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The excitation of the linear spin wave modes of a soft ferromagnetic free layer of a nanopillar structure
through dc-ac currents that traverse the structure is studied, as well as with ac magnetic fields. There is interest in
understanding the magnetization dynamics in these structures since they may be used as microwave sources when
these nano-oscillators enter into auto-oscillatory regimes. The free layer is a soft ferromagnet, like Permalloy, in
the shape of a circular disk, with a very small thickness in the range of the exchange length. Using a description
of the magnetization dynamics in terms of a Hamiltonian for weakly interacting waves, we determine the spin
wave modes of the structure under two approximations: a very thin film limit, and under a model that includes
the effect of the full magnetostatic interaction. We consider direct and parametric excitations of different spin
wave modes with ac currents, i.e., with exciting frequency approximately equal to the frequency of the mode
or to twice its value, respectively. The Oersted field mainly plays a role in the direct resonant excitation of the
modes. Our main conclusion is that for a dc current below the critical value necessary for the development
of auto-oscillations, using parametric excitation, a very high value of the ac current is necessary to reach the
auto-oscillatory behavior in this geometry. However, if the out-of-plane component of the spin transfer torque
is high enough, the ac critical current for auto-oscillations is significantly reduced, leading to a signature for its
detection. We comment on parallel pumping and transverse excitation using ac magnetic fields.
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I. INTRODUCTION

Magnetization dynamics at the nanoscale gained an im-
portant impetus after the introduction and later experimental
verification of the phenomenon of spin transfer torque (STT).
In 1996, Slonczewski [1] and Berger [2] simultaneously and
independently proposed this effect, which involves the transfer
of angular moment from a spin polarized current to a local
magnetization, thus affecting its dynamics. This opened the
possibility of controlling the magnetization dynamics via STT,
and with it came the prospect of new interesting practical
devices. Indeed, the areas of spintronics [3–5], i.e., electronics
enriched by the spin degree of freedom, and magnonics [6–9],
that studies spin waves in natural/artificial materials, were in
large part initiated and developed through the introduction of
the STT effect.

In this work, we are particularly interested in an ap-
plication that has emerged from STT, i.e., ferromagnetic
nano-oscillators [10–12]. These are localized sources of
microwaves that result from nondecaying periodic oscillations
of the magnetization at the nanoscale. In some configura-
tions the STT counteracts the effect of dissipation allowing for
the magnetization to develop sustained periodic oscillations,
or auto-oscillations, that occur at microwave frequencies.
These spin transfer nano-oscillators (STNO’s) or spin torque
nano-oscillators have as basic configuration a “fixed” magnetic
layer, a nonmagnetic spacer and a “free” layer. A current runs
through these structures that gets spin polarized in the fixed
layer, mostly maintains its polarization through the spacer and
transfers spin angular momentum to the magnetization of the
free layer, thus affecting its dynamics. The magnetization
oscillations of the free layer are detected electronically as
a voltage signal through the magnetoresistance of these
structures (MR). The most common configurations of STNO’s

are nanopoint contacts, spin valves and magnetic tunnel
junctions. Nanocontacts and spin valves use metallic spacers,
their difference is in their geometric patterning, nanocontacts
have extended layers and the current runs only through a
nanocontact, while spin valves correspond to nanopillar struc-
tures with restricted and common geometries for the layers.
Magnetic tunnel junctions use restricted layer geometries, but
the spacers are insulators.

Within ferromagnetic nano-oscillators, we focus our atten-
tion on those oscillators in nanopillar structures [13,14], i.e.,
spin valves, and in their simplest geometry. The latter corre-
sponds to a cylindrical nanopillar with a fixed ferromagnetic
layer made of a hard magnetic material separated through a
nonmagnetic spacer from a free layer made of a soft ferromag-
netic material. We model the free layer as a very thin circular
disk, and for the purpose of calculations we use the parameters
of Permalloy. A current, with dc-ac components traverses this
nanopillar structure, and leads the free layer dynamics.

In a previous work [15], we presented a model, based on
a Hamiltonian formulation [16–20] of the dynamics that uses
spin wave amplitudes as dynamic variables, with which we
studied the dynamics of this free layer under dc currents, in
particular instabilities of auto-oscillations associated with the
growth of nonuniform modes. Within this model, in this work
we studied in detail the effect of adding an ac component
to the current density. We were interested in different ways
of exciting the linear spin wave normal modes of the disk,
and for this we considered two main configurations, i.e., disk
magnetized in plane (IP) and out of plane (OP). In particular,
we studied the effect of ac currents on the development of
auto-oscillations of different normal modes.

In terms of values of the ac excitation frequency, we studied
two types of resonant excitations: one that we call direct, in
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which the ac frequency is similar to the frequency of a normal
mode; and a parametric excitation, in which the ac frequency
is approximately twice the frequency of a normal mode. The
ac current modifies the dynamic terms associated with the
Oersted field and the spin transfer torque, and we take that
into account. A conclusion is that the Oersted field is crucial in
determining which modes are excited in a direct way. This has
been studied in some systems, for example, in Refs. [21–23]
the excitation of spin wave modes is studied in a configuration
equivalent to the OP, and it is seen that the Oersted field
only excites certain modes with specific symmetries, while
in Ref. [24] a configuration equivalent to our IP is studied.
Also, a main conclusion is that the ac parametric excitation
requires very large currents to attain auto-oscillations [25],
but this is diminished appreciably if there is an out-of-plane
component of the spin transfer torque. The latter means that
parametric excitation in a disk geometry may help identify
experimentally materials with high out-of-plane components
of the spin transfer torque. This may be explained since in our
work the out-of-plane component of the spin transfer torque
acts like an effective magnetic field in the same direction as the
equilibrium magnetization, i.e., it is analogous to the effect of
parallel pumping [26,27] and could explain the results obtained
in Refs. [28–30]. We also examined the excitation of the spin
wave modes of the disk via transverse ac magnetic fields, that
compare well with the results of Ref. [31].

In Sec. II, we introduce the model and the Hamiltonian
formalism used. In Sec. III, we study the excitation of spin
wave normal modes using a simplified model of a disk, i.e.,
a very thin limit. In Sec. IV, we study the excitation of linear
spin wave normal modes using a model that takes into account
in its fullness the magnetostatic interaction, i.e., edge effects
become important. Finally, in Sec. V, we conclude.

II. MODEL

In the following, we will present a model used to describe
the magnetization dynamics of a free layer of a magnetic
nanopillar structure. This free layer is made of a soft ferromag-
netic material, that in our calculations is taken as Permalloy.
In our case, the free layer dynamics is externally influenced
by the spin transfer torque induced by a spin polarised electric
current (polarised at the fixed layer), and by a magnetic field
due to the electric current itself, called the Oersted field.

The geometry of the free layer corresponds to a ferromag-
netic disk of circular cross section, of radius R and thickness
L, that we consider small. Its magnetization dynamics is de-
scribed by the Landau-Lifshitz-Slonczewski (LLS) equation,
which normalized reads

d �m
dτ

= − �m × (�heff + �hstt) − α �m × [ �m × (�heff + �hstt)], (1)

with �m = �M/Ms the normalized magnetization, Ms the
saturation magnetization, �heff = �Heff/4πMs the effective field
normalized, �hstt = �Hstt/4πMs the effective field associated to
spin transfer torque, and α the phenomenological damping
constant. Time is normalized as follows, τ = |γ |4πMst , with
γ the gyromagnetic ratio of electron. The usual notation for the
Landau Lifshitz damping constant is λ, but here we are using
α, the Gilbert damping constant, since it is more convenient in

FIG. 1. Configurations of magnetization and spin polarization
studied. The circles and arrows represent the electrons and their
corresponding spin polarization, respectively. (a) Configuration with
the applied magnetic field and spin polarization parallel and in
plane (IP). (b) Configuration with the applied magnetic field and
spin polarization parallel and perpendicular to the free layer plane
(OP). Notice the different choice of Cartesian axes directions in both
configurations.

writing Eq. (1) given our choice of time units and normalized
magnetization and effective fields (for low dissipation, these
constants are related through α ≈ λMs/|γ |). The expressions
for the previously introduced fields are

�heff = −δUeff

δ �m , (2a)

�hstt = −β||J ( �m × p̂) − β⊥J p̂. (2b)

Ueff is the normalized magnetic free energy

Ueff = UZ + UD + UE, (3)

where the different energies considered are: UZ is the Zeeman
energy associated with the interaction of the magnetization
with an applied magnetic field as well as the Oersted field
generated by the spin polarized current that traverses the disk,
UD is the demagnetizing energy, and UE is the exchange
interaction energy. We do not consider an anisotropy energy,
since we consider a soft ferromagnet, as Permalloy. Also, the
coefficients associated with the strength of the different terms
of the spin transfer effective field of Eq. (2b), i.e., the in-plane
coefficient β|| and the out-of-plane one β⊥, take the following
form [32]:

β|| = P||h
(4πMs)2eL

and β⊥ = P⊥h

(4πMs)2eL
, (4)

with P|| and P⊥ the polarization factors, h Planck’s constant,
and e the magnitude of an electron charge. The applied current
density is J , and the direction of spin polarization of the
electric current is p̂. The parameter β⊥ is larger in the case that
the spacer between the fixed and free layers of the nanopillar
structure is an insulating material, while for a metallic spacer
it should be negligible [33,34].

