertices. DeBiasio and Nelsen were able to improve on this by obtaining a
proper partition into a red and a blue cycle under the same degree conditions [27]. Finally,
Letzter proved the full conjecture for all sufficiently large n [74].1 Based on these advances
Pokrovskiy conjectured that similar results are true for graphs of even lower minimum degree.

1In fact the conjecture is wrong for small graphs. There is a counterexample on 19 vertices [27].
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Figure 3.1: Graphs without partitions into three (four) monochromatic cycles.

In particular, he conjectured that red and blue edge coloured graphs of minimum degree 2n/3
(n/2) can be partitioned into 3 (4) monochromatic cycles [85]. There are examples which
show that these numbers are essentially tight (see Figure 3.1). Here we verify the first part
of Pokrovskiy’s conjecture approximately.

Theorem 3.1.1 (Main result). For each β > 0, there is an n0 such that the following
holds. Let G be a graph on n ≥ n0 vertices and minimum degree at least (2/3 + β)n.
Then any colouring of the edges of G in red and blue admits a partition of V (G) into three
monochromatic cycles.

Let us briefly summarize the approaches that have been taken in this field so far. To prove
Lehel’s conjecture the authors of [80] used an approach involving the Regularity Lemma. In
the following we will assume that the reader is familiar with the regularity method. Defini-
tions and details about regularity are provided in the next section. Suppose that the edges
of G = Kn are coloured in red and blue. Given a regular partition of G, we can colour the
edges of the reduced graph G by majority, i.e. by colouring an edge red if most of the edges
in the respective regular pair of G are red and blue otherwise. Fix a red (blue) connected
component R (B) in the subgraph of G induced by the red (blue) edges. By an argument of
Łuczak a matching in R+ B of size c|V (G)| corresponds to (disjoint) red and blue cycles in
G, which together cover approximately 2cn vertices [79]. This is, roughly speaking, achieved
by connecting the clusters of the matching edges by short monochromatic paths and then
selecting almost spanning paths between the clusters of the matching edges. In [80] it was
shown by elemental arguments that the subgraphs of both red and blue edges of G are con-
nected (or otherwise we are done). Given that R and B are the only components, it is fairly
easy to find a perfect matching in R + B, which leads to a red and a blue cycle covering
all but o(n) vertices. To obtain a proper cycle partition, the Łuczak et al. then include the
remaining uncovered vertices into these two cycles by a case analysis.

The same approach is taken in [10] for graphs of minimum degree (3/4 + β)n. Due to
Łuczak’s argument, the problem of finding two monochromatic cycles, which cover all but βn
vertices reduces to finding two monochromatic connected components, which together admit
a perfect matching.

To obtain a proper partition under the same degree conditions, DeBiasio and Nelsen did
the following. Instead of absorbing the vertices manually as in [80], they identified certain
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subgraphs before applying the Regularity Lemma, which later allow to absorb the leftover
vertices automatically. Note that this was necessary, because the analysis of graphs with
minimum degree (3/4 + β)n is considerably more complex compared to complete graphs.
Let us give some more details. A red subgraph R ⊆ G is robust if any two vertices are
connected by a linear number of constant size paths. It is shown in [27] that R admits a
(red) path PAbs

R with the following property. For any set W ⊆ V (R) of sublinear size, there
is a path PW

R with vertex set V (PW
R ) = V (PAbs

R ) ∪W and which has the same ends as PAbs
R .

Given these definitions the approach of [27] goes as follows. Let G be a graph on n vertices
and of minimum degree at least 3n/4 + o(n) and suppose its edges are coloured in red and
blue. Using elemental arguments we cover G with red and a blue robust subgraphs R and B.
We pick absorbing paths PAbs

R and PAbs
B and set their vertex sets aside. Next we apply the

Regularity Lemma to G− PAbs
R − PAbs

B to obtain a regular partition and an (edge coloured)
reduced graph G. By a lemma of [27] the robust subgraph R (B) corresponds to a connected
component R (B) in G. More precisely, the vertices of R (B) are contained in the clusters
of the vertices of R (B). We then have to show that R + B contains a perfect matching
M. (Note that we can not change the red and blue components at this point.) Once this
is settled, we can, as before, use Łuczak’s argument to construct a red and a blue cycle in
G, which are disjoint and together cover all but o(n) vertices of G. By the correspondence
between R and R (B and B) we can furthermore assume that PAbs

R (PAbs
B ) is included as

segment on the red (blue) cycle. We then finish by absorbing the remaining vertices into
PAbs
R and PAbs

B , which is possible because R +B covers G.
To obtain the same partition for graphs of minimum degree (exactly) 3n/4 Letzter followed

the above approach and developed it further [74]. For instance she proved that connected
components in a reduced graph correspond to robust components in the original graph. Thus
the argument of covering G with robust monochromatic subgraphs reduces to covering (the
reduced graph) with monochromatic connected components, which is less technical. Note
that we now use two applications of the Regularity Lemma. One for the robust components
and one (with smaller input) for Łuczak’s argument. The proof of [74] is fairly involved, due
to the analysis of the many extremal cases that have to be considered when dealing with
graphs of minimum degree 3n/4.

Although the method of absorbing paths has been applied successfully, it is not without
shortcomings. For instance, it is inconvenient that the choice of the monochromatic com-
ponents (i.e. the robust subgraphs) and the selection of the matchings is separated by an
application of the regularity lemma. This adds further technicalities to the arguments, in
particular when it comes to the analysis of extremal cases. Another difficulty arises when
one of the robust subgraphs, R say, is close to being bipartite, i.e. when there are disjoint
sets V (R) = X ∪ Y such that X and Y contain only few red edges. In this case the path
PAbs
R can only absorb sets W with |W ∩ X| = |W ∩ Y |. This situation can be handled, if

a V (R) has a large intersection with V (B) and B is far from being bipartite, but leads to
further technical and repetitive discussions.

Here we implement a new approach, which was developed to solve cycle partitioning
problems in hypergraphs by Garbe, Lang, Lo, Mycroft and Sanhueza [44]. Suppose that G is
a graph on n vertices, of minimum degree at least 2n/3+o(n) and its edges are coloured in red
and blue. We start by applying the Regularity Lemma to obtain a regular partition and the
correspond reduced graph. Roughly speaking, our strategy is to find three monochromatic
components in the reduced graph, which admit a robust perfect matching. This is possible
unless the colouring takes an extremal configuration, in which case we have to fall back
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to ad hoc arguments. Following the argument of Łuczak, we then connect the clusters of
the matching edges by short monochromatic paths. Although this is not trivial, we can
assume that the exceptional vertices, i.e. vertices which do not behave regularly enough, are
contained on these short paths. This will create some imbalances between the clusters of the
matching edges. We restore the balance between the matching edges up to a constant by
adding some more vertices on the above mentioned short paths. To determine which path
receives how many vertices, we solve a weighted matching problem in an auxiliary graph,
which is feasible by the robustness of the perfect matching. We then perform another more
subtle balancing step, which leaves the clusters of all matching edges equally sized. To finish
we apply the Blow Up Lemma to find monochromatic spanning paths in each of the matching
edges. Together with the short paths this yields the desired cycle partition.

This approach comes with the advantages that we can isolate the main lemmas (finding the
components, distributing exceptional vertices and solving extremal configurations) cleanly in
the big picture and there is little repetition in our arguments. Moreover, although it is an
involved argument, the implementation is not too technical and requires only the Regularity
and Blow Up Lemma.

The rest of the paper is organized as follows. In the next section we introduce some
notation and concepts related to the regularity method. In Section 3.3 we present the proof of
Theorem 3.1.1. Sections 3.4, 3.5 and 3.6 are dedicated to the Lemmas concerning finding the
components, distributing the exceptional vertices and solving the cases of extremal colourings,
respectively.

3.2 Preliminaries

In this section we introduce some notation and tools, which we will need for the proof of
Theorem 3.1.1.

3.2.1 Notation

Let G = (V,E) be graph. The order of G is |V (G)| and the size of G is |E(G)|. We denote
the neighbourhood of a vertex v by NG(v) and NG(v,W ) = NG(v) ∩W for a set of vertices
W ⊆ V (G). We denote the degree of v by degG(v) = |NG(v)| and degG(v,W ) = |NG(v)∩W |.
For a set of vertices S ⊆ G we write NG(S) =

⋃
s∈S N(s). If it is clear from the context, we

often drop the index G.
For another graph H we denote by G+H the graph on vertex set V (G)∪V (H) and edge

set E(G) ∪ E(H).
Suppose that G is red and blue edge coloured graph. We denote by Gred (Gblue) the

subgraph on V (G) that contains the red (blue) edges. A red (blue) component of G is a
connected component of Gred (Gblue). In particular a vertex v with degred(v) = 0 is in a
red component of order 1. We will sometimes refer to red (blue) as colour 1 (2) and write
G1 = Gred (G2 = Gblue).

A v-w-path (walk) is a path (walk) that starts in v and ends in w. If we treat an edge,
single vertex and the empty set as cycle, we will explicitly mention this.
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3.2.2 Regularity

Given a graph G and disjoint vertex sets V,W ⊆ V (G) we denote the number of edges
between V and W by e(V,W ) and the density of (V,W ) by d(V,W ) = e(V,W )/(|V ||W |).
The pair (V,W ) is called ε-regular, if |V | = |W | and for all subsets X ⊆ V , Y ⊆ W with
|X| ≥ ε|V | and |Y | ≥ ε|W | it follows that |d(V,W ) − d(X, Y )| ≤ ε. We say that a vertex
v ∈ V has typical degree in (V,W ), if deg(v,W ) ≥ (d(V,W )− ε)|W |. It follows directly from
the definition of ε-regularity that

all but at most ε|V | vertices in V have typical degree in (V,W ). (3.2.1)

The next lemma allows us to find (spanning) paths in regular pairs. It is a corollary of the
mighty Blow Up Lemma [70], but can also be proved independently with not too much effort.

Lemma 3.2.1. (Large paths in regular pairs) Let n be an integer and let ε, d be numbers with
0 < 1/n� ε� d < 1. Suppose that (V1, V2) is an ε-regular pair of density d = d(V1, V2) and
with |V1| = |V2| = n. For i = 1, 2 let Wi ⊆ Vi be a vertex set of size at most |Vi|/2 and which
contains all vertices of Vi that do not have typical degree in (V1, V2).

Then for any two vertices vi ∈ Vi \ Wi, where i ∈ [2], and any even integer 4 ≤ k ≤
min(|V1 \W1|, |V2 \W2|) there is a v1-v2-path of order k alternating between V1 and V2.

Szemerédi’s Regularity Lemma allows to partition the vertex set of a graph into clusters
of vertices, in a way that most pairs of clusters are regular [102]. We will use the regularity
lemma in its degree form and with 2 colours (see [71]).

Lemma 3.2.2 (Regularity Lemma). For every ε > 0 and integer m0 there exists M =
M(ε,m0) such that the following holds. Let G be a graph on n vertices whose edges are
coloured in red and blue and let d > 0. Then there exists a partition {V0, . . . , Vm} of V (G)
and a subgraph G′ of G with vertex set V (G) \ V0 such that the following holds:

(a) m0 ≤ m ≤M ;

(b) |V0| ≤ εn and |V1| = . . . = |Vm| ≤ dεne;

(c) degG′(v) ≥ degG(v)− (2d + ε)n for each v ∈ V (G) \ V0;

(d) G′[Vi] has no edges for i ∈ [m];

(e) all pairs (Vi, Vj) are ε-regular and with density either 0 or at least d in each colour in
G′.

Let G be a red and blue edge coloured graph with a partition V0, . . . , Vm obtained from
Lemma 3.2.2 with parameters ε, m0 and d. We define the (ε, d)-reduced graph G to be a
graph with vertex set V (G) = {x1, . . . , xm} and where two vertices xi and xj are connected
by a red (blue) edge, if (Vi, Vj) is an ε-regular pair of density at least d in red (blue). It is
often convenient to refer to a cluster Vi via its corresponding vertex in the reduced graph,
i.e. Vi = V (xi). Note that G inherits the minimum degree of G. More precisely, if G has
minimum degree cn, it follows that

G has minimum degree at least (c− 2d− ε)m. (3.2.2)

The next lemma of Łuczak allows us to connect clusters by short paths, if their counterparts
in the reduced graph lie in the same connected component.
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Lemma 3.2.3 (Connecting Paths [79]). Let n be an integer and let ε, d be numbers with
0 < 1/n � ε � d ≤ 1. Let G be a graph on n vertices and with an (ε, d)-regular graph
G obtained from Lemma 3.2.2. Suppose that W ⊆ V (G) is a vertex set which contains at
most |V (x)|/2 vertices of each cluster V (x). Let x1y1, x2y2 ∈ E(G) be edges in a connected
component C ⊆ G of colour c.

Then for any two vertices vi ∈ V (xi) of typical degree in (V (xi), V (yi)), there is a colour
c v1-v2-path P ⊆ G of order at most 2m and which avoids any vertices of W . In addition, if
C contains an odd cycle, we can choose the parity of |V (P )|.

3.3 Proof of Theorem 3.1.1
In this section we present the proof of Theorem 3.1.1.

(A) Hierarchy: Given β > 0 as input of Theorem 3.1.1, we define an integer n0 and
numbers ε, γ obeying the following hierarchy

0� 1/n0 � ε� γ � d� β < 1/3. (�)

More precisely, we set
β = 2100

√
d and γ = d/2100.

Suppose ε3.2.1 satisfies Lemma 3.2.1 with input d and ε3.2.3 satisfies Lemma 3.2.3 with
input d. We choose

0 < ε ≤ min
(
ε3.2.1, ε3.2.3, β

100/2100
)

We then apply Lemma 3.2.2 with input ε to obtain an integerM . Suppose n3.2.1 satisfies
Lemma 3.2.1 with input ε, d and n3.2.3 satisfies Lemma 3.2.3 with input ε, d. We choose
the integer n0 such that

n0 ≥ max(M · n3.2.1, n3.2.3,M
100/2100ε).

In the following d will indicate the density of the regular clusters. The constant γ has
three functions with respect to the monochromatic components, that we will choose
in the reduced graph. It serves as lower bound for the robustness of the matching,
as lower bound of the component intersections and it keeps track of the distance of
the colouring to an extremal configuration. The constant ε indicates the regularity of
the pairs. We will bound the number of exceptional vertices and the differences in the
cluster sizes in terms of ε.
Functions: n: graph order, ε: regularity, exceptional vertices, differences in cluster
sizes γ: matching robustness, overlap, distance to extremal colouring, d: density of
regular pairs β: input minimum degree.

(B) Input graph: Let G be a red and blue edge coloured graph on n ≥ n0 vertices and
with δ(G) ≥ (2/3+β)n. We have to show that G contains three monochromatic vertex
disjoint cycles, which together cover all vertices.

(C) Regularity: Let V0, V1, . . . , Vm be a (regular) partition of V (G) as guaranteed by
Lemma 3.2.2 with m ≤ M . We define the (ε, d)-reduced graph G as explained in
Section 3.2.2. Thus G has a minimum degree of at least

δ(G)
(3.2.2)
≥ (2/3 + β − 2d− ε)m

(�)
≥ (2/3 + β/2)m (3.3.1)
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Figure 3.2: The extremal colourings.

for any x ∈ V (G) we have

(1− ε)n/m ≤ |V (x)| ≤ n/m (3.3.2)

and if an edge xy ∈ E(G) has not colour i then

ei(V (x), V (y) ≤ dn2/m. (3.3.3)

(D) Choose components: In this step we will choose three monochromatic components
in the reduced graph, which support our strategy. This is possible unless the colourings
has one of the following two configurations (see also Figure 3.2).

Definition 3.3.1 (Extremal colourings). Let G be red and blue edge coloured graph.
We say that the colouring of G is γ-extremal, if one of the following (modulo swapping
colours) holds

(a) G has a spanning bipartite red component with bipartition classes X1, X2 and
such that

∣∣|X1| − |X2|
∣∣ ≤ γn. There are (exactly) two bipartite blue components

B1, B2 with V (B1) ⊆ X1 and V (B2) ⊆ X2.

(b) G has red and blue monochromatic components R1, R2, B1, B2 such that V (G) =⋃
i,j∈[2] V (Ri)∩ V (Bj) and |V (Ri)∩ V (Bj)| ≤ (1/4 + γ) for 1 ≤ i, j ≤ 2. Moreover

the edges of G[V (Ri) ∩ V (Bj)] are blue if i = j and red otherwise.

We now state our key lemma, which will allow us to choose monochromatic components
with the desired properties. We defer its proof to Section 3.4.

Lemma 3.3.2 (Find components). Let G be a graph on n vertices and with δ(G) ≥
(2/3 + 8γ)n, whose edges are coloured in red and blue. Then there are monochromatic
connected components C1, C2, C3 ⊆ G such that C =

⋃
Ci spans G and the following

holds.

(i) Robust perfect matching: The colouring of G is (4γ)-extremal, or every stable
subset S of V (C) has |NC(S)| ≥ |S|+ γn.

(ii) Overlap: One of the following holds

(a) |
⋃

i 6=j V (Ci) ∩ V (Cj)| ≥ (1/3 + γ)n or

58



(b) C1 is spanning, C1 or C2 contains an odd cycle, and C3 = ∅.
(iii) Odd monochromatic cycle: If C1, C2, C3 are each bipartite, then C3 = ∅.
(iv) Odd cycle: C contains an odd cycle.

(v) Connectivity: C is connected.

We obtain monochromatic connected components C1, C2, C3 ⊆ G by applying Lemma 3.3.2
with input G and γ. This is possible by (3.3.1) and since β/2 ≥ 8γ by (�). If the colour-
ing is extremal, we set C = R1∪B1∪B2 for configuration (a) and C = R1∪R2∪B1∪B2

for configuration (b). These cases will receive additional attention in step (F).

Further notation: For an edge xy ∈ E(G) let V (xy) = V (x) ∪ V (y). We denote the
colour of Ci by ci. (If Ci = ∅, then ci = 1.) For an edge xy ∈ E(C) let Bad(xy) ⊆ V (xy)
contain all vertices of non-typical degree in colour c = 1, 2 in (V (x), V (y)), i.e. all
x ∈ V (x) and y ∈ V (y) with degc(x, V (y)) < (d − ε)|V (x)| and degc(y, V (x)) ≤
(d− ε)|V (y)|. Note that

|Bad(xy)|
(3.2.1)
≤ 4ε|V (x)| (3.3.4)

by (3.2.1) and Lemma 3.2.2(e).

(E) Fix vertex cover: In this step we choose a vertex cover of C that has bounded
maximum degree. We will work with 2-matchings, which are a relaxation of matchings
and closely related to fractional matchings.

Definition 3.3.3 (Perfect 2-matching). A perfect 2-matching of a graph G is a function
ω : E(G)→ {0, 1, 2}, such that

∑
w∈N(v) ω(vw) = 2 for every vertex v ∈ V (G).

The next theorem is a convenient analogue of Tutte’s classical characterization of
matchings for 2-matchings.

Theorem 3.3.4 (Corollary 30.1a in [100]). A graph G has a perfect 2-matching if and
only if every stable set S ⊆ V (G) satisfies |N(S)| ≥ |S|.

Lemma 3.3.2(i) allows us to select a perfect 2-matching ωBlow Up of G for which we
set MBlow Up = E(G) \ ker(ωBlow Up). The important properties of MBlow Up (viewed
as a graph) are that it is spanning in G and its maximum degree is bounded by 2.
Recall that our goal is to find spanning monochromatic paths between the clusters of
edges ofMBlow Up and then obtain a monochromatic cycle partition of G by connecting
these up. However, some of the vertices in the clusters of MBlow Up are just not fit
for this argument. (More precisely they do not satisfy the conditions of Lemma 3.2.1
and 3.2.3.) We call the set of these vertices BadBlow Up =

⋃
e∈MBlow Up Bad(e). For any

edge e ∈ E(C) we call the vertices of V (e) \ (Bad(e) ∪ BadBlow Up) MBlow Up-typical.

Note that since the maximum degree ofMBlow Up is bounded by 2 and by (3.3.4), most
vertices areMBlow Up-typical, i.e. |Bad(e) ∪ BadBlow Up| ≤ 24ε|V (x)|.

(F) Extremal colourings: In this step we will take care of the extremal colourings, that
are possible outcomes of Lemma 3.3.2. We will take advantage of the fact that if some
of the components are connected by short monochromatic paths, we can treat them as
a single connected component and continue as usual.
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V (z) V (y)

V (x)

m2

m2

P Inn

PCon

Figure 3.3: Inner paths and connecting paths of the edges xz, yz ∈ E(G)

Suppose that the colouring takes the form of Definition 3.3.1(a). LetR be the spanning,
red say, bipartite component and B1,B2 the bipartite blue components of G. Given
edges ei ∈ E(Bi) for i ∈ [2], we call a path that connects anyMBlow Up-typical vertices
of e1 and e2 a blue bridge, if it has order at most three. We say that the colouring of G
admits blue bridges, if there are (at least) two vertex disjoint blue bridges. Should such
bridges not exist, then we have to find a cycle partition via ad hoc arguments. These
are contained in the proof of the next claim, which we present in Section 3.6.

