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Abstract small-scale heterogeneity of permeability controls spreading, dilution, and mixing of solute
plumes at large scale. However, conventional numerical simulations of solute transport are unable to resolve
scales of heterogeneity below the grid scale. We propose a Lagrangian numerical approach to implement
closure models to account for subgrid-scale spreading and mixing in Darcy-scale numerical simulations of
solute transport in mildly heterogeneous porous media. The novelty of the proposed approach is that it
considers two different dispersion coefficients to account for advective spreading mechanisms and local-
scale dispersion. Using results of benchmark numerical simulations, we demonstrate that the proposed
approach is able to model subgrid-scale spreading and mixing provided there is a correct choice of block-
scale dispersion coefficient. We also demonstrate that for short travel times it is only possible to account for
spreading or mixing using a single block-scale dispersion coefficient. Moreover, we show that it is necessary
to use time-dependent dispersion coefficients to obtain correct mixing rates. On the contrary, for travel
times that are large in comparison to the typical dispersive time scale, it is possible to use a single expres-
sion to compute the block-dispersion coefficient, which is equal to the asymptotic limit of the block-scale
macrodispersion coefficient proposed by Rubin et al. (1999). Our approach provides a flexible and efficient
way to model subgrid-scale mixing in numerical models of large-scale solute transport in heterogeneous
aquifers. We expect that these findings will help to better understand the applicability of the advection-
dispersion-equation (ADE) to simulate solute transport at the Darcy scale in heterogeneous porous media.

1. Introduction

1.1. Motivation

Solute transport in porous media flow depends upon transport mechanisms that occur at the pore scale.
Traditionally, pore-scale processes have been upscaled to obtain equations and effective parameters that
describe the dynamics of spatially averaged concentrations defined over the REV (representative elemen-
tary volume) scale. At that scale, hereafter referred to as local, continuum, or Darcy scale, solute transport is
modeled by an advection-dispersion equation (ADE) that includes the local or hydrodynamic dispersion ten-
sor, Dy, which includes the effect of molecular diffusion and pore-scale mechanical dispersion, and the
local-scale average pore water velocity, v.

Local-scale dispersion accounts for the interplay between diffusion and spreading caused by pore-scale
velocity fluctuations. However, it is widely recognized that many real aquifers display significant heteroge-
neity in permeability over small scales on the order of centimeters [e.g., Zheng et al., 2011; Dogan et al.,
2014]. This heterogeneity leads to fluctuations in Darcy-scale velocity that change the shape of solute bod-
ies, while local-scale dispersion transfers solute mass across zones where concentration gradients exist
[Urroz et al., 1995; Weeks and Sposito, 1998]. While spreading creates concentration gradients by increasing
the surface of the boundaries of the solute plume, local dispersion destroys them by transferring mass from
high to low concentration regions (Figure 1). The net result of the combined action of both mechanisms is
to increase the volume occupied by the solute mass and decrease concentration values by mixing waters
with high and low solute concentration [Cirpka, 2002; Dentz et al., 2011; de Dreuzy et al., 2012]. Hence, an
appropriate description of mixing processes is important for a correct characterization of natural dilution of
contaminant plumes and to account for mixing of waters of different composition in reactive transport sim-
ulations [Cirpka, 2002; Janssen et al., 2006; Dentz et al., 2011].
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Figure 1. Spreading and mixing in heterogeneous porous media. Fluctuations in Darcy-scale velocity produce changes in the shape of solute plumes, while local-scale dispersion trans-
fers solute mass across zones where concentration gradients exist. Right figures show a magnified view of the white rectangle in the left figure for Pe=oco and Pe = 200.

Application of the local-scale ADE to study solute migration at the regional or aquifer scale presents two
main challenges. First, with the exception of very rare situations, it is impossible to collect enough field data
to characterize the flow field and transport parameters with enough resolution to apply the local-scale
transport model. Second, current computing power available for most applications is limited and unable to
simulate regional-scale domains with grid cells small enough to model local-scale concentrations, particu-
larly in reactive transport simulations that consider complex reaction chains that include several chemical
components.

To overcome the limited computing power available in most practical applications, it is customary to simu-
late solute transport using grid cells that are much larger than the local scale, which requires defining new
grid-scale transport equations from local-scale equations. The most common grid-scale transport model
that is considered in large-scale numerical simulations is an ADE that simulates the evolution of grid-
averaged concentrations and includes flow velocities and dispersion coefficients defined at the grid scale.
While there are many methods to upscale hydraulic conductivity or flow velocities from fine-scale models
[Renard and De Marsily, 1997; De Marsily et al., 2005], there have been many fewer studies that have investi-
gated expressions to calculate grid-scale dispersion coefficients.

Multiple techniques based on a stochastic representation of local-scale parameters have been developed
over the last 40 years to compensate for the lack of detailed local-scale data [Dagan, 1989; Gelhar, 1993;
Rubin, 2003], and these stochastic approaches have also been used to develop upscaled models at the grid-
block scale.