We consider two configurations under which the magneti-
zation dynamics of the disk is studied, Fig. 1 represents both
of them. In Fig. 1(a), both the applied magnetic field and the
spin polarization are in plane, and in the same direction (IP
configuration). In Fig. 1(b), both the applied magnetic field
and the spin polarization are perpendicular to the free layer
plane, in the same direction (OP configuration). In both cases,
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the Cartesian axis are taken such that the spin polarization is
p̂ = x̂.

Since the LLS equation for the magnetization dynamics
conserves the magnitude of the magnetization (| �m2| = 1), the
three components of the magnetization are not independent,
and only two of them are necessary to describe the dynamics.
Due to this and since we are interested in a linear dynamics
close to the equilibrium magnetization that is almost saturated
( �meq ≈ mxx̂) in both configurations, it is convenient to intro-
duce through the classical Holstein-Primakoff transformation
the complex variables a( �ρ,τ ), a∗( �ρ,τ ) in order to describe the
magnetization dynamics:

mx = 1 − aa∗

my = (a − a∗)
√

2 − aa∗/(2i)
mz = (a + a∗)

√
2 − aa∗/2

⎫⎬
⎭ ⇔ a = imy + mz√

1 + mx

. (5)

Thus a and a∗ represent a perturbation of the initial equilibrium
state, and are the classical analogs of the quantum-mechanical
operators of creation and annihilation of magnons. The
LLS equation [Eq. (1)] for the magnetization dynamics is
transformed to the following equations in a and a∗:

i
da

dτ
≈ (1 − iα)

δUt

δa∗ , (6a)

i
da∗

dτ
≈ −(1 + iα)

δU∗
t

δa
, (6b)

where an effective complex free energy Ut = Ueff + iUstt

was introduced, whose real part is the conservative part
associated with the Zeeman, demagnetizing and exchange
fields, and whose imaginary part is associated with the spin
transfer torque. These free energies just presented have been
normalized, i.e.,U = E/(4πM2

s ), with E representing full free
energies. An approximate sign was introduced in Eqs. (6a)
and (6b) since the dissipative term in the equation of motion
was taken in its linear approximation.

In our model we consider that the thickness of the disk
is of the order of the exchange length, i.e., in the order of
nanometers, and thus we assume that the magnetization is
uniform over the thickness, i.e., a = a( �ρ,τ ), with �ρ an in-
plane vector. In order to describe the dynamics in variables
appropriate to the geometry of the disk, we introduce a change
of variables from the field a( �ρ,τ ) to amplitudes amj (τ ), that
are the coefficients of an expansion of a( �ρ,τ ) in a complete
basis in two dimensions:

a( �ρ,τ ) = N00a00(τ )

+
∞∑

m=−∞

∞∑
j=1

Nmjamj (τ )Jm(χmjρ/R)eimφ, (7)

with ρ and φ polar coordinates with origin in the center of
the disk. The previous basis, that involves Bessel functions in
the radial coordinate and sinusoidal periodic functions in the
azimuthal angle, uses functions that have zero slope at the edge
of the disk since we consider a free boundary condition there,
i.e., that the surface anisotropy is negligible, or ∂ �m/∂ρ|ρ=R=0.
This implies that the coefficients χmj appearing in the
expansion of Eq. (7) are zeros of the first derivatives of the
Bessel functions, i.e., J ′

m(χmj ) = 0. We did not include dipolar
pinning [35,36] explicitly in our calculations, since this type

of pinning should come out naturally from our calculations in
which we consider the full magnetostatic interaction and the
associated magnetostatic boundary conditions. The basis set
satisfies the following orthogonality relation:∫

dV Jm(χmjρ/R)Jm′ (χm′j ′ρ/R)ei(m+m′)φ

= (−1)mδm
−m′δ

j

j ′
/
N2

mj (8)

and thus

amj (τ ) = Nmj

∫
dV a( �ρ,τ )Jm(χmjρ/R)e−imφ. (9)

The transformation of variables from a to amj is canonical,
i.e.,

∂a

∂amj

= δa∗
mj

δa∗ , (10)

if the coefficients Nmj satisfy

N00 = 1/
√

V , (11a)

Nmj = 1/
√−Jm(χmj )J ′′

m(χmj )V , (11b)

with V = πR2L the volume of the free layer. Since the
transformation is canonical, the equations of motion in the
new variables amj take the simple form

i
damj

dτ
≈ (1 − iα)

∂Ut

∂a∗
mj

, (12a)

i
da∗

mj

dτ
≈ −(1 + iα)

∂U∗
t

∂amj

. (12b)

In the following, we describe the different terms of the
free energy. In the case of an equilibrium magnetization
configuration that is nonuniform, terms of the free energy that
are higher order than two in the amj variables are required in
order to properly describe the magnetization dynamics—those
are presented in detail in Appendix.

The Zeeman energy of interaction with a magnetic field
applied in direction x is given exactly by

UZ = hx

∫
aa∗dV = hx

∑
mj

amja
∗
mj , (13)

with hx = Hx/(4πMs) a normalized magnetic field applied
along the x direction.

One may also consider the interaction with the magnetic
field produced by the electric current running through the disk,
or the Oersted field, which is given by Ampere’s law∮

�H · �dl = 4π

c

∫
�J · �dS. (14)

We approximate that the current density running through the
disk is uniform over its section, leading to the following
expression for the Oersted field:

�HO = 2πJρ

c
φ̂. (15)
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Thus the Zeeman energy density of interaction with the
Oersted field takes the form

WO = − �HO · �M = −2πMsJρ

c
mφ. (16)

In the in-plane configuration (IP), mφ = −mx sin φ +
my cos φ, leading to the following approximate energy of
interaction with the Oersted field:

U IP
O ≈ hO

∫ [
−aa∗ sin φ + a∗ − a√

2i

×
(

1 − aa∗

4

)
cos φ

]
ρ

R
dV, (17)

with hO = | �HO(ρ = R)|/(4πMs) = JR/(2Msc), i.e., a nor-
malized magnitude of the Oersted field at the edge of the disk.
To the first order, the previous Oersted interaction energy is
approximately

U IP (1)
O = −iV

hO√
2

∑
j

(a−1j + a∗
1j − c.c.)iOj , (18)

where iOj = N1j J2(χ1j )/χ1j . Expressions of higher orders of
the Oersted interaction energy are given in Appendix A 1. In
the out-of-plane configuration, mφ = −mz sin φ + my cos φ,
which leads to

UOP
O ≈ ihO

∫
[(ae−iφ − a∗eiφ)(1 − aa∗/4)/

√
2]

ρ

R
dV.

(19)

To the first order, the previous Oersted interaction energy is
approximately

UOP (1)
O ≈ ihO

√
2V
∑

j

(a1j − a∗
1j )iOj , (20)

with iOj = N1j J2(χ1j )/χ1j . Higher-order terms are presented
in Appendix A 2.

Also, the exchange energy density is given by

WE = A[( �∇mx)2 + ( �∇my)2 + ( �∇mz)
2], (21)

where A is the exchange constant, and to fourth order the
exchange energy takes the form

UE ≈ hE

∫ [
�∇a · �∇a∗ + 1

4
a2( �∇a∗)2 + 1

4
a∗2( �∇a)2

]
R2dV,

(22)

with hE = A/(2πM2
s R2) = (lE/R)2, lE is the exchange

length (approximately 6 nm in permalloy). To second order,
the exchange energy is given by

U (2)
E =

∑
mj

h
mj

E amja
∗
mj , (23)

with h
mj

E ≡ hEχ2
mj . Higher-order terms of the exchange energy

are given in Appendix B (in our more complete version of the
model, the equilibrium configuration is quasiuniform, thus we
need higher order terms of the free energy in order to determine
the linear spin wave modes with respect to this configuration).