Claim 3.3.5. If the colouring takes the form of Definition 3.3.1(a), then G admits
either blue bridges or has a monochromatic cycle partition as desired.

If the colouring admits blue bridges, we set C1 := R1, C2 := B1∪B2, C3 := ∅. Note that
C = C1 ∪ C2 ∪ C3 trivially satisfies the conditions of Lemma 3.3.2, in particular (ii)(a).
Hence we can continue with step (G).

Now suppose that the colouring takes the form of Definition 3.3.1(b) with red and blue
connected components R1,R2,B1,B2. We define blue (red) bridges between B1,B2

(R1,R2) as above. Similar to before we have to find the desired cycle partition manu-
ally, if there are no red or blue bridges. The details are in Section 3.6.

Claim 3.3.6. If the colouring takes the form of Definition 3.3.1(b), then G admits red
bridges, blue bridges or has a monochromatic cycle partition as desired.

If the colouring admits blue bridges, we set C1 := R1, C2 := B1 ∪ B2, C3 := R2. If
the colouring admits red bridges, we set C1 := B1, C2 := R1 ∪ R2, C3 := B2. Note
that C = C1 ∪ C2 ∪ C3 in both cases trivially satisfies the conditions of Lemma 3.3.2, in
particular (ii)(a). Hence we can continue with step (G).

(G) Set up cycles: Here we choose disjoint short cycles of colour ci that visit the clusters
of all edges of Ci for i = 1, 2, 3. These cycles will serve as skeleton of the desired cycle
partition. We intend to carefully extend some of their segments, until finally all vertices
are covered.

Let us first assume the colouring of G is not (4γ)-extremal and let E(Ci) = {e1, . . . , e|E(Ci)|}.
For each edge ej = xy, we choose a colour ci inner path P Inn

i (ej) of order m2 and with
MBlow Up-typical ends sj ∈ V (x), tj ∈ V (y). This is possible by Lemma 3.2.1 and our
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choices in (�). Next we connect tj and sj+1 with a colour ci connecting path PCon
i (ej)

of order at most 2m (where j, j + 1 are taken modulo |E(Ci)|). This is possible by
Lemma 3.2.3 and our choices in (�). We can furthermore assume that all of these
paths are internally vertex disjoint. (See Figure 3.3 for an illustration.)

Now let that the colouring be (4γ)-extremal in G and suppose we have, blue say,
bridges. We repeat the same steps as above, except that we fix an ordering of E(C2) =
E(B1)∪E(B2) where the first |E(B1)| edges belong to B1. We then ensure that the blue
bridges are subpaths of the two blue paths PCon

2 (e|E(B1)|) and PCon
2 (e|E(B1)|+|E(B2)|) which

connect the clusters of edges of B1 and B2. From now on extremal and non-extremal
colourings are handled the same way.

Set
P =

∑
i∈[3]

∑
e∈E(Ci)

P Inn
ci

(e) + PCon
ci

(e)

and observe that P , as desired, consists of three disjoint monochromatic cycles. More-
over for each vertex x ∈ V (C), the intersection V (x) ∩ V (P) has a size of at most

2m3 +m3
(�)
≤ ε|V (x)|. (3.3.5)

(There are at most m2 paths of type PCon, each of which contains at most 2m vertices.
For each x ∈ V (G) are at most m paths of type P Inn, each of which contains m2 vertices
of V (x).)

(H) Distribute exceptional vertices: In this step we deal with the vertices that do
not behave regularly enough to be within the reach of Lemma 3.2.1. Denote these
exceptional vertices by V Exc =

⋃
e∈MBlow Up Bad(e) ∪ V0 and observe that

|V Exc| = |
⋃

e∈MBlow Up

Bad(e)|+ |V0|
(3.3.4)
≤ 4ε|V (x)|m+ εn ≤ 5εn (3.3.6)

Using the overlap of Lemma 3.3.2(ii), we distribute the exceptional vertices evenly
on the cycles of P . This is made precise in the next claim, whose proof we defer to
Section 3.5.

Claim 3.3.7 (Distribute exceptional vertices). For i = 1, 2, 3 there are colour ci paths
PExc

i such that for PExc =
⋃

i P
Exc
i

(i) |V (x) ∩ V (PExc)| ≤
√
ε|V (x)| for each x ∈ V (G),

(ii) PExc
i has the same ends as PCon

i (eExc
i ) for some edge eExc

i ∈ E(Ci) and

(iii) V Exc ⊆ V (PExc).

In addition, if Lemma 3.3.2 (ii)(b) holds, then PExc
3 is a monochromatic cycle on its

own.

We replace PCon
i (eExc

i ) by PExc
i in P , keeping the names for convenience.
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(I) Resizing inner paths: In what follows we have to overcome two obstacles. Firstly, we
need to add exceptional vertices, like those contained in V0, to these cycles. Secondly,
we have to balance the clusters ofMBlow Up in order to cover all vertices by extending
the respective inner paths. We will achieve the latter by resizing some of the inner
paths that do not correspond to edges ofMBlow Up. Let us make this operation precise.

Definition 3.3.8 (Extending and reducing inner paths). Let k be non-negative integer
and i ∈ [3]. We extend (reduce) the inner path of e ∈ E(Ci) by 2k vertices by performing
the following modifications of P . Firstly, select a path PNew

ci
of colour ci with the

following properties

• |V (PNew
ci

)| = |V (P Inn
ci

(e))|+ 2σk where σ = 1 (σ = −1),
• P new

ci
alternates betweenMBlow Up-typical vertices of xy,

• PNew
ci

terminates in the ends of P Inn
ci

(e) and
• V (PNew

ci
) ⊆

(
V (G) \ V (P)

)
∪ V

(
P Inn
ci

(e)
)
.

Secondly, replace P Inn
ci

(e) with PNew
ci

in P , while keeping the names for convenience.

Let us observe the following properties of path extensions and reductions, which follow
from Lemma 3.2.1 and our choices in (�).

Remark 3.3.9 (Path extensions and reductions).

(1) Since the original inner paths have at least m2 vertices, we are allowed to reduce
each inner path by up to m2 vertices.

(2) Given any edge xy ∈ E(C) with |V (x) \ V (P)|, |V (y) \ V (P)| ≥ |V (x)|/2, we can
extend the vertex set of the inner path of xy by up to

2 min
(
|V (x) \ V (P)|, |V (y) \ V (P)|

)
− |Bad(xy)|.

(3) If additionally xy ∈MBlow Up, then we can extend the vertex set of the inner path
of xy even up to

2 min
(
|V (x) \ V (P)|, |V (y) \ V (P)|

)
.

(J) Parity: From the next step on we will add (remove) vertices to (from) P exclusively
by extending (reducing) inner paths. Since these extensions (reductions) are done in
pairs of vertices, we need to ensure that the number of uncovered vertices is even. If
V (G) \V (P) has even size we continue with step (K), otherwise we make the following
adjustment.
If C1, C2, C3 are each bipartite, we add a single vertex from V (G) \ V (P) to P . This
vertex will be a monochromatic cycle on its own.2

If, on the other hand, Ci has an odd cycle, we select an edge e ∈ E(Ci) such that e 6= eExc

and PCon
i (e) contains no colour ci bridges. This is possible since Ci contains at least 3

edges. We then replace PCon
i (e) by a path PParity

i (e) of order less than 2m and with
|PCon

i (e)| − |PParity
i (e)| = 1 mod 2. This is possible by Lemma 3.2.3 and our choices

in (�).
2Note that C1, C2, C3 being each bipartite and Lemma 3.3.2(ii)(b) are mutually exclusive situations. This

is important, since in both cases (i.e. in step (H) and (J)) a monochromatic cycle not corresponding to a
component Ci has been added and in what follows we will obtain another cycle for each Ci 6= ∅.
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Figure 3.4: An illustration of G and G after step (J). The numbers indicate the sizes of the
clusters V (x) \ V (P).

(K) Balance matching edges up to a constant: Recall that our intention is to extend
the inner paths of the edges ofMBal, until all vertices are covered. If the clusters have
all the same size, this can be done easily as explained in Remark 3.3.9(2). However,
the last few steps have possibly created some imbalances in the cluster sizes. So before
going on, we need to ensure that the remaining clusters have the same size. To restore
balance, we will carefully extend the inner paths. The size of these extensions will be
indicated by a 2-matching in an auxiliary graph. Consider the following lemma.

Lemma 3.3.10. Suppose that G is a graph on n vertices, such that every stable set
S ⊆ V (G) satisfies |N(S)| ≥ |S| + γn. Let H be the blow up graph of G, where each
vertex of G is replaced by a cluster B(x) of k vertices and each edge of G is replaced
by a complete bipartite graph Kk,k.

Then for any set U ⊆ V (H), where U contains at most γk vertices of each cluster
B(x), H − U has a perfect 2-matching.

Proof of Lemma 3.3.10. Suppose that H ′ = H − U has no perfect matching for some
U ⊆ V (H), where U contains at most αk vertices of each cluster B(x). We will show
that α > γ. By Theorem 3.3.4 there is a stable set S with |NH′(S)| < |S|. Let
S0 be of maximal size among all sets S with this property. For each x ∈ V (G) let
B′(x) = B(x) \ U be the cluster of H ′ corresponding to x ∈ V (G). A quick case
distinction shows that for any two vertices v, w ∈ B′(x) the maximality of S0 and
the fact that NH′(v) = NH′(w) imply that {v, w} is a subset of either S0, NH′(S0) or
V (G) \ (S0 ∪NH′(S0)). So for S1 = {x ∈ V (G) : B′(x) ⊆ S0} we have

|S1|k ≥ |S0| > |NH′(S0)| ≥ (1− α)k|NG(S1)|.

In particular |S1|+αn > |NG(S1)|. Since S1 is a stable set in G, this implies α > γ.
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We plan to apply Lemma 3.3.10 with k = b|V (x)|/2c. Let H be the blow up graph of G
as in the statement. Select a set U(v) ⊆ B(v) of |V (x)∩V (P)| vertices for each x ∈ V (G)
and set U :=

⋃
x∈V (G) U(x). By the choices in steps (G)–(J), in particular (3.3.5) and

Claim 3.3.7(i) we have

|U(x)| = |V (x) ∩ V (P)| ≤ 2
√
ε|V (x)|

(�)
≤ γb|V (x)|

2
c = γk.

By Lemma 3.3.2(i) and as C is spanning in G, we can apply Lemma 3.3.10 with input
G, U , k and γ. Thus H has a (perfect) 2-matching

ωBal : E(H)→ {0, 1, 2}

where
∑

w∈N(v) ω
Bal(vw) = 2 for every vertex v ∈ V (H). Observe that this implies for

each x ∈ V (G)∑
v∈B(x)

∑
w∈NH(v)

ωBal(vw) = 2|B(x) \ U(x)| = 2(k − |V (x) ∩ V (P)|) ⇔

|V (x) ∩ V (P)| = k −
∑

v∈B(x)

∑
w∈NH(v) ω

Bal(vw)

2
.

and therefore

|V (x) \ V (P)| = |V (x)| − |V (x) ∩ V (P)|

= |V (x)| − k +

∑
v∈B(x)

∑
w∈NH(v) ω

Bal(vw)

2

= d|V (x)|
2
e+

∑
y∈NG(x)

∑
v∈B(x)

∑
w∈B(y) ω

Bal(vw)

2

= d|V (x)|
2
e+Kx +

∑
y∈NG(x)

b
∑

v∈B(x)

∑
w∈B(y) ω

Bal(vw)

2
c,

where 0 ≤ Kx ≤ m−1. With this in mind, we extend the inner paths of each xy ∈ E(C)
by

2b
∑

v∈B(x),u∈B(y) ω
Bal(vu)

2
c

vertices. As said in Definition 3.3.8 we keep the name of P for convenience. Then each
x ∈ V (G) satisfies

|V (x) \ V (P)| = d|V (x)|
2
e+Kx (3.3.7)

and hence the cluster sizes are balanced up to a difference of m− 1. The procedure of
step (K) is illustrated in Figure 3.5.

(L) Balance matching edges completely: In this step, we aim to balance the cluster
sizes completely. To this end let us define the following.

Definition 3.3.11 (Shift). For vertices x, y ∈ V (G) an x-y-shift consists of the following
modifications of P .

64



P Inn∑
ωBalH G

1000 1000

1000 1001

4 + 76 4 + 0 4 + 42

4 + 2034

4 + 2024

1056 1039

1051 1033

2035

77 0

2025

43

Figure 3.5: Given the example of Figure 3.4, we solve a matching problem in an auxiliary
graph to balance the clusters. The numbers indicate the sizes of the clusters of H and G
respectively. (The connecting paths are hidden for sakes of clarity.)

(i) Fix an even x-y-walk P Shift = (x = w1, w2, . . . , w2h−1, w2h = y) with h ≤ m.

(ii) If i ∈ [2h − 1] is even, extend the inner path of wiwi+1 by 2 vertices, otherwise
decrease it by 2 vertices.

Let us make the following remarks about shifts.

• After an x-y-shift, the sizes of V (x) \ V (P) and V (y) \ V (P) are each reduced
by 1 (by 2 if x = y) and the size of V (z) \ V (P) remains the same for all other
z ∈ V (G) \ {x, y}.

• By Remark 3.3.9(1), we can perform up to m2 shifts.

• By Lemma 3.3.2(iv)–(v), C is connected and contains an odd cycle. Hence any
two vertices x, y ∈ V (C) admit an x-y-shift.

With the above in mind, we can greedily balance the leftover of the clusters. Set
l := b|V (x)|/4c. Firstly, as long as there is a vertex x ∈ V (C) with 2l+2 ≤ |V (x)\V (P)|,
we perform an x-x-shift. Secondly, as long as there are distinct vertices x, y ∈ V (G)
with 2l < |V (x) \ V (P)| and 2l < |V (y) \ V (P)| we perform an x-y-shift. As said
in Definition 3.3.8 we keep the name of P for convenience. Note that by (3.3.7) and
the definition of l this procedure stops after at most m2 shifts. Since the parity of
|V (G)\V (P)| remains even under extensions and reductions of inner paths (and we have
restricted ourselves to these operations since step (J)), we finish with |V (x)\V (P)| = 2l
for each x ∈ V (C).

(M) Blow up matching edges: It remains to extend the inner paths of each edge e ∈
MBlow Up by 4l vertices, if e is an isolated edge inMBlow Up, and 2l vertices otherwise.
This is possible as explained in Remark 3.3.9(3).
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Figure 3.6: Continuing with the example of Figure 3.5, we illustrate an x-y-shift.

3.4 Proof of Lemma 3.3.2

This section is dedicated to the proof of Lemma 3.3.2. Let G be a red and blue edge coloured
graph on n vertices and of minimum degree at least (2/3 + 8γ)n.

We start by showing that G is spanned by two monochromatic components.

Claim 3.4.1. There are monochromatic components C1, C2 that together span G.

Proof. Denote the monochromatic components of G by C = {C1, C2, . . . , Cl}. Let v1, . . . , vq
be a maximal number of vertices that are pairwise in distinct monochromatic components,
i.e. vi and vj are in distinct red and in distinct blue components for i 6= j. Now construct a
bipartite (multi)-graph H with vertex set C as follows. For each vertex v ∈ V (G) we place
an edge between the red and blue components that contain v. Observe that any matching
in H has a size of at most q. By Kőnig’s theorem the edges of H are covered by vertices
C1, . . . , Cq say. By the definition of H this implies that C1 + . . . + Cq spans G. Hence the
claim follows from

2

3
nq ≤

∑
i

deg(vi) =
∑

i

dred(vi) +
∑

i

dblue(vi) ≤ 2(n− 1) ⇔

q ≤ 2.

Let C1 and C2 be the components of Claim 3.4.1. We will treat the cases where one of
C1 and C2 is spanning, C1 and C2 have the same colour and C1 and C2 have distinct colours
differently.

Definition 3.4.2. For a spanning subgraph H ⊆ G, we call a stable set S ⊆ V (G) bad in
H, if |NH(S)| < |S|+ γn.
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Remark 3.4.3. Observe that if H ⊆ G is bipartite (and spanning), then its largest bipartition
class is a bad set. In other words, Lemma 3.3.2(i) implies Lemma 3.3.2(iv) (unless the
colouring is extremal).

3.4.1 (Case: One of C1 and C2 is spanning)

We assume that R := C1 is spanning and red. Assume H = R +
∑
Bi for some blue

components Bi and suppose that S is bad in H. Then

2|NH(S)| − γn < |S|+ |NH(S)| ≤ n ⇔
|NH(S)| < (1/2 + γ/2)n. (3.4.1)

Moreover, if B is a blue component with v ∈ S ∩ V (B), then

|S|+ γn > |NH(S)| ≥ degH(v) ≥ (2/3 + 8γ)n− |V (B)|. (3.4.2)

Note that in particular, this implies that B 6= Bi, since otherwise degG(v) = degH(v) in
contradiction to (3.4.1). Hence for any Bi of

∑
Bi we have

S ∩ V (Bi) = ∅. (3.4.3)

Let us continue with some further observations.

Claim 3.4.4. Let H = R+
∑
Ci for blue components Ci. Suppose S is a bad set in H and let

B1, . . . , Bt be the blue components that intersect with S, ordered in decreasing vertex order.
Then t ≤ 2 and |V (

∑
i∈[t] Bi)| ≥ (1/3 + 3γ)n.

In addition the following holds.

(a) If |S| ≥ (1/3− 8γ)n, then V (G) \NH(S) ⊆ V (
∑

i∈[t] Bi).

(b) If t = 2, then |S| ≥ (1/3 + 15γ)n.

(c) If |S| < (1/3− 8γ)n, then |V (B1)| ≥ (1/3 + 7γ)n. If in addition, B1 is bipartite, then
|V (B1)| ≥ (2/3 + 7γ)n.

(d) Finally, if B1 is bipartite, then t = 1.

Before we prove Claim 3.4.4 let us note that by (3.4.3) the sets V (Bi) are disjoint from
the sets V (Ci).

Proof. First note that for W := V (G) \ (NH(S) ∪ S)

H has no edges in S and no edges between S and W . (3.4.4)

Fix vi ∈ V (Bi) ∩ S and observe that

|(S ∪W ) ∩ V (Bi)| ≥ degBi
(vi, S ∪W )

(3.4.4)
≥ (2/3 + 8γ)n− |NH(S)|. (3.4.5)
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To prove t ≤ 2, let us assume that t > 2 and obtain a contradiction. By (3.4.4) we obtain

|S ∪W | ≥
∑
i∈[3]

degG(vi, S ∪W ) ⇒

3|NH(S)|+ |S ∪W |
(3.4.5)
≥ (6/3 + 24γ)n ⇔

2|NH(S)| ≥ (3/3 + 24γ)n ⇔
|NH(S)| ≥ (1/2 + 12γ)n

in contradiction to (3.4.1). This proves t ≤ 2. It remains to show properties (a)–(d) and that
|V (
∑

i∈[t] Bi)| ≥ (1/3 + 3γn).
Part (a) follows from the observation that if |S| ≥ (1/3 − 8γ)n, then any vertex in

V (G) \ (NH(S) ∪ S) has edges to S (and these edges are not in H by (3.4.4)).
Now let us show part (b). Suppose that t = 2. Then for i ∈ [2] and vi ∈ S ∩ V (Bi) we

have

|W | ≥ |W ∩ V (B1)|+ |W ∩ V (B2)|
≥ degG(v1,W ) + degG(v2,W )

≥ 2(2/3 + 8γ)n− 2|NH(S)| − |S ∩ V (B1)| − |S ∩ V (B2)|
= (4/3 + 16γ)n− 2|NH(S)| − |S|,

where we used that S is stable in the last line. This together with V (G) = W ∪ S ∪NH(S),
gives

|S|+ γn > |NH(S)| ≥ (1/3 + 16γ)n

as desired. This proves part (b).
To show (c), let us suppose that |S| < (1/3− 8γ)n. It follows from (b) that t = 1. Since

S is bad in H we obtain

|V (B1)| ≥ |(S ∪W ) ∩ V (B1)|
(3.4.5)
≥ (

2

3
+ 8γ)n− |NH(S)|

≥ (
2

3
+ 7γ)n− |S|

≥ (1/3 + 15γ)n

as desired. Now let us assume that B1 is in addition bipartite. If G[S] contains an edge vw,
then bipartiteness and (3.4.4) ensures NG(v) ∩NG(w) = ∅. Hence

|V (B1)|
(3.4.4)
≥ |S|+ degG(v,W ) + degG(w,W )

(3.4.5)
≥ |S|+ (4/3 + 16γ)n− |S| − 2|NH(S)|
≥ (4/3 + 14γ)n− 2|S|
≥ (2/3 + 30γ)n.