Rubin et al. [1999] (see also follow-up work by Rubin et al. [2003] and Bellin et al. [2004] and work of Eberhard
[2005]) derived analytical expressions to calculate grid-scale dispersion coefficients in the presence of mean
uniform flow given a local-scale model for the distribution of hydraulic conductivity. The grid-block-scale
macrodispersion coefficients were shown to reproduce the rate of spreading of the ensemble-average
plume, subject to the underlying assumptions of mildly heterogeneous conductivity and mean uniform
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flow. The theory also applies to single realizations under ergodic conditions when the solute plume is much
larger than the underlying scale of heterogeneity.

Fernandez-Garcia and Gémez-Hernandez [2007] performed extensive Monte Carlo solute transport simula-
tions in heterogeneous porous media to investigate the impact of upscaling on the evolution of solute
plumes. They analyzed the benefits of using block-scale dispersion tensors to compensate for the lack of
subgrid-scale information. They found a very good match between block-scale dispersivities calculated
numerically and from the theory developed by Rubin et al. [1999].

Although the macrodispersion coefficients describe spreading of solute plumes, it is well known that they
overestimate mixing. There have been many studies showing that the so-called effective dispersion theory
that takes into account finite-size solute plumes more accurately models mixing. Early work on effective dis-
persion includes Rajaram and Gelhar [1993] and Dentz et al. [2000a]. A very recent paper by de Barros and
Dentz [2016] presents complete theoretical results for the mean and variance of block-scale macro and
ensemble dispersion coefficients. The results of Dentz et al. [2000a] were used by Cirpka [2002], who recog-
nized that using the effective dispersion coefficient for a point injection could accurately represent mixing
and be used in reactive transport simulations. Cirpka also investigated the impact of coarsening the velocity
field by sampling the fine-scale log(K) field on a coarse grid, using kriging to generate a smooth log(K)
field, and solving for flow. By correcting the effective dispersion coefficients to account only for the missing
variability, he was able to reproduce the mixing of an ensemble of large plumes, though there was consid-
erable variability among realizations and he was not able to reproduce spreading. Related follow-up work
was reported by Cirpka and Nowak [2003].

In all the works cited above, block-scale dispersion coefficients included the effect of local-scale dispersion
and subgrid velocity fluctuations as a single parameter or through a similar modeling scheme. This makes it
impossible to distinguish the respective contribution of subgrid-scale spreading and local-scale dispersion
on the simulated mixing rates and dilution processes. Moreover, the use of a single dispersion coefficient
implicitly assumes that concentration fluctuations within a grid-block are small so that block-averaged con-
centrations are good indicators of the mixing processes that occur within each cell. For small times com-
pared to the diffusive time scale, 7p, and high Péclet numbers which are typical of field conditions [Dentz
et al., 2000a, 2000b; Le Borgne et al., 2010; de Dreuzy et al., 2012], spreading caused by velocity fluctuations
increases more rapidly than the smoothing effect produced by local dispersion, so that local concentration
values can significantly deviate from block-averaged concentration values. This approximation can add sig-
nificant errors not only in the estimation of mixing rates, but more importantly in reactive transport simula-
tions where the upscaling of reaction rates requires a correct description of higher-order moments of the
concentration pdf [e.g., Chiogna and Bellin, 2013].

Furthermore, simulations based on traditional grid-based numerical techniques can be affected by large
numerical errors that can make it impossible to accurately estimate true mixing rates [Herrera et al., 2009,
2010; Boso et al., 2013]. On the other hand, Darcy-scale RWPT schemes have difficulty to correctly reproduce
mass transfer processes due to local-scale dispersion because of the limited number of particles that are
used to represent the solute mass distribution. Hence, mixing effects are simulated by averaging particle
masses over volumes with finite dimensions [Salamon et al., 2006], which can introduce significant numeri-
cal artifacts [Herrera et al., 2009]. Numerical errors due to numerical mixing can be alleviated by using more
sophisticated concentration reconstruction techniques [Fernandez-Garcia and Sanchez-Vila, 2011]; however,
they cannot be completely removed.

1.2. Objectives

The main objective of this work is to investigate expressions to compute dispersion coefficients that model
subgrid-scale velocity information that is not explicitly represented in numerical models. This is important
for the typical case when numerical grids have cells that are larger than the typical length scales of the het-
erogeneity present in natural aquifers. We use a similar hybrid numerical method to the one proposed by
Tartakovsky et al. [2008] and Tartakovsky [2010] to independently evaluate the effect of subgrid-scale
spreading and local dispersion on solute mixing. This numerical approach avoids most of the numerical
errors that affect other techniques at the expense of increased computational effort. In this work, we pre-
sent a model that considers Darcy-scale solute transport, where velocity fluctuations are a consequence of
fluctuations in hydraulic conductivity. We simulate the effect of subgrid-scale dispersion by adding the

HERRERA ET AL.

