Contents

1	Intr	oductio	n	1
	1.1	Project	Hypotheses	5
	1.2	Project	Objectives	5
	1.3	Contril	outions	6
	1.4	Thesis	Structure	7
2	Stat	e of the	art of Power Electronics for Multi-MW WECSs	8
	2.1	Introdu	uction	8
	2.2	Wind H	Energy Conversion Systems	9
		2.2.1	Topologies	10
			2.2.1.1 Type I: Fixed-speed WECS	10
			2.2.1.2 Type II: Limited-Variable speed WECS with WRIG	11
			2.2.1.3 Type III: Limited-Variable speed WECS with DFIG	12
			2.2.1.4 Type IV: Full-variable speed WECS	13
		2.2.2	Control of WECSs	15
			2.2.2.1 Mechanical Control	15
			2.2.2.2 Electrical Control	16
			2.2.2.3 Grid Codes	16
			2.2.2.4 Other requirements for WECSs	18
	2.3	Power	Electronics for Multi-MW WECSs	19
		2.3.1	Multi-MW WECSs	19
		2.3.2	Currently available Power Electronics for Multi-MW WECS	21
		2.3.3	Future trends in Power Electronics for Multi-MW WECS	23
	2.4	Modul	ar Multilevel Cascade Converters	24
		2.4.1	AC-to-AC Modular Multilevel Converters	25
			2.4.1.1 Back-to-Back MMC	26
			2.4.1.2 Hexverter	27
			2.4.1.3 Modular Multilevel Matrix Converter	27
		2.4.2	Benchmarking of Modular Multilevel Converters for Multi-MW WECSs .	28
	2.5	Contro	Systems for the Modular Multilevel Matrix Converter	30
		2.5.1	Conventional Control Strategies	32
		2.5.2	Decoupled Control Strategies based on the $\alpha\beta0$ Transformation	32
	2.6	Summa	$\operatorname{ary} \ldots \ldots$	35
3	Pro	oosed M	(odelling of the M^3C	36
-	3.1	Introdu	iction	36

	3.2	Modelling of the M^3C	37
		3.2.1 Voltage-Current Model of the M^3C	39
		3.2.2 Power-Capacitor Voltage Model	43
		3.2.2.1 Ripple power components	44
	3.3	CCV ripple analysis	46
		3.3.1 CCV ripple in $abc - rst$ coordinates	46
		3.3.2 CCV ripple in Double- $\alpha\beta 0$ coordinates	47
	3.4	Classification of the voltage fluctuations	49
	3.5	$\Sigma\Delta$ Transformation applied to the M^3C	50
		3.5.1 CCV ripple in $\Sigma\Delta$ Double- $\alpha\beta0$ coordinates	51
		3.5.2 Power-CCV model of the M^3C in $\Sigma\Delta$ Double- $\alpha\beta0$ coordinates	52
	3.6	Vector Power-CCV model of the M^3C	53
	3.7	Summary	55
4	Prop	posed Control Strategies for M^3C based WECS - Converter Control	56
	4.1	Introduction	56
	4.2	CCV Control Systems	58
		4.2.1 Scalar CCV Control Strategy	59
		4.2.1.1 Scalar CCV Control Strategy, LFM	60
		4.2.1.2 Scalar CCV Control Strategy, EFM	64
		4.2.2 Vector CCV Control Strategy	65
		4.2.2.1 Vector CCV Control Strategy, LFM	65
		4.2.2.2 Vector CCV Control Strategy, EFM	68
		4.2.2.3 Transition Control for a broad range of frequency operation	70
	4.3	Circulating Current Control	71
	4.4	Control of the average CCV component	72
	4.5	Single-Cell Control and Modulation Scheme	73
	4.6	Summary	74
_	n		
5	Prop 5 1	posed Control Strategies for based $M^{\circ}C$ WECS - WECS Control	15
	5.1 5.2	Wind Turbing Control System	15
	5.2	5.2.1 MDDT	70
		5.2.1 MIPPI	70 77
	5 2	S.2.2 Generator-side current control	70
	5.5	5.2.1 LVDT Dequirements for grid connected WECS	79 70
		5.2.2 Crid side Control Strategy	70
		5.2.2 Ond-side Control Strategy	19 01
		5.3.2.1 Complex Power Considerations	5U 01
		5.5.2.2 Calculation of the current references for LVKI control	51 02
		5.3.5 Proposed LV RT control strategy for the <i>M</i> ⁺ C based wECS	55 01
		5.3.4 Sequence Component Separation Method	54 07
	5 /	Controllers Design	5/ 07
	3.4	5.4.1 Design of the CCV Control System	5/ 00
		5.4.1 Design of the CCV Control System	00 00
		5.4.1.1 Scalar CCV Control System	3ð 00
		5.4.1.2 vector UV Control System	38
		5.4.2 Design of the Average UCV Control System	89

