Tabla de Contenido

1.	\mathbf{Intr}	oducción 1
	1.1.	Motivación
	1.2.	Objetivos
		1.2.1. General $\ldots \ldots 2$
		1.2.2. Específicos $\ldots \ldots 2$
	1.3.	Contenidos del informe
2 .	Ant	ecedentes Generales 4
	2.1.	Otros estudios experimentales
	2.2.	Caracterización del flujo
		2.2.1. Flujo oscilatorio con superficie libre
		2.2.2. El problema de la capa límite
	2.3.	Caracterización del fluido
		2.3.1. Clasifiación de los fluidos
		2.3.2. Flujo de un fluido pseudoplástico
	2.4.	Caracterización del sedimento
	2.5.	Arrastre incipiente en flujos oscilatorios
		2.5.1. Equilibrio de fuerzas aplicadas sobre una partícula aislada 26
		2.5.2. Parámetro tipo Shields
	2.6.	Velocimetría por procesamiento de imágenes: PTV-PIV
	2.7.	Parámetros adimensionales
3.	Dise	eño Experimental y Metodología 32
	3.1.	Diseño experimental
		3.1.1. Sistema generador de oleaje
		3.1.2. Desarenadores y drenajes
		3.1.3. Estructura de soporte
		3.1.4. Trabajo Futuro
	3.2.	Metodología Experimental
		3.2.1. Características de los fluidos
		3.2.2. Características de las particulas no cohesivas
		3.2.3. Caracterización del flujo en el fondo mediante PIV
		3.2.4. Características del oleaje
		3.2.5. Procedimiento Experimental

4.	Desarrollo	Teórico
----	------------	---------

	4.1.	Condición de equilibrio de una partícula esférica expuesta sobre el lecho para	
		flujo oscilatorio	46
	4.2.	Condición de equilibrio para $\mathbb{R}e_p >> 1$	49
	4.3.	Condición de equilibrio para $\mathbb{R}e_p \ll 1$	55
5.	Pres	sentación y Análisis de Resultados	59
	5.1.	Características del flujo	59
		5.1.1. Según las características del flujo en el fondo	59
		5.1.2. Según las características del oleaje5.1.3. Comparación entre la velocidad orbital medida con PIV y la predicha	61
		por la teoría lineal del oleaje para soluciones con CMC	67
	5.2.	Relación experimental para el arrastre incipiente en flujo oscilatorio	71
	5.3.	Evaluación del arrastre incipiente por medio del criterio para flujos oscilatorios	
		de Komar & Miller (1973) \ldots	79
	5.4.	Evaluación del arrastre incipiente por medio del criterio para flujos oscilatorios	
		de Ceddet (1060)	0.0
		de Godder (1900)	82
6.	Con	aclusiones	82 88
6. Bil	Con bliog	aclusiones grafía	82 88 93
6. Bil Ar	Con bliog iexos	aclusiones grafía	82 88 93 98
6. Bil Ar A.	Con bliog texos Res	ultados experimentales y cálculo de errores	82 88 93 98 98
6. Bil Ar A.	Con bliog nexos Res A.1.	aclusiones grafía s ultados experimentales y cálculo de errores Resultados de arrastre incipiente según las características del oleaje	82 88 93 98 98 99 99
6. Bil Ar A.	Con bliog nexos Res A.1. A.2.	aclusiones grafía s ultados experimentales y cálculo de errores Resultados de arrastre incipiente según las características del oleaje Cálculo de errores	82 88 93 98 99 99 102
6. Bil An A.	Con bliog nexos Res A.1. A.2. A.3.	ultados experimentales y cálculo de errores Resultados de arrastre incipiente según las características del oleaje Cálculo de errores Resultados de arrastre incipiente según las características del oleaje Resultados de arrastre incipiente según las características del oleaje Resultados de arrastre incipiente según las características del oleaje Resultados de arrastre incipiente según los parámetros del flujo y del fluido	82 88 93 98 99 99 102 103
6. Bil Ar A.	Con bliog nexos Res A.1. A.2. A.3. A.4.	ultados experimentales y cálculo de errores Resultados de arrastre incipiente según las características del oleaje Cálculo de errores Resultados de arrastre incipiente según los parámetros del flujo y del fluido Resultados de arrastre incipiente según los adimensionales $\mathbb{R}e_w$, $\mathbb{R}e_p$ y KC	82 88 93 98 99 99 102 103 106
6. Bil Ar A.	Con bliog nexos A.1. A.2. A.3. A.4. A.5.	aclusiones grafía s ultados experimentales y cálculo de errores Resultados de arrastre incipiente según las características del oleaje Cálculo de errores Resultados de arrastre incipiente según los parámetros del flujo y del fluido Resultados de arrastre incipiente según los parámetros del flujo y KC Resultados de arrastre incipiente según los parámetros de Goddet (1960) y los	82 88 93 98 99 99 102 103 106
6. Bil Ar A.	Con bliog nexos A.1. A.2. A.3. A.4. A.5.	ultados experimentales y cálculo de errores Resultados de arrastre incipiente según las características del oleaje Cálculo de errores Resultados de arrastre incipiente según los parámetros del flujo y del fluido Resultados de arrastre incipiente según los parámetros del Goddet (1960) y los Resultados de arrastre incipiente según los parámetros de Goddet (1960) y los parámetros modificados de Tamburrino & Vidal (2017)	82 88 93 98 99 99 102 103 106 110

