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a b s t r a c t

Conditions for boundedness and convergence of the output error and the parameter error for various
Caputo's fractional order adaptive schemes based on the steepest descent method are derived in this
paper. To this aim, the concept of sufficiently exciting signals is introduced, characterized and related to
the concept of persistently exciting signals used in the integer order case. An application is designed in
adaptive indirect control of integer order systems using fractional equations to adjust parameters. This
application is illustrated for a pole placement adaptive problem. Advantages of using fractional adjust-
ment in control adaptive schemes are experimentally obtained.

& 2017 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

It is well known the relevance of adaptive systems in modern
engineering together with the fact that most of them are based on
gradient decent algorithms mainly because of its simplicity, wide
range of applications and effectiveness. For instances model re-
ference adaptive control and adaptive observers, which have been
used to resolve many engineering problems [1,2]. Although the
gradient approach gives clues to design adaptive systems, analytic
tools coming from system theory are additionally required to
prove stability and convergence of its relevant variables.

Equations defined by fractional operators have a non-local
property (entailed in the definition of fractional derivatives as
integrals), which could potentially improve the performance of
adaptive systems under parameter variations and external per-
turbations when the adaptive laws are defined using fractional
derivatives. Roughly speaking, the non-locality would counter-
balance the past data with the present one obtaining smoother
solutions. This has already motivated the introduction of fractional
calculus in some proposals of adaptive schemes. The pioneering
design is found in [3], which showed through simulations some
advantages in speed of convergence and stability, in comparison
with integer adjustment by the adequate choice of the derivation
order. As a consequence, the derivation order of adaptive laws is a
relevant optimization variable. However, a theoretical foundation
for the error convergence analysis has not been reported in the
revised literature. This is the main motivation for this work.
rights reserved.
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Our contribution is to give explicit conditions for convergence
of the error to its minimum for the simplest fractional scheme of
the steepest descent approach. This problem remains unsolved in
the literature as stated in the recent work [4]. An explicit appli-
cation of the analytic results obtained in this paper to indirect
adaptive control of integer systems is presented. This problem also
has not an analytic solution in the revised literature, see for in-
stance the recent paper [5] where a time discretization is required
to adjust the parameters and no convergence condition is pro-
vided. The application itself is a contribution since in [4] no spe-
cific application was proposed. Looking relax the convergence
condition, we will also study more complicated schemes to adjust
parameters. These schemes show additional features as robustness
under external perturbations and arbitrary speed of convergence.

Our approach is based on the continuous adjustment and can be
applied in extreme seeking problems. In [6] a discrete approach is
considered for an specific problem, though none condition on the
convergence is obtained. A different approach using sliding mode is
studied in [7], though no convergence to the minimum is achieved
and the error remains oscillating around zero with small amplitude.
Our approach uses the well studied Caputo derivative, however oth-
ers authors have studied a distributed model approach to the frac-
tional derivative concept applying it to error models (see [8]), though
only stability is proved and many issues of the Lyapunov approach
used remain unclear (e.g. ( )V 0 could be infinite, the stability is proved
for internal variables but not for the relevant ones). Though a theo-
retical argumentation of practical advantages of using the fractional
approach in adaptive schemes is not expressly undertaken here, some
advantages in transient and robustness behavior as compared to in-
teger parameter adjustments are obtained by simulations.

The paper is organized as follows. In Section 2 necessary back-
ground concepts and propositions are stated. Section 3 presents
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convergence results for a simple fractional adaptive scheme, and the
concept of sufficiently exciting signals is introduced. Section 4 posits
convergence results for various fractional adaptive schemes based on
the concept of sufficiently exciting signals. In Section 5, an example of
application is developed. Finally, in Section 6 some conclusions and
open problems on this subject are mentioned.
2. Preliminaries

Some definitions and properties used throughout the paper are
presented in this section. These are mainly taken from [9] except
where indicated.

Consider [ ] →f T: 0, a function.

Definition 1. The fractional integral of order α ≥ 0 of ∈ ([ ])f T0,1 ,

i.e. ∫ τ τ( ) < ∞f d
t

0
, is defined as

∫Γ α
τ τ τ( ) =

( )
( − ) ( )α α−I f t t f d

1
.

t

0

1

for ∈ ( ]t T0, .
Among the many fractional derivative definitions, the following

assures implementable adaptive laws (as we will see in Section 3.1).