		5.4.3 Design of the Circulating Current Control System.	89
		5.4.4 Design of the Generator-side Control System	89
	5.5	Design of the Grid-side Control System	89
	5.6	Design of the Single-Cell Balancing	89
		5.6.1 Resonant Controllers Design	89
	5.7	Summary	92
6	Sim	ulations	93
	6.1		93
		6.1.1 Equivalence of the control strategies for Low Frequency Operation	94
	6.2	Simulation Results for Fixed-Speed Steady State Operation	95
	6.3	Simulation Results for Variable-Speed WECS Emulation	98
	6.4	Simulation Results for Symmetric LVRT operation	102
	6.5	Simulation Results for Asymmetric LVRT operation	104
	6.6	Simulation Results for Equal Input-Output Frequencies Operation	108
		6.6.1 Scalar Control Strategy	108
		6.6.2 Vector Control Strategy	110
	6.7	Summary	114
7	Fvn	arimantal Converter	115
'	<u>Е</u> лр 7 1		115
	7.1	Overview of the prototype	115
	7.2	Control Platform	110
	1.5		110
		7.2.2 UDI dought an beard	119
		7.3.2 HPI daughter board	120
		7.2.2.1 Dhere shifts a DWAA burghere entetion	122
		7.3.3.1 Phase-shifted PWM Implementation	122
		7.3.3.2 Data acquisition system	123
	74		125
	1.4	Power Stage	125
		7.4.1 H-Bridge Power Cells $1.1.1$	125
		7.4.2 M^3C passive element dimensioning	128
		7.4.2.1 $M^{\circ}C$ Power Cell Capacitor dimensioning	128
		7.4.2.2 Cluster Inductor dimensioning	129
	7.5	Summary	130
8	Res	ılts	131
	8.1	Introduction	131
	8.2	Experimental Results for Fixed-Speed Steady State Operation	132
	8.3	Experimental Results for Variable-Speed WECS Emulation	136
	8.4	Experimental Results for Symmetric LVRT operation	138
	8.5	Experimental Results for Symmetric ZVRT operation	141
	8.6	Experimental Results for ASymmetric LVRT operation	144
	87	Experimental Results for similar Input-Output Frequencies Operation	148
	8.8	Summary	150
	0.0	~	100
9	Con	clusions and Future Work	151