Similarly, if G[S] contains no edge, it follows for any v ∈ S that

|V (B1)|
(3.4.4)
≥ |S|+ |NG(v) \ (S ∪NH(S))|
≥ |S|+ (2/3 + 8γ)n− |NH(S)|
≥ (2/3 + 7γ)n.
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This proves (c).
To show part (d), let us assume that B1 and B2 are both bipartite and non-empty. So

|S| ≥ (1/3 + 15γ)n by (b). This implies that there is an edge in G[S]. So we can assume
that there are vertices v1, v2 ∈ S that belong to distinct bipartition classes of B1. By (3.4.4)
the neighbourhoods of v1 and v2 in S ∪W are disjoint in G. Now (3.4.5) and (3.4.4) imply
for any v3 ∈ V (B2) that

|S ∪W | ≥
∑
i∈[3]

degG(vi, S ∪W ) ⇔

3|NH(S)|+ |S ∪W | ≥ (
6

3
+ 24γ)n

(3.4.5)⇔

2|NH(S)| ≥ (
3

3
+ 24γ)n ⇔

|NH(S)| ≥ (
1

2
+ 12γ)n

in contradiction to (3.4.1). This proves part (d).
Finally we have to show that |V (

∑
i∈[t] Bi)| ≥ (1/3 + 3γ)n. If |S| ≥ (1/3 + 3γ)n this

follows from S ⊆ V (
∑

i∈[t] Bi). So let us assume that |S| < (1/3 + 3γ)n and hence t = 1
by (b). Then

(1/3 + 4γ)n > |S|+ γn
(3.4.2)
> (2/3 + 8γ)n− |V (B1)| ⇒

|V (B1)| > (1/3 + 4γn)

as desired.

Now let us show that we can select two blue components which together with R satisfy
the conditions of Lemma 3.3.2.

Remark 3.4.5. Note that as we always select R, Lemma 3.3.2(v) holds trivially.

Claim 3.4.6. There are no two blue components B1, B2 with |V (B1)|, |V (B2)| ≥ (1/3 + 3γ)n
or we are done.

Proof. Suppose otherwise and let B1, B2 be blue components with

|V (B1)|, |V (B2)| > (1/3 + 3γ)n. (3.4.6)

If H0 := R+B1 +B2 has a bad set, then by Claim 3.4.4 there are two more blue components
which together contain at least (1/3 + 3γ)n vertices. But this contradicts (3.4.6). Hence
H0 satisfies Lemma 3.3.2(i) and (ii)(a). If one of R,B1, B2 contains an odd cycle, then H0

satisfies Lemma 3.3.2(iii) and we are done. Hence we can assume that

R,B1, B2 are each bipartite. (3.4.7)

Let us fix i ∈ [2] for a moment and set Hi = R + B3−i. If Hi has no bad sets, then it
satisfies the conditions of Lemma 3.3.2, in particular (ii)(a). Thus we can assume that Hi

has bad sets Si and let Yi = V (G) \NHi
(Si).

Claim 3.4.4 allows us to denote the blue components that intersect with Si by Bi
3, B

i
4

(possibly with Bi
4 = ∅) and implies additionally that |V (Bi

3 +Bi
4)| ≥ (1/3 + 3γ)n.

69



By (3.4.6) and as Si∩V (B3−i) = ∅ by (3.4.3), we can assume that Bi = Bi
3 and so Bi

4 = ∅
by Claim 3.4.4(d). Note that if |Si| < (1/3− 8γ)n, then Claim 3.4.4(c) together with (3.4.7)
implies that |V (Bi)| ≥ (2/3 + 7γ)n. This contradicts (3.4.6) and hence we can assume that

|Si| ≥ (1/3− 8γ)n (3.4.8)

Therefore Claim 3.4.4(a) gives that

Yi ⊆ V (Bi
3 +Bi

4) = V (Bi). (3.4.9)

By (3.4.1) this implies
(1/2− γn) ≤ |Yi| ≤ |V (Bi)|

and hence for any vi ∈ Yi

degblue(vi) ≥ (2/3 + 8γ)n− |V (B3−i)| ≥ (1/6 + 7γ)n. (3.4.10)

Recall that Bi is bipartite and denote its bipartition by X i
1, X

i
2. Let j ∈ [2]. By (3.4.8) G[Si]

contains a (blue) edge wi
1w

i
2 with wi

j ∈ X i
j. We have NG(wi

1, V (Bi))∩NG(wi
2, V (Bi)) = ∅ and

so (3.4.10) implies
|X i

j| ≥ (1/6 + 7γ)n. (3.4.11)

Hence for any vi
j ∈ X i

j

degred(vi
j) ≥ degG(vi

j)− degblue(v
i
j) ≥ (2/3 + 8γ)n− |X i

3−j|
≥ (2/3 + 8γ)n−

(
n− |X i

j| − |X3−i
3−j| − |X3−i

j |
)

(3.4.11)
≥ (1/3 + 29γ)n. (3.4.12)

Now if G[V (Bi)] contains a red edge, then it follows by (3.4.12) that G contains a red
triangle. But this contradicts that R is bipartite. Similarly, if there is a vertex outside
of V (B1 + B2), then it must send at least (1/6 + 7γ)n red edges into both V (B1) and
V (B2) by (3.4.9) and (3.4.1). Thus we can find cycle of order 5 in R in contradiction to its
bipartiteness. Hence the colouring is γ-extremal as in Definition 3.3.1(a).

Suppose that
B0 is a blue component of maximum order (3.4.13)

and set H0 := R +B0.

Claim 3.4.7. H0 has a bad set.

Proof. Suppose that H0 has no bad sets. If one of R and B0 has an odd cycle, H0 satisfies
Lemma 3.3.2(ii)(b) and (iii) and we are done. Similarly, if |V (B0)| ≥ (1/3 + γ)n, then H0

satisfies Lemma 3.3.2(ii)(a) and (iii), which together with Remark 3.4.3 implies that we are
done as well. Thus we assume that R and B0 are both bipartite and

|V (B0)| < (1/3 + γ)n (3.4.14)

If there is a non-bipartite blue component B1 with |V (B0 + B1)| ≥ (1/3 + γ)n, we are done
again. So we assume that no such component exists. Let V (R) = P ∪Q be a bipartition of R,
where |P | ≥ |Q|. Note that any vertex p ∈ P has degblue(v, P ) ≥ (1/6+8γn). By (3.4.14) and
|P | ≥ n/2 we can choose p such that it belongs to a bipartite blue component B1 6= B0. Let
p′ ∈ P such that pp′ is blue. Since NB1(p) ∩NB1(p

′) = ∅, we obtain |V (B1)| ≥ (1/3 + 16γ)n
in contradiction to (3.4.13) and (3.4.14).
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Let S0 be a bad set of minimum size in H0. Claim 3.4.4 allows us to denote the blue
components that intersect with S0 by B1, B2 (possibly with B2 = ∅) and implies additionally
that |V (B1 + B2)| ≥ (1/3 + 3γ)n. Let us fix i ∈ [2] for a moment. Note that Bi 6= ∅, since
otherwise |V (B0)| ≥ |V (B3−i)| ≥ (1/3 + 3γ)n by (3.4.13) in contradiction to Claim 3.4.6.
Hence Bi contains an odd cycle by Claim 3.4.4(d). It follows by Claim 3.4.4(a) and (b) that
for Y0 = V (G) \NHi

(Si) we have

Y0 ⊆ V (B1 +B2). (3.4.15)

Let and set Hi = R + B0 + B3−i. Note that Hi satisfies Lemma 3.3.2(iii) and (ii)(a). The
latter follows since |V (B0)| is maximal and |V (B1 +B2)| ≥ (1/3 + 3γ)n.

If Hi has no bad sets, we are done by Remarks 3.4.3 and 3.4.5 and as B3−i as an odd
cycle. So suppose that Si is a bad set in Hi and set Yi = V (G) \NHi

(Si). Claim 3.4.4 allows
us to denote the blue components that intersect with Si by Bi

3, B
i
4 (possibly with Bi

4 = ∅)
and implies additionally that |V (Bi

3 +Bi
4)| ≥ (1/3 + 3γ)n. As above, note that

Bi
j 6= ∅ for j = 3, 4, (3.4.16)

since otherwise |V (B0)| ≥ |V (Bi
3−j)| ≥ (1/3+3γ)n by (3.4.13) in contradiction to Claim 3.4.6.

It follows by Claim 3.4.4(a) and (b) that

Yi ⊆ V (Bi
3 +Bi

4). (3.4.17)

By (3.4.3) we have
V (B0 +B3−i) ∩ Si = ∅. (3.4.18)

Before we continue, let us also note that trivially B3−i equals at most one of Bi
3 and Bi

4 and
assume without loss of generality that

B3−i 6= Bi
3. (3.4.19)

By vertices in Si have the same neighbours in H0 and Hi. Thus Si is bad in H0 as well
and hence

|Si| ≥ |S0| (3.4.20)

by minimality of S0. Let us continue by proving that

S0 ∩ Si 6= ∅. (3.4.21)

Suppose this is not true and S0 ∩Si = ∅. Together with (3.4.15) and (3.4.18) this implies for
W0 = Y0 \ S0 that

Si ⊆
(
NH0(S0) \ V (B0)

)
∪
(
V (Bi) ∩W0

)
. (3.4.22)

Thus

|S0|+ γn− |V (B0)|+ |V (Bi) ∩W0|
≥ |NH0(S0)| − |V (B0)|+ |V (Bi) ∩W0|
(3.4.15)

= |NH0(S0) \ V (B0)|+ |V (Bi) ∩W0|
(3.4.22)
≥ |Si|

(3.4.20)
≥ |S0|, (3.4.23)
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which gives

2|V (B0)|
(3.4.13),(3.4.15)

≥ |Y0| ≥ |S0|+ |V (Bi) ∩W0|
(3.4.23)
≥ |S0|+ |V (B0)| − γn (3.4.24)

and therefore by Claim 3.4.4(b)

|V (Bi)|+ γn
(3.4.23)
≥ |V (B0)|

(3.4.24)
≥ |S0| − γn ≥ (1/3 + 14γ)n,

in contradiction to Claim 3.4.6. This proves (3.4.21).
By (3.4.21) we can fix vi ∈ S0 ∩ Si. By definition, vi has no red edges to any vertex of

Y0 ∪ Yi. Hence

degblue(vi) ≥ degG(vi)− degred(vi)

≥ degG(vi)− |V (G) \ (Y0 ∪ Yi)|
≥ (2/3 + 8γ)n+ |Y0 ∪ Yi| − n
≥ |Y0|+ |Yi \ Y0| − (1/3− 8γ)n

(3.4.1),(3.4.15),(3.4.17)
≥

∣∣(Yi ∩ V (Bi
3 +Bi

4)
)
\
(
Y0 ∩ V (B1 +B2)

)∣∣+ (1/6 + 7γ)n

(3.4.3),(3.4.19)
≥ |Yi ∩ V (Bi

3)|+ (1/6 + 7γ)n, (3.4.25)

more precisely, the last line follows because Bi 6= B3−i
j by (3.4.3) for j = 3, 4 and B3−i 6= B3−i

3

by (3.4.19). Observe that any two blue components, which are both distinct from B0, have
together at most (2/3 + 6γ)n vertices. Otherwise, as B0 is maximal by (3.4.13), the larger
of these two blue components, together with B0, presents a contradiction to Claim (3.4.6).
Hence it follows that

(2/3 + 6γ)n ≥
∑

i

degblue(vi)
(3.4.25)
≥ (1/3 + 14γ)n+

∑
i

|Yi ∩ V (Bi
3)| (3.4.26)

which for vi
3

(3.4.16)
∈ Si ∩ V (Bi

3) implies

(1/3− 8γ)n
(3.4.26)
≥

∑
i

|Yi ∩ V (Bi
3)|

≥
∑

i

degG(vi
3, Yi)

≥
∑

i

(
degG(vi

3)− |NHi
(Si)|

)
(3.4.1)
≥ 2(2/3 + 8γ)n− 2(1/2 + γ)n

≥ (1/3 + 14γ)n,

a contradiction.
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3.4.2 (Case: C1 and C2 have distinct colours)

If C1 or C2 is spanning, we continue as in Subsection 3.4.1. Thus let us assume that there
are vertices vi ∈ V (Ci) \ V (Cj) for i, j = 1, 2 and j 6= i. Since

|NG(vi) ∩NG(vj)| ≥ (1/3 + 16γ)n, (3.4.27)

it follows that |V (C1) ∩ V (C2)| ≥ (1/3 + 16γ)n. Moreover

|V (Cj) \ V (Ci)| ≤ |V (G) \NG(vi)| < (1/3− 8γ)n (3.4.28)

and hence |V (Cj)| ≥ (2/3 + 8γ)n. By symmetry we can assume that C1 is red and C2 is
blue. By (3.4.28) any two vertices outside of V (C1), which are each incident to at least
(n/6 − 4γ)n red edges, must be in the same red component, which we denote by C3. (If
no such vertex exists, we set C3 := ∅.) We claim that C := C1 + C2 + C3 satisfies the
conditions of Lemma 3.3.2. As by Claim 3.4.1 C1 ∪ C2 spans G, part (v) is trivial and since
|V (C1)∩V (C2)| ≥ (1/3+8γ)n part (ii)(a) holds as well. By (3.4.27), N(v1)∩N(v2) contains
an edge. So v1 is on a red triangle or v2 is on a blue triangle. Hence parts (iii) follows.

It remains to show that C satisfies part (i). Let S be any stable set in C. We have to
show that |NC(S)| ≥ |S| + γn. Let us make the following observations. Any vertex v in
V (C1) ∩ V (C2) or V (C3) has degree

degC(v) ≥ (2/3 + 8γ)n.

Recall that by definition of C3, any vertex v ∈ V (C2)\V (C1+C3) has degred(v) < (1/6−4γ)n
and so

degC(v) ≥ (2/3 + 8γ)n− |V (C2) \ V (C1 + C3)| ≥ (1/2 + 12γ)n. (3.4.29)

Note that since S is bad

2|NC(S)| − γn < |S|+ |NC(S)| ≤ n ⇔
|NC(S)| < (n/2 + γ/2)n. (3.4.30)

Since |NC(S)| ≥ degC(v) for any v ∈ S, (3.4.29) and (3.4.30) imply that S ⊆ V (C1) \V (C2).
By (3.4.28) this gives |S| ≤ (1/3− 8γ)n. However vertices v ∈ V (C1) \ V (C2) have degree

degC(v) ≥ (2/3 + 8γ)n− |V (C1) \ V (C2)|
(3.4.28)
≥ (1/3 + 16γ)n

and thus |NC(S)| ≥ |S|+ 24γn which is clearly enough.

3.4.3 (Case: C1 and C2 the same colour)

Suppose that R1 := C1 and R1 := C2 are both red with

|V (R1)| ≥ |V (R2)|. (3.4.31)

Let B1, . . . , Bt be the blue components intersect that with R2. If t = 1, we continue as in
Subsection 3.4.2. Hence we can assume that t ≥ 2. So for i ∈ [t] and vi ∈ V (Bi) ∩ V (R2) we
have

|V (R1)| ≥
∑
i∈[t]

deg(vi, V (R1))

≥ t(2/3 + 8γ)n− t|V (R2)|,
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which, since R1 +R2 is spanning, gives

n

2

(3.4.31)
≥ |V (R2)|

(3.4.31)
≥ t(2/3 + 8γ)n− n

t− 1
. (3.4.32)

This implies t = 2 and so |V (R2)| ≥ (1/3 + 16γ)n by (3.4.32). Thus every vertex in V (R1)
has a neighbour in V (R2) and so V (G) = V (B1 +B2) as well. Set Ii,j = Ri ∩Bj for i, j ∈ [2]
and note that the sets Ii,j are each non-empty and partition V (G). Since vertices in Ii,j have
no neighbours in I3−i,3−j and as δ(G) ≥ (2/3 + 8γ)m we obtain

|Ii,j| < (1/3− 8γ)n for i, j ∈ [2]. (3.4.33)

In particular, this implies that each

R1, R2, B1, B2 contain each at least (1/3 + 16γ)n vertices, (3.4.34)

which in turn gives

δ
(
G[Ii,j]

)
≥ δ(G)− |I3−i,j ∪ Ii,3−j|
(3.4.33)
≥ (2/3 + 8γ)n− 2(1/6− 8γ)n ≥ 24γn. (3.4.35)

We will show that the union of three components of {R1, R2, B1, B2} satisfies the conditions
of Lemma 3.3.2 or the colouring is (4γ)-extremal as in Definition 3.3.1(b). Note that for any
such union, Lemma 3.3.2(v) holds since R1 ∪ R2, B1 ∪ B2 span G and part (ii)(a) follows
by (3.4.34). The next claim yields parts (iii) and (iv).

Claim 3.4.8. If one colour has a bipartite component, then the other colour has no bipartite
component.

Proof. Suppose that, R1 say, is bipartite and let X and Y be its colour classes. We claim
that (after possibly switching X and Y )

X = I1,1 and Y = I1,2. (3.4.36)

Suppose otherwise and let x ∈ I1,1 ∩ X and y ∈ I1,1 ∩ Y . Note that x and y have each
(2/3 + 8γ)n− |V (B1)| neighbours in I1,2 ∩X and I1,2 ∩ Y respectively. Thus by (3.4.33)

2
(
(2/3 + 8γ)n− |V (B1)|

)
≤ |I1,2| < (1/3− 8γ)n ⇔

n/2 < |V (B1)|.

However, since by (3.4.33) each vertex in I1,1 has neighbours in I1,2, we obtain that I1,2 has
vertices of both X and Y as well. By a symmetric argument it follows that n/2 < |V (B2)|,
a contradiction. This proves (3.4.36).

If, B1 say, is bipartite as well, then the same reasoning shows that one of its colours classes
equals I1,1. Consequently I1,1 contains no edges in contradiction to (3.4.35). This proves the
claim.

It remains to show that the union of any three components of R1, R2, B1, B2 satisfies
Lemma 3.3.2(i) or the colouring is (4γ)-extremal as in Definition 3.3.1(b). To this end,
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let us assume that the union of any three components of R1, R2, B1, B2 does not satisfy
Lemma 3.3.2(i).

For each i ∈ [2] let SRi
be a bad set of minimum size in G− E(Ri). Similarly, let SBi

be
a bad set of minimum size in G − E(Bi). (Note that these sets exists, by our assumptions
above.) Then

2|NG−E(Ri)(S)| − γn < |S|+ |NG−E(Ri)(S)| ≤ n ⇔
|NG−E(Ri)(S)| < (n/2 + γ/2)n.

Recall that the sets Ik,j partition V (G). So any vertex v ∈ V (R3−i) satisfies degG(v) =
degG−E(Ri)

(v) and hence v /∈ SRi
. It follows by symmetry that

SRi
⊆ V (Ri) and SBi

⊆ V (Bi). (3.4.37)

In fact, we can show a bit more:

Claim 3.4.9. For each i ∈ [2] there are j, k ∈ [2] such SRi
⊆ Ij,k. Similarly, for each i ∈ [2]

there are j, k ∈ [2] such that SBi
⊆ Ij,k.

Proof. Suppose that the claim does not hold for, say SR2 . So SR2 ∩ V (Bi) 6= ∅ for i = 1, 2.
Then

|SR2 ∩ V (B1)|+ |SR2 ∩ V (B2)|+ γn

= |SR2|+ γn > |NG−E(RS)(SR2)|
≥ |NG−E(RS) (SR2 ∩ V (B1)) |+ |NG−E(RS) (SR2 ∩ V (B2)) |,

where the last line follows because the edges between SR2 ∩ B1 and SR2 ∩ B2 are red (and
hence in R2). Thus by Definition 3.4.2, SR2 ∩ V (B1) or SR2 ∩ V (B2) is a bad set as well in
contradiction to the minimality of SR2 .

Claim 3.4.10. Let i, j ∈ [2]. If SRi
∩ V (Bj) 6= ∅, then I3−i,j ⊆ NG−E(Ri)(SRi

). Similarly, if
SBi
∩ V (Rj) 6= ∅, then Ij,3−i ⊆ NG−E(Bi)(SBi

).

Proof. Suppose the claim is wrong for SR2 and B1. Let v ∈ SR2 ∩ V (B1) and w ∈ I1,1 \
NG−E(R2)(SR2). Note (3.4.37) and Claim 3.4.9 imply

SR2 ⊆ I2,1. (3.4.38)

By choice of SR2 , we have

|SR2 |+ γn > |NG−E(R2)(SR2)| ≥ degG−E(R2)(v, I1,1) ≥ (2/3 + 8γ)n− |V (R2)|

and

|I2,1 \ SR2| ≥ degG−E(R2)(w, I2,1) ≥ (2/3 + 8γ)n− |V (R1)|

Summing the two inequalities gives

|I2,1|+ |SR2 | − |SR2 ∩ I2,1| > (4/3 + 15γ)n− |V (R1)| − |V (R2)| ⇔

|I2,1|
(3.4.38)
> (1/3 + 15γ)n

in contradiction to (3.4.33).
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Claim 3.4.11. If SRi
⊆ Ii,j for i, j ∈ [2], then SBj

⊆ I3−i,j. Similarly, if SBi
⊆ Ij,i for

i, j ∈ [2], then SRj
⊆ Ij,3−i.

Proof. Suppose the claim is wrong for SR2 and I2,2, i.e. SR2 ⊆ I2,2 and SB2 ∩ I2,2 6= ∅. By
Claim 3.4.9 this implies

SR2 , SB2 ⊆ I2,2. (3.4.39)

For any v ∈ I2,2 we have

degG(v, I2,2) ≥ (2/3 + 8γ)n− |I1,2| − |I2,1|
≥
(
(1/3 + 4γ)n− |I1,2|

)
+
(
(1/3 + 4γ)n− |I2,1|

)
(3.4.33)
≥

(
|I2,2| − |I1,2|

)
+
(
|I2,2| − |I2,1|

)
+ 24γn.