MODELING SUBGRID-SCALE MIXING 3304



@AG U Water Resources Research 10.1002/2016WR019994

effect of a stochastic velocity component to the displacement of fluid particles, which is modeled based on
a time-varying dispersion coefficient. Mass exchange between fluid particles due to dispersion is modeled
with a Smoothed Particle Hydrodynamic (SPH) approximation. We extend the analysis to account for the fil-
tering effect of using finite-size numerical grids on the simulated velocity fields. Hence, the main novel con-
tribution of this work is to test expressions to compute block-scale effective dispersion coefficients to
simulate spreading and mixing in Darcy-scale solute transport simulations in heterogeneous porous media
with a novel numerical Lagrangian framework.

2. Theoretical Framework

2.1. Grid-Averaged Solute Transport Equations
Solute transport in porous media at the local-scale is modeled by the advection-dispersion equation (ADE),
ocC
a5t +V - (VO)—V - (D, V(C)=0, (1)
where C, V, and D; are the local-scale concentration, pore-water velocity, and hydrodynamic dispersion ten-
sor, respectively. It is possible to derive an upscaled transport equation from this equation to use in numeri-
cal models, such that the evolution of the cell-block-averaged concentration [Kitanidis, 1988; Dagan, 1989;
Gelhar, 1993; Kapoor and Kitanidis, 1997; Rubin, 2003], is described by

o< C>

o +V - (<V><C>)=V-(DV <C>)+V: <vc> =0, ()

where < > denotes spatial average over a grid-block, and lower case letters correspond to zero-mean fluc-
tuations around the mean grid-block value, i.e, C= < C> +c and V= <V> +v. The last expression
assumes that there is separation of scales between the subgrid and grid-scale velocity and concentrations
such that <VC>~ < V> <C> + <vc> [Beckie, 1998], which is a common assumption made to derive
coarse-grained transport equations [e.g., Beckie, 1998; Pope, 2000; Efendiev and Durlofsky, 2003].

The last term in (2) represents the interaction between subgrid-scale velocity and concentration fluctuations
[Rubin, 2003]. Since v and c are not explicitly resolved in the numerical grid, this term must be incorporated
through a closure model, for example through a Darcy-scale Fickian model such that <vc> =-D,
(< v(x)>)V <C>, where Dy is a block-scale dispersion coefficient. As discussed in the next sections,
expressions to estimate that coefficient require a model to describe subgrid-scale heterogeneity in natural
formations.

2.2. Heterogeneity Model

Natural heterogeneity present in aquifers involves different spatial scales. For example, it includes large-
scale geological features such as geological layers, stratifications, or facies [Scheibe and Freyberg, 1990; Ritzi
et al., 1994]. The presence of such large-scale units may generate nonstationary flow patterns that are not
amenable to traditional geostatistical descriptions [Zhang et al., 2000; Wu et al., 2003; Dai et al., 2004; De
Marsily et al., 2005]. Moreover, recent advances in field techniques, such as ground penetrating radar (GPR),
used in combination with other field collected data such as results of pumping or slug tests, stratigraphical
logs, etc., allow specifying the boundaries of different hydrogeological units [Jadoon et al., 2008; Lambot
et al., 2008; Hinnell et al., 2010; Wainwright et al., 2014]. Thus, we can assume that these large-scale features
can be deterministically represented in numerical models. Furthermore, the conditioning of numerical mod-
els to field data reduces the uncertainty of simulation results [Rubin et al., 1999; Zhang et al., 2000; Cirpka,
2002; De Marsily et al., 2005].

On the other hand, small-scale heterogeneity within each unit is much more difficult to measure and explic-
itly reproduce in numerical models. It is also reasonable to expect that the magnitude of the fluctuations of
properties at this scale are much smaller than at the large scale; thus, they are more amenable to be mod-
eled as stochastic random functions with spatial correlation [Rubin, 2003]. Since our objective is to develop
closure models to account only for subgrid-scale heterogeneity, we will consider a traditional correlated
Gaussian model to represent the distribution of hydraulic conductivity. We consider that Y=Ilog K follows a
lognormal distribution with expected value my and variance ¢%. For simplicity, we assume that the covari-
ance of Y is isotropic and exponential with length scale /, i.e.,
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Cy(r)=02 exp <f ¥> 3)

The integral scale, IY=(]"0DC Cy(r) dr, which measures the spatial persistence of Y, equal to the length scale,
i.e., Iy =I[Rubin, 2003].

2.3. Numerical Algorithm

We propose a numerical approach to simulate solute migration in heterogeneous aquifers that recognizes
the multiscale nature of the heterogeneity present in natural porous media and the filtering effect of using
a finite size numerical grid. Figure 2 shows why it is necessary to use a fine grid to represent all scales of
information contained in a natural flow field. However, most numerical models are based on grids that are
only able to represent part of the information contained in the true field. The information of scales smaller
than the grid is not explicitly represented on the model. To incorporate the subgrid-scale information, we
propose a model that considers that the Darcy-scale velocity of a fluid particle contains two components: a
deterministic component at the grid scale and a stochastic one at the subgrid scale, as shown in Figure 3.
Mass transfer between neighboring fluid particles due to local-scale dispersion is approximated with a
smoothed particle hydrodynamics (SPH) approximation [Tartakovsky et al., 2008; Herrera et al., 2009; Tarta-
kovsky et al., 2015].