ix

	9.1	Conclusions	151
	9.2	Summary of contributions	153
	9.3	Future Work	154
10	Publ	ications	155
	10.1	Papers related to this Ph.D. project	155
		10.1.1 Journal Papers	155
		10.1.2 Conference Papers	156
	10.2	Participation in other publications	157
		10.2.1 Journal Papers	157
		10.2.2 Conference Papers	157
Bił	nlingr	anhy	159
1010	11051	up ny	107
A	Doul	ble- $lphaeta 0$ Transformation of the Voltage-Current Model	171
	A.1	First $\alpha\beta 0$ Transformation - System connected to the input port	172
		A.1.1 Sub-Converter 1	172
		A.1.2 Sub-Converter 2	172
		A.1.3 Sub-Converter 3	173
		A.1.4 Matrix Representation	174
	A.2	Second $\alpha\beta 0$ Transformation - System connected to the output port	174
		A.2.1 Sub-Converter 1, $(r, s, t) \rightarrow \alpha$	174
		A.2.2 Sub-Converter 2, $(r, s, t) \rightarrow \beta$	175
		A.2.3 Sub-Converter 3, $(r, s, t) \rightarrow 0$	175
	A.3	Voltage-Current model of the M^3C in Double $\alpha\beta 0$ coordinates	176
	A.4	Input/Output Current analyses	176
		A.4.1 Generator-side Currents	176
		A.4.2 Grid-side Currents	177
	A.5	Extended currents equations in Double $\alpha\beta 0$ coordinates	179
R	Doul	ble- $\alpha\beta0$ Transformation of the Power-CCV Model	180
D	R 1	First $\alpha\beta0$ Transformation - System connected to the input port	181
	D .1	B 1 1 Sub-Converter 1	181
		B.1.1 Sub-Converter 2	181
		D.1.2 Sub-Converter 2	101
		P.1.4 Matrix Depresentation	102
	ъγ	B.1.4 Matrix Representation System connected to the output port	102
	D .2	Second $\alpha \beta 0$ Transformation - System connected to the output port	103
		B.2.1 Sub-Converter 1, $(r, s, t) \rightarrow \alpha$	103
		B.2.2 Sub-Converter 2, $(r, s, t) \rightarrow \beta$	183
	DO	B.2.3 Sub-Converter 3, $(r, s, t) \rightarrow 0$	184
	B.3	Power-CCV model of the $M^{\circ}C$ in Double $\alpha\beta0$ coordinates	184
С	Powe	er Components in Double $lphaeta 0$ coordinates	185
	C.1	First $\alpha\beta 0$ Transformation - System connected to the input port	185
		C.1.1 Sub-Converter 1	185
		C.1.2 Sub-Converter 2	188
		C.1.3 Sub-Converter 3	189
	C.2	Second $\alpha\beta 0$ Transformation - System connected to the output port	191

	C.2.1	Sub-Converter 1, $(r, s, t) \rightarrow \alpha$)1
	C.2.2	Sub-Converter 2, $(r, s, t) \rightarrow \beta$	94
	C.2.3	Sub-Converter 3, $(r, s, t) \rightarrow 0$)8
C.3	Final e	quations)1

List of Tables

2.1	Summary of commercially available DFIG and PMSG based WECSs	14
2.2	Summary of Grid Codes from different countries.	17
2.3	Summary of WECS projects rated at 10 MW and above.	20
2.4	Comparison of power converters for Multi-MW WECSs.	29
2.5	Overview of published research works of the M^3C .	31
3.1	Classification of the Cluster Capacitor Voltage components	50
4.1	Transition Control for a broad range of frequency operation.	71
5.1	Summary of the Control Systems implemented.	88
6.1	Parameters of the M^3C simulated using PLECS.	94
6.2	Parameters of the Simulated Wind Turbine.	98
7.1	Key components of the Laboratory prototype.	116
7.2	Signals to be measured by the Control Platform of the experimental M^3C	118
7.3	Parameters of the experimental M^3C .	126

List of Figures

1.1	Global Cumulative Installed Wind Capacity.	2
1.2	Proposed topology to drive Multi-MW Wind Turbines.	3
1.3	Proposed topology to drive Multi-MW Wind Turbines.	4
2.1	WECS main components and control issues	10
2.2	Type I WECS	11
2.3	Type II WECS.	11
2.4	Type III WECS with DFIG	12
2.5	Type IV WECS	13
2.6	WECSs main control functions.	15
2.7	LVRT from different countries.	17
2.8	LVRT requirements for WECSs connected to the Distribution System in Denmark.	18
2.9	Reported Multilevel Converter for high power wind turbines	22
2.10	Traditional multilevel converter topologies.	23
2.11	Modular Multilevel Converter or M^2C .	25
2.12	Modular Multilevel Converter in BTB configuration.	26
2.13	Hexverter.	27
2.14	Modular Multilevel Matrix Converters	28
2.15	Published options for Single-Cell Capacitor Voltage Control	33
3.1	M^3C composition.	38
3.2	Simplified circuit of the M^3C .	39
3.3	Equivalent circuits of the Voltage-Current model of the M^3C in Double- $\alpha\beta 0$ coor-	
	dinates	42
4.1	Proposed control strategy.	57
4.2	Proposed Scalar CCV Control Strategy.	59
4.3	Proposed Vector CCV Control Strategy.	67
4.4	Proposed Balancing Control of $\vec{v}_{c_0}^{\alpha\beta}$ and $\vec{v}_{c_{\alpha\beta}}^0$	68
4.5	Proposed Mitigation Control of $\vec{v}_{c_{1\alpha\beta}}^{\Sigma\Delta}$ and $\vec{v}_{c_{2\alpha\beta}}^{\Sigma\Delta}$	70
4.6	Circulating Current Control System.	72
4.7	Proposed Single-Cell Balancing Control	74
5.1	Proposed Control Strategy Generator-side control strategy.	76
5.2	Low Voltage Ride-Through Requirements from different national codes. (a) Mag- nitude and duration limits of the grid voltage sags. (b) Required Possitive current	
	injection of German Grid-Code.	78