Índice de Ilustraciones

2.1.	Instalación experimental usada por Bagnold (1946)	6
2.2.	Vórtices generados durante un ciclo de oscilación. Son los responsables del des- plazamiento y crecimiento del rizo, una vez excedida la altura crítica (Bagnold	
		7
2.3.	Desplazamiento del rizo a lo largo del lecho debido a la presencia de vórtices	
	(Bagnold, 1946).	8
2.4.	Esquema instalación experimental usada por Pedocchi & García (2009)	9
2.5.	Esquema instalación experimental: (1) tanque, (2) agua, (3) paleta, (4) siste- ma mecánico, (5) zona de prueba, (6) partícula de grandes dimensiones, (7)	
	Probeta para medición con ADV. (Voropayev et al., 1999, 1998)	11
2.6.	Esquema instalación experimental usada por Fredsøe et al. (1999)	12
2.7.	Esquema instalación experimental usada por Sekiguchi & Sunamura (2004)	12
2.8.	Esquema conceptual de las características de una ola (Dean & Dalrymple, 1991).	13
2.9.	Comportamiento de la función tanh en función de la profundidad relativa kh	
	y h/L (Dean & Dalrymple, 1991)	16
2.10.	Trayectorias de la partícula de agua según el régimen de oleaje (Dean &	
	Dalrymple, 1991) \ldots	17
2.11.	Diagrama para el factor de fricción bajo una corriente de olas en función de $\mathbb{R}e_w$ y $\frac{A}{k_s}$ (Kamphuis, 1975)	20
2.12.	Régimen de flujo en función de $\mathbb{R}e_w$ y $\frac{A}{k_s}$ según Kamphuis (1975)	21
2.13.	Comportamiento reológico de los fluidos. (Chhabra & Richardson, 2008)	23
3.1.	Esquema longitudinal del canal y sus componentes.	33
3.2.	Paleta acoplada a un sistema de control mecánico de frecuencia y amplitud variable.	35
3.3.	Esquema tridimensional del canal	36
3.4.	Implementación del PIV. En la imagen, se puede observar el láser sobre el lecho	
	y el haz de luz que este provee. Frente a la región iluminada, se posiciona la	
	cámara que registra el flujo.	41
3.5.	Zona de prueba durante una rutina experimental	44
4.1.	Fuerzas ejercidas sobre una partícula sumergida	47
4.2.	Condición de arrastre incipiente en flujo oscilatorio para $\mathbb{R}e_p >> 1$ en función del número de Reynolds para números de Keulegan-Carpenter fijos. El índice	
	de flujo se supone $n = 0,75$	52