With respect to the demagnetizing energy, we present
a simplified model of the disk where we approximate the
demagnetizing field by its very thin film limit, i.e., its only

component is along the direction perpendicular to the plane of
the film HD = −4πM⊥ and UD = 2πM2

⊥V , and also a model
of the disk where the demagnetizing field is taken in its full
form, with details found in Appendix C.

The expression of the effective energy associated with the
spin transfer torque is given by

Ustt = β||J
∫

aa∗(1 − aa∗/4)dV + iβ⊥J

∫
aa∗dV. (24)

The second-order terms of the previous effective energy are
given by

U (2)
stt = (β|| + iβ⊥)J

∑
mj

amja
∗
mj , (25)

with fourth-order terms shown in Appendix D.

III. EXCITATION OF SPIN WAVE MODES
OF THE DISK, SIMPLE MODEL

We start our study of the excitation of the spin wave
modes of a disk, considering a simple model of it: we
assume a very thin limit, with the ratio of the thickness
of the film over its radius as very small, i.e., L/R � 1.
In this case the demagnetizing field may be approximated
as �HD = −4πMzẑ in the in-plane configuration (IP), and
as �HD = −4πMxx̂ in the out-of-plane configuration (OP).
Within this simplified model, in both cases the equilibrium
magnetization corresponds to a completely saturated state in
the direction of the applied field, i.e., in the x̂ axis (in the
OP configuration a magnetic field perpendicular to the plane
needs to be applied with magnitude greater than 4πMs). We
will study the excitation of magnetization dynamics through
the injection of a spin polarised current in the following.

In all the calculations that will be presented in this work, we
considered that the free layer is made of Permalloy, a soft fer-
romagnet with the following associated parameters: saturation
magnetization Ms = 800 emu cm−3, exchange constant A =
1.3 × 10−6 erg cm−1 and exchange length lE = 5.7 nm. Also,
we consider that the radius of the disk is given by R = 50 nm,
the thickness L = 5 nm, and the phenomenological dissipation
constant α = 0.01. We consider that the parameter associated
with spin transfer torque parallel to the plane is P|| = 0.17, and
that perpendicularly to the plane P⊥ is considered variable.

A. In-plane configuration (IP)

Under our simple model of a disk, the demagnetizing energy
in the in-plane configuration (IP) takes the form

UD = 1

4

∫
(a + a∗)2dV = 1

4

∑
mj

|(amj + (−1)ma∗
−mj )|2.

(26)

The equations of motion that follow from Eqs. (12a), (12b),
(13), (23), (25), and (26) if there is an applied dc current density
J = Jdc, are given by

i
d

dτ

(
amj

a∗
−mj

)
=
(

Amj (−1)mBmj

−(−1)mB∗
mj −A∗

mj

)(
amj

a∗
−mj

)
, (27)
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with Amj ≡ (1 − iα)[(hx + 1/2 + h
mj

E ) + (iβ|| − β⊥)Jdc] and
Bmj ≡ (1 − iα)/2. In order to solve these equations and
diagonalize the problem, we do the following Bogoliubov
transformation:(

amj

a∗
−mj

)
=
(

λmj −(−1)mμmj

−(−1)mμ∗
mj λ∗

mj

)(
b

(1)
mj

b
(2)
mj

)
, (28)

with

λmj =
√

Re(Amj ) + ωmj

2ωmj

, (29a)

μmj =
√

Re(Amj ) − ωmj

2ωmj

√
Bmj

B∗
mj

, (29b)

and

ωmj =
√

[Re(Amj )]2 − |Bmj |2

=
√(

hx+h
mj

E +1/2+(αβ||−β⊥)Jdc

)2−(1+α2)/4. (30)

The new equation of motion for the variables b
(1)
mj and b

(2)
mj

becomes

i
d

dτ

(
b

(1)
mj

b
(2)
mj

)
=
(

ωmj + iγmj 0

0 −ωmj + iγmj

)(
b

(1)
mj

b
(2)
mj

)
, (31)

with their direct solutions b
(1)
mj (τ ) = b

0(1)
mj e(−iωmj +γmj )τ and

b
(2)
mj (τ ) = b

0(2)
mj e(iωmj +γmj )τ . These represent the normal modes

of the system that oscillate at frequency ωmj (a normalized
frequency, indeed fmj = 2Ms |γ |ωmj is the frequency in hertz),
and that include their effective dissipation constant

γmj = Im(Amj ) = β||Jdc − α
(
hx + h

mj

E + 1/2 − β⊥Jdc
)
.

(32)

In order for the mj mode to grow exponentially and to observe
auto-oscillations of the magnetization, it should happen that
γmj > 0 ⇒ Jdc > JC

dc = α(hx + h
mj

E + 1/2)/(β|| + αβ⊥), i.e.,
JC

dc is a critical dc current.
We now consider the application of an alternating current,

with a dc current lower than the critical current, i.e., J = Jdc +
Jac cos (�τ ) with Jdc < JC

dc. Since applying an ac current to
the structure is technically simple, it is interesting to explore its
effect in the magnetization dynamics as a means to understand
it and eventually control it in a desired way. The ac current has
an associated ac Oersted field, but it also introduces naturally
a parametric excitation of the system since the spin transfer
torque term is proportional to the current, thus we focused
on understanding both effects. In particular, in the case of
parametric excitation, we consider that the dc current is below
its critical value (if not, one needs to do a nonlinear analysis
of the problem, due to a large excitation of the system, which
was not the goal here) and we focus on the initiation of auto-
oscillations; indeed, we look for magnetization oscillations
that are synchronized with half the frequency of the ac current,
i.e., �/2. The equations of motion for the pair (amj ,a

∗
−mj ) then

take the form

i
d

dτ

(
amj

a∗
−mj

)
=
(

Amj (−1)mBmj

−(−1)mB∗
mj −A∗

mj

)(
amj

a∗
−mj

)
+ Jac cos (�τ )

[(
Dmj

−D∗
mj

)
+
(

Cmj 0

0 −C∗
mj

)(
amj

a∗
−mj

)]
, (33)

with Cmj ≡ (1 − iα)(iβ|| − β⊥) and Dmj ≡ (1 − iα)iV R(δm
−1 − δm

1 )iOj /(2
√

2Msc). Using the same change of variables of
Eq. (28), we obtain

i
d

dτ

(
b

(1)
mj

b
(2)
mj

)
=
(

ωmj + iγmj 0

0 −ωmj + iγmj

)(
b

(1)
mj

b
(2)
mj

)
+ Jac cos (�τ )

(
λ∗

mjDmj − (−1)mμmjD
∗
mj

−λmjD
∗
mj + (−1)mμ∗

mjDmj

)

+ Jac cos (�τ )

(
Re(Amj )Re(Cmj )/ωmj + iIm(Cmj ) −(−1)mBmjRe(Cmj )/ωmj

(−1)mB∗
mjRe(Cmj )/ωmj −Re(Amj )Re(Cmj )/ωmj + iIm(Cmj )

)(
b

(1)
mj

b
(2)
mj

)
. (34)

If the frequency of the alternating current is � ∼ ωmj , a
response at the same frequency is expected. Thus we propose
solutions of the type b

(1)
mj = b

0(1)
mj e−i�τ and b

(2)
mj = b

0(2)
mj ei�τ to

Eq. (34), and considering only resonant terms this equation
becomes approximately(

ωmj − � + iγmj 0

0 −ωmj + � + iγmj

)(
b

0(1)
mj

b
0(2)
mj

)

= −Jac

2

(
λ∗

mjDmj − (−1)mμmjD
∗
mj

−λmjD
∗
mj + (−1)mμ∗

mjDmj

)
. (35)

Since Dmj ∼ (δm
−1 − δm

1 ), the modes excited by the Oersted
field are those with indices m = ±1, they correspond to

degenerate modes, with one circulating in clockwise sense and
the other counterclockwise. One of them (m = 1) is plotted in
Fig. 2.