Definition 2. The Caputo derivative of order α > 0 of function
∈ ([ ])f T0,n , i.e. f having continuous first n derivatives, is defined as

( ) = ( )α α−D f t I D f t ,n n

where α= ⌈ ⌉n .
An analogue to the fundamental theorem of integer calculus is

stated in the next two properties for Caputo fractional derivative.

Property 1. If f belongs to  [ ]a b,n , then for all ∈ [ ]t a b,

∑( ) = ( ) − ( )
! ( )

α α

=

( )
I D f t f t

f
k

t
0

.
1k

n k
k

1

Property 2. If f belongs to  [( )]∞ a b, , the Lebesgue space of bounded
functions on the interval (a,b), then for all ∈ [ ]t a b,

( ) = ( ) ( )α αD I f t f t . 2

The next results will be regularly cited along this work. It is
assumed that α< ≤0 1. The first is an important property of Ca-
puto Derivative (also proved for differentiable functions in [10]).

Property 3. [[11], Lemma 1]Let (·)x be an absolutely continuous
function, then for all ≥t 0 it holds that

( ) ≤ ( ) ( ) ( )α αD x t x t D x t2 . 32

The next lemma is refereed as the Comparison Principle.

Lemma 1. [[12], Lemma 6.1] If ( ) = ( )x y0 0 and ( ) ≥ ( )α αD x t D y t for all
≥t 0, then ( ) ≥ ( )x t y t for all ≥t 0.

The following lemma is referred as Babalat Lemma.

Lemma 2. [[13], Lemma 9] If [ ∞) →f : 0, is a uniformly con-

tinuous function such that ∫ τ τ| ( )|→∞
∞

f dlimt 0
exists and is finite, then

( ) =→∞f tlim 0t .
The following theorem plays a key part to establish
convergence results.

Theorem 1. [[14], Theorem 4] Consider the following Caputo system,

( ) = ( ) ( ) ( )αD x t A t x t 4

where [ ∞) →x: 0, n and [ ∞) → ×A: 0, n n. Let [ ∞) →f : 0, be an
non negative differentiable function such that [ ] → ∞αI f as → + ∞t .
Let ( ) ∈x 0 n be any initial condition. If ( ) ≤ − ( )A t f t I holds for all

≥t 0, where I is the identity matrix, and the components of matrix A
are of class ( )+C1 then x converges to zero.
3. Fractional adaptation using gradient method

Based on the fact that the (integer) gradient of a function
(·) ∈J is orthogonal to its level curve, this method proposes to

minimize the function  →J: n by means of a sequence given by

ϕ ϕ γ ϕ= − ∇ ( ) ≥ ( )ϕ+ J n, 0, 5n n n n1

where γn are suitably chosen real numbers.
A classical result states that if J is a convex differentiable

function and ∇J is a Lipschitz continuous function, the sequence
(5) converges to ϕ( )ϕ Jarg min .

We will look for a continuous generalization of the gradient
method, using fractional operators. Although the level set is given
by ϕ τ( ( )) =J C and ϕ τ[ ( ( ))] =αD J 0, we cannot conclude that

ϕ τ<∇ > =ϕ J d d, / 0, because the chain rule from integer calculus has
not general validity in fractional calculus. Therefore, there are no
reasons to replace in (5) the integer order gradient by the frac-
tional one. Instead, for an objective function of the form ϕ= ( )J J t, ,
a continuous adjustment given by

ϕ γ ϕ= − ( )∇ ( ) ( )α
ϕD t J t, , 6

where the integer gradient of function ϕ= ( )J J t, is still used.
To motivate this generalization, we note first that α allows us to

have an extra degree of freedom whereby a most general opti-
mization process is obtained. Second, we are imposing the mini-
mizing direction ϕ−∇ ( )ϕ J t, to the adjustment. Third, for α = 1, by
infinitesimal integration, ϕ ϕ γ ϕ( + ) − ( ) = − ( )∇ ( )ϕt dt t t J t, which
gives the idea of a direct generalization of sequence (5) to the Eq.
(6) and though for α < 1 this fact does not hold since fractional
derivative is non-local, we can find a similarity with the non-local
equation ϕ ϕ γ ϕ( ) − ( ) = − [ ( )∇ ( )α

ϕt I t J t0 , ], since for α = 1 it gives

∫ϕ ϕ γ ϕ( ) − ( ) = − ( )∇ ( )ϕt t J t dt0 ,
t

0
.

When ϕ= ( )J J , α = 1, and ϕ is on a Hilbert space, there exist
results of weak convergence of ϕ to ϕ( )ϕ Jarg min , under smooth-
ness and convexity hypotheses. Also, convergence of |∇ |ϕ J to zero is
guaranteed (see [15]).