Hence v has either
degred(v, I2,2) > |I2,2| − |I2,1|+ 12γn

or
degblue(v, I2,2) > |I2,2| − |I1,2|+ 12γn.

Observe that since |I1,1| + |I2,2| < (2/3 − 16γ)n by (3.4.33), it follows that |I1,2| + |I2,1| ≥
(1/3 + 16γ)n. Hence

(
|I2,2| − |I1,2|

)
+
(
|I2,2| − |I2,1|

) (3.4.33)
≤ |I2,2| − (1/3 + 16γ)n+ (1/3− 8γ)n

= |I2,2| − 24γn.

So without loss of generality there are more than |I2,2| − |I1,2| + 16γn vertices in I2,2 which
each have degred(v, I2,2) > |I2,2| − |I2,1|+ 12γn. However, by (3.4.39) and Claim 3.4.10

|I2,1| ≤ |NG−E(B2)(SB2)| < |SB2|+ γn.

But this contradicts that SB2 is stable set in G − E(B2) and therefore contains no red
edges.

By Claim 3.4.9 we can assume that without loss of generality SR2 ⊆ I2,1. It follows
by (3.4.37) and recursively applying Claim 3.4.11 that SB1 ⊆ I1,2, SR1 ⊆ I1,2 and SB2 ⊆ I2,2.
Thus Claim 3.4.10 yields the following inequalities

|I1,1| ≤ |NG−E(R2)(SR2)| < |SR2|+ γn ≤ |I2,1|+ γn,

|I2,1| ≤ |NG−E(B2)(SB2)| < |SB2|+ γn ≤ |I2,2|+ γn,

|I2,2| ≤ |NG−E(R1)(SR1)| < |SR1|+ γn ≤ |I1,2|+ γn and
|I1,2| ≤ |NG−E(B1)(SB1)| < |SB1|+ γn ≤ |I1,1|+ γn.

Hence the colouring is (4γ)-extremal as in Definition 3.3.1(b).
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3.5 Distribute exceptional vertices

In this Section we prove Claim 3.3.7. The proof differs slightly depending on the two outcomes
of Lemma 3.3.2(ii). Before we start let us explain shortly a hidden difficulty in the proof.
Suppose that we want to prove Claim 3.3.7 given Lemma 3.3.2(ii)(a). We set

Z =
⋃

1≤i 6=j≤3

V (Ci) ∩ V (Cj) ⊆ V (G), Z =
⋃
x∈Z

V (x) ⊆ V (G).

Note that as δ(G) ≥ (2/3 + β)n, we have degG(w,Z) ≥ βn for any w ∈ V (G). Suppose,
for sakes of exposition, that Z is contained in the, red say, connected component C1 and
all edges between V Exc and Z are red. With a little caution we can greedily choose red
paths P1, . . . , Pr, which alternate between Z and V Exc, and such that all vertices of V Exc are
covered and no cluster V (x) is hit too many times. However in order to obtain PExc we need
to connect the Pi’s with each other. Suppose that Pi ends in V (xi) and let xiyi ∈ E(Gred) be
the red edge connecting xi to the other vertices of C1. To connect Pi with the other paths
we have to use at least 2 vertices of V (yi). However it may be the case that y = y1 for all
i ∈ [r] and {y, x1, . . . , xr} induces a red star in G. Then we have to use 2r vertices of V (y).
So in order to connect the paths Pi, we need to bound r (see (3.5.5)), which requires some
additional arguments.

Proof of Claim 3.3.7 given Lemma 3.3.2(ii)(a). Let us define

Z =
⋃

1≤i 6=j≤3

V (Ci) ∩ V (Cj) ⊆ V (G), Z =
⋃
x∈Z

V (x) ⊆ V (G).

By Lemma 3.3.2(ii)(a) we have |Z| ≥ (1/3 + γ)m and therefore |Z| ≥ (1− ε)n|Z|/m ≥ n/3
by (3.3.2) and (�). So as δ(G) ≥ (2/3 + β)n, it follows that degG(w,Z) ≥ βn for any
w ∈ V (G). Let us set

r = d2/βe. (3.5.1)

We can partition V Exc by setting V Exc
1 := {v ∈ V Exc : degred(v, Z) ≥ n/r} and V Exc

2 :=
V Exc \V Exc

1 . Let i ∈ [2] and recall that Gi ⊆ G is the subgraph on V (G) with edges of colour
i. Define an auxiliary graph Hi on vertex set V Exc

i , by connecting two vertices v, w ∈ V Exc
i if

|NGi
(v, Z) ∩NGi

(w,Z)| ≥ n/r3. It follows that

the independence number of Hi is bounded by r. (3.5.2)

Indeed, suppose otherwise and let w1, . . . , wr+1 be pairwise disjoint non-adjacent vertices in
Hi. We obtain a contradiction as follows.

|Z| ≥

∣∣∣∣∣∣
⋃

p∈[r+1]

NGi
(wp, Z)

∣∣∣∣∣∣
≥ (r + 1)

|Z|
r
−

∑
1≤q<p≤r+1

|NGi
(wq, Z) ∩NGi

(wp, Z)|

≥ |Z|
(r + 1

r
−
(
r+1

2

)
r3

)
> |Z|.
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This proves (3.5.2). Now a classic result of Pósa (see [77]) guarantees that Hi can be parti-
tioned into ri ≤ r disjoint cycles F 1

i , . . . , F
ri
i (edges and vertices).

For each z ∈ Z we fix a red and a blue edge ered(z), eblue(z) ∈ E(C) containing z. We
set ZBad to be

⋃
z∈Z Bad(ered(z)) ∪ Bad(eblue(z)). In other words, each vertex in Z \ ZBad is

MBlow Up-typical with respect to some red and some blue edge of C. By definition of Hi any
two consecutive vertices v, w ∈ V (F j

i ) share a colour i neighbourhood of size |NGi
(v, Z) ∩

NGi
(w,Z)| ≥ n/r3. Hence

|
(
NGi

(v, Z) ∩NGi
(w,Z)

)
\ ZBad|

(3.3.4)
≥ n/r3 − 8ε|V (x)||Z|

≥ n/r3 − 8εn
(3.5.1),(�)
≥ βn/4.

Let Z(v, w) consist of all z ∈ Z for which

|
(
NGi

(v, Z) ∩NGi
(w,Z) ∩ V (z)

)
\ V (ZBad)| ≥ β|V (x)|/4. (3.5.3)

We can bound the size of Z(v, w) by

|V Exc|
√
ε

2
|V (x)|

(3.3.6)
≤ 5εn

√
ε

2
|V (x)|

(�)
<

βn/4

|V (z)|
≤ |Z(v, w)|. (3.5.4)

This allows us to (semi-)greedily choose a colour i path P j
i for each cycle F j

i satisfying
the following properties:

(i) each P j
i contains V (F j

i ) and alternates between V (F j
i ) and Z,

(ii) |V (x) ∩
⋃

i,j V (P j
i )| ≤

√
ε|V (x)|/2,

(iii) the paths P j
i and P j′

i′ are vertex disjoint if j 6= j′ or i 6= i′,

(iv) each P j
i ends inMBlow Up-typical vertices in an edge xy ∈ E(C) of colour i (and with

x ∈ Z).

More precisely, let P ′ be a collection of paths satisfying the above conditions for i < i′,
j < j′. When embedding vertices v, w ∈ Z which are neighbours in the cycle V (F j′

i′ ),
inequality (3.5.4) guarantees that there is a vertex z ∈ Z(v, w) such that |V (z)∩

⋃
V (P ′)| <√

ε|V (z)|/2. This allows us to extend the path P j′

i′ greedily as

|
(
NGi′

(v, Z) ∩NGi′
(w,Z) ∩ V (z)

)
\ V (ZBad)| − |V (P ′)|

(3.5.3),(3.3.6)
≥ β|V (x)|/4− 5εn

(�)
> 0.

By Lemma 3.2.3 we can join these r1 + r2 paths P j
i with monochromatic paths, each of

size 2m, to three monochromatic paths PExc
i that end in the same vertices of PCon

i (eExc) for
some eExc ∈ E(Ci). As desired, we have for every x ∈ V (G)

|V (x) ∩ V (PExc)| ≤
√
ε|V (x)|/2 + 4rm

(3.5.1),(�)
≤

√
ε|V (x)|. (3.5.5)
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Proof of Claim 3.3.7 given Lemma 3.3.2(ii)(b). The proof goes almost identically. Without
loss of generality we can assume that C1 has colour 1. Set Z = V (C1), Z =

⋃
x∈Z V (x)

and define Hi as above. The main difference is that since deg2(v, Z) ≥ (2/3 + β/4)n for any
v ∈ Z, H2 has now a spanning cycle (edge or vertex) F 1

2 or is empty, i.e. r2 ≤ 1. So we can
proceed as above, with the only difference being that (if r2 = 1) we let P 1

2 end in the same
MBlow Up-typical vertices. Thus P 1

2 is a blue cycle on its own.

3.6 Extremal colourings
In this section we prove Claim 3.3.5 and Claim 3.3.6. We will use the following result about
Hamiltonian cycles.

Theorem 3.6.1 (Chvátal). Let G be a graph with vertex degree sequence d1 ≤ ... ≤ dn. If
for every 1 ≤ i < n/2 we have di ≥ i + 1 or dn−i ≥ n− i, then G is Hamiltonian.

Corollary 3.6.2. Let H be a balanced bipartite graph with bipartition classes X and Y . Let
X have vertex degree sequence x1 ≤ ... ≤ xn and Y have vertex degree sequence y1 ≤ ... ≤ yn.
If for every i ∈ [n] we have xi ≥ i + 1 or yn−i ≥ n− i + 1, then H is Hamiltonian.

Proof. Let H ′ be obtained from H by adding edges between vertices of Y until G[Y ] is
complete. So every vertex in y gains n − 1 new neighbours. Let d1, . . . , d2n be the degree
sequence of H ′. Since by assumption yi ≥ 1, we can assume that di = xi and d2n−i+1 = yn−i+1

for i ∈ [n]. It follows that di ≥ i + 1 or d2n−i ≥ 2n − i for i ∈ [n − 1]. By Theorem 3.6.1
H ′, has a Hamiltonian cycle C. Since |X| = |Y |, C has no edges within Y . Thus C is a
Hamiltonian cycle of H as well.

Proof of Claim 3.3.5. Let R be the spanning, red say, bipartite component of G with bipar-
tition classes XR and YR. As the colouring is (4γ)-extremal we have

||XR| − |YR|| ≤ 4γm. (3.6.1)

Set XR :=
⋃
x∈XR

V (x) and YR :=
⋃
y∈YR V (y). Let Bi be the bipartite blue components of G

with bipartition classes XBi
,YBi

. Suppose that V (B1) ⊆ XR and V (B2) ⊆ YR.
By (3.6.1), it follows that degblue(x,XR), degblue(y,XR) ≥ (1/6 + 4γ)m for any x, y ∈ XR.

If xy is additionally a (blue) edge, then Nblue(x,XR) ∩Nblue(y,XR) = ∅ and hence

|XB1 |, |YB1| ≤ |XR| − (1/6 + 4γ)m
(3.6.1)
≤ m/3. (3.6.2)

Fix a vertex x ∈ XB1 . Since Gred[XB1 ] is stable, it follows that

ered

V (x),
⋃

y∈XB1

V (y)

 (3.3.3)
≤ d|XB1 | (n/m)2 .

So by (3.6.2), all but at most
√

dn/m vertices v of V (x) satisfy

degG(v,XR) ≤ degG(v,
⋃

y∈XB2

V (y)) + degG(v,
⋃

y∈XB1

V (y))

≤ n/3 +
√

d|XB1 |n/m
(�)
≤ (1/3 + β/4)n. (3.6.3)
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This motivates the following definition:

X
1/3
R = {v ∈ XR : degred(v, YR) ≤ (1/3 + β/2)n},

Y
1/3
R = {v ∈ YR : degred(v,XR) ≤ (1/3 + β/2)n}.

By (3.6.3) and by symmetry we have

|X1/3
R |, |Y

1/3
R | ≤

√
dn

(�)
≤ β

4
n. (3.6.4)

Next, let

X ′R = {v ∈ V (G) \ YR : degblue(v, YR) ≤ βn},
Y ′R = {v ∈ V (G) \XR : degblue(v,XR) ≤ βn}.

Note that, by (3.3.4), for each x ∈ V (B1) the cluster V (x) contains at most 4ε|V (x)| vertices
which are not MBlow Up-typical in xy ∈ E(B1) for all y ∈ NG(x). Since there are no blue
bridges, this implies that V (G) \ (X ′R ∪ Y ′R) contains at most one vertex z∗ (if this set is
empty, we set z∗ = ∅). Without loss of generality suppose that |X ′R| ≥ |Y ′R|. By definition,
any v ∈ X ′R has

degred(v, YR) ≥ (2/3 + β)n− |XR| − |V0|
≥ (2/3 + β)n− (1/2 + 4γ)n− εn
≥ (1/6 + β/2)n. (3.6.5)

Similarly degred(y,XR) ≥ (1/6 + β/2)n for each y ∈ Y ′R.
Before we find a large red cycle in R we need to balance the sizes of setsX ′R and Y ′R. To this

end, let us construct a blue cycle Pblue with V (Pblue) ⊆ XR, of size 2d(|X ′R|−|Y ′R|)/2e. This is
possible because XR is stable in R and so the definition of the reduced graph implies that XR

contains at most dn2 red edges and δ(G) ≥ (2/3 + β)n. If |X ′R \ V (Pblue)| = |Y ′R \ V (Pblue)|,
we set C∗ := z∗. If |X ′R \ V (Pblue)| = |Y ′R \ V (Pblue)| + 1, we choose a path C∗ of order at
most 2 which contains z∗ and some y ∈ X ′R.

To finish we claim that H = R[V (G)\V (Pblue+C∗)] has a Hamiltonian cycle. This follows
from Corollary 3.6.2 together with (3.6.5) and (3.6.4). Note that the degree conditions are
fulfilled, because δ(H) ≥ (1/6 + β/2)n by (3.6.5). Moreover, by (3.6.4) all but βn/2 vertices
of H have a degree of at least (1/3 + β/2)n.

We will use the following fact in the proof of Claim 3.3.6.

Fact 3.6.3. Let G be a graph with a cycle C and a vertex v ∈ V (G)\V (C). If degG(v, V (C)) ≥
|C|/2, then there is a cycle C ′ with V (C) ∪ {v}.

Proof. By the pigeonhole principle there is an edge uw ∈ E(C) such that v is adjacent to
both u and w. Thus we can take C ′ = C − uw + vu+ vw.

Proof of Claim 3.3.6. Denote the red and blue components by Ri and Bi and suppose that
there are no red or blue bridges. Set Ii,j = V (Ri) ∩ V (Bj) for i, j ∈ [2]. We assume that
G[Ii,j] is blue if i = j and red otherwise. Let Ri =

⋃
x∈V (Ri)

V (x), Bi =
⋃
x∈V (Bi) V (x) and

Ii,j =
⋃
x∈Ii,j V (x) for i, j ∈ [2]. Recall that by (3.3.4) for any x ∈ V (G) there are at most
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4εn vertices v ∈ V (x) such that v is not MBlow Up-typical in xy ∈ E(G) for all y ∈ NG(x).
This and the assumption that there are no red bridges yields that there is at most one vertex
zred with both degred(zred, R1) ≥ βn/8 and degred(zred, R2) ≥ βn/8. Similarly, as there are
no blue bridges, there is at most one vertex zblue with both degblue(zblue, B1) ≥ βn/8 and
degblue(zblue, B2) ≥ βn/8.

Let us handle these extra vertices first. If at most one of zred and zblue exists, we let this
vertex be a cycle on its own. If both zred and zblue exist we proceed as follows. If zblue has
at least βn/8 red edges, we can construct a red cycle C∗ of order at most 42 containing zred

and zblue. Otherwise, we set C∗ = ∅ and note that by symmetry

zred (zblue) has red (blue) degree at least (2/3 + β/2)n. (3.6.6)

In this case we can integrate zred or zblue into one of the large cycles that we find in the next
step.

Let i, j ∈ [2]. By (3.3.3) all but at most 2
√

dn vertices in Ii,j have more than 2
√

dn
neighbours in I3−i,3−j. Thus for

I ′i,j := {v ∈ V (G) \ V (C∗) : degG(v, I3−i,3−j) ≤ 2
√

dn}

it holds that
|Ii,j ∩ I ′i,j| ≥ |Ii,j| − 2

√
dn. (3.6.7)

Note that since δ(G) ≥ (2/3 + β)n we have

(1/4− 5γ)n
(�)
≤ (1− ε)|Ii,j|n/m

(3.3.2)
≤ |Ii,j|

(3.3.2)
≤ |Ii,j|n/m ≤ (1/4 + 4γ)n (3.6.8)

for i, j ∈ [2]. Hence the sets I ′i,j are pairwise disjoint. Moreover, since there are no red or
blue bridges, all vertices but zred and zblue (should they exist) are in some I ′i,j. Finally, (3.6.7)
and (3.6.8) imply that

(1/4− 3
√

d)n
(�)
≤ |I ′i,j|

(�)
≤ (1/4 + 3

√
d)n. (3.6.9)

Claim 3.6.4. For any i ∈ [2] the subgraph G[I ′1,i ∪ I ′2,i] contains a blue spanning cycle and
the subgraph G[I ′i,1 ∪ I ′i,2] contains a red spanning cycle.

Proof. We will show that G[I ′1,1∪ I ′2,1] contains a blue spanning cycle. The other cases follow
identically. Without loss of generality suppose that |I ′1,1| ≥ |I ′2,1|. Let us first make two
observations. By (3.3.3), there are at most dn2 red edges between I1,1 and I2,1. Similarly,
there are at most dn2 edges between I1,1 and I2,2. Hence all but

√
dn vertices of w ∈ I1,1

satisfy

degblue(w,B1) ≥ (2/3 + β)n− |I1,2| − 2
√

dn
(�)
≥ (5/12 + β/2)n.

So by (3.6.9) and the order of C∗ at most 2
√

dn vertices of I ′1,1 do not satisfy

degblue(w, I
′
1,1 ∪ I ′1,2) ≥ 5n/12. (3.6.10)
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If v ∈ I ′1,1, then

degblue(v, I
′
2,1)

(3.6.7),(3.6.9)
≥ degblue(v, I2,1)− βn/4− |V (C∗)| (3.6.11)

≥ (2/3 + β)n− |V0| − |R2| − βn/4− βn/4− 42

≥ (2/3 + β)n− εn− (1/2 + 8γ)n− βn/2− 42

(�)
≥ (1/6 + β/4)n. (3.6.12)

Similarly, if v ∈ I ′2,1, then
degblue(v, I1,1) ≥ (1/6 + β/4)n. (3.6.13)

Now let us show that H = Gblue[I
′
1,1 ∪ I ′2,1] is Hamiltonian. To this end we select a set

X ⊆ I ′1,1 of size |I ′2,1| and such that X contains all vertices of I ′1,1 that do not satisfy (3.6.10).
Note that this is possible, since there are at most 2

√
dn such vertices and |I ′2,2| ≥ (1/4−3

√
d)n

by (3.6.9). LetH ′ be the bipartite subgraph of Gblue with bipartition classes I ′2,1 andX, which
contains all edges xy ∈ E(Gblue) of type x ∈ X and y ∈ I ′2,1. Note that by (3.6.9) the partition
classes of H ′ have a size of at most (1/4 + 3

√
d)n and δ(H ′) ≥ n/6 by (3.6.11), (3.6.13).

Hence H ′ contains a Hamiltonian cycle H by Corollary 3.6.2. By choice of X, the remaining
vertices V (H) \ V (C) have degree at least 5n/12 in H. We also have |V (H) \ V (C)| ≤ 2βn
and |V (H)| ≤ (1/2 + 6

√
d)n by (3.6.7) and (3.6.9). Hence Fact 3.6.3 allows us to extend C

to a Hamiltonian cycle of H.

Now it is not hard to finish the proof. We apply Claim 3.6.4 to obtain a blue cycle C1

that covers I ′1,1 ∪ I ′2,1. Next we apply Claim 3.6.4 to obtain another blue cycle C2 that covers
I ′1,2 ∪ I ′2,2. If zred is not yet on some cycle, then zblue has blue degree at least (2/3 + β/2)n
by (3.6.6) and we can add zblue to C1 or C2 by by Fact 3.6.3. Finally zred is monochromatic
cycle on its own.
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Chapter 4

Chromatic index, treewidth and
maximum degree

Henning Bruhn, Laura Gellert and Richard Lang

Abstract
We conjecture that any graph G with treewidth k and maximum degree ∆(G) ≥ k +

√
k

satisfies χ′(G) = ∆(G). In support of the conjecture we prove its fractional version.

4.1 Introduction
The least number χ′(G) of colours necessary to properly colour the edges of a (simple) graph
G is either the maximum degree ∆(G) or ∆(G)+1. But to decide whether ∆(G) or ∆(G)+1
colours suffice is a difficult algorithmic problem [66].