To model the stochastic component of the fluid particles velocity, we use a random-walk particle method
(RWPT). The magnitude of the random particle displacement is given by a block-scale dispersion coefficient,
D, whose estimation is discussed in the next section. The numerical implementation of the RWPT algorithm
is based on the axisymmetric formulation of the dispersion tensor proposed by Lichtner et al. [2002]. The
components of the dispersion tensor are evaluated using a tri-linear interpolation of the grid-scale velocity
to obtain continuity on the dispersion tensor [Salamon et al., 2006].

Grid scale = known

Subgrid scale = unknown

0.2 —1.61

Figure 2. An heterogeneous velocity field (top) represented on a coarse grid (middle) does not contain all small-scale or high-frequency
information (bottom), which is filtered by the grid. Colors represent the magnitude of the flow velocity. Thus, the effect of the removed
fine-scale information must be incorporated through a closure model, e.g., an effective dispersion coefficient.
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2.4. Dispersion Coefficients

We next discuss some expres-
. - sions that have been proposed
o fa in the literature to compute

Stochastic - - e dispersion coefficients to model
......... 5 { ! :

Deterministic Subgrid scale . (Y the effect of fluctuations of
N -

Grid scale = the Darcy-scale velocity, given a
A= 3=y model for the spatial-distribution
4 v A of the hydraulic conductivity.
@ 2.4.1. Macrodispersion
The so-called macrodispersion
Figure 3. Schematic of the proposed numerical approach to simulate solute migration in coefficient, D, models the spread-

heteroqe-ne‘ous aqun‘er.s. The movement c?fa fluid partllcle contains two compon‘ents: a ing or increase of the extent of a
deterministic one that is explicitly solved in the numerical model and a stochastic one that . .
accounts for subgrid-scale fluctuations. solute plume with time [Dentz

et al, 2011]. D,, quantifies spread-
ing in an ensemble average sense, i.e, it represents the spreading of a set of plumes that move through aquifers
that have the same statistics instead of representing the spreading of an individual plume that moves in a single
aquifer.

For plumes that are large enough with respect to the scale of the heterogeneity, D,,, becomes ergodic and
the ensemble value represents the spreading that takes place in a single realization [Dentz et al., 20003,
2000b]. For small heterogeneity, i.e, a2 < 1, linear stochastic theory allows computation of analytical
expressions to calculate D,,, [Gelhar and Axness, 1983; Dagan, 1984]. Expressions to compute D,, take into
account all scales of heterogeneity present in the aquifer, but are only valid for mild heterogeneity since
they are derived based on first-order approximations. D,, depends upon time but it reaches an asymptotic
value after the solute plume has traveled on the order of 10 advective time scales t,=/y /U, where U is the
mean flow velocity [Fiori, 1996]. These expressions have been investigated and validated through numerical
simulations by several authors [e.g., Bellin et al., 1992; Quinodoz and Valocchi, 1993; Chin, 1997; Salandin and
Fiorotto, 1998; Trefry et al., 2003].

Fiori [1996] demonstrated that in general, and in particular for isotropic formations, the effect of local-scale
dispersion on D,, is negligible for typical values of Péclet numbers, Pe, found in field situations
(Pe =~ 100—1000). Thus, it is common practice to neglect the effect of local-scale dispersion in the computa-
tion of D,,,.

2.4.2. Effective Dispersion

The effective dispersion coefficient, D, estimates the rate of growth of the ensemble second central spatial
moment calculated for individual plumes. Since D, is computed from the moments of individual plumes, it
is a better estimator for the dispersion that occurs in a single realization than the macrodispersion coeffi-
cient [Dentz et al., 2000a, 2000b; Cirpka, 2002].

An important difference with respect to D,, is that, in addition to the initial plume size, D, strongly depends
upon local dispersion [Kitanidis, 1988; Dagan, 1990, 1991]. For the case of a point-like injection with Pe=oc, D,
remains zero for all times since the initial solute plume travels along the streamline that passes through the
initial position and does not sample the rest of the heterogeneity of the aquifer. In the presence of local-scale
dispersion, D, is initially equal to local dispersion, D;, grows with time, and for times larger than ©p=12 /Dy, it
finally reaches an asymptotic value equal to the macrodispersion coefficient, D,,, [Dentz et al., 2000a].

Dentz et al. [2000b] extended the analysis of the effective dispersion coefficient for a large extended initial
source. They found that for this initial configuration, D, reaches its asymptotic limit more rapidly for larger
injection regions. They found that for time 7, <t < tp=+/(L2+/2)/D;, where L is the length of the initial
source transverse to the mean flow, the effective dispersion coefficient is identical to the one for a point-
like injection. For typical field values of local-scale dispersion, the effective dispersion coefficient for an
initial line source transverse to the mean flow reaches its asymptotic values after the plume has traveled
100-1000 integral scales of the aquifer heterogeneity.