If we consider excitations of the spin wave normal modes
through an applied ac magnetic field perpendicular to the
equilibrium magnetization (transverse pumping), with hy =
hap cos (�τ ), one obtains Dmj ∼ δm

0 δ
j

0 , meaning that only the
uniform mode would be excited with this mechanism [31].

Now if we consider that the frequency of the alternating
current is � ∼ 2ωmj , i.e., under parametric resonance con-
ditions, the response to the excitation is expected at half of
this frequency. Thus we search for solutions of the form
b

(1)
mj = b

0(1)
mj e(−i�/2+�mj )t and b

(2)
mj = b

0(2)
mj e(i�/2+�mj )t to Eq. (34),

and when only resonant terms are considered, this equation
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FIG. 2. Spatial form of the first m = 1 modes excited by the
Oersted field in the IP configuration. The component mz ≈ 2Re(a) of
the magnetization is plotted for an applied magnetic field hx = 0.1
(normalized by 4πMs). One circulates in clockwise sense and the
other counterclockwise.

becomes⎛
⎝
(

�
2 − ωmj

)+ i(�mj − γmj ) (−1)m(αβ||−β⊥)Bmj Jac

2ωmj

(−1)m(β⊥−αβ||)B∗
mj Jac

2ωmj

(
ωmj − �

2

)+ i(�mj − γmj )

⎞
⎠

×
(

b
0(1)
mj

b
0(2)
mj

)
= 0. (36)

The solution to Eq. (36) is obtained imposing the determinant
of the matrix involved to be null, i.e.,(

(αβ|| − β⊥)Jac

2ωmj

)2

|Bmj |2 = (�mj − γmj )2 +
(

�

2
− ωmj

)2

.

(37)

The solutions found, i.e., b
(1)
mj = b

0(1)
mj e(−i�/2+�mj )t and b

(2)
mj =

b
0(2)
mj e(i�/2+�mj )t start growing exponentially if �mj > 0, thus

the critical ac current for instability corresponds to �mj = 0,
or

JC
ac = 2ωmj

|αβ|| − β⊥|

√
γ 2

mj + (�/2 − ωmj )2

|Bmj |2 . (38)

This critical ac current density is minimal when the frequency
of the alternating current is the double of the natural frequency
of the oscillating mode (� = 2ωmj ), i.e.,

JC
ac(� = 2ωmj ) = 2ωmj |γmj |

|αβ|| − β⊥||Bmj | . (39)

This expression for this critical alternating current density
depends on the dc current applied, and it is plotted in Fig. 3
for the uniform mode (m = j = 0), considering an applied
magnetic field hx = 0.1. It is observed that this critical ac
current is very high, and that the presence of an out-of-
plane component of the spin transfer torque may diminish
considerably the value of this critical ac current density, and
in this way it may become practical to excite parametrically
the uniform mode.

If one were to plot Jac versus Jdc for nonuniform modes the
corresponding magnitude of the slope would be larger than in
Fig. 3. Thus, to excite a nonuniform mode into auto-oscillation,
one needs a higher ac current than for the uniform mode.

1 2 3 4
Jdc 107A�cm2

100
200
300
400
500

Jac 107A�cm2

FIG. 3. Critical alternating current density J C
ac (� = 2ω00) neces-

sary to induce auto-oscillations of the macrospin, as a function of
the dc current density traversing the disk, with an applied magnetic
field hx = 0.1 (normalized by 4πMs), IP configuration. The blue line
corresponds to β⊥ = 0, while the orange to β⊥ = 0.1β||.

B. Out-of-plane configuration (OP)

In the OP configuration, and within the simple model
of the demagnetizing field, the normalized demagnetizing
energy takes the formUD = m2

x/2 = (1 − aa∗)2, meaning that
to quadratic order (neglecting constant terms) it takes the
form UD = −aa∗ = −∑m,j amja

∗
mj . Following Eq. (12a), the

dynamic equation for the complex variable amj to linear order,
and considering dissipation and the spin transfer torque, at a
given applied dc current density J = Jdc, is given by

i
damj

dτ
= (1 − iα)

[
hx − 1 + hE

mj + (iβ|| − β⊥)Jdc)
]
amj ,

(40)

whose solution is simply amj (τ ) = a0
mje

(−iωmj +γmj )τ , with

ωmj = hx − 1 + h
mj

E − β⊥Jdc + αβ||Jdc, (41)

γmj = β||Jdc − α
(
hx − 1 + h

mj

E − β⊥Jdc
)
. (42)

Thus one finds the frequency ωmj of a normal mode, and
its effective growth/decay constant γmj . This becomes an
auto-oscillatory solution if the dc current density exceeds a
critical value JC

dc such that γmj = 0, i.e., JC
dc = α(hx − 1 +

h
mj

E )/(β|| + αβ⊥). If one adds an alternating current density,
i.e., J = Jdc + Jac cos(�τ ) and considers the effect of the
Oersted field, the equation of motion for amj is modified to

i
damj

dτ
= (1 − iα)

[
hx − 1 + h

mj

E + (iβ|| − β⊥)Jdc)
]
amj

+ (1 − iα)(iβ|| − β⊥)Jac cos(�τ )amj

+ (1 − iα)EmjJac cos(�τ ), (43)

with Emj = −i
√

2V Rδm
1 iOj /(2Msc) [from Eqs. (12a) and

(20)]. Thus the modes (m,j ) cannot be excited parametrically.
Also, the modes that are excited directly by the Oersted
field, correspond to m = 1. The first corresponds to the mode
m = j = 1, with mz ≈ √

2Re(a), as follows:

mz =
√

2N11a
0
11J1(χ11ρ/R) cos(φ − ω11t), (44)

which corresponds to a mode rotating anticlockwise, and is
represented in the following Fig. 4. As for the IP configuration,
if the spin wave normal modes are excited via an ac magnetic
field perpendicular to the equilibrium magnetization, with
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FIG. 4. Spatial form of the first mode excited by the Oersted
field in the configuration OP. The component mz ≈ 2Re(a) of the
magnetization is plotted at an applied magnetic field hx = 1.1
(normalized by 4πMs). The mode gyrates counter-clockwise.

hy = hap cos (�τ ), we obtain Emj ∼ δm
0 δ

j

0 , so that only the
uniform mode would be excited by this mechanism.

IV. EXCITATION OF SPIN WAVE MODES OF THE DISK,
MODEL WITH FULL DEMAGNETIZING FIELD

In the following, we study the dynamics of the magnetiza-
tion of the disk using a model that takes into account the full
demagnetizing effects. In particular, the effect of the edges
of the disk will be relevant in this approximation. In order to
determine the spin wave modes of the disk and their excitation,
it is necessary to determine first the equilibrium magnetization
configuration, as is done in the following.

A. Equilibrium configuration

If a dc current density J = Jdc is applied, and is lower
than the critical current density necessary to observe auto-
oscillations of the magnetization, the equilibrium configura-
tion corresponds to one that satisfies

∂Udc
t

∂a∗
mj

∣∣∣∣∣
eq

= 0, (45)

where Udc
t = UZ + UD + UE + Udc

O + iUdc
stt , i.e., the different

terms correspond to the applied magnetic field, the demag-
netizing field, the exchange field, the Oersted field and the
spin transfer torque, respectively. Thus the equilibrium con-
figuration will depend on the strength of the applied magnetic
field and the dc current density. The critical current densities
are JC

dc ≈ 3.44 × 107 A cm−2 and JC
dc ≈ 1.88 × 107 A cm−2

for the IP and OP configurations respectively, for our disk of
permalloy of radius R = 50 nm, and thickness L = 5 nm. The
system of nonlinear equations that determine the equilibrium
configurations was solved by an iterative method, that is
an extension of the Newton-Raphson method. Initially, one
obtains an approximate solution via the linear version of the
equations, and this becomes the initial solution of an iterative
process that converges to the nonlinear solution.