Often, graphs with a relatively simple structure can be edge-coloured with only ∆(G)
colours. This is the case for bipartite graphs (König’s theorem) and for cubic Hamiltonian
graphs. Arguably, one measure of simplicity is treewidth, how closely a graph resembles a
tree. (See next section for a definition.)

Vizing [105] (see also Zhou et al. [107]) observed a consequence of his adjacency lemma:
any graph with treewidth k and maximum degree at least 2k has chromatic index χ′(G) =
∆(G). Is this tight? No, it turns out. Using two recent adjacency lemmas the requirement on
the maximum degree can be dropped to ∆(G) ≥ 2k−1 whenever k ≥ 4; see Section 4.4. This
immediately suggests the question: how much further can the maximum degree be lowered?
We conjecture:

Conjecture 4.1.1. Any graph of treewidth k and maximum degree ∆ ≥ k+
√
k has chromatic

index ∆.

The bound is close to best possible: in Section 4.5 we construct, for infinitely many k,
graphs with treewidth k, maximum degree ∆ = k + b

√
kc < k +

√
k, and chromatic index

∆ + 1. For other values k the conjecture (if true) might be off by 1 from the best bound
on ∆. This is, for instance, the case for k = 2, where the conjecture is known to hold.
Indeed, Juvan et al. [69] show that series-parallel graphs with maximum degree ∆ ≥ 3 are
even ∆-edge-choosable.
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In support of the conjecture we prove its fractional version:

Theorem 4.1.2. Any simple graph of treewidth k and maximum degree ∆ ≥ k +
√
k has

fractional chromatic index ∆.

The theorem follows from a new upper bound on the number of edges:

2|E(G)| ≤ ∆|V (G)| − (∆− k)(∆− k + 1)

The bound is proved in Proposition 4.3.1. It implies quite directly that no graph with
treewidth k and maximum degree ∆ ≥ k +

√
k can be overfull. (A graph G is overfull if it

has an odd number n of vertices and strictly more than ∆(G)n−1
2

edges; a subgraph H of G
is an overfull subgraph if it is overfull and satisfies ∆(H) = ∆(G).)

Thus, for certain parameters our conjecture coincides with the overfull conjecture of
Chetwynd and Hilton [23]:

Overfull conjecture. Every graph G on less than 3∆(G) vertices can be edge-coloured with
∆(G) colours unless it contains an overfull subgraph.

Because we can exclude that graphs with treewidth k and maximum degree ∆ ≥ k +
√
k

are overfull, the overfull conjecture (as well as our conjecture) implies that such graphs on
less than 3∆ vertices can always be edge-coloured with ∆ colours.

Graphs of treewidth k are in particular k-degenerate (see Section 4.2 for the definition
and Section 4.6 for a discussion). Indeed, Vizing [105] originally showed that k-degenerate
graphs, rather than treewidth k graphs, of maximum degree ∆ ≥ 2k have an edge-colouring
with ∆ colours. We briefly list some related work on edge-colourings and their variants
in k-degenerate graphs. Isobe et al. [67] show that any k-degenerate graph of maximum
degree ∆ ≥ 4k+3 has a total colouring with only ∆+1 colours. For graphs that are not only
k-degenerate but also of treewidth k, a maximum degree of ∆ ≥ 3k− 3 already suffices [21].
Noting that they are 5-degenerate, we include some results on planar graphs as well. Borodin,
Kostochka and Woodall [19, 20] showed that planar graphs have list-chromatic index ∆(G)
and total chromatic number χ′′(G) = ∆(G) + 1 if ∆(G) ≥ 11 or if the maximum degree
and the girth are at least 5. Vizing [105] proved that a planar graph G has a ∆(G)-edge-
colouring if ∆(G) ≥ 8. Sanders and Zhao [93] and independently Zhang [106] extended this
to ∆(G) ≥ 7.

4.2 Definitions
All graphs in this article are finite and simple. We use standard graph theory notation as
found in the book of Diestel [28].

For a graph G a tree-decomposition (T,B) consists of a tree T and a collection B =
{Bt : t ∈ V (T )} of bags Bt ⊆ V (G) such that

(i) V (G) =
⋃

t∈V (T )

Bt,

(ii) for each edge vw ∈ E(G) there exists a vertex t ∈ V (T ) such that v, w ∈ Bt, and

(iii) if v ∈ Bs ∩Bt, then v ∈ Br for each vertex r on the path connecting s and t in T .

84



A tree-decomposition (T,B) has width k if each bag has a size of at most k+1. The treewidth
of G is the smallest integer k for which there is a width k tree-decomposition of G.
A tree-decomposition (T,B) of width k is smooth if

(iv) |Bt| = k + 1 for all t ∈ V (T ) and

(v) |Bs ∩Bt| = k for all st ∈ E(T ).

All tree decompositions considered in this paper will be smooth. This is possible as a graph
of treewidth at most k always has a smooth tree-decomposition of width k; see Lemma 8
in [15].

The fractional chromatic index of a graph G is defined as

χ′f (G) = min

{∑
M∈M

λM : λM ∈ R+,
∑
M∈M

λM1M(e) = 1 ∀e ∈ E(G)

}
,

where M denotes the collection of all matchings in G and 1M the characteristic vector of
M . For more details on the fractional chromatic index, see for instance Scheinerman and
Ullman [98].

4.3 A bound on the number of edges
Theorem 4.1.2 follows quickly from a bound on the number of edges:

Proposition 4.3.1. A graph G of treewidth k and maximum degree ∆(G) ≥ k satisfies

2|E(G)| ≤ ∆(G)|V (G)| − (∆(G)− k)(∆(G)− k + 1). (4.3.1)

Before proving Proposition 4.3.1 we present one of its consequences:

Lemma 4.3.2. Let G be a graph of treewidth at most k and maximum degree ∆ ≥ k +
√
k.

Then G is not overfull.

Proof. Proposition 4.3.1 implies

2|E(G)|
|V (G)| − 1

≤ ∆|V (G)| − (∆− k)(∆− k + 1)

|V (G)| − 1
=

∆|V (G)| − (∆− k)2 −∆ + k

|V (G)| − 1

and as ∆ ≥ k +
√
k we obtain

2|E(G)|
|V (G)| − 1

≤ ∆|V (G)| − k −∆ + k

|V (G)| − 1
= ∆.

This finishes the proof.

It follows from Edmonds’ matching polytope theorem that χ′f (G) = ∆(G), if the graph G
does not contain any overfull subgraph of maximum degree ∆; see [101, Ch. 28.5]. As
the treewidth of a subgraph is never larger than the treewidth of the original graph, Theo-
rem 4.1.2 is a consequence of Lemma 4.3.2.

The proof of Proposition 4.3.1 rests on two lemmas. We defer their proofs to the end of
the section. For a tree T we write |T | to denote the number of its vertices. If st ∈ E(T ) is
an edge of T then we let T(s,t) be the component of T − st containing s. For any number k
we set [k]+ = max(k, 0).
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Lemma 4.3.3. For a tree T and a positive integer d ≤ |T | it holds that∑
(s,t):st∈E(T )

[d− |T(s,t)|]+ ≥ d(d− 1).

If T ∗ is a subtree of T then let δ+(T ∗) be the set of (s, t) so that st is an edge of T with
s ∈ V (T ∗) but t /∈ V (T ∗). (That is, δ+(T ∗) may be seen as the set of oriented edges leaving
T ∗.)

Lemma 4.3.4. Let T be a tree and let d ≤ |T | be a positive integer. Then for any subtree
T ∗ ⊆ T it holds that ∑

(s,t)∈δ+(T ∗)

[d− |T(s,t)|]+ ≤ [d− |T ∗|]+. (4.3.2)

We introduce one more piece of notation. If (T,B) is a tree decomposition of the graph
G, then for any vertex v of G we denote by T (v) the subtree of T that consists of those
vertices corresponding to bags that contain v.

Proof of Proposition 4.3.1. Let (T,B) be a smooth tree decomposition of G of width k. First
note that for any vertex v of G, the number of vertices in the union of all bags containing v
is at most |T (v)|+ k since the tree decomposition is smooth. Thus deg(v) ≤ |T (v)|+ k − 1.

Set d := ∆− k+ 1 ≥ 1, and observe that d ≤ |V (G)| − k = |T | as the tree decomposition
is smooth. We calculate

∆− deg(v) ≥ [∆− k + 1− |T (v)|]+

= [d− |T (v)|]+ ≥
∑

(s,t)∈δ+(T (v))

[d− |T(s,t)|]+,

where the last inequality follows from Lemma 4.3.4.
Consider an edge st ∈ E(T ). Since the tree decomposition is smooth there is exactly

one vertex v ∈ V (G) with v ∈ Bs and v /∈ Bt. Setting ϕ((s, t)) = v then defines a function
from the set of all (s, t) with st ∈ E(T ) into V (G). Note that ϕ((s, t)) = v if and only if
(s, t) ∈ δ+(T (v)). Summing the previous inequality over all vertices, we get∑

v∈V (G)

(∆− deg(v)) ≥
∑

v∈V (G)

∑
(s,t)∈ϕ−1(v)

[d− |T(s,t)|]+

=
∑

(s,t):st∈E(T )

[d− |T(s,t)|]+ ≥ d(d− 1),

where the last inequality is due to Lemma 4.3.3. This directly implies (4.3.1).

It remains to prove Lemma 4.3.3 and 4.3.4.

Proof of Lemma 4.3.3. We proceed by induction on |T | − d. The induction starts when
d = |T |. Then [d− |T(s,t)|]+ = d− |T(s,t)| and thus∑

(s,t):st∈E(T )

[d− |T(s,t)|]+ =
∑

st∈E(T )

(
|T | − |T(s,t)|+ |T | − |T(t,s)|

)
=

∑
st∈E(T )

|T(t,s)|+ |T(s,t)| = (|T | − 1)|T |.

86



Now, let d ≤ |T | − 1, which implies in particular |T | ≥ 2. Then T has a leaf `. We set
T ′ := T − ` and note that d ≤ |T | − 1 = |T ′|.

Observe that for any edge st ∈ E(T ′) we get

|T(s,t)| =

{
|T ′(s,t)|+ 1 if ` ∈ V (T(s,t)),

|T ′(s,t)| if ` /∈ V (T(s,t)).

We denote by F the set of all (s, t) for which st is an edge in T ′ with ` ∈ V (T(s,t)) and with
|T ′(s,t)| ≤ d− 1. Then

[d− |T(s,t)|]+ =

{
[d− |T ′(s,t)|]+ − 1 if (s, t) ∈ F,
[d− |T ′(s,t)|]+ if (s, t) /∈ F.

(4.3.3)

Among the (s, t) ∈ F choose (x, y) such that y maximises the distance to `. This means,
that st ∈ E(T ′(x,y)) for any (s, t) ∈ F \ {(x, y)}. Consequently,

|T ′(x,y)| = |E(T ′(x,y))|+ 1 ≥ |F | − 1 + 1|F |.

Let r be the unique neighbour of the leaf `. Then |T(`,r)| = 1, and we obtain

[d− |T(`,r)|]+ = d− 1 ≥ |T ′(x,y)| ≥ |F |. (4.3.4)

We conclude ∑
(s,t):st∈E(T )

[d− |T(s,t)|]+ = [d− |T(`,r)|]+ + [d− |T(r,`)|]+

+
∑

(s,t):st∈E(T ′)

[d− |T(s,t)|]+

(4.3.4)
≥ |F |+ 0 +

∑
(s,t):st∈E(T ′)

[d− |T(s,t)|]+

(4.3.3)
=

∑
(s,t):st∈E(T ′)

[d− |T ′(s,t)|]+

≥ d(d− 1),

where the last inequality follows by induction.

Proof of Lemma 4.3.4. We proceed by induction on |T |−d. For the induction start, consider
the case when d = |T |. Then

[d− |T(s,t)|]+ = [|T | − |T(s,t)|]+ = |T(t,s)|,

which yields ∑
(s,t)∈δ+(T ∗)

[d− |T(s,t)|]+ =
∑

(s,t)∈δ+(T ∗)

|T(t,s)| = |T | − |T ∗| = [d− |T ∗|]+.

Now assume |T | − d ≥ 1. If every vertex in T − V (T ∗) is a leaf of T then t is a leaf for
every (s, t) ∈ δ+(T ∗). This implies |T(s,t)| = |T | − 1 ≥ d and the left hand side of (4.3.2)
vanishes.
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Therefore we may assume that there is a leaf ` /∈ T ∗ of T such that neither l nor its
unique neighbour belongs to V (T ∗). Set T ′ = T − `, and observe that, by choice of `, the set
δ+(T ∗) of edges leaving T ∗ is the same in T and in T ′. Moreover, |T(s,t)| ≥ |T ′(s,t)| holds for
every (s, t) ∈ δ+(T ∗). The desired inequality∑

(s,t)∈δ+(T ∗)

[d− |T(s,t)|]+ ≤
∑

(s,t)∈δ+(T ∗)

[d− |T ′(s,t)|]+ ≤ [d− |T ∗|]+

now follows by induction.

4.4 A lower bound on the maximum degree

Vizing [105] (see also Zhou et al. [107]) proved that every graph of treewidth k and maximum
degree ∆ ≥ 2k has an edge-colouring with ∆ colours. We show that this is not tight.

Proposition 4.4.1. For any graph G of treewidth k ≥ 4 and maximum degree ∆(G) ≥ 2k−1
it holds that χ′(G) = ∆(G).

A graphG of maximum degree ∆ is ∆-critical, if all proper subgraphs can be edge-coloured
using not more than ∆ colours and χ(G) = ∆ + 1. For the proof of Proposition 4.4.1 we
use Vizing’s adjacency lemma, as well as two adjacency lemmas that involve the second
neighbourhood.

Vizing’s adjacency lemma. Let uv be an edge in a ∆-critical graph. Then v has at least
∆− deg(u) + 1 neighbours of degree ∆.

Theorem 4.4.2 (Zhang [106]). Let G be a ∆-critical graph, and let uwv be a path in G. If
deg(u) + deg(w) = ∆ + 2 then all neighbours of v but u and w have degree ∆.

Theorem 4.4.3 (Sanders and Zhao [93]). Let G be a ∆-critical graph, and let v be a common
neighbour of u and w such that deg(u) + deg(v) + deg(w) ≤ 2∆ + 1. Then there are at most
deg(u) + deg(v)−∆− 3 common neighbours x 6= u of v and w.

The rest of this subsection is dedicated to the proof of Proposition 4.4.1. To this end, let
us assume Proposition 4.4.1 to be wrong. Then there is a ∆-critical graph G of treewidth
at most k for ∆ = 2k − 1. (Note that the case ∆ ≥ 2k is covered by the above mentioned
result of Vizing.) Let (T,B) be a smooth tree-decomposition of G of width ≤ k. By picking
an arbitrary root, we may consider T as a rooted tree. For any s ∈ V (T ), we denote by dse
the subtree of T rooted at s, that is, the subtree of T consisting of the vertices t ∈ V (T ) for
which s is contained in the path between t and the root of T .

Recall the definition of T (v) after Lemma 4.3.4. Set L := {v ∈ V (G) : deg(v) ≥ k+2}, and
choose a vertex v∗ ∈ L that maximises the distance of T (v∗) to the root (among the vertices
in L). Let q be the vertex of T (v∗) that achieves this distance. For S := N(q) ∩ T (v∗) and
any s ∈ S, define Xs :=

⋃
t∈V (dse) Bt, and let X := Bq ∪

⋃
s∈S Xs. Note that by the definition

of v∗ and q
N(v∗) ⊆ X and X ∩ L ⊆ Bq. (4.4.1)

Claim 4.4.4. All vertices of X \Bq have degree at most k.
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Proof of Claim 4.4.4. Suppose the statement to be false. Then there is an s ∈ S for which
Xs \ Bq contains a vertex of degree at least k + 1. Fix a vertex w∗ ∈ {w ∈ Xs \ Bq :
deg(w) ≥ k + 1} =: L′ that maximises the distance of T (w∗) to s. Let p be the vertex of
T (w∗) that achieves this distance. Set Y =

⋃
t∈V (dpe) Bt. As in (4.4.1) we have N(w∗) ⊆ Y

and Y ∩L′ ⊆ Bp. Since, moreover, w∗ has degree at least k+ 1, it has a neighbour u∗ outside
Bp, which then has degree at most k (by choice of w∗).

Vizing’s adjacency lemma implies that w∗ has at least ∆−deg(u∗)+1 ≥ 2k−1−k+1 = k
neighbours of degree ∆. By (4.4.1), all vertices of degree ∆ of Y have to be in Bq ∩Bs. Since
by smoothness of the tree decomposition Bq∩Bs is a cutset of size at most k, the vertex w∗ is
adjacent to all vertices in Bq ∩Bs. As w∗ is therefore adjacent to at most k vertices of degree
∆ it holds deg(u∗) = k. By definition of S, the set Bs contains v∗, which implies that v∗ is
adjacent to w∗ and of degree ∆. As k ≥ 4, it follows that v∗ has degree ∆ = 2k− 1 ≥ k + 3,
which means by (4.4.1) that v∗ has at least three neighbours of degree ≤ k + 1. Thus, v∗
has a neighbour of degree ≤ k + 1, which is neither u∗ nor w∗. This, however, contradicts
Theorem 4.4.2 (applied to v∗, w∗, u∗).

By (4.4.1) and since v∗ has degree at least k + 2, the vertex v∗ has a neighbour u /∈ Bq.
(In fact, v∗ has at least two such neighbours.) By Vizing’s adjacency lemma, applied to uv∗,
it follows that v∗ has at least ∆− deg(u) + 1 ≥ k neighbours of degree ∆. In particular, by
an analogue of (4.4.1) for s and w∗.

v∗ is adjacent to every vertex in Bq, each of which has degree ∆. (4.4.2)

Claim 4.4.5. Every u ∈ N(v∗) \ Bq has exactly k neighbours, all of which are contained in
Bq.

Proof of Claim 4.4.5. By Vizing’s adjaceny lemma (applied to uv∗), u is of degree at least
k. Otherwise v∗ has too many high degree neighbours. By (4.4.2), every vertex in Bq has
degree ∆ and thus u /∈ Bq. The set Bq is a cutset. This implies that u has all its neighbours
in X. However, u cannot be adjacent to any vertex w of degree ≤ k; otherwise we could
extend any ∆-edge-colouring of G − uw to G. It follows from Claim 4.4.4 that all of the k
neighbours of u are in Bq.

Since the vertex v∗ has degree at least k + 2, it has two neighbours u,w of degree at
most k + 1 (again by (4.4.1)). By Claim 4.4.5, the degree of u and w is k. Thus, deg(u) +
deg(v∗) + deg(w) ≤ k + ∆ + k = 2∆ + 1. Moreover, by Claim 4.4.5 and (4.4.2), the vertices
v∗ and w have k − 1 common neighbours in Bq. As k − 1 > deg(u) + deg(v∗) − ∆ − 3, we
obtain a contradiction to Theorem 4.4.3. This finishes the proof of Proposition 4.4.1.

4.5 Discussion
Proposition 4.3.1 bounds the number of edges in a graph G of fixed treewidth and maximum
degree. A simpler bound – only considering the treewidth – is easily shown by induction (see
Rose [91]):

2|E(G)| ≤ 2k|V (G)| − k(k + 1) (4.5.1)

For ∆ < 2k and |V (G)| > ∆ + 1 a straightforward computation shows that the bound of
Proposition 4.3.1 is strictly better than (4.5.1). The bounds are the same if ∆ = 2k or if
|V (G)| = ∆ + 1. For ∆ = 2k this is illustrated by the kth power P k of a long path P .
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The bound in Proposition 4.3.1 is tight. There are simple examples that show this: Take
the complete graph Kk on k vertices and add r ≥ 1 further vertices each adjacent to each
vertex of Kk. These graphs also demonstrate that Conjecture 4.1.1 (if true) would be tight or
almost tight. Indeed, if k+b

√
kc is even, and k not a square, then we obtain for r = b

√
kc+1

an overfull graph with maximum degree ∆ = k + b
√
kc. If k + b

√
kc is odd, then, by setting

r = b
√
kc, we obtain an overfull graph with ∆ = k + b

√
kc − 1.

These tight graphs, however, have a very special structure. In particular, they all satisfy
|V (G)| = ∆(G)+1. Both, Conjecture 4.1.1 and Proposition 4.3.1, stay tight for an arbitrarily
large number of vertices compared to ∆:

Proposition 4.5.1. For every k0 ≥ 4 there is a k ∈ {k0, k0 + 1, . . . , k0 + 8} such that for
every n ≥ 4k there exists a graph G on n vertices with treewidth at most k and maximum
degree ∆ = k + b

√
kc < k +

√
k such that

2|E(G)| = ∆n− (∆− k)(∆− k + 1).

In particular, the graph G is overfull whenever n is odd.

We need the following lemma.

Lemma 4.5.2. Let c, r ∈ N. Then there is a graph with degree sequence

d =
(
c . . . , c︸ ︷︷ ︸
r+1

, c− 1, c− 2, . . . , 1
)
∈ Zc+r

if and only if 4 divides c(2r + c+ 1) and if r2 ≥ c.