Cirpka [2002] applied the concept of the effective dispersion coefficient in reactive transport simulations.
He demonstrated that the application of an effective dispersion coefficient computed assuming a point-like
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injection in interpolated coarse-scale fields reproduces the mixing that occurs in fully resolved simulations.
However, this was only valid in the ensemble sense because the plumes used were too narrow. In this situa-
tion, solute bodies spread differently depending upon their initial position. However, for plumes that are
large enough in the direction perpendicular to the flow, such that the ergodicity condition is satisfied,
ensemble-averaged quantities can be replaced by cross-sectional averages [Dentz et al., 2000b; Cirpka,
2002]. Then, Cirpka [2002] hypothesized that for larger solute plumes, it could be possible to reproduce the
subgrid-scale mixing for single realizations, since D, for large plumes (L — o) is equivalent to the ensemble
average of point-like sources [Dentz et al., 2000b].

2.4.3. Block-Scale Dispersion Coefficients

The macro and effective dispersion coefficients, D,, and D,, include all the scales of heterogeneity of the
aquifer, which makes them unsuitable to be used in numerical models where low-frequency information is
explicitly captured in the numerical grid, so that only lost subgrid-scale information must be accounted for
through dispersion coefficients [Rubin et al., 1999; Cirpka, 2002; Fernandez-Garcia and Gémez-Hernandez,
2007]. As noted above, Rubin et al. [1999] proposed a block-effective macrodispersion coefficient, D%, and
developed expressions to compute it given a geostatistical description of the aquifer heterogeneity under
the assumption of mean uniform flow and small ay.

Rubin et al. [1999] developed expressions to compute the components of Dfn, which they demonstrated to
be nonstationary but with negligible fluctuations for small variances of log (K). In general, D%, must be char-
acterized by at least its two first moments; however, for large solute plumes that are ergodic with respect to
the aquifer heterogeneity and numerical grids with large cells, its variance is small and it can be represented
only by its expected value [De Barros and Rubin, 2011]. When the solute plume is larger than about 1.5 times
the grid cell size, A, the plume can be considered ergodic with respect to the subgrid-scale heterogeneity,
and the block-scale macrodispersion coefficient is a good model of the effects of the wiped out variability
on solute migration [Rubin et al., 2003]. Some studies have found that the longitudinal component of Df’n
does not depend upon local dispersion for Pe > 100. For lower Pe, local dispersion reduces D%, particularly
for small grid cells [Rubin et al., 1999; Bellin et al., 2004]. An important feature of the block-scale macrodis-
persion coefficient is that it reaches its asymptotic limit, which is equal to Uly a2, where Iy is the integral
scale of the removed subgrid-scale heterogeneity, much faster than D,, after traveling only a few advective
time scales 7, and thus it can be considered constant in time and space for most practical applications
[Rubin et al., 2003].

In order to apply the hybrid numerical approach described above to model the lost subgrid-scale velocity
information, we compute a block-scale effective dispersion coefficient that allows us to estimate the move-
ment of fluid particles due to the lost information of the velocity field. We apply expressions proposed in
previous works [Rubin et al., 1999; Dentz et al., 2000a; Cirpka, 2002] to compute the block-scale component
of D%, for spreading and DY for mixing parallel to the mean flow velocity U. Details are given in Supporting
Information. Those block-scale expressions are based on applying a high-pass filter to the correlation spec-
trum of the hydraulic conductivity to remove the information that is explicitly represented in the numerical
model, before evaluating the standard expressions for the effective and macrodispersion coefficients.

Figure 4 compares the temporal evolution of D, and D, for different values of Pe and grid sizes. While D,
reaches its asymptotic value after the solute has traveled only tens of integral scales of the heterogeneity,
D’ takes much longer time, particularly for advection-dominated transport, i.e., high Pe, as would apply in
most field situations. On the other hand, D‘e’ reaches its asymptotic limit earlier for lower Pe because larger
values of local dispersion will more quickly smooth concentration fluctuations produced by spreading. Simi-
larly, D*e’ reaches its limit more rapidly for smaller grid sizes since the length scale of the subgrid-scale het-
erogeneity is smaller, hence a solute plume would take less time to sample it.

3. Numerical Simulations

3.1. Simulations Setup

We first generate 2-D spatially correlated log (K) fields using a spectral method [Robin et al., 1993]. Then, we
generate fine-scale flow fields by solving the saturated groundwater flow equation assuming a mean con-
stant hydraulic gradient and no-flow boundary conditions at the top and bottom of the domain. Flow fields
are evaluated by a standard cell-centered finite volume approximation. The linear system of equations is

HERRERA ET AL.