4.3.	Condición de arrastre incipiente en flujo oscilatorio para $\mathbb{R}e_p >> 1$ en fun- ción del número de Beynolds para para distintos índices de flujo. Cada color	
	representa un valor fijo del número de Keulegan-Carpenter siendo: (1) negro:	
	KC = 10 (2) roio: $KC = 50$ (3) azul: $KC = 100$ (4) verde: $KC = 150$ v (5)	
	magenta: $KC = 50$.	53
44	Condición de arrastre incipiente en fluio oscilatorio para $\mathbb{R}e_r >> 1$ en función	00
	del número de Keulegan-Carpenter para números de Revnolds fijos. El índice	
	de fluio se supone $n = 0.75$.	54
4.5.	Condición de arrastre incipiente en flujo oscilatorio para $\mathbb{R}e_n \ll 1$ en función	
	del número de Revnolds para números de Keulegan-Carpenter fijos.	57
4.6.	Condición de arrastre incipiente en flujo oscilatorio para $\mathbb{R}e_n \ll 1$ en función	
	del número de Keulegan-Carpenter para números de Reynolds fijos	58
5.1.	Período de la ola en función de la altura de flujo h y la amplitud de la paleta	
	R_{paleta} para el conjunto de experimentos de W1	62
5.2.	Período de la ola en función de la altura de flujo h y la amplitud de la paleta	
	R_{paleta} para el conjunto de experimentos de W2.	63
5.3.	Período de la ola en función de la altura de flujo h y la amplitud de la paleta	
	R_{paleta} para el conjunto de experimentos de PL1	63
5.4.	Período de la ola en función de la altura de flujo h y la amplitud de la paleta	
	R_{paleta} para el conjunto de experimentos de PL2	64
5.5.	Período de la ola en función de la altura de flujo h y la amplitud de la paleta	
	R_{paleta} para el conjunto de experimentos de PL3	64
5.6.	Período de la ola en función de la altura de flujo h y la amplitud de la paleta	
	R_{paleta} para el conjunto de experimentos de PL4	65
5.7.	Período de la ola en función de la altura de flujo h y la amplitud de la paleta	
	R_{paleta} para el conjunto de experimentos de PL5	65
5.8.	Período de la ola en función de la altura de flujo h y la amplitud de la paleta	
	R_{paleta} para el conjunto de experimentos de PL6	66
5.9.	Período de la ola en función de la altura de flujo h y la amplitud de la paleta	
- 10	R_{paleta} para el conjunto de experimentos de PL7	66
5.10.	Periodo de la ola en función de la altura de flujo h y la amplitud de la paleta	0 7
F 11	R_{paleta} para el conjunto de experimentos de PL8	67
5.11.	Comparación entre la velocidad orbital medida con PIV y la calculada me-	co
F 10	diante la teoria lineal del oleaje para los experimentos de PL4	68
0.12.	Comparación entre la velocidad orbital medida con PTV y la calculada me-	69
K 19	Comparación entre la valocidad erbital modida con DIV y la calculada ma	00
J.1J.	diante la teoría lineal del elegio para los experimentos de PL6	60
5 1 4	Comparación ontro la volocidad orbital modida con PIV y la calculada mo	09
0.14.	diante la teoría lineal del elegio para los experimentos de PL7	60
5 1 5	Comparación ontro la volocidad orbital modida con PIV y la calculada mo	09
0.10.	diante la teoría lineal del oleaie para los experimentos de PL8	70
5.16	Resultados para el arrastre incipiente a presentados en función de $\mathbb{R}r^2 \times KC$	10
0.10.	Los colores indican el rango en el que se encuentra el valor del número de	
	Revnolds de la partícula del registro experimental. La especificación de colores	
	y rangos de $\mathbb{R}e_n$ se detalla en la Tabla 5.4	72