In Fig. 5, two states of equilibrium are represented for the
configurations IP and OP: in both cases, the dc current is
lower than the respective threshold to initiate auto-oscillations
of the magnetization. Figure 5(a) represents the equilibrium

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

x

y

(a) (b)

0.99992

0.99994

0.99996

0.99998

1.00000

FIG. 5. Equilibrium magnetization for two configurations. (a) IP
configuration: we consider an applied field hx = 0.1 and a current
density applied Jdc = 3 × 107 A cm−2. The magnetization is in plane
(mz = 0). (b) OP configuration: we consider an applied field hx = 1.1
and an applied current density Jdc = 1.5 × 107 A cm−2. The color
scale represents the magnetization component mx , and the vectors
the rotating in-plane components of the magnetization.

magnetization in the IP configuration for an in of plane applied
magnetic field hx = 0.1, a

eq
mj is real if m is even and a

eq
mj is

imaginary if m is odd. One has that a
eq
−mj = −a

eq
mj , so that

mz = 0, i.e., the magnetization is in the plane of the disk. In
absence of an applied current, the magnetization is symmetric
with respect to the y = 0 axis. This symmetry is broken by a
dc current due to the effect of the associated Oersted field. In
Fig. 5(b), the OP equilibrium magnetization is presented for an
out-of-plane applied magnetic field hx = 1.1 and an applied
current density Jdc = 1.5 × 107 A cm−2, where the color scale
represents the different values taken by the magnetization
component mx (the vectors represent the in-plane magnetiza-
tion). In this equilibrium OP configuration, the only variables
different from zero, are those with m = 1, i.e., a

eq
1j �= 0. With

this condition, the quantity ae−iφ = ∑
j N1j a1j Jm(χ1jρ/R)

only depends on the variable ρ. Finally, the component
mφ ≈ i(a∗eiφ − ae−iφ)/

√
2 is independent of the coordinate

φ. In the absence of an applied current the configuration is
completely saturated out of the plane, i.e., a

eq
mj = 0.

B. Spin wave modes

In the following, we study the linear spin wave modes of
the disk, that are dynamic magnetic excitations occurring on
top of the just described equilibrium configuration, taking into
account the Zeeman and Oersted fields, demagnetizing and
exchange interactions, and the spin transfer torque term at a
given dc current. In order to study this linear dynamics, we
write amj = a

eq
mj + ãmj , where ãmj represents small dynamic

deviations with respect to the equilibrium configuration. The
equation of motion follows using a Taylor expansion with
respect to the equilibrium magnetization:

i
d

dτ

(
ãmj

ã∗
mj

)
=
(

A
m′j ′
mj B

m′j ′
mj

−B
m′j ′
mj

∗ −A
m′j ′
mj

∗

)(
ãm′j ′

ã∗
m′j ′

)

= Mdc

(
ãm′j ′

ã∗
m′j ′

)
, (46)

where A
m′j ′
mj = (1 − iα)∂2Udc

t /∂a∗
mj∂am′j ′ |eq and B

m′j ′
mj =

(1 − iα)∂2Udc
t /∂a∗

mj∂a∗
m′j ′ |eq. If the matrix Mdc can be
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n=1 n=2 n=3

n=4 n=5 n=6

FIG. 6. Spatial form of the normal modes in the in-plane (IP)
configuration, with an applied magnetic field hx = 0.1. The mz =√

2Re(ã) component of the magnetization is plotted. The modes are
ordered according to their frequencies: n = 1 with f = 8.04 GHz,
n = 2 with f = 8.48 GHz, n = 3 with f = 12.38 GHz, n = 4 with
f = 12.96 GHz, n = 5 with f = 14.18 GHz, and n = 6 with f =
16.55 GHz.

diagonalized, it may be written as Mdc = PDP−1, with D a
diagonal matrix that contains the eigenvalues of Mdc and P has
as columns the eigenvectors of the matrix Mdc. The variables
ãmj do no represent the normal mode amplitudes, thus we do
the following Bogoliubov transformation that accomplishes
the mentioned diagonalization:(

ãmj

ã∗
mj

)
=
(

λn
mj −μn

mj

−(μn
mj )∗ (λn

mj )∗

)(
bn

b∗
n

)
= P

(
bn

b∗
n

)
. (47)

Thus the equations for the new variables bn and b∗
n become

diagonal:

i
d

dτ

(
bn

b∗
n

)
= D

(
bn

b∗
n

)

=
(

ωn + iγn 0

0 −ωn + iγn

)(
bn

b∗
n

)
, (48)

and their solution is directly bn(τ ) = b0
ne

(−iωn+γn)τ . Here
the frequencies are normalized, so that fn = 2Ms |γ |ωn

is the frequency in hertz. The coefficient γn associated with
the exponential growth of this solution is negative for dc
currents below the critical current density associated with
auto-oscillations, i.e., in this case bn(τ ) → 0 when τ → ∞.

In Figs. 6 and 7, the component mz = √
2Re(ã) of the

magnetization is plotted for the first normal modes of oscil-
lation, for the in-plane (IP) and out-of-plane configurations
(OP) respectively, and in the absence of an applied current.
In order to obtain a( �ρ,τ ) associated with a given mode, one
needs to recall the expansion of Eq. (7), and that ãmj =
b0

n(λn
mje

−iωnτ − μn
mje

iωnτ ) for mode n, with b0
n a constant that

may be taken as real (there is an overall arbitrary phase
associated with the initial time).

Figure 6 corresponds to an IP configuration, with hx = 0.1:
the modes are stationary, and have symmetry or antisym-
metry properties under reflections with respect to the x

n=1 n=2 n=3

n=4 n=5 n=6

FIG. 7. Spatial form of the normal modes in the out-of-plane (OP)
configuration, with an applied magnetic field hx = 1.1. The mz =√

2Re(ã) component of the magnetization is plotted. The modes are
ordered according to their frequencies: n = 1 with f = 7.03 GHz,
n = 2 with f = 9.73 GHz, n = 3 with f = 9.99 GHz, n = 4 with
f = 13.15 GHz, n = 5 with f = 13.48 GHz, and n = 6 with f =
14.28 GHz.

axis (φ → −φ) or with respect to the y axis (φ → π − φ).
Numerically, we found that there are modes with λn

−mj =
(−1)mλmj and μn

−mj = (−1)mμmj , or λn
−mj = −(−1)mλmj and

μn
−mj = −(−1)mμmj . In the first case,

mz =
√

2b0
n

⎡
⎣∑

j

N0j

(
λn

0j − μn
0j

)
J0(κ0jρ) cos(ωnτ )

+2
∑
m>0j

NmjJm(κmjρ)
(
λn

mj−μn
mj

)
cos (mφ) cos(ωnτ )

⎤
⎦,

(49)

i.e., these are stationary modes with reflection symmetry with
respect to the x axis (or with respect to φ → −φ). And in the
second case:

mz = 2
√

2b0
n

∑
m>0j

NmjJm(κmjρ)
(
λn

mj + μn
mj

)
× sin (mφ) sin(ωnτ ), (50)

i.e., these modes are stationary and antisymmetric with respect
to reflections with respect to the x axis (antisymmetry with
φ → −φ). Also, the modes separate into those with m even
and m odd (the second condition only arises if λn

0j = 0 and
μn

0j = 0), and this leads to antisymmetric or symmetric modes
with respect to reflections with respect to the y axis, that
depends on them being proportional to cos(mφ) or to sin(mφ),
respectively.

Figure 7 corresponds to the out-of-plane configuration
(OP), for an applied magnetic field hx = 1.1. These are
stationary modes in the radial direction, but in the angular
direction they propagate either clockwise or anti-clockwise.
The modes (n = 2) and (n = 3) are quasi-degenerate, the
one with lowest frequency turns counter-clockwise, while
the other clockwise [37]. The same happens with modes
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(n = 4) and (n = 5). Numerically, we found that the modes
may be understood in the following manner. The modes may
be described in an approximate way if one considers that
λm′j ′ = δm

m′δ
j

j ′ and μm′j ′ = 0, for a given m and j for each
mode. In this way,

mz ≈ 2
√

2b0
nNmjJm(κmjρ)λn

mj cos(ωnτ − mφ). (51)

Thus, these are modes stationary in the radial direction, but that
do rotate anticlockwise (if m > 0) or clockwise (if m < 0) with
respect to the angular direction. The mode n = 1 is associated
to λ00 ≈ 1, the mode n = 2 to λ11 ≈ 1, the mode n = 3 to
λ−11 ≈ 1, and then successively.

Figures 6 and 7, obtained with our analytic-numeric
method, may be compared with similar ones obtained with
usual micromagnetic methods. For the IP configuration the
form of the modes n = 1,2,3 of our Fig. 6 are very similar
to the modes (0,0), (1,0), and (2,0) represented in Fig. 2
of Ref. [24]. The frequencies are also similar, the small
differences are due to the parameters used for permalloy. Also,
for the OP configuration the modes n = 1,2 of our Fig. 7 also
compare well to the modes (0,0) and (0,1) of Fig. 4 of Ref. [24].