MODELING SUBGRID-SCALE MIXING 3308



@AG U Water Resources Research 10.1002/2016WR019994

0.6 T T T 0.6 T T T
Dp a=1.6l D A=1.6l
o Dj A=16l o Dj A=16l
m A= TEEEECER ™ A=
05k Dp a=3.21 % 05k Dp a=3.21 i
O Dy A=3.2i O Dy a=3.2
D' A=6.41 D] A=6.41 $
O Df a=6.41 g O Df a=6.4l &
" 0.4 00 4
9]

2
Y

D,/Uea

2
Y

thUn'

4
10?
0.6 - T T 0.6 : T
D! A=1.6 D' A=161
o Dfa=16l o Dfa=16l
osk|— Dy A=3.21 | osk|— Dy A=3.21 )
O D A=3.2 O Dy A=3.2
——— Dy A=6.4| Dy A=6.41
O DjA=6.4l O Dj A=6.4l
0.4 E 0.4 g
> ~
|-} L]
D 03 2 03
Dc Da
0.2 R 0.2
0.1 0.1
0 deermnonocs 1 B m—, ¥ 1
107! 10° 10! 102 10° 10 10° 10! 10? 10°
ut/i ut/i

Figure 4. Comparison of block-scale macrodispersion Dﬁ’n (solid lines) and block-scale effective dispersion coefficient for a point-like source D'j (circles) for different Péclet numbers (Pe)

and grid sizes

(A).

solved by a preconditioned iterative solver. The tolerance of the iterative solver was set in order to minimize
errors in the computation of the flow field that can introduce mass balance issues. The cell size in the fine
grid, A, was set equal to 0.2/y in order to completely capture the high-frequency information contained in
the log (K) field [Ababou et al., 1989; Chin, 1997; Rubin, 2003]. We used the fine-scale velocity field as a sur-
rogate model of a true groundwater flow field.

Next, we upscale the fine-scale velocity field to generate coarse-scale flow fields. The upscaling procedure
consists in applying a sharp filter to the fine-scale flow field in order to remove the high-frequency informa-
tion. According to the Nyquist theorem, the resulting coarse-scale flow field has only low-frequency infor-
mation with wave numbers larger than 2A., where A. is the size of the coarse-grid cells [Beckie et al., 1994;
Rubin, 2003]. We consider Ac=16A and A.=32A, i.e., coarse cells have areas that are 256 and 1024 times
larger than fine cells. The upscaling procedure is mass conservative in the sense that flow rates over the
boundaries of the coarse cells are equal to the integral of the fluxes over the fine cells contained on the
coarse block.

Solute transport simulations were performed with the hybrid Lagrangian numerical method described
above. Grid-scale effective and macrodispersion coefficients were included in the simulations through a
random-walk particle tracking algorithm with time-dependent dispersivities to account for the time
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dependency of D% and D%. The

Table 1. Parameters Used in Numerical Simulations . )
effect of local-scale dispersion was

Parameter Value Description . i K

. ; T — simulated with a smoothed particle
@y og (K) variance . .
Ix=1y 20481, I . hydrodynamics (SPH) approxima-
D 16 - Iy Plume length parallel to mean flow tion [Herrera et al, 2009; Herrera
Ay 90 - Iy Plume length transverse to mean flow and Beckie, 2013], assuming a con-
A 0.2y Fine-grid size . . .
A 16A, 32A @i (e stant and isotropic dispersion coef-
Pe=U - Iy /Dy 25,100, 250, 2500 Péclet number (zp/7,) ficient, i.e, D, =D;.
Np 968,000—1,317,600 Number of particles
h A Smoothing length for SPH approximation The initial plume is a rectangular-

shaped region with concentration
Co and size 16ly and 90ly in the
parallel and transverse directions to the mean flow, respectively. These dimensions were chosen in order to
simulate a large plume that satisfies the ergodicity condition, such that the effective dispersion coefficient
is equivalent to the ensemble dispersion coefficient. At the beginning of the simulation, the initial plume
was surrounded by a buffer region with particles with zero concentration to allow for dilution. Since the
size of the mixing zone created in each simulation depends upon the value of Pe, the number of particles
used in each simulation was dependent on this parameter with a maximum number of more than 1.3 mil-
lion particles for the simulations with Pe = 25. Preliminary tests demonstrated that results did not change if
a larger number of particles was used. Table 1 has a summary of the parameters used in the simulations.

3.2. Parameters to Measure Spreading and Mixing
To characterize solute migration, we use parameters to measure spreading and mixing. Traditionally,
spreading of the solute plume has been studied by looking at the temporal evolution of the second central
spatial moment S,, of the plume position [Rubin, 2003]. Hence, for a set of N, particles with position
X=(x,y), we compute

1

Sxx= e (Xi_)?)zy (4)
No 1=

where X corresponds to the average position of the particles.

The characterization of mixing requires measurement of changes in the volume of the aquifer that is occu-
pied by the solute plume. Kitanidis [1994] derived from information theory the concept of dilution index, E,
which has been applied in several studies to characterize solute mixing and dilution [e.g., Ursino et al., 2001;
Rolle et al., 2009; Chiogna et al., 2012; Boso et al., 2013]. The dilution index is calculated as,

E=exp {—J pInpdV}, (5)
v

where p=C(X,t)/M and M is the total solute mass. The integral of the last equation can be numerically
approximated considering that the total mass M is distributed among particles that carry individual concen-
trations. In the presence of local-scale dispersion that distributes the solute mass over larger regions of the
aquifer, E grows with time and in a bounded domain with volume V it will eventually reach its maximum
value, Emax=M/V.