5.3	Proposed grid-side LVRT control strategy.	80
5.4	Proposed LVRT Control Strategy.	84
5.5	Proposed DSC algorithm.	86
5.6	Proposed DSC algorithm.	87
5.7	Resonant control system pole and zero diagram	91
6.1	Simulation Results for Steady State Operation in LFM	95
6.2	Simulation Results for Steady State Operation in LFM. Average CCV Tracking.	96
6.3	Simulation Results for Steady State Operation in LFM. Single-Cell balancing	96
6.4	Simulation Results for Steady State Operation in LFM. Synthesised CCV	97
6.5	Simulation Results for Steady State Operation in LFM. Voltages and Currents	97
6.6	Simulation Results for Steady State Operation in LFM. Circulating Currents	98
6.7	Simulation Results for Variable-Speed Wind Turbine Emulation	99
6.8	Simulation Results for Variable-Speed Wind Turbine Emulation. Voltages and Cur-	100
60	Simulation Results for Variable Speed Wind Turbing Emulation Circulating Cur	100
0.9	rents	100
6 10	Simulation Results for I VRT	100
6.11	Simulation Results for ZVRT Voltages and Currents	101
6.12	Grid Voltages for a 50% Din Type C	105
6.12	Simulation Results for Asymmetric LVRT Control	105
6 14	Simulation Results for Asymmetric LVRT Control Voltages and Currents	106
615	Simulation Results for Asymmetric LVRT Control (with oscillations)	107
6 16	Amplified view of Active Power	108
6.17	Simulation Results for Equal Frequency Operation using Scalar Control.	109
6.18	Simulation Results for Equal Frequency Operation using Scalar Control. Circulat-	110
(10	Simulation Depute for Encode Encoder Constant Visiter Control	110
6.19	Simulation Results for Equal Frequency Operation using Vector Control.	111
0.20	ing Currents	112
6 21	Comparison of Scalar and Vector Control Strategies	112
0.21		115
7.1	Downscaled Laboratoy Prototype.	117
7.2	Control platform used in this project.	119
7.3	Block Diagram of the DSKC6/13	120
7.4	Components of the Control Platform.	121
7.5	Details of the Control Platform.	124
7.6	Measurement Boards	125
7.7	H-Bridge Power Cells	127
8.1	Experimental Results for Steady State Operation in LFM	132
8.2	Experimental Results for Steady State Operation in LFM. Average Cluster Capac-	
	itor Voltage Tracking.	133
8.3	Experimental Results for Steady State Operation in LFM. Voltages and Currents	134
8.4	Experimental Results for Steady State Operation in LFM. Circulating Currents	134
8.5	Scope Waveforms for Steady State Operation in LFM.	135
8.6	Experimental Results for Variable-Speed Wind Turbine Emulation.	137
8.7	Oscilloscope Waveforms for Variable-Speed Wind Turbine Emulation.	137

Oscilloscope Waveforms for LVRT control
Experimental Results for LVRT Control
Experimental Results for LVRT Control. Voltages and Currents
Oscilloscope Waveforms for ZVRT control
Experimental Results for ZVRT Control
Experimental Results for ZVRT Control. Voltages and Currents
Experimental Grid Voltages for a 50% Dip Type C
Experimental Results for Asymmetric LVRT Control
[Experimental Results for Asymmetric LVRT Control. Voltages and Currents 146
Experimental Results for LVRT Control using $k_{LVRT} = 1 \dots 147$
Comparison using $k_{LVRT} = 1$ and using $k_{LVRT} = 0$
Experimental Results for around Equal Input-Output Frequencies Operation 149