C. Excitation with an alternating current

We now consider the excitation of the magnetization
dynamics of the disk via an alternating current, considering
the case where there is a dc current density applied but below
its critical value. Thus, in this case in the absence of the
alternating current, we are under the condition that the normal
modes have their associated coefficient γn < 0, i.e., the normal
modes decay in time and there is an equilibrium configuration,
described in Sec. IV A. The total current density is now

J = Jdc + Jac cos(�τ ). (52)

The alternating current density has associated the following
terms in the effective energy: U ac

t = U ac
O + iU ac

stt . In the pres-
ence of this alternating current density, the equations of motion
for the deviations ãmj from the equilibrium configuration are

i
d

dτ

(
ãmj

ã∗
mj

)

=
(

A
m′j ′
mj B

m′j ′
mj

−B
m′j ′
mj

∗ −A
m′j ′
mj

∗

)(
ãm′j ′

ã∗
m′j ′

)

+
[(

Cm′j ′

−C∗
m′j ′

)
+
(

D
m′j ′
mj E

m′j ′
mj

−E
m′j ′
mj

∗ −D
m′j ′
mj

∗

)(
ãm′j ′

ã∗
m′j ′

)]

= Mdc

(
ãm′j ′

ã∗
m′j ′

)
+
[

Vac + Mac

(
ãm′j ′

ã∗
m′j ′

)]
, (53)

with C
m′j ′
mj = (1 − iα)∂U ac

t /∂a∗
mj |eq,D

m′j ′
mj = (1 − iα)∂2U ac

t /

∂a∗
mj∂am′j ′ |eq, and E

m′j ′
mj = (1 − iα)∂2U ac

t /∂a∗
mj∂a∗

m′j ′ |eq. The
same previous change of variables done to find normal modes
[Eq. (47)] is used, and we obtain the following equations of

motion for the amplitudes bn and their conjugates:

i
d

dτ

(
bn

b∗
n

)
= P−1MdcP

(
bn′

b∗
n′

)
+
[

P−1Vac + P−1MacP
(

bn′

b∗
n′

)]
,

(54)

that can be written in the following way:

i
d

dτ

(
bn

b∗
n

)
=
(

ωn + iγn 0
0 −ωn + iγn

)(
bn

b∗
n

)
+
[(

An

−A∗
n

)

+
(

Bn′
n Cn′

n

−Cn′
n

∗ −Bn′
n

∗
)(

bn′

b∗
n′

)]
Jac cos(�t). (55)

1. Ferromagnetic resonance, role
of the Oersted field

If one excites the system with an alternating current density
with a frequency similar to the frequency ωn of a given mode,
i.e., � ∼ ωn, one expects a response at the same exciting
frequency �, i.e., a solution of the form bn = b0

ne
−i�τ . When

considering only resonant terms, Eq. (55) leads to(
� 0

0 −�

)(
b0

n

b0
n

∗

)
=
(

ωn + iγn 0

0 −ωn + iγn

)(
b0

n

b0
n

∗

)

+
(

An

−A∗
n

)
Jac/2. (56)

Thus the amplitude b0
n becomes

∣∣b0
n

∣∣ = |An|Jac/2√
(� − ωn)2 + γ 2

n

, (57)

showing as expected a resonant response when � � ωn.
The oscillation amplitude is maximal when � = ωn, and the
width of the resonance is basically |γn| (notice that when
Jdc → JC

dc, γn → 0). If taking into account the Oersted field,
in both the (IP) and (OP) configurations, the coefficient An is
maximal for n = 2. For these modes, the maximum amplitude
corresponds to a11. In the absence of the Oersted field, it would
be impossible to excite in a direct way the mentioned modes.

The response of the system to the alternating current, may
be measured by the following quantity:

∑
n

∣∣b0
n

∣∣2 ∼
∑

n

|An|2
(� − ωn)2 + γ 2

n

. (58)

In Fig. 8, the previous response is plotted as a function of the
frequency of the alternating current in the IP configuration.
If one does not consider the Oersted field, only the (n = 5)
mode is excited (continuous orange line). Taking into account
the Oersted field the lowest mode excited corresponds to the
(n = 2) mode (dashed blue line). In Fig. 9, the response
function is plotted as a function of frequency for the OP
configuration. The plot considers the effect of the Oersted
field, in its absence the spin wave modes are not excited. In
the IP configuration, in the absence of the Oersted field, the
a

eq
mj �= 0, but in the OP configuration the a

eq
mj = 0 in the absence

of the Oersted field. Due to this difference in the absence of the
Oersted field, it is only possible to excite via the spin transfer
torque the spin wave modes of the disk in the IP configuration,
but not in the OP configuration.
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8.48 14.1816.55
f (GHz)

n

bn
0 2

FIG. 8. Measure of the response of the system,
∑

n |b0
n|2, when

there is an alternating current applied, in arbitrary units and as a
function of frequency, for an IP configuration. A magnetic field
hx = 0.1 is applied and there is no dc current applied. The dashed
blue line considers the Oersted field, the modes (n = 2), (n = 5), and
(n = 6) are excited. The continuous orange line does not consider the
Oersted field, only the (n = 5) mode is excited.

2. Parametric resonance, role of the out-of-plane component
of the spin transfer torque

If one excites the system with a frequency that is ap-
proximately twice the frequency of a given normal mode,
i.e., � ∼ 2ωn, we expect the response to be at a frequency
that is approximately at half the value of the frequency �,
i.e., we search for a solution of the form bn = b0

ne
(−i�/2+�)τ .

Considering only resonant terms, we find that Eq. (55) leads
to((

�
2 − ωn

)+ i(� − γn) CnJac/2

−C∗
nJac/2

(
ωn − �

2

)+ i(� − γn)

)(
b0

n

b0
n

∗

)
= 0.

(59)

A nonzero solution of Eq. (59) is obtained by imposing the
associated determinant to be null, i.e.,

(� − γn) =
√

J 2
ac|Cn|2/4 − (�/2 − ωn)2. (60)

9.73 19.42
f (GHz)

n

bn
0 2

FIG. 9. Measure of the response of the system,
∑

n |b0
n|2, when

there is an alternating current applied, in arbitrary units and as a
function of frequency for an OP configuration. A magnetic field
hx = 1.1 is applied and there is no dc current applied. The excitation
is via the Oersted field, the lowest mode excited corresponds to the
(n = 2) mode.

1.0 1.5 2.0 2.5 3.0
Jdc 107A/ cm2

50

100
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FIG. 10. Critical alternating current density for mode (n = 1), as
a function of the dc current density, for hx = 0.1, IP configuration.
The orange squares represent the case β⊥ = 0, while the blue points
β⊥ = 0.1β||.

In order for the amplitude bn of mode (n) to start growing
exponentially, it must happen that � > 0. Thus the critical
ac current density for the development of auto-oscillations is
given by � = 0, i.e.,

JC
ac = 2

√
γ 2

n + (�/2 − ωn)2/|Cn|. (61)

Thus, the ac critical current density is minimal when �/2 =
ωn, furthermore, it has an associated width as a function of
frequency � equal to 2|γn|, and it depends also on the absolute
value of the coefficient Cn.

In the IP configuration the coefficient Cn is highly sensible
to the variation of the parameter β⊥. It is possible to excite
parametrically all the normal modes of oscillation, and the
spin transfer torque plays an important role in all of them. In
Fig. 10, we plot the critical ac current density for the mode
(n = 1) as a function of the dc current density applied (we take
�/2 = ωn, and the applied magnetic field is hx = 0.1). It is
seen that the value of the ac critical current is much greater
than the dc critical current in this geometry, but it is also seen
that there is a large sensibility of the ac critical current to the
value of the out-of-plane spin transfer torque parameter β⊥
(the orange squares represent the case β⊥ = 0, while the blue
points β⊥ = 0.1β||). Thus a large value of β⊥ may bring the
ac critical current density to the range of the dc critical current
density, meaning that a parametric resonance experiment in
this system becomes a good test to determine the strength of
β⊥ versus β||.

In the OP configuration, the mode (n = 1) corresponds to
the quasiuniform mode and it cannot be excited parametrically,
and coincides with the conclusions of our macro-spin analysis.
The first mode that may be excited parametrically is the (n = 2)
mode, where the out-of-plane spin transfer torque plays an
important role. In Fig. 11, the critical ac current density is
plotted for the mode (n = 2) as a function of the dc current
density applied, with hx = 1.1.