We defer the proof of Lemma 4.5.2 until the end of the section and only show sufficiency.
A closer look at the arguments in the proof yields necessity.

Proof of Proposition 4.5.1. We start by showing with a case distinction that there is a k ∈
{k0, k0 + 1, . . . , k0 + 8} such that

k ≡
⌊√

k
⌋

(mod 8) and
⌊√

k
⌋
<
√
k. (4.5.2)

To this end, let i such that b
√
k0c ≡ k0 + i (mod 8) and 0 ≤ i ≤ 7.

Firstly, let us assume that i = 0. If k0 is not a square, then k = k0 satisfies (4.5.2).
Otherwise k = k0 + 8 satisfies (4.5.2) as k0 ≥ 4 > 1, and consequently b

√
k0 + 8c =

√
k0.

Secondly, we consider the case that i 6= 0. If b
√
k0 + ic = b

√
k0c, then k = k0 + i satisfies

b
√
k0c ≡ k (mod 8) and

√
k >
√
k0 ≥ b

√
k0c = b

√
kc, which shows (4.5.2). If, on the other

hand, b
√
k0 + ic >

⌊√
k0

⌋
, then b

√
k0 + ic = b

√
k0c + 1 = b

√
k0 + i + 1c as k0 ≥ 4. Set

k = k0 + i + 1. By choice of i, we have b
√
k0 + 1c ≡ k (mod 8). Thus, we obtain b

√
kc ≡ k

(mod 8) as desired. Moreover,
√
k >
√
k0 + i ≥ b

√
k0 + ic = b

√
k0c+ 1 = b

√
kc.

In all cases an element of {k0, k0 + 1, . . . , k0 + 8} satisfies (4.5.2).
Next we show that for any n ≥ 4k, there is a graph G of treewidth k whose degree

sequence (degG(v1), degG(v2), . . . , degG(vn)) equals

(k, k + 1, . . . ,∆− 1,∆, . . . ,∆,∆− 1, . . . , k + 1, k) (4.5.3)

with ∆ = k+b
√
kc. A computation similar to Lemma 4.3.2 shows that G is overfull if |V (G)|

is odd.
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We construct G in three steps. First we take a power of a path, where all but the outer
vertices have the right degree. We increase the degree of the outer vertices by connecting
them to vertices towards the middle of the path. This will create some degree excess for the
used vertices. We balance this by deleting a subgraph H provided by Lemma 4.5.2. The
construction is illustrated in Figure 4.1. Note that for ease of exposition the parameters k
and ∆ are not as in this proof.

P 5 ...

10 10 10 10 10 10 10 108 9 11 12 13 13 13

Figure 4.1: Extreme example for k = 8 and ∆ = 10. The graph H is dotted.

Let P be a ∆/2-th power of a path on vertices v1, . . . , vn. This means, vi and vj are
adjacent if and only if 0 < |i − j| ≤ ∆/2. As P is symmetric, and as G will be symmetric
as well, we concentrate on the part of P on the vertices v1, . . . , vdn/2e. We tacitly agree that
any additions and deletions of edges are also applied to the other half of P .

Comparing the degrees of P to (4.5.3) we see that all vertices have the target degree
except for the initial vertices v1, . . . , v∆/2, whose degree is too small. For i = 1, . . . ,∆−k the
vertex vi has degree ∆/2− 1 + i but should have degree k − 1 + i. We fix this by connecting
vi to vi+∆/2+1, . . . , vi+k+1. For i = ∆−k+ 1, . . . ,∆/2, the vertex vi should have degree ∆ but
has degree ∆/2− 1 + i. We make vi adjacent to each of vi+∆/2+1, . . . , v∆+1.

Denote the obtained graph by P ′ and observe that its vertices in the range of 1, . . . , dn/2e
have the following degrees

k, k + 1, . . . ,∆︸ ︷︷ ︸
1,...,∆−k+1

, ∆, . . . ,∆︸ ︷︷ ︸
∆−k+2,...,∆/2+1

,∆ + 1, . . . , k + ∆
2︸ ︷︷ ︸

∆
2

+2,...,k+1

, k + ∆
2
, . . . , k + ∆

2︸ ︷︷ ︸
k+2,...,∆+1

, ∆, . . . ,∆︸ ︷︷ ︸
∆+2,...,dn/2e

Hence all but the vertices vi with index i between ∆/2 + 2 and ∆ + 1 have the correct
degree. The difference between their degree in P ′ and the desired degree is

d =
(
1, 2, . . . , k − ∆

2
− 1, k − ∆

2
, . . . , k − ∆

2︸ ︷︷ ︸
∆−k+1

)
. (4.5.4)

Set c = k − ∆
2

= 1
2

(
k − b

√
kc
)
and r = ∆ − k. Note that k is chosen in such a way (see

(4.5.2)) that c is divisible by 4. As furthermore r2 = (∆−k)2 = b
√
kc2 ≥ 1

2

(
k − b

√
kc
)

= c,
Lemma 4.5.2 yields that there is a graph H with degree sequence d. Since the vertices
v∆/2+2, . . . , v∆+1 induce a complete graph in P ′ there is a copy of H in P ′, such that deleting
its edges results in a graph G of the desired degree sequence. Note that for any two adjacent
vertices vi, vj in P ′ it holds that |i − j| ≤ k. This implies that P ′ is a subgraph of a k-th
power of a path. Thus the subgraph G of P ′ has treewidth at most k. This finishes the
proof.

To prove Lemma 4.5.2 we use the Erdős-Gallai-criterion:
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Theorem 4.5.3 (Erdős and Gallai [30]). There is a graph with degree sequence d1 ≥ · · · ≥ dn
if and only if

∑n
i=1 di is even and if for all ` = 1, . . . , n

∑̀
i=1

di ≤ `(`− 1) +
n∑

i=`+1

min(di, `). (4.5.5)

Proof of Lemma 4.5.2. We check the conditions of Theorem 4.5.3 for the degree sequence d.
The parity condition holds as 4 divides c(2r + c+ 1) and

c+r∑
i=1

di = cr +
c(c+ 1)

2
=
c

2
(2r + c+ 1).

Let of us now verify (4.5.5). If ` > c, then

∑̀
i=1

di ≤ c` ≤ `(`− 1) ≤ `(`− 1) +
c+r∑

i=`+1

min(di, `).

Thus we can assume that ` ≤ c. Two remarks: Firstly, min(di, `) = ` for i = 1, . . . ,≤
c+ r − `+ 1. Consequently, if 2` ≤ c+ r then

`(`− 1) +
c+r∑

i=`+1

min(di, `) = `(`− 1) + (c+ r − 2`+ 1)`+
`(`− 1)

2

= `
2
(2r − 1− `) + c`. (4.5.6)

Secondly, if ` > r, then

∑̀
i=1

di = c`− (`− r − 1)(`− r)
2

= c`+ `
2
(2r + 1− `)− 1

2
(r2 + r). (4.5.7)

Now suppose that 2` ≤ c+ r. For ` ≤ r, we have
∑`

i=1 di = c` and hence (4.5.5) is easily
seen to be satisfied in light of (4.5.6). On the other hand, for ` > r the assumption of r2 ≥ c
together with a comparison of (4.5.6) and (4.5.7) gives (4.5.5).

So let 2` > c+ r. This implies that ` > r. Consequently, the right hand side of (4.5.5) is

`(`− 1) +
c+r∑

i=`+1

min(di, `) = `(`− 1) +
c+r∑

i=`+1

di

= `(`− 1) + 1
2
(c+ r − `)(c+ r − `+ 1).

It follows from equation (4.5.7) that (4.5.5) is satisfied if the following expression is non-
negative.

2`(`− 1) + (c+ r − `)(c+ r − `+ 1)− (2c`+ `(2r + 1− `)− (r2 + r))

= 4`2 − 4`(c+ r) + (c+ r)2 + (c+ 2r + r2)− 4`

= (2`− (c+ r))2 + (c+ r) + (r + r2)− 4`

= (2`− (c+ r))2 − 2
(

2`− (c+ r) + (r + r2)

2

)
(4.5.8)
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Figure 4.2: The graph G5 with the vertices vi drawn in black; thick gray edges indicate that
two vertex sets are complete to each other; elimination order of the vi is shown in dashed
lines

First, let r2 = c. Then (4.5.8) equals

(2`− (c+ r))2 − 2(2`− (c+ r)) (4.5.9)

The term (4.5.9) is negative only if 2`− (c+ r) = 1. As c+ r = r2 + r is even (for any integer
r), (4.5.9) and thus (4.5.8) is non-negative.

Now let r2 > c. Then (4.5.8) is strictly greater than (4.5.9) and hence non-negative. This
shows that (4.5.5) is satisfied.

As (4.5.5) holds for all `, there is a graph with degree sequence d.

4.6 Degenerate graphs
Recall that a graph G is k-degenerate if there is an enumeration vn, . . . , v1 of the vertices such
that vi+1 has degree at most k in G− {vn, . . . , vi} for every i. By simple induction following
the elimination order (or recalling the formula formula 1 + 2 + . . .+ n = n(n+ 1)/2), we can
obtain a bound with half the degree loss of (4.3.1):

2|E(G)| ≤ ∆|V (G)| − 1
2
(∆− k)(∆− k + 1). (4.6.1)

The bound in (4.6.1) turns out to be tight for some ∆, k as the construction below shows.
Moreover, by (4.6.1) Theorem 4.1.2 can easily be transferred: Any simple k-degenerate graph
of maximum degree ∆ ≥ k + 1/2 +

√
2k + 1/4 is not overfull and therefore has fractional

chromatic index χ′f (G) = ∆.
Consider a positive integer p and let Gp be the complement of the disjoint union of p

stars K1,1, K1,2, . . . , K1,p; see Figure 4.2. Denote the centre of the ith star by vi, and let
W be the union of all leaves. The graph Gp has n = p(p + 1)/2 + p vertices and satisfies
deg(vi) = n − 1 − i for i = 1, . . . , p and deg(w) = n − 2 for w ∈ W . In particular, the
maximum degree of Gp is ∆ = n− 2. Setting k = n− 1− p, we note that Gp is k-degenerate
as vp, vp−1, . . . , v1 followed by an arbitrary enumeration ofW is an elimination order. Finally,
we observe that Gp satisfies (4.6.1) with equality.

93



Chapter 5

Estimating parameters associated with
monotone properties

Carlos Hoppen, Yoshiharu Kohayakawa, Richard Lang,
Hanno Lefmann and Henrique Stagni

Abstract

There has been substantial interest in estimating the value of a graph parameter, i.e., of
a real-valued function defined on the set of finite graphs, by querying a randomly sampled
substructure whose size is independent of the size of the input. Graph parameters that may
be successfully estimated in this way are said to be testable or estimable, and the sample
complexity qz = qz(ε) of an estimable parameter z is the size of a random sample of a graph
G required to ensure that the value of z(G) may be estimated within an error of ε with
probability at least 2/3. In this paper, for any fixed monotone graph property P = Forb(F),
we study the sample complexity of estimating a bounded graph parameter zF that, for an
input graph G, counts the number of spanning subgraphs of G that satisfy P . To improve
upon previous upper bounds on the sample complexity, we show that the vertex set of any
graph that satisfies a monotone property P may be partitioned equitably into a constant
number of classes in such a way that the cluster graph induced by the partition is not far
from satisfying a natural weighted graph generalization of P . Properties for which this holds
are said to be recoverable, and the study of recoverable properties may be of independent
interest.

5.1 Introduction and main results

In the last two decades, a lot of effort has been put into finding constant-time randomized
algorithms (conditional on sampling) to gauge whether a combinatorial structure satisfies
some property, or to estimate the value of some numerical function associated with this
structure. In this paper, we focus on the graph case and, as usual, we consider algorithms that
have the ability to query whether any desired pair of vertices in the input graph is adjacent
or not. Let G be the set of finite simple graphs and let G(V ) be the set of such graphs with
vertex set V . We shall consider subsets P of G that are closed under isomorphism, which
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we call graph properties. To avoid technicalities, we restrict ourselves to graph properties P
such that P ∩G(V ) 6= ∅ whenever V 6= ∅. For instance, this includes all nontrivial monotone
and hereditary graph properties, which are graph properties that are inherited by subgraphs
and by induced subgraphs, respectively. Here, we will focus on monotone properties. The
prototypical example of a monotone property is Forb(F ), the class of all graphs that do not
contain a copy of a fixed graph F . More generally, if P is a monotone property and F
contains all minimal graphs that are not in P , then the graphs that lie in P are precisely
those that do not contain a copy of an element of F . This class of graphs will be denoted by
P = Forb(F). The elements of Forb(F) are said to be F-free.

A graph property P is said to be testable if, for every ε > 0, there exist a positive integer
qP = qP(ε), called the query complexity, and a randomized algorithm TP , called a tester,
which may perform at most qP queries in the input graph, satisfying the following property.
For an n-vertex input graph Γ, the algorithm TP distinguishes with probability at least 2/3
between the cases in which Γ satisfies P and in which Γ is ε-far from satisfying P , that is, in
which no graph obtained from Γ by the addition or removal of at most εn2/2 edges satisfies
P . This may be stated in terms of graph distances: given two graphs Γ and Γ′ on the same
vertex set V (Γ) = V (Γ′), we may define the normalized edit distance between Γ and Γ′ by
d1(Γ,Γ′) = 2

|V |2 |E(Γ)4E(Γ′)|, where E(Γ)4E(Γ′) denotes the symmetric difference of their
edge sets. If P is a graph property, we let the distance between a graph Γ and P be

d1(Γ,P) = min{d1(Γ,Γ′) : V (Γ′) = V (Γ) and Γ′ ∈ P}.

For instance, if Γ = Kn and P = Forb(K3), Turán’s Theorem ensures that
(
n
2

)
−bn2/4c edges

need to be removed to produce a graph that is K3-free. In particular, d1(Kn,Forb(K3)) →
1/2. Thus a graph property P is testable if there is a tester with bounded query complexity
that distinguishes with probability at least 2/3 between the cases d1(Γ,P) = 0 and d1(Γ,P) >
ε.

The systematic study of property testing was initiated by Goldreich, Goldwasser and
Ron [46], and there is a very rich literature on this topic. For instance, regarding testers,
Goldreich and Trevisan [49] showed that it is sufficient to consider simpler canonical testers,
namely those that randomly choose a subset X of vertices in Γ and then verify whether
the induced subgraph Γ[X] satisfies some related property P ′. For example, if the property
being tested is having edge density 1/2, then the algorithm will choose a random subset X
of appropriate size and check whether the edge density of Γ[X] is within, say, ε/2 of 1/2.
Regarding testable properties, Alon and Shapira [7] proved that every monotone graph prop-
erty is testable, and, more generally, that the same holds for hereditary graph properties [6].
For more information about property testing, we refer the reader to [48] and the references
therein.

In a similar vein, a function z : G → R from the set G of finite graphs into the real
numbers is called a graph parameter if it is invariant under relabeling of vertices. A graph
parameter z : G → R is estimable if for every ε > 0 and every large enough graph Γ with
probability at least 2/3, the value of z(Γ) can be approximated up to an additive error of ε
by an algorithm that only has access to a subgraph of Γ induced by a set of vertices of size
qz = qz(ε), chosen uniformly at random. The query complexity of such an algorithm is

(
qz
2

)
and the size qz is called its sample complexity. Estimable parameters have been considered
in [38] and were defined in the above level of generality in [18]. They are often called testable
parameters. Borgs et al. [18, Theorem 6.1] gave a complete characterization of the estimable
graph parameters which, in particular, also implies that the distance from monotone graph
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properties is estimable. Their work uses the concept of graph limits and does not give explicit
bounds on the query complexity required for this estimation.

We obtain results for the bounded graph parameter, which, for a graph family F , counts
the number of F -free spanning subgraphs of the input graph Γ. Recall that G′ = (V ′, E ′) is
a spanning subgraph of a graph G = (V,E) if V ′ = V and E ′ ⊆ E.

Formally, given a graph Γ ∈ G and a family F of graphs, we denote the set of all F -free
spanning subgraphs of Γ by Forb(Γ,F) = {G is a spanning subgraph of Γ: G ∈ Forb(F)},
and we consider the parameter

zF(Γ) =
1

|V (Γ)|2
log2 |Forb(Γ,F)|. (5.1.1)

For example, if F = {K3} and Γ = Kn, computing zF requires estimating the number of
K3-free subgraphs of Kn up to a multiplicative error of 2o(n

2):

zF(Kn) =
1

n2
log2 |Forb(Γ,F)| = 1

n2
log2 2

1
2(n

2)+o(n2) → 1

4
.

This was done by Erdős, Kleitman and Rothschild for F = {Kk} [33], see also Erdős, Frankl
and Rödl [32] for F -free subgraphs. Counting problems of this type were studied by several
people. Consider for instance, the work of Prömel and Steger [86, 87], the logarithmic density
in Bollobás [16], and some more recent results about the number of n-vertex graphs avoiding
copies of some fixed forbidden graphs [11, 12]. Algorithmic aspects have been investigated
by Duke, Lefmann and Rödl [29] and, quite recently, by Fox, Lovász and Zhao [40].

As it turns out, estimating graph parameters zF(Γ) is related to estimating distances of
graphs from the corresponding graph property P = Forb(F). Alon, Shapira and Sudakov [8,
Theorem 1.2] proved that the distance to every monotone graph property P is estimable
using a natural algorithm, which simply computes the distance from the induced sampled
graph to P . However, one disadvantage of this approach is that the accuracy of the estimate
relies heavily on stronger versions of Szemerédi’s Regularity Lemma [102, 4]. Therefore, the
query complexity is at least of the order TOWER(poly(1/ε)), by which we mean a tower of
twos of height that is polynomial in 1/ε. Moreover, it follows from a result of Gowers [50]
that any approach based on Szemerédi’s Regularity Lemma cannot lead to a bound that is
better than TOWER(poly(1/ε)).

In this paper, we introduce the concept of recoverable graph properties. Roughly speaking,
given a function f : (0, 1]→ R, we say that a graph property P is f -recoverable if every large
graph G ∈ P is ε-close to admitting a partition V of its vertex set into at most f(ε) classes
that witnesses membership in P , i.e., such that any graph that can be partitioned in the
same way must be in P .

Theorem 5.1.1. Let Forb(F) be an f -recoverable graph property, for some function f : (0, 1]→
R. Then, for all ε > 0 there is n0 such that, for any graph Γ with |V (Γ)| ≥ n0, the graph
parameter zF defined in (5.1.1) can be estimated within an additive error of ε with sample
complexity poly(f(ε/6)/ε).

Although one could apply strong versions of regularity to show that every monotone
property Forb(F) is f -recoverable, this approach would provide an upper bound of at least
TOWER(poly(ε−1)) for the function f . We find a connection between this notion of recov-
erability and the graph Removal Lemma, which can lead to better bounds for the function

96



f(ε). The Removal Lemma was first stated explicitly in the literature by Alon et al. [3] and
by Füredi [42]. The following version, which holds for arbitrary families of graphs was first
proven in [7].

Lemma 5.1.2 (Removal Lemma). For every ε > 0 and every (possibly infinite) family F of
graphs, there exist M = M(ε,F), δ = δ(ε,F) > 0 and n0 = n0(ε,F) such that the following
holds. If a graph G on n ≥ n0 vertices satisfies d1(G,Forb(F)) ≥ ε, then there is F ∈ F
with |V (F )| ≤M such that G has at least δn|V (F )| copies of F .

Conlon and Fox [26] showed that Lemma 5.1.2 holds with δ−1, n0 ≤ TOWER(poly(ε−1)).
Although this remains the best known bound for the general case, there are many families
F for which Lemma 5.1.2 holds with a significantly better dependency on ε. For families
F = {F} where F is an arbitrary graph, Fox [39] (see also [81]) showed that Lemma 5.1.2
holds with both δ−1 and n0 bounded by TOWER(O(log(ε−1))) — as a consequence, this same
bound holds for every finite family F . Moreover if F is bipartite, than δ−1 and n0 are
polynomial in ε−1 and, though it is not possible to get polynomial bounds when F is not
bipartite (see [2]), the best known lower bound for δ−1 is only quasi-polynomial in ε−1.
Lemma 5.1.2 also holds with δ−1,M, n0 ≤ poly(ε−1) for certain infinite families F . For
instance, results from [46] provide such polynomial bounds when Forb(F) is the property of
“being k-colorable” (for every positive integer k) or the property of “having a bisection of size
at most ρn2” (for every ρ > 0) or many other properties that can be expressed as “partition
problems”.

We show that every monotone graph property Forb(F) is f -recoverable for some function
f that is only exponential in the bounds given by the Removal Lemma for the family F . In
fact, we use a weighted version of this lemma (see Lemma 5.3.6).

Theorem 5.1.3. For every family F of graphs, the property Forb(F) is f -recoverable for f(ε) =
n02poly(M/δ), where δ,M and n0 are as in Lemma 5.3.6 with input F and ε.

The case of F finite is an instance where the bounds given by Lemma 5.3.6 relate poly-
nomially with the bounds of Lemma 5.1.2. In particular, Theorem 5.1.3, together with the
abovementioned bounds for Lemma 5.1.2 obtained by Fox [39] for finite families F , implies
that Forb(F) is f -recoverable with f(ε) = TOWER(poly(log(1/ε))).