The scalar dissipation rate (SDR) has also been used to quantify mixing in turbulent and porous media flow
[Pope, 2000; Le Borgne et al., 2010; de Dreuzy et al., 2012]. It is defined as,

SDR (t):JDLVC(x, t) - VC(x,t) dQ. (6)
Q
If solute transport can be modeled by an advection-dispersion equation and there are no mass fluxes
through the boundaries of the domain,

1d 1d

SDR(t):—EE[SD(t)]:—fd—JCZ(x, t) dQ, @)

2dt
Q
where SD(t) is known as the scalar dissipation [Pope, 2000]. Since (6) involves computing concentration gra-

dients, it is difficult to evaluate numerically. Thus, it is more convenient to use (7) and evaluate the integral
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to compute SD. When (7) is valid, it is possible to demonstrate that SD(t) scales similarly to the concentration
variance o%, which has also been used in several studies to characterize mixing and dilution in porous
media [e.g., Kapoor and Kitanidis, 1998]. For times that are much larger than the dispersive time 1p, such
that the solute plume becomes more similar to a Gaussian plume, SD scales with t=9/2, where d is the
dimensionality of the problem [Le Borgne et al., 2010; de Dreuzy et al., 2012].

To characterize mixing from the numerical results presented in the next section, we use both parameters:
dilution index and scalar dissipation.

3.3. Simulation Results

3.3.1. Spreading

We first compare second central spatial moments for simulations that do not consider local-scale dispersion.
Preliminary simulations, not shown here, indicated that even though the initial plume is large enough to
satisfy ergodicity, there are large differences in the temporal evolution of S, for different realizations, which
has also been observed in other studies [e.g., Trefry et al., 2003]. Then, to compare solutions for the fine and
coarse grids, we take the average of 10 realizations as shown in Figure 5. This number of realizations was
chosen because, as also found in previous studies [e.g., Rubin et al., 1999; Trefry et al., 2003], the ensemble

S T / S xx0

10 20 30 40 50 60 70 80
tu/1
o2 =10.2
2
o
3
t/):
I L L L L L L Il 14 =T L L L L L L Il
10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
tU/1 tU/1

Figure 5. Second central spatial moment for fine (solid red), only coarse-grid velocity (dashed black) and coarse-grid velocity plus Dy, (o) (green triangles) for average of 10 realizations.
Top row shows simulations for Ac=16A¢ and bottom row for Ac=32A¢.
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average reaches an asymptotic value for even a smaller number of realizations. Figure 5 shows simulated
Swx Versus time for 62=0.2, 1.0 considering only fine-scale velocity, only coarse-scale velocity, and coarse-
scale velocity and D evaluated at t=cc. Simulations computed considering the coarse-grid-scale velocity
show a significantly lower rate of spreading due to removing the high-frequency information of the veloc-
ity field from the coarse grid. For A,=32A the addition of D2 compensates for the missing information
and the simulated rate of spreading is similar to the one observed for the fine-scale simulations. For the
smaller coarse-block (A.=16A) the addition of D’ also makes up for part of the lack of spreading, but
there is still a noticeable difference with the fine-scale results at late times, particularly for o7 =1. We also
run simulations for larger variances (0523,6, not shown here), but the results indicated that in those
cases, as expected considering the first-order approximation used to derive it, ng was not a good model
for the lost subgrid-scale information. These results confirm the findings of previous studies [Rubin et al.,
1999, 2003; Bellin et al., 2004] in the sense that the use of the block-scale macrodispersion coefficient in
coarse-grid simulations is able to model the effect of the missing subgrid-scale information on spreading
provided that the size of the coarse-grid cell is large in comparison to the heterogeneity length-scale (/y)
and that o% is relatively small.

3.3.2. Mixing and Dilution

Preliminary simulations show that the variability for mixing among realizations is much less than for spread-
ing, because mixing strongly depends upon local dispersion which is constant for all realizations. Based on
this and considering that the simulations that include local-scale mass exchange through the SPH approxi-
mation are much more time-consuming that the ones that simulate only particle positions, we decided to
only run three realizations for each scenario. To reproduce the mixing observed in fine-scale simulations,
we simulate the stochastic component of the fluid particles movement using the block-scale effective dis-
persion coefficient D defined in Supporting Information and shown in Figure 4.

Figure 6 shows simulated concentrations after the initial plume has traveled 1007, for different Pe values.
By simple comparison of results computed on a fine grid with grid spacing A and a coarse grid with spacing
A.=16A, one can distinguish the lack of mixing of the coarse-grid simulations due to the lost subgrid-scale
velocity. With the addition of a block-effective dispersion coefficient to simulate the missing spreading of
the fluid particles due to the lost subgrid-scale velocity fluctuations, it is possible to compensate for the lack
of mixing and reproduce the zone of low concentrations around the boundaries of the plume observed in
the fine-scale simulations. However, the overall shape of the plume is much more regular than in the fine-
scale simulations, which denotes a lack of spreading. Figure 7 shows a comparison between the reference
solution computed with the velocity field calculated in the fine grid with results computed with the coarse-
scale velocity (A.=16A) field plus D2. Simple inspection of this figure shows that even though small-scale
spreading is lost in simulations that consider coarse-scale velocity fields, the area of the mixing zone that
corresponds to intermediate values of concentrations is reasonably well reproduced.