Our results may be used to explain the results of Ref. [29].
They compare their experiments and their macro-spin ap-
proximation magnetization simulations. Their results present
a qualitative accord, there are quantitative discrepancies. We
think these discrepancies may be explained if a perpendicular
spin transfer torque term is considered. Also, using our
model, the parameter β⊥ may be estimated by comparing our
numerical results with experimental measurements, as those
of Fig. 2 of Ref. [28] or Fig. 3 of Ref. [30].
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FIG. 11. Critical ac current density for the mode (n = 2), as a
function of the dc current density, with hx = 1.1, OP configuration.
The orange squares represent the case β⊥ = 0, while the blue points
β⊥ = 0.1β||.

D. Excitation of spin wave normal modes with
an alternating magnetic field

Here we present results on the excitation of spin wave
normal modes when applying a uniform ac magnetic field in
the plane of the disk in the IP configuration. The magnetic
field is perpendicular to the direction of the equilibrium
magnetization, i.e., in direction ŷ. This study allowed us to
validate our model, since our results compare well to the
micromagnetic simulations of Ref. [31]. We considered a disk
with the parameters of this reference, i.e., a permalloy disk with
radius R = 250 nm and thickness L = 25 nm. We studied the
response as a function of applied dc magnetic field Hx , when
there is an ac uniform component of the magnetic field given by
h̃y = hap cos (�τ ), at a fixed frequency of 10 GHz. In Fig. 12, it
is observed that only a few modes are excited, specifically those
which are symmetric with respect to the x axis. Of the four
modes that are excited, three of them correspond to localized
modes in the edges of the disk. The mode with the highest peak
corresponds to the quasi-uniform mode, whose amplitude of
oscillation extends to practically all the disk. The comparison
of our results with the micromagnetic simulations of Ref. [31]
is satisfactory, specially in terms of the modes that are excited.
However, we observe quantitative differences for the resonant
magnetic fields of the edge modes. The latter may be explained,

FIG. 12. Response of the normal modes of the disk as a function
of dc applied magnetic field, when the spin wave modes are excited
via a uniform ac magnetic field applied in plane normally to the
equilibrium magnetization, at a fixed frequency of 10 GHz in
Permalloy (IP configuration).

since the larger the radius of the disk, in order to get higher
accuracy, one needs a larger basis of functions within our
model; at low radii, the exchange interaction is dominant and
the spatial variation of the modes is smoother.

V. CONCLUSIONS AND REMARKS

We have presented the linear spin wave modes of a thin disk
made of a soft ferromagnetic material, calculated in a very thin
film limit approximation and also considering the full effect of
the magnetostatic interaction, i.e., with edge effects included.
The configurations considered are an in-plane magnetized case
(IP) and an out-of-plane one (OP). We studied the excitation of
these normal modes via a spin polarised electric current, with
dc and ac components, considering the spin transfer torque
and Oersted fields associated. We also considered excitation
of the modes via alternating magnetic fields, and we did find
agreement with micromagnetic simulations.

Within the simple very thin film limit approximation, in
both configurations it is not possible to excite the uniform
mode in a direct way, i.e., with an exciting frequency that is
resonant with the frequency of the mode. It is only possible
to excite the uniform mode parametrically and in the IP
configuration. However, in the latter case, the ac current
density needed to attain auto-oscillations (if the dc part is below
its corresponding critical value) is too large to be detected
experimentally, although if there is an appreciable out-of-plane
component of the spin transfer torque this ac critical current
diminishes significantly.

Within the model that includes the full demagnetizing field,
that has associated nonequilibrium magnetization configura-
tions, it is possible to excite the spin wave normal modes either
directly or parametrically. For the case of direct excitation, the
role of the Oersted field is important in both configurations:
there are modes that are excited that in its absence would be
“silent.” Using parametric excitation the ac currents needed
to attain auto-oscillations are too large, but if the out-of-plane
component of the spin transfer torque is significant one may
get to a point where the ac and dc critical current densities are
comparable.

As a summary, the main conclusions on excitation of
spin wave normal modes of a disk with ac currents, is that
with exciting frequencies resonant with the frequencies of
the modes (direct excitation) the role played by the Oersted
field is significant, and if the exciting frequencies are twice
the frequencies of the modes (parametric excitation) one sees
a significant effect only for large out-of-plane components
of the spin transfer torque. The latter means that parametric
excitation in this geometry should be a way to distinguish
experimentally a significant out-of-plane component of the
spin transfer torque.
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APPENDIX A: OERSTED FIELD FREE ENERGY

1. In-plane configuration (IP), higher order contributions

The higher order terms of the Oersted free energy in the IP
configuration are

U2
O = iV hO

(
am1j1a

∗
m2j2

− c.c
)
δm1+1
m2

iOm1j1m2j2
, (A1a)

U3
O = iV

hO

4
√

2

[[
(−1)m1a∗

−m1j1
− am1j1

]
am2j2a

∗
m3j3

− c.c.
]

× δ
m1+m2
m3−1 iOm1j1m2j2m3j3

, (A1b)

with the following definitions, that involve integrals that are
calculated numerically:

iOm1j1m2j2
≡ Nm1j1Nm2j2

∫ 1

0
Jm1

(
χm1j1x

)
Jm2

(
χm2j2x

)
x2dx,

(A2a)

iOm1j1m2j2m3j3
≡ Nm1j1Nm2j2Nm3j3

∫ 1

0
Jm1

(
χm1j1x

)
× Jm2

(
χm2j2x

)
Jm3

(
χm3j3x

)
x2dx. (A2b)

2. Out-of-plane configuration (OP), higher-order contribution

In the OP configuration a third-order contribution to the
free energy due to the Oersted field corresponds to

U (3)
O = − iV

hO

2
√

2

(
am1j1am2j2a

∗
m3j3

− a∗
m1j1

a∗
m2j2

am3j3

)
× δ

m1+m2−m3
1 iOm1j1m2j2m3j3

. (A3)

APPENDIX B: EXCHANGE ENERGY,
FOURTH-ORDER TERMS

The fourth-order term of the exchange energy is given by

U4
E = hE

4

∫
[( �∇a)2a∗2 + c.c.]R2dV. (B1)

In order to handle these terms, we use the following operators
and results:

L± = ∂

∂x
± i

∂

∂y
⇒ �∇a · �∇a = L+aL−a, (B2)

L± = e±iφ

(
∂

∂ρ
± i

1

ρ

∂

∂φ

)

⇒ L±(Jm(kρ)eimφ) = ∓kJm±1(kρ)ei(m±1)φ. (B3)

We integrate in φ, and in z, we do the change of variables
x → ρ/R, and it leads to

U4
E = − V

hE

2

(
am1j1am2j2a

∗
m3j3

a∗
m4j4

+ c.c.
)

× δ
m1+m2
m3+m4

iEm1j1m2j2m3j3m4j4
, (B4)

where we defined

iEm1j1m2j2m3j3m4j4
≡ χm1j1χm2j2Nm1j1Nm2j2Nm3j3Nm4j4

×
∫ 1

0
dxxJm1+1

(
χm1j1x

)
Jm2−1

(
χm2j2x

)
× Jm3

(
χm3j3x

)
Jm4

(
χm4j4x

)
. (B5)

APPENDIX C: DEMAGNETIZING FIELD AND
DEMAGNETIZING ENERGY

To determine the demagnetizing field of our thin disk
(the magnetization is assumed uniform over the thickness
of the disk) we first calculate the magnetostatic potential
( �HD = −�∇�), which has contributions from surface and
volume effective magnetic charges:

�(�x) =
∫

dS ′ n̂ · �M(�x ′)
|�x − �x ′| −

∫
dV ′ �∇ · �M(�x ′)

|�x − �x ′| . (C1)

σM = (n̂ · �M) represents the surface magnetic charge density,
with contributions from the top and bottom surfaces of the
disk and from its mantle; and ρM = −( �∇ · �M) the volumetric
magnetic charge density, with contributions from the interior
of the disk. In order to calculate these potentials we use the
following representation of the Green’s function in terms of
cylindrical coordinates:

1

|�x − �x ′| =
∞∑

m=−∞
eim(φ−φ′)

∫ ∞

0
dkJm(kρ)Jm(kρ ′)e−k|z−z′ |.