5.17. Resultados para el arrastre incipiente para el agua, presentados en función de $\mathbb{F}r_d^2$ y <i>KC</i> . Los colores indican el rango en el que se encuentra el valor del número de Reynolds de la partícula del registro experimental.Las curvas que se presentan corresponden a la ecuación para el rango $\mathbb{R}e_p >> 1$ predicha en el Capítulo 4 para $n = 1$. La especificación de colores y rangos de $\mathbb{R}e_p$ se detalla en la Tabla 5.5	74
5.18. Resultados para el arrastre incipiente para soluciones con CMC, presentados en función de $\mathbb{F}r_d^2$ y KC. Los colores indican el rango en el que se encuentra el valor del número de Reynolds de la partícula del registro experimental.Las curvas que se presentan corresponden a la ecuación para el rango $\mathbb{R}e_p \ll 1$ predicha en el Capítulo 4. La especificación de colores y rangos de $\mathbb{R}e_r$ se	14
detalla en la Tabla 5.6	75
La especificación de colores y rangos de $\mathbb{R}e_p$ se detalla en la Tabla 5.4 5.20. Resultados de arrastre incipiente para los experimentos con diámetro de par- tícula $D_s < 0,5$ mm, según el criterio de Komar & Miller (1973). La curva superpuesta corresponde a la ecuación 5.4.Los colores que se muestran, indi- can que el valor del número de Beynolds de la partícula que toma el dato	78
experimental se encuentra dentro del rango indicado en la Tabla 5.4 5.21. Resultados de arrastre incipiente para los experimentos con diámetro de par- tícula $D_s < 0,5$ mm, según el criterio de Komar & Miller (1973). La curva superpuesta corresponde a la ecuación 5.4.Los colores que se muestran, indi- can que el valor del número de Reynolds de la partícula que toma el dato	80
experimental se encuentra dentro del rango indicado en la Tabla 5.4 5.22. Resultados de arrastre incipiente de acuerdo a los parámetros adimensionales	81
de Goddet (1960)	85
 & Vidal (2017). 5.24. Condición de arrastre incipiente de acuerdo a los parámetros deTamburrino & Vidal (2017). La recta corresponde a la ecuación 5.8. 	86 87
A.1. Resultados para el arrastre incipiente a presentados en función de $\mathbb{F}r_d^2$ y KC . Sobre los datos experimentales se presentan los errores $\sigma_{\mathbb{F}r_d^2}$ y σ_{KC} asociados. A.2. Resultados de arrastre incipiente de acuerdo a los parámetros adimensionales de Goddet (1960).Sobre los datos experimentales se presentan los errores σ_{Ψ}	114
y σ_X asociados	115

Índice de Tablas

2.1. 2.2	Régimen de oleaje según $\frac{h}{L}$	16
2.2.	granos presentados en el estudio de Losada y Desiré (1988)	26 30
$3.1. \\ 3.2. \\ 3.3.$	Soluciones utilizadas y sus características	38 39 43
5.1. 5.2.	Rango de las parámetros adimensionales $\mathbb{R}e_w$, $\mathbb{R}e_p$ y KC para las distintas condiciones experimentales. En la columna adyacente a cada adimensional, se presenta el máximo error absoluto Δ asociado a cada conjunto de experimentos. Rango de las características del oleaje definidos por su altura H , longitud L ,	60
5.3.	periodo T , altura de flujo h y amplitud de oscilación de la paleta R_{paleta} para las distintas condiciones experimentales	61
5.4	realizados mediante PIV	70
U.4.	para el adimensional $\mathbb{R}e_p$	73
5.5. 5.6.	Escala de colores de la Figura 5.17. Cada uno representa un rango diferente para el adimensional $\mathbb{R}e_p$	76
0.01	para el adimensional $\mathbb{R}e_p$	76
A.1. A.2. A.3. A 4	Resultados de arrastre incipiente según las características del oleaje \ldots . Resultados de arrastre incipiente según los parámetros del flujo y del fluido . Resultados de arrastre incipiente según los adimensionales $\mathbb{R}e_w$, $\mathbb{R}e_p$ y KC . Besultados de arrastre incipiente según los parámetros de Goddet (1960) y los	99 103 106
	parámetros modificados de Tamburrino & Vidal (2017)	110