The previous conclusions are confirmed by Figure 8 which shows the temporal evolution of the normalized
scalar dissipation, SD (a figure with similar results for Ac.=32A is included in Supporting Information). These
figures show that simulations using only the coarse-grid cell velocity underestimate mixing, which is indi-
cated by the much lower slopes of the curves. The lack of mixing due to removing subgrid-scale velocity
fluctuations is clear in all the simulated scenarios, even for high Pe values. On the other hand, the use of a
constant block-scale macrodispersion coefficient evaluated at long-time (D2 (c0)) overestimates, in most
scenarios by a large margin, mixing rates observed in the fine-grid simulations. The use of a time-
dependent block-scale effective dispersion coefficient leads to close reproduction of the dilution rates simu-
lated in the fine grid during the simulated period.

It is interesting to note that the slopes of the fine and coarse-grid simulation with both dispersion coeffi-
cients, D% and D, tend to be the same at the end of the simulated time for the cases with Pe = 25 and
Pe = 100. This is expected since, as discussed in the previous sections, both coefficients become identical
for times equal to or greater than the diffusive time scale tp, which for these scenarios is 25 and 100 advec-
tive time scales t,=U/ly. Hence, this confirms that for low Péclet numbers it is possible to use a single dis-
persion coefficient that correctly represents spreading and mixing even at early time. However, for higher
Péclet values mixing rates computed assuming a constant grid-scale dispersion coefficient are still very dif-
ferent from the results computed on the fine grid even after the plume has traveled more than 100 advec-
tive time scales. Moreover, following the previous reasoning to explain the results for low Pe, one can
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Figure 6. Simulated concentration distribution after the solute plume has traveled 100 z,,. First, second, and third columns show simulated concentration with fine grid, only coarse-grid

(Ac=16A), and coarse-grid plus block-scale effective dispersion, respectively. The reduced size of the mixing zone (intermediate colors) for the figures in the second column indicates a
lack of mixing with respect to the reference fine-scale simulation (first column).

expect that for advection-dominated situations, which are common in field applications, solute mixing and

spreading can be represented by a single dispersion coefficient only after the plume has traveled thousands
of advective time scales.
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Figure 7. Simulated concentration distribution after the solute plume has traveled different advective time scales t,,. First and third column show results computed with fine-grid veloc-
ity, while and second and fourth columns show results computed considering coarse-grid velocity A.=16A and effective block-scale dispersion coefficient.

The previous results are confirmed when observing the temporal behavior of the dilution index versus time
shown in Figure 9 (a figure with similar results for Ac.=32A is included in Supporting Information). The
curves for coarse-grid simulations that include DS are similar to the ones that correspond to the fine-scale
simulations for all the scenarios simulated.

4., Conclusions

We applied a hybrid Lagrangian numerical approach to investigate the validity of using dispersion coeffi-
cients to account for subgrid-scale spreading and mixing in Darcy-scale numerical simulations of solute
transport in mildly heterogeneous porous media. The novelty of the proposed approach is that it is naturally
able to consider two different dispersion coefficients, one for advective spreading (macrodispersion) and
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Figure 8. Normalized scalar dissipation (SD) computed as the ensemble mean of three realizations versus time for Ac=16A.

the other for local dispersion. Moreover, the numerical scheme completely eliminates numerical dispersion,
which usually adversely affects this type of study.

Through benchmark numerical simulations we demonstrated that:

1. It is possible to capture the effect of the lost subgrid-scale information on spreading and mixing by using
block-scale dispersion coefficients to add a stochastic component to the movement of fluid particles. We
use theoretical formulas for macro and effective dispersion developed by Rubin et al. [1999, 2003], Dentz
et al. [2000a, 2000b], and Cirpka [2002]. This is convenient computationally, since it allows use of a small
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Figure 9. Normalized dilution index (E) computed as the ensemble mean of three realizations versus time for Ac=16A.

number of realizations with large initial plumes. Our same overall numerical approach could be applied
for the more realistic case of finite-sized plumes using the recent theory presented by de Barros and
Dentz [2016].

2. To account only for spreading, it is possible to use a constant dispersion coefficient equal to asymptotic
value of the block-scale macrodispersion coefficient, DY, derived by Rubin et al. [1999].

3. To account only for mixing, it is necessary to use a time-dependent block-scale effective dispersion coef-
ficient, D‘e?, which is equivalent to the effective dispersion coefficient proposed by Dentz et al. [2000a]
and Cirpka [2002].

4. We verified that it is essential to consider that D‘e7 depends upon the local-scale Péclet number and the
grid size.
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