(C2)

The demagnetizing field averaged over the thickness of the
disk can be separated into two parts:

(a) Its component in the perpendicular direction to the plane,
with contribution only from surface charges in the top and
bottom surfaces:

�H⊥
D = −4π �M⊥(ρ,φ) + 2Ms

L

∫ ∞

0
dkf (kL)

×
∞∑

m=−∞

[∫
dS ′Jm(kρ ′) �m⊥(ρ ′,φ′)e−imφ′

]
Jm(kρ)eimφ,

(C3)

with f (u) ≡ exp(−u) − 1 + u.
(b) Its in-plane components, with contributions from mantle

surface charges as well as volume charges:

�H ||
D = − 2Ms

L

∫ ∞

0
dk

f (kL)

k2

×
∞∑

m=−∞

[∫
dS ′ �∇(Jm(kρ ′)e−imφ′

) · �m||(ρ ′,φ′)
]

× �∇(Jm(kρ)eimφ). (C4)

Furthermore, the demagnetizing energy is calculated in the
following form:

UD = − 1

8πM2
s

∫
[ �H⊥

D + �H ||
D] · �MdV. (C5)

We write the magnetization components in the following way:
(M± ≡ Mx ± iMy and M± ≡ Mz ± iMy in the configurations
in which the disk is magnetized in plane and out of plane,
respectively):

M⊥ = Ms

∑
lj

σljNlj Jl(κljρ)eilφ,

M± = Ms

∑
lj

σ±
lj Nlj Jl(κljρ)eilφ. (C6)
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Using Eqs. (C3)–(C6), one obtains the demagnetizing energy
as follows, UD = U⊥

D + U ||
D , with

U⊥
D = 1

2

∑
l1j1j2

(−1)l1σ⊥
l1j1

σ⊥
−l1j2

(
δ

j1
j2

− 2V I 1
(l1,j1,j2,L/R)

)
, (C7a)

U ||
D = −V

4

∑
l1j1j2

(−1)l1
(
σ−

l1j1
σ−

(−l1−2)j2
I 2

(l1,j1,j2,L/R)

+ σ+
l1j1

σ+
(−l1+2)j2

I 3
(l1,j1,j2,L/R)

− 2σ+
l1j1

σ−
(−l1)j2

I 1
(l1,j1,j2,L/R)

)
, (C7b)

where the σ⊥
lj , σ+

lj y σ−
lj are functions of the vari-

ables amj [see Eqs. (5) and (7)], with details of
these expressions in Appendixes C 1 and C 2; and the
I 1

(l1,j1,j2,L/R), I
2
(l1,j1,j2,L/R), I

3
(l1,j1,j2,L/R) represent integrals that

are calculated numerically, with details in Appendix C 3.

1. Configuration magnetized in plane

In the in-plane configuration (IP), we have that

M⊥ = Mz = (a + a∗)
√

2 − aa∗/2, (C8a)

M± = Mx ± iMy = (1 − aa∗) ± (a − a∗)
√

2 − aa∗/2.

(C8b)

The σ ′
lj s [defined through Eq. (C6)] are functions of the a′

mj s

[defined through Eqs. (5) and (7)]. These may be expanded in
power series of the a′

mj s as follows (superindices indicate the
order of approximation):

σ⊥
lj

(0) = 0 = σ⊥
lj

(2) = σ⊥
lj

(4)
, (C9a)

σ⊥
lj

(1) = (alj + (−1)la∗
−lj )/

√
2, (C9b)

σ⊥
lj

(3) = − V

2
√

2

∑
m1j1m2j2m3j3

(
am1j1 + (−1)m1a∗

−m1j1

)
× am2j2a

∗
m3j3

i4
d ljm1j1m2j2m3j3

δ
m1+m2−m3
l , (C9c)

σ z
00

(0) = σ+
00

(0) = σ−
00

(0) =
√

V , (C9d)

σ+
lj

(1) = −σ−
lj

(1) = (alj − (−1)la∗
−lj )/

√
2, (C9e)

σ+
lj

(2) = σ−
lj

(2) = −2
∑

m1j1m2j2

am1j1a
∗
m2j2

δ
m1−m2
l id

3
(ljm1j1m2j2),

(C9f)

σ+
lj

(3) = −σ−
lj

(3) = σ z
lj

(3)
, (C9g)

σ+
lj

(4) = σ−
lj

(4) = 0 (C9h)

with id
3
(ljm1j1m2j2) and id

4
(ljm1j1m2j2) integrals defined in Ap-

pendix C 3.

2. Configuration magnetized out of plane

In the out-of-plane configuration (OP), we have that

M⊥ = Mx = 1 − aa∗, (C10a)

M± = Mz ± iMy = [(a + a∗) ± (a − a∗)]
√

2 − aa∗/2.

(C10b)

The σ ′
lj s [defined through Eq. (C6)] are functions of the a′

mj s

[defined through Eqs. (5) and (7)]. These may be expanded in
power series of the a′

mj s as follows (superindices indicate the
order of approximation):

σ⊥
lj

(1) = 0 = σ⊥
lj

(3) = σ⊥
lj

(4)
, (C11a)

σ⊥
00

(0) =
√

V , (C11b)

σ⊥
lj

(2) = −2V
∑

m1l1m2l2

am1l1a
∗
m2l2

δ
m1−m2
l i3

d (ljm1l1m2l2), (C11c)

σ−1
−l′j ′ =

√
2(−1)l

′
a∗

l′j ′ = (−1)l
′(
σ+1

l′j ′
)∗

, (C11d)

σ−3
−l′j ′ = −V

1

2
√

2

∑
m1j1m2j2m3j3

(−1)l
′
a∗

m1j1
am3j3a

∗
m2j2

× i4
d (l′j ′m1j1m2j2m3j3)δ

m1+m2−m3
l′ = (−1)l

′(
σ+3

l′j ′
)∗

(C11e)

σ±
lj

(0) = σ±
lj

(2) = σ±
lj

(4) = 0 (C11f)

with id
3
(ljm1j1m2j2) and id

4
(ljm1j1m2j2) integrals defined in Ap-

pendix C 3.

3. Integrals calculated numerically

Integrals calculated numerically are

I 1
(l1,j1,j2,L/R) = Nl1j1Nl1j2Jl1

(
χ

l1
j1

)
Jl1

(
χ

l1
j2

)
×
∫ ∞

0
dk

f (kL/R)k2J ′
l1

(k)2

(L/R)
(
k2 − (

χ
l1
j1

)2)(
k2 − (

χ
l1
j2

)2) ,
(C12a)

I 2
(l1,j1,j2,L/R) = Nl1j1N(l1+2)j2Jl1 (χl1

j1
)Jl1+2

(
χ

l1+2
j2

)
×
∫ ∞

0
dk

f (kL/R)k2J ′
l1

(k)J ′
l1+2(k)

(L/R)
(
k2−(χl1

j1
)2
)(

k2−(χl1+2
j2

)2) ,
(C12b)

I 3
(l1,j1,j2,L/R) = Nl1j1N(l1−2)j2Jl1

(
χ

l1
j1

)
Jl1−2

(
χ

l1−2
j2

)
×
∫ ∞

0
dk

f (kL/R)k2J ′
l1

(k)J ′
l1−2(k)

(L/R)
(
k2−(χl1

j1

)2)(
k2−(χl1−2

j2

)2) .
(C12c)

i3
d(ljm1j1m2j2) = NljNm1j1Nm2j2

∫ 1

0
Jl

(
χl

jx
)
Jm1

(
χ

m1
j1

x
)

× Jm2

(
χ

m2
j2

x
)
xdx, (C13a)

i4
d(ljm1j1m2j2m3j3) = NljNm1j1Nm2j2Nm3j3

∫ 1

0
Jl

(
χl

jx
)
Jm1

× (χm1
j1

x
)
Jm2

(
χ

m2
j2

x
)
Jm3

(
χ

m3
j3

x
)
xdx.

(C13b)
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APPENDIX D: SPIN TRANSFER TORQUE, FOURTH-ORDER TERMS

The fourth-order terms of the spin transfer torque effective energy are

U (4)
stt = − β||JV

2
am1j1a

∗
m2j2

am3j3a
∗
m4j4

i4
d(m1j1m2j2m3j3m4j4)δ

m1+m3
m2+m4

. (D1)
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