The remainder of the paper is structured as follows. In Section 5.2 we introduce nota-
tion and describe some tools that we use in our arguments. In Section 5.3, we introduce
the concept of recoverable graph properties and prove Theorem 5.1.3. Theorem 5.1.1 is a
consequence of Theorem 5.4.1, which is the main result in Section 5.4. In Section 5.5 we
prove Theorem 5.3.2, which is the technical tool for establishing Theorem 5.4.1. We finish
the paper with some concluding remarks in Section 5.6.

5.2 Notation and tools
A weighted graph R over a (finite) set of vertices V is a symmetric function from V × V
to [0, 1]. A weighted graph R may be viewed as a complete graph (with loops) in which a
weight R(i, j) is given to each edge (i, j) ∈ V (R) × V (R), where V (R) denotes the vertex
set of R. The set of all weighted graphs with vertex set V is denoted by G∗(V ) and we
define G∗ as the union of all G∗(V ) for V finite. In particular, a graph G is a weighted
graph such that G(i, i) = 0, for every i ∈ V (G), and either G(i, j) = 1 or G(i, j) = 0
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for every (i, j) ∈ V (G) × V (G), i 6= j. For a weighted graph R ∈ G∗(V ) and for sets
A,B ⊂ V , we denote eR(A,B) =

∑
(i,j)∈A×B R(i, j) and e(R) = e(V, V )/2. Given a graph

G = (V,E) and vertex sets U,W ⊆ V (G), let EG(U,W ) = {(u,w) ∈ E : u ∈ U,w ∈ W} and
eG(U,W ) = |EG(U,W )|.

An equipartition V = {Vi}ki=1 of a weighted graph R is a partition of its vertex set V (R)
such that |Vi| ≤ |Vj| + 1 for all (i, j) ∈ [k] × [k]. We sometimes abuse terminology and say
that V is a partition of R.

Let V = {V1, . . . , Vk} be an equipartition into k classes of a graph G = (V,E). The cluster
graph of G by V is a weighted graph G/V ∈ G∗([k]) such that G/V (i, j) = eG(Vi, Vj)/(|Vi||Vj|)
for all (i, j) ∈ [k] × [k]. For a fixed integer K > 0, the set of all equipartitions of a vertex
set V into at most K classes will be denoted by ΠK(V ). We also define the set G/ΠK

=
{G/V : V ∈ ΠK(V (G))} of all cluster graphs of G whose vertex set has size at most K.

The distance between two weighted graphs R,R′ ∈ G∗(V ) on the same vertex set V is
given by

d1(R,R′) =
1

|V |2
∑

(i,j)∈V×V

|R(i, j)−R′(i, j)|.

For a property H ⊆ G∗ of weighted graphs, i.e., for a subset of the set of weighted graphs
which is closed under isomorphisms, we define

d1(R,H) = min
R′∈H:

V (R′)=V (R)

d1(R,R′).

Unless said otherwise, we will assume that H contains weighted graphs with vertex sets of
all possible sizes.

Next, to set up the version of regularity (or Regularity Lemma) that we use in this work,
we use a second well-known distance between weighted graphs. Let R1, R2 ∈ G∗(V ) be
weighted graphs on the same vertex set. The cut-distance between R1 and R2 is defined as

d�(R1, R2) =
1

|V |2
max
S,T⊆V

|eR1(S, T )− eR2(S, T )|.

Let Γ ∈ G(V ) and V = {Vi}ki=1 be a partition of V . We define the weighted graph
ΓV ∈ G∗(V ) as the weighted graph such that ΓV(u, v) = Γ/V (i, j) if u ∈ Vi and v ∈ Vj.
Graph regularity lemmas ensure that, for any large graph Γ, there exists an equipartition V
into a constant number of classes such that ΓV is a faithful approximation of Γ. Here, we
use the regularity introduced by Frieze and Kannan [41]. Henceforth we write b = a± x for
a− x ≤ b ≤ a+ x.

Definition 5.2.1. A partition V = {Vi}ki=1 of a graph Γ is γ-FK-regular if d�(Γ,ΓV) ≤ γ,
or, equivalently if for all S, T ⊆ V (Γ) it holds that

e(S, T ) =
∑

(i,j)∈[k]×[k]

|S ∩ Vi||T ∩ Vj| Γ/V (i, j)± γ|V (Γ)|2.

The concept of FK-regularity is also known as weak regularity.

Lemma 5.2.2 (Frieze-Kannan Regularity Lemma). For every γ > 0 and every k0 > 0, there
is K = k0 · 2poly(1/γ) such that every graph Γ on n ≥ K vertices admits a γ-FK-regular
equipartition into k classes, where k0 ≤ k ≤ K.
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We remark that Conlon and Fox [24] found graphs where the number of classes in
any γ-FK-regular equipartition is at least 21/(260γ2) (for an earlier result, see Lovász and
Szegedy [78]).

5.3 Recoverable parameters
The main objective of this section is to introduce the concept of ε-recoverability and to state
our main results in terms of it.

5.3.1 Estimation over cluster graphs

For a weighted graph R ∈ G∗(V ) and a subset Q ⊆ V of vertices, let R[Q] denote the induced
weighted subgraph of R with vertex set Q. Let us now define estimable parameters in the
context of weighted graphs.

Definition 5.3.1. We say that a function z : G∗ → R (also called a weighted graph parameter)
is estimable with sample complexity q : (0, 1) → N if, for every ε > 0 and every weighted
graph Γ∗ ∈ G∗(V ) with |V | ≥ q(ε), we have z(Γ∗) = z(Γ∗[Q]) ± ε with probability at
least 2/3, where Q is chosen uniformly from all subsets of V of size q.

The following result states that graph parameters, that can be expressed as the optimal
value of some optimization problem over the set G/ΠK

of all cluster graphs of G of vertex
size at most K, can be estimated with a query complexity that is only exponential in a
polynomial in K and in the error parameter.

Theorem 5.3.2. Let z : G → R be a graph parameter and suppose that there is a weighted
graph parameter z∗ : G∗ → R and constants K > 0 and c > 0 such that

1. z(Γ) = maxR∈Γ/ΠK
z∗(R) for every Γ ∈ G, and

2. |z∗(R) − z∗(R′)| ≤ c · d1(R,R′) for all weighted graphs R,R′ ∈ G∗ on the same vertex
set.

Then z is estimable with sample complexity ε 7→ poly(K, c/ε).

The proof of Theorem 5.3.2 is rather technical and is therefore deferred to Section 5.5.
Moreover, in Section 5.4 we show how to express the parameter zF introduced in (5.1.1), in
terms of the solution of a suitable optimization problem over the set Γ/ΠK

of cluster graphs
of Γ of vertex size at most K.

5.3.2 Recovering partitions

We are interested in the property of graphs that are free of copies of members of a (possibly
infinite) family F of graphs. To relate this property to a property of cluster graphs, we
introduce some definitions. Let ϕ : V (F )→ V (R) be a mapping from the set of vertices of a
graph F ∈ G to the set of vertices of a weighted graph R ∈ G∗. The homomorphism weight
homϕ(F,R) of ϕ is defined as

homϕ(F,R) =
∏

(i,j)∈E(F )

R(ϕ(i), ϕ(j)).
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The homomorphism density t(F,R) of F ∈ G in R ∈ G∗ is defined as the average homomor-
phism weight of a mapping in Φ := {ϕ : V (F )→ V (R)}, that is,

t(F,R) =
1

|Φ|
∑
ϕ∈Φ

homϕ(F,R).

Note that, if F and R are graphs, then t(F,R) is approximately the density of copies of F
in R (and converges to this quantity when the vertex size of R tends to infinity). Since
weighted graphs will represent cluster graphs associated with a partition of the vertex set of
the input graph, it will be convenient to work with the following property of weighted graphs:

Forb∗hom(F) = {R ∈ G∗ : t(F,R) = 0 for every F ∈ F}.

Let R, S ∈ G∗(V ) be weighted graphs on the same vertex set V . We say that S is a
spanning subgraph of R, which will be denoted by S ≤ R, if S(i, j) ≤ R(i, j) for every (i, j) ∈
V × V . When there is no ambiguity, we will just say that S is a subgraph of R. We also
define Forb∗hom(R,F) = {S ∈ Forb∗hom(F) : S ≤ R}.

The following result shows that having a cluster graph in Forb∗hom(F) witnesses member-
ship in Forb(F).

Proposition 5.3.3. Let F be a family of graphs and let V be an equipartition of a graph G.
If G/V ∈ Forb∗hom(F), then G ∈ Forb(F).

Proof. Let V = {Vi}ki=1 be an equipartition of G and let R = G/V . Fix an arbitrary
element F ∈ F and an arbitrary injective mapping ϕ : V (F ) ↪→ V (G). Define the func-
tion ψ : V (F ) → V (R) by ψ(v) = i if ϕ(v) ∈ Vi. Now, if t(F,R) = 0, there must be
some edge (u,w) ∈ E(F ) such that R(ψ(u), ψ(w)) = 0, thus G(ϕ(u), ϕ(v)) = 0 and hence
homϕ(F,G) = 0. Since ϕ and F were taken arbitrarily, we must have G ∈ Forb(F).

It is easy to see that the converse of Proposition 5.3.3 does not hold in general. Indeed,
there exist graph families F and graphs G ∈ Forb(F) such that G/V is actually very far from
being in Forb∗hom(F) for some equipartition V of G. As an example, let G be the n-vertex
bipartite Turán graph T2(n) for the triangle K3 with partition V (G) = A ∪ B and consider
V = {Vi}ti=1 with Vi = Ai ∪ Bi, i = 1, . . . , t, where {Ai}ti=1 and {Bi}ti=1 are equipartitions of
A and B respectively. Then G/V has weight 1/2 on every edge, so that the distance of G/V
to the family Forb∗hom({K3}) tends to 1/4 for t large by Turán’s Theorem. More generally, if
V is a random equipartition of a triangle-free graph G ∈ Forb({K3}) with large edge density,
then with high probability the cluster graph G/V is still approximately 1/4-far from being
in Forb∗hom({K3}).

On the other hand, we will prove that there exist partitions for graphs in Forb(F) with
respect to which an approximate version of the converse of Proposition 5.3.3 does hold, that
is, we will prove that every graph in Forb(F) is not too far from having a partition into
a constant number of classes that witnesses membership in Forb(F). We say that such a
partition is recovering with respect to Forb(F). Let us make this more precise.

Definition 5.3.4. Let P = Forb(F) be a monotone graph property. An equipartition V of
a graph G ∈ P is ε-recovering for P if d1(G/V ,Forb∗hom(F)) ≤ ε.
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Definition 5.3.5. Let P be a graph property. For a fixed function f : (0, 1] → R, we say
that the class P is f -recoverable if, for every ε > 0, there exists n0 = n0(ε) such that the
following holds. For every graph G ∈ P on n ≥ n0 vertices, there is an equipartition V of G
into at most f(ε) classes which is ε-recovering for P .

As a simple example, one can verify that the graph property P = Forb(F) of being r-
colourable is f -recoverable for f(ε) = r/ε; here and in what follows, for simplicity, we ignore
divisibility conditions and drop floor and ceiling signs. Let G be a graph in P , with colour
classes C1, . . . , Cr. Let k = r/ε. Start by fixing parts V1, . . . , Vt of size n/k each, with each Vi

contained in some Cj (j = j(i)), and leaving out fewer than n/k vertices from each Cj,
1 ≤ j ≤ r. The sets Vi, 1 ≤ i ≤ t, cover a subset C ′j of Cj and Xj = Cj \ C ′j is left over. We
then complete the partition by taking arbitrary parts U1, . . . , Uk−t of size n/k each, forming
a partition of

⋃
1≤j≤rXj. The cluster graph G/V can be made r-partite by giving weight

zero to every edge incident to vertices corresponding to U1, . . . , Uk−t. Therefore G/V is at
distance at most r/k ≤ ε from being r-partite. Thus, d1(G/V ,Forb∗hom(F)) ≤ ε as required.

We finish this section by noting that the definition of f -recoverable properties has some
similarity with the notion of regular-reducible properties P defined by Alon, Fischer, Newman
and Shapira [5]. When dealing with monotone properties P = Forb(F), the main difference
is that the notion of being regular-reducible requires that every graph G ∈ P should have a
regular partition such that G/V is close to some property H∗ of weighted graphs, while the
definition of f -recoverable properties requires only that every G has a partition V (regular or
not) such that G/V is close to Forb∗hom(F). Another difference is that H∗ must be such that
having a (regular) cluster graph in H∗ witnesses only closeness to P , while having a (regular
or not) cluster graph in Forb∗hom(F) witnesses membership in P .

5.3.3 Monotone graph properties are recoverable

Szemerédi’s Regularity Lemma [102] can be used to show that every monotone (and actually
every hereditary) graph property is f -recoverable, for f(ε) = TOWER(poly(1/ε)). In the
remainder of this section, we prove that monotone properties P = Forb(F) are recoverable
using a weaker version of regularity along with the Removal Lemma, which leads to an
improvement on the growth of f for families F where the Removal Lemma is known to hold
with better bounds than the Regularity Lemma.

We first derive a version of the Removal Lemma stated in the introduction (Lemma 5.1.2)
that applies to weighted graphs and homomorphic copies.

Lemma 5.3.6. For every ε > 0 and every (possibly infinite) family F of graphs, there
exist δ = δ(ε,F), M = M(ε,F) and n0 = n0(ε,F) such that the following holds. If a
weighted graph R such that |V (R)| > n0 satisfies d1(R,Forb∗hom(F)) ≥ ε, then there is a
graph F ∈ F with |V (F )| ≤M such that t(F,R) ≥ δ.

To prove Lemma 5.3.6, we use the following auxiliary result, which follows from work of
Erdős and Simonovits [34]. For completeness we include its proof.

Proposition 5.3.7. Let F̂ and F be graphs in G such that there is a surjective homomorphism
ζ : V (F )→ V (F̂ ). Then, for every graph H such that t(F̂ , H) ≥ δ̂, we must have t(F,H) ≥
δ̂`, where ` = (|V (F )|+ 1)|V (F̂ )|.
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Proof. We will consider the particular case in which F is obtained from blowing up a single
vertex v of F̂ into r distinct vertices v1, . . . , vr with the same adjacency as v, hence we assume
that ζ(vj) = v for every j = 1, . . . , r and ζ(u) = u for every u /∈ {v1, . . . , vr}.

Let n = |V (H)|, â = |V (F̂ )|, a = |V (F )| = â + r − 1 and F̂− = F̂ − v be the graph
on â − 1 vertices obtained from F̂ by deleting v. Let N = t(F̂−, H)nâ−1 be the number
of homomorphisms from F̂− to H and ϕ1, . . . , ϕN ∈ V (H)V (F̂−) be an enumeration of such
homomorphisms. Note that N ≤ nâ−1 and N ≥ t(F̂ , H)/n ≥ δ̂nâ−1.

For every i ∈ [N ] and u ∈ V (H), we consider the function ϕui that extends ϕi by mapping
v to u. Define Zi = {u ∈ V (H) : homϕu

i
(F̂ , H) = 1} and zi = |Zi|. We claim there

are zri ways of extending ϕi to a homomorphism from F to H. Indeed, every possible
extension ϕ′i : V (F ) → V (H) of ϕi, such that ϕ′i(vj) ∈ Zi, for every j = 1, . . . , r, satisfies
homϕ′i

(F,H) = 1. Therefore we have t(F,H)na ≥
∑N

i=1 z
r
i . Since g(x) = xr is a convex

function for x ≥ 0 and r ≥ 1, we get

t(F,H)na ≥ N

(∑N
i=1 zi

N

)r

.

Now we use the fact that
∑N

i=1 zi = t(F̂ , H)nâ ≥ δ̂nâ and our previous bounds on N to obtain
that

t(F,H)na ≥ δ̂nâ−1

(
δ̂nâ

nâ−1

)r

= δ̂r+1nâ+r−1 = δ̂r+1na.

Therefore, t(F,H) ≥ δ̂r+1 ≥ δ̂a+1. The general case may be easily obtained by induction on
the number of vertices of F̂ .

Proof of Lemma 5.3.6. Denote by F̂ the set of all homomorphic images of members of F ,
that is, the set of all graphs F̂ ∈ G such that there is a surjective homomorphism F → F̂ , for
some F ∈ F . Let M̂, δ̂ and n̂0 be as in Lemma 5.1.2 with input F̂ and ε/2. We take

M = max
F̂∈F̂ :

|V (F̂ )|≤M̂

min
F∈F :
F → F̂

|V (F )|,

n0 = n̂0, δ = (ε/2)M
2
δ̂`, where ` = (M + 1)M̂ .

Let R be a weighted graph such that |V (R)| > n0 and d1(R,Forb∗hom(F)) ≥ ε. We first
define a graph H ∈ G(V (R)) such that H(i, j) = 1 if and only if R(i, j) ≥ ε/2. It follows
from d1(R,Forb∗hom(F)) ≥ ε that d1(H,Forb(F̂)) ≥ ε/2. Indeed, suppose to the contrary that
there exists H ′ ∈ Forb(F̂) such that d1(H,H ′) < ε/2. Define R′ such that R′(i, j) = R(i, j)
if H ′(i, j) = 1 and R′(i, j) = 0 otherwise. By construction, R′ ∈ Forb∗hom(F), and we get a
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contradiction from

d1(R,R′) =
1

|V (R)|2
∑

i∈V (R),
j∈V (R)

|R(i, j)−R′(i, j)|

=
1

|V (R)|2


∑
(i,j):

H(i,j)=1,
H′(i,j)=0

|R(i, j)−R′(i, j)|+
∑
(i,j):

H(i,j)=0,
H′(i,j)=0

|R(i, j)−R′(i, j)|


≤ 1

|V (H)|2
∑

i∈V (H)
j∈V (H)

|H(i, j)−H ′(i, j)|+ 1

|V (R)|2
∑

i∈V (R)
j∈V (R)

ε

2

= d1(H,H ′) +
ε

2
< ε.

By Lemma 5.1.2 there must be F̂ ∈ F̂ , with |V (F̂ )| ≤ M̂ , such that t(F̂ , H) ≥ δ̂. By
definition of M , there must be F ∈ F such that |V (F )| ≤ M and there is a surjective
homomorphism F → F̂ . It follows from Proposition 5.3.7 that t(F,H) ≥ δ̂`. Since

homϕ(F,R) ≥ (ε/2)|E(F )| homϕ(F,H) ≥ (ε/2)M
2

homϕ(F,H)

for each ϕ : V (F )→ V (R), we must have

t(F,R) =

∑
ϕ homϕ(F,R)

|V (R)||V (F )| ≥
(ε

2

)M2

·
∑

ϕ homϕ(F,H)

|V (H)||V (F )| ≥
(ε

2

)M2

· δ̂` = δ.

We will use the next result, which states that a graph has homomorphism densities close
to the ones of the cluster graphs with respect to FK-regular partitions.

Lemma 5.3.8 ([18, Theorem 2.7(a)]). Let V be a γ-FK-regular equipartition of a graph G ∈
G. Then, for any graph F ∈ G it holds that t(F,G) = t(F,GV)± 4e(F )γ = t(F, G/V )± 4e(F )γ.

We are now ready to prove Theorem 5.1.3, which establishes that every monotone graph
property is f -recoverable.

Proof of Theorem 5.1.3. Let δ,M and n0 be as in Lemma 5.3.6 with input F and ε and
let γ = δ/(3M)2. By Lemma 5.2.2, it suffices to show that any γ-FK-regular equipartition
V = {Vi}ki=1 of a graph G ∈ Forb(F) into k ≥ n0 classes is ε-recovering.

Let R = G/V and suppose for contradiction that d1(R,Forb∗hom(F)) ≥ ε. Then, by
Lemma 5.3.6, we have t(F,R) ≥ δ for some graph F ∈ F such that |F | ≤ M . By
Lemma 5.3.8, we have t(F,G) ≥ δ − 2γM2 > 0, a contradiction to G ∈ Forb(F).
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5.4 Estimation of |Forb(Γ,F)|
The objective of this section is to prove Theorem 5.1.1. To do this, we shall approximate the
parameter zF by the solution of an optimization problem as in Theorem 5.3.2. Recall that
Forb∗hom(R,F) = {S ≤ R : t(F, S) = 0 for every F ∈ F}, and set

ex∗(R,F) =
1

|V (R)|2
max

S∈Forb∗hom(R,F)
e(S),

which measures the largest edge density of a subgraph of R not containing a copy of any
F ∈ F up to a multiplicative constant.

We shall derive Theorem 5.1.1 from the following auxiliary result.

Theorem 5.4.1. Let F be a family of graphs such that Forb(F) is f -recoverable for some
function f : (0, 1]→ R. Then, for any ε > 0, there exists K = f(poly(ε)) and N = poly(K)
such that for any graph Γ of vertex size n ≥ N it holds that

log2 |Forb(Γ,F)|
n2

= max
R∈Γ/ΠK

ex∗(R,F)± ε.

We define the following subsets of edges of a weighted graph R:

E0(R) = {(i, j) ∈ V (R)× V (R) : R(i, j) = 0}
E1(R) = {(i, j) ∈ V (R)× V (R) : R(i, j) > 0}.

We will also make use of the binary entropy function, defined by H(x) = −x log2(x) −
(1−x) log2(1−x) for 0 < x < 1. Note that H(x) ≤ −2x log2 x for x ≤ 1/8. This function has
the property (cf. [68, Corollary 22.2]) that the following inequality holds for ε = k/n < 1/2:

k∑
i=0

(
n

i

)
≤ 2H(ε)n. (5.4.1)

Proof of Theorem 5.4.1. Let F be a family of graphs such that Forb(F) is f -recoverable,
and fix ε > 0, without loss of generality ε < 1. Let ε′ = ε/18. Using that log2 x ≤ x − 1
for x < 1 and H(y) ≤ −2y log2 y for 0 < y ≤ 1/8, we infer H(ε′) + ε′ ≤ −2ε′ log2 ε

′ + ε′ ≤
2ε′(1 − ε′) + ε′ ≤ 3ε′ ≤ ε/6. We set K = f(ε′2) and N ≥ 2K2/ε big enough so that
log2N/N < ε/3.

Let Γ be an n-vertex graph, n ≥ N . We first show that

log2 |Forb(Γ,F)|
n2

≥ max
R∈Γ/ΠK

ex∗(R,F)− ε.

Let R = Γ/V be an arbitrary cluster graph in Γ/ΠK
with V = {Vi}ki=1 for k ≤ K. Choose

S ∈ Forb∗hom(R,F) such that e(S) = k2 ex∗(R,F). Further let G ≤ Γ be the subgraph of
Γ such that G(r, s) = 0 if there is a pair (i, j) ∈ E0(S) such that r ∈ Vi and s ∈ Vj and
G(r, s) = Γ(r, s) otherwise. Thus, we obtain G by deleting all edges from Γ between Vi and
Vj if (i, j) ∈ E0(S).
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Since e(S) maximizes ex∗(R,F) it follows that G/V = S, which implies, by Proposi-
tion 5.3.3, that G ∈ Forb(Γ,F). Since every subgraph of G also lies in Forb(Γ,F), we
obtain

log2 |Forb(Γ,F)| ≥ |e(G)| = 1

2

∑
(i,j)∈[k]×[k]

S(i, j)|Vi||Vj| ≥
(n− k)2

k2
e(S)

≥ ex∗(R,F)n2 − kn ≥ (ex∗(R,F)− ε)n2.

Note that we used the facts that e(S) ≤ k2/2 and n > k/ε, as well as |Vi| ≥ n/k− 1 for all i.
Now let us prove the other direction

log2 |Forb(Γ,F)|
n2

≤ max
R∈Γ/ΠK

ex∗(R,F) + ε.

We first define U =
⋃
G∈Forb(Γ,F)

G/ΠK
to be the set of all possible cluster graphs of vertex

size at most K of graphs in Forb(Γ,F). Since Forb(F) is f -recoverable we can define a
function

η : Forb(Γ,F)→ ΠK × U
G 7→ (V , T )

where V is an (ε′2)-recovering partition of G into k ≤ K classes and T = G/V . Clearly

|Forb(Γ,F)| ≤ |ΠK × U| ·max
(V,T )
|η−1(V , T )|. (5.4.2)

Since each mapping from V (Γ) → [K] gives a partition of V (Γ) into at most K classes, we
have |ΠK | ≤ Kn ≤ nn. Moreover, given an arbitrary graph G ∈ G(V ) and any partition V of
V , an edge G/V (i, j) may assume n2 different values. Hence, we have |U| ≤ n2K2 ≤ nn.

Finally we make the following claim, whose proof is deferred for a moment:

log2

(
max
(V,T )
|η−1(V , T )|

)
≤

(
max

R∈Γ/ΠK

ex∗(R,F) +
ε

3

)
n2. (5.4.3)

Combining this we can take the logarithm of (5.4.2) to get as desired:

log2 |Forb(Γ,F)| ≤ log2(nn) + log2(nn) +

(
max

R∈Γ/ΠK

ex∗(R,F) +
ε

3

)
n2

≤

(
max

R∈Γ/ΠK

ex∗(R,F) + ε

)
n2 (as log2 n/n ≤ ε/3).

It remains to prove (5.4.3). To this end, fix (V , T ) in the image of η and let R = Γ/V .
Choose S ′ ∈ Forb∗(R,F) such that d1(T, S ′) ≤ ε′2. This is possible because V is an (ε′2)-
recovering partition. Set E1 = E1(S ′) and partition E0(S ′) into E+

0 := {(i, j) ∈ E0(S ′) :

T (i, j) > ε′} and E−0 = E0(S ′) \ E+
0 . Since there are b(i, j) :=

(|Vi||Vj |R(i,j)
|Vi||Vj |T (i,j)

)
ways to choose

|Vi||Vj|T (i, j) edges out of the |Vi||Vj|R(i, j) edges between Vi and Vj in Γ, we obtain

|η−1(V , T )| ≤
∏

1≤i<j≤k

b(i, j) ≤
∏

(i,j)∈E1

√
b(i, j)

∏
(i,j)∈E+

0

b(i, j)
∏

(i,j)∈E−0

b(i, j). (5.4.4)
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Let us estimate the factors of (5.4.4):
We can bound each of the factors b(i, j) of E1 by 2R(i,j)|Vi||Vj |. Since d1(T, S ′) ≤ ε′2 we

have |E+
0 | ≤ ε′k2, as otherwise it would be the case that

d1(T, S ′) ≥
∑

(i,j)∈E+
0

|T (i, j)− S ′(i, j)| > |E+
0 |ε′ ≥ ε′2k2,

which is a contradiction. Clearly, we have |E−0 | ≤ k2. This allows us to upper bound each of
the factors of E+

0 trivially by 2|Vi||Vj |, and each of the factors of E−0 by 2H(ε′)|Vi||Vj | using (5.4.1).
Now let S ∈ Forb∗(R,F) be such that

S(i, j) =

{
0 if (i, j) ∈ E0(S ′)

R(i, j) otherwise.

Taking the logarithm of (5.4.4) and using |Vi||Vj| ≤ (n+ k)2/k2 we get

log2 |η−1(V , T )| ≤
∑

(i,j)∈E1

R(i, j)

2
|Vi||Vj|+

∑
(i,j)∈E−0

H(ε′)|Vi||Vj|+
∑

(i,j)∈E+
0

|Vi||Vj|

≤
( ∑

(i,j)∈E1

R(i, j)

2k2
+

∑
(i,j)∈E−0

H(ε′)

k2
+

∑
(i,j)∈E+

0

1

k2

)
(n+ k)2

≤
( 1

2k2

∑
(i,j)∈E1

S(i, j) +H(ε′) + ε′
)

(n+ k)2.

Now by using the fact that S ∈ Forb∗(R,F) and that H(ε′) + ε′ ≤ ε/6 we infer

log2 |η−1(V , T )| ≤
(

ex∗(R,F) +
ε

6

)
(n+ k)2 ≤

(
ex∗(R,F) +

ε

3

)
n2,

which implies (5.4.3).

Proof of Theorem 5.1.1. Let F be a family of graphs such that Forb(F) is f -recoverable. Set
K = f(poly(ε)) and N = poly(K) given by Theorem 5.4.1 applied to ε/3. Theorem 5.4.1
ensures that, whenever Γ is a graph on n ≥ N vertices, we have∣∣∣∣∣ log2 |Forb(Γ,F)|

n2
− max

R∈Γ/ΠK

ex∗(R,F)

∣∣∣∣∣ ≤ ε

3
. (5.4.5)

Let ẑ : G → R be the graph parameter defined by ẑ(Γ) = maxR∈Γ/ΠK
z∗(R), where

z∗(R) = ex∗(R,F). We claim that, given R and R′ in G∗(V ), we have |z∗(R) − z∗(R′)| ≤
d1(R,R′). Indeed, assume without loss of generality that z∗(R) ≥ z∗(R′) and fix a subgraph
S ≤ R such that S ∈ Forb∗hom(R,F) and z∗(R) = e(S)/|V |2. If S ∈ Forb∗hom(R′,F), we are
done, so assume that this is not the case. Let S ′ be a subgraph of S and R′ maximizing
e(S ′), that is, S ′(i, j) = min{S(i, j), R′(i, j)}. Clearly,

e(S ′) ≥ e(S)− 1

2

∑
(i,j)∈V×V

|R(i, j)−R′(i, j)|=e(S)− |V |
2

2
d1(R,R′),
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so that 0 ≤ z∗(R)− z∗(R′) ≤ (e(S)− e(S ′)) /|V |2 ≤ 1
2
d1(R,R′).

This allows us to apply Theorem 5.3.2 to conclude that ẑ is estimable with sample com-
plexity q(ε) = poly(K, 1/ε). Let Q be chosen uniformly from all subsets of V of size
q′ = max{q(ε/3), N} and set Γ = Γ[Q]. It follows that, with probability at least 2/3,
we have |ẑ(Γ) − ẑ(Γ)| ≤ ε/3. By (5.4.5) we have |n−2 log2 |Forb(Γ,F)| − ẑ(Γ)| ≤ ε/3. On
the other hand, we can also apply (5.4.5) to Γ to obtain

∣∣ẑ(Γ)− q′−2 log2 |Forb(Γ,F)|
∣∣ ≤ ε/3.

By adding the last three inequalities, we get that∣∣∣∣ 1

n2
log2 |Forb(Γ,F)| − 1

q′2
log2 |Forb(Γ,F)|

∣∣∣∣ ≤ ε,

as required.

5.5 Proof of Theorem 5.3.2
Here we will prove Theorem 5.3.2. Its proof is based on the following lemma, which asserts
that the set of cluster graphs of a graph Γ is very ‘similar’ to the set of cluster graphs of
‘large enough’ samples of Γ.

Lemma 5.5.1. Given K > 0, ε > 0 there is q = poly(K, 1/ε) such that the following
holds. Consider a graph Γ whose vertex set V has cardinality n ≥ q and a random subgraph
Γ = Γ[V ], where V is chosen uniformly from all subsets of V of size q. Then, with probability
at least 2/3, we have

1. for each V ∈ ΠK(V ), there is a V ∈ ΠK(V ) with d1(Γ/V , Γ/V ) ≤ ε, and

2. for each V ∈ ΠK(V ), there is a V ∈ ΠK(V ) with d1(Γ/V , Γ/V ) ≤ ε.

For a set of vertices V and an integer k, define Π=k(V ) as the set of all equipartitions of
V of size exactly k. For every R ∈ G∗([k]) and ε ≥ 0, we define the property

G(ε)
R = {G ∈ G : ∃V ∈ Π=k(V (G)) such that d1(G/V , R) ≤ ε}

of all graphs admitting a reduced graph which is ε-close to R. Note that G(ε)
R contains no

graphs of size less than k. In particular, if |V (G)| < k, then d1(G,G(ε)
R ) = ∞. Since we will

compare G(ε)
R only with large graphs, this is not a problem.

The following theorem is a consequence of a more general result of [37, Theorem 2.7]. For
our application it suffices to state this result in the case of simple graphs (r = 2, s = 1) with
density tensor Ψ = {S ∈ G∗([k]) : d1(R, S) ≤ ε}.

Theorem 5.5.2 ([37, Theorem 2.7]). For every positive integer k, and every ε > 0 and
δ > 0, there is q′ = q′(k, ε, δ) = log3(δ−1) · poly(k, ε−1) such that the following holds. For
every R ∈ G∗([k]) there is a randomized algorithm T which takes as input an oracle access
to a graph G of size at least k and satisfies the following properties:

1. If G ∈ G(ε)
R , then T accepts G with probability at least 1− δ.

2. If d1(G,G(ε)
R ) > ε, then T rejects G with probability at least 1− δ.

The query complexity of T is bounded by q′.
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Corollary 5.5.3. For every positive integer k, and any ε > 0 and δ > 0, there is an
integer q = q5.5.3(k, ε, δ) = poly(k, 1/ε, log3(1/δ)) such that for every R ∈ G∗([k]) and every
graph G ∈ G(V ), with |V | ≥ q, we have

1. If G ∈ G(ε)
R , then P(d1(G[Q],G(ε)

R ) > ε) < δ.

2. If d1(G,G(ε)
R ) > ε, then P(G[Q] ∈ G(ε)

R ) < δ.

Proof. Fix R ∈ G∗([k]) and let T be a tester for the property G(ε)
R as in the statement of

Theorem 5.5.2, with query complexity q′(k, ε, δ).
It follows from a result of Goldreich and Trevisan [49, Theorem 2] (see also [47]), that

there is canonical tester T ′ for G(ε)
R with sample complexity q(k, ε, δ) = poly(q′(k, ε, δ)), i.e.,

a tester that simply chooses a set Q ∈
(
V
q

)
uniformly at random and then accepts the input

if and only if G[Q] satisfies a certain property Acc of graphs of size q.
To prove (1), if G ∈ G(ε)

R then we get P(G[Q] /∈ Acc) < δ. Moreover, if Q is a set of
size q such that d1(G[Q],G(ε)

R ) > ε, then G[Q] /∈ Acc — because G[Q] must be rejected (with
probability 1) when given as input to T . So P(d1(G[Q],G(ε)

R ) > ε) < δ.
Analogously, if d1(G,G(ε)

R ) > ε, then P(G[Q] ∈ Acc) < δ. Moreover, if Q is a set of
size q such that G[Q] ∈ G(ε)

R , then G[Q] ∈ Acc — because G[Q] must be accepted (with
probability 1) when given as input to T . So P(G[Q] ∈ G(ε)

R ) < δ.

Lemma 5.5.4. For n > 2k, let G1, G2 ∈ G(V ) with |V | = n and let V ∈ Π=k(V ).
Then d1(G1/V , G2/V ) ≤ d1(G1, G2) + 2k/(n− 2k).

Proof.

d1(G1/V , G2/V ) =
1

k2

∑
(i,j)∈[k]2

|G1/V (i, j)− G2/V (i, j)|

≤ 1

k2

∑
(i,j)∈[k]2

|eG1(Vi, Vj)− eG2(Vi, Vj)|
(n−k)2

k2

≤ 1

(n− k)2

∑
(i,j)∈[k]2

∑
u∈Vi
v∈Vj

|G1(u, v)−G2(u, v)|

≤
(

1 +
2k

n− 2k

)
1

n2

∑
(u,v)∈V 2

|G1(u, v)−G2(u, v)|

=

(
1 +

2k

n− 2k

)
d1(G1, G2).

Proof of Lemma 5.5.1. Fix ε > 0 and K as in the statement of the lemma. Let δ = 1
6K
·

(ε/4)K
2 and take

q = max

{
8K

ε
+ 2K, q5.5.3

(
K,

1

4
ε, δ

)}
= poly(K, ε).

Let 1 ≤ k ≤ K. Fix a family R ⊆ G∗([k]) such that, for every S ∈ G∗([k]), there is R ∈ R
such that d1(R, S) ≤ ε/4. There is one such family with cardinality at most (4/ε)k

2 .
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Let Γ be a graph with vertex set V , where |V | ≥ q. Let Q ∈
(
V
q

)
be chosen uniformly at

random and consider the following events

1. E ′ =
[
∃V ∈ Π=k(V ) satisfying d1(Γ/V , Γ[Q]/V ′ ) > ε for every V ′ ∈ Π=k(Q)

]
,

2. E =
[
∃V ′ ∈ Π=k(Q) satisfying d1(Γ/V , Γ[Q]/V ′ ) > ε for every V ∈ Π=k(V )

]
.

We claim that these two events occur each with probability less than 1/(6K). It then follows
by taking the union bound over k = 1, . . . K, that Q satisfies both (1) and (2) of the statement
of Lemma 5.5.1 with probability at least 1− 1/6− 1/6 = 2/3.

We only prove that P(E) ≤ 1/(6K). An analogous argument shows that P(E ′) ≤ 1/(6K).
Suppose that event E happens and let V ′ ∈ Π=k(Q) be as in (2). Define S = Γ[Q]/V ′ and let
R ∈ R be such that d1(R, S) ≤ ε/4. Since Γ[Q] ∈ G(0)

S and Γ /∈ G(ε)
S , the triangle inequality

implies that Γ[Q] ∈ G(ε/4)
R and Γ /∈ G(3ε/4)

R . Therefore

P(E) ≤ P
(
∃R ∈ R : Γ[Q] ∈ G(ε/4)

R and Γ /∈ G(3ε/4)
R

)
.

We claim that if Γ /∈ G(3ε/4)
R , then d1(Γ,G(ε/4)

R ) > ε/4. To show this, consider the contra-
positive statement and let Γ′ ∈ G(ε/4)

R such that d1(Γ,Γ′) ≤ ε/4. By definition there is an
equipartition V ′ ∈ Π=k(V ) such that d1(Γ′/V ′ , R) ≤ ε/4. In addition Lemma 5.5.4 implies
that

d1(Γ/V ′ , Γ′/V ′ ) ≤ d1(Γ,Γ′) + 2k/(|V | − 2k) ≤ ε/4 + 2K/(q − 2K) ≤ ε/2.

It follows from the triangle inequality that d1(Γ/V ′ , R) ≤ 3ε/4. Therefore

P(E) ≤ P
(
∃R ∈ R : Γ[Q] ∈ G(ε/4)

R and d1(Γ,G(ε/4)
R ) > ε/4

)
≤
∑
R∈R

P
(

Γ[Q] ∈ G(ε/4)
R and d1(Γ,G(ε/4)

R ) > ε/4
)

≤ δ|R| ≤ 1/(6K)

where the last line comes from Corollary 5.5.3(2) with d1(Γ,G(ε/4)
R ) > ε/4.

We now deduce Theorem 5.3.2 from Lemma 5.5.1.

Proof of Theorem 5.3.2. Fix ε > 0 and an input graph Γ ∈ G(V ). Let q be as in Lemma 5.5.1
with input K and ε/c. Choose Q uniformly from all subsets of V of size q and set Γ = Γ[Q].
We will show that z(Γ) = z(Γ)± ε with probability at least 2/3.

Let V ∈ ΠK(V ) be an equipartition of Γ such that z(Γ) = z∗(Γ/V ). By Lemma 5.5.1(1),
with probability at least 2/3, there is a partition V of Γ such that d1(Γ/V , Γ/V ) < ε/c. By
the second condition on z∗ in the statement of Theorem 5.3.2, we have |z∗(Γ/V )−z∗(Γ/V )| ≤
ε, and therefore z(Γ) ≤ z∗(Γ/V ) ≤ z∗(Γ/V ) + ε = z(Γ) + ε.

A symmetric argument relying on Lemma 5.5.1(2) shows that z(Γ) ≤ z(Γ) + ε.
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5.6 Concluding remarks
In this paper, we introduced the concept of f -recoverability of a graph property P . Using this
concept, and the fact that any monotone property P = Forb(F) is recoverable for a function
f whose size is given by the Graph Removal Lemma, we found a probabilistic algorithm to
estimate the number of F -free subgraphs of a large graph G whose sample complexity does
not depend on regularity.

Being a new concept, little is known about f -recoverability itself, and we believe that it
would be interesting to investigate this notion in more detail. For instance, in our proof that
any monotone property Forb(F) is f -recoverable, we found ε-recovering partitions V that
were γ-FK-regular (in fact, we showed that any such partition is ε-recovering), where γ(ε) is
chosen in such a way that the Removal Lemma applies. On the other hand, our discussion
after Definition 3.5 implies that the property of being r-colourable is ε-recoverable with
sample complexity r/ε, and thus we may find an ε-recovering partition whose size is less
than the size required to ensure the existence of an FK-regular partition. It is natural to ask
for properties that can be recovered by small partitions; more precisely, one could ask for a
characterization of properties that are f(ε)-recoverable for f(ε) polynomial in 1/ε.

Here, we restricted ourselves to monotone graph properties. We should mention that the
parameter

ẑP(Γ) =
1

|V (Γ)|2
log2 |{G ≤ Γ : G ∈ P}|

might not even be estimable for arbitrary (non-monotone) properties P . For instance, if P is
the hereditary property of graphs having no independent sets of size three, then the complete
graph Kn and the graph Kn − E(K3), which is obtained from Kn by removing the edges of
a triangle, have quite a different number of spanning subgraphs satisfying P , namely 2n

2/4

and 0, respectively, although their edit distance is negligible. It follows from [18, Theorem
6.1] that ẑP is not estimable.

Nevertheless, the definition of f -recoverable can be extended to cope with general hered-
itary properties, which, along with Theorem 5.3.2, provides a way of estimating other inter-
esting hereditary properties. In particular, this framework is used in a follow-up paper to
estimate the edit distance to any fixed hereditary property with a sample complexity similar
to the one obtained here. We should mention here that, given a monotone property Forb(F),
the parameter zF is actually closely related to the parameter dF : Γ 7→ d1(Γ,Forb(F)). In
fact, ε-recovering partitions along with techniques analogous to the ones used in [17] can be
used to show that, for any graph Γ = (V,E), we have

dF(Γ) =
2|E|
|V |2

− 2zF(Γ)± o(1),

which implies that estimating zF provides an indirect way for estimating dF .
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