3.1. Convergence of fractional type I error model

We will study the case of a quadratic objective function
ϕ( ) = ( )J t e t, 2 with

ϕ( ) = ( ) ( ) ( )e t t w t 7T

where [ ∞) →w: 0, n is a vector function of time, ϕ [ ∞) →: 0, n

is called the parameter error and e is the error function. Using
Caputo fractional derivative adaptive laws of the form (6) for
γ( ) =t 1 we get

ϕ ϕ( ) = − ( ) ( ) = − ( ) ( ) ( ) ( )αD t e t w t w t w t t . 8T

Eqs. (7) and (8) with α = 1 are known as Error Model of Type I
[1]. Eq. (7) is found in adaptive identification problems and
adaptive control problems of integer order linear systems (Chap-
ters 2 and 3 of [2], respectively). For instance, consider the
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problem of estimating the true constant parameter vector θ ∈ n

of the linear system expressed in non-minimal realization (linear
regression) by

θ( ) = ( ) ( )y t w t 9T

where ( ) ∈y t is the output of the system and ( ) ∈w t n is the
state vector (in non-minimal realization) or the information vector
(in linear regression), both being known signals. The estimated
system output at the instant of time t is denoted as ^( ) ∈y t and it
will be given by

θ^( ) = ^ ( ) ( ) ( )y t t w t 10
T

where θ̂ ( ) ∈t n is the estimate of the true parameter θ at instant

of time t. By defining ( ) ≔ ^( ) − ( )e t y t y t and ϕ θ θ( ) ≔ ^( ) −t t , Eqs.
(7) and (8) are obtained.

By the election of Caputo derivative as the fractional derivative,
Eq. (8) is implementable since it is equivalent to

ϕ θ θ θ( ) = ( ^(·) − ) = ^( ) = − ( ) ( ) ( )α α αD t D D t e t w t . 11

since Caputo derivative of a constant is zero.
The following elementary result establishes the first difference

between fractional and integer order adjustment,

Proposition 1. For system (7) and (8) assume that w is a bounded,
continuously differentiable and uniformly continuous function and

α< ≤0 1. Then,

(i) e and ϕ are bounded uniformly continuous functions, < ∞αI e2

and ( ) =→∞e tlim inf 0t
2 . In addition, ϕ = 0 is an stable global point of

the system.
(ii) For α = 1, e converges to zero.
(iii) For α< <0 1 there exists a uniformly continuous function w

such that e does not converge to zero. But for every ϵ > 0, ( ) > ϵe t2 only
can occur at time intervals of finite length with such intervals necessarily
finite or occur with an unbounded increasing separation of time.
Moreover, the root mean square value (RMS) of e converges to zero.

Proof. (i) For α< ≤0 1, by choosing ϕ ϕ=V2 T and assuming that

w is continuous, it follows that ≤ − ≤αD V e 02 (Property 3 can

be applied since ϕ is continuously differentiable for >t 0 by
Property 12 in [13]). By α− integrating the last inequality,

( ) − ( ) ≤ − αV t V I e0 2. Hence ϕ ϕ( ( )) ≤ ( ( ))V t V 0 and thus ϕ and e are

bounded. Hence, αI e2 is also bounded. Then, by Property 15 in [13],

=→∞elim inf 0t
2 . Moreover, e2 is uniformly continuous because ϕ is

uniformly continuous by Proposition 1 in [13] using that ϕ has

bounded α− derivative and using the boundedness of ϕ and e.

Finally, since ϕ ϕ∥ ( )∥ ≤ ∥ ( )∥t 0 for every ≥t 0 and any ϕ( ) ∈0 n, we
conclude global stability of the origin, using the stability concept
suited to fractional systems ([16], Section 3.1).

(ii) For α = 1,  ∈ ( )e2 1 . By Lemma 2, e will converge to zero

and, in particular, ϕ will be asymptotically orthogonal to w.
(iii) For α< <0 1, let us consider first the scalar case. Without

loss of generality, we suppose that ϕ( ) >0 0. Let =w f2 be a
function that does not converge to zero with ( ) <αI f t 1/2 for all

≥t 0. This function exists because of Proposition 14 in [13] where
it was proved that there exists a uniformly continuous function g
not converging to zero such that <αI g C . Thus, function f is ob-
tained by choosing = ( )f g C/ 2 , which is also uniformly continuous.

By noting that ϕ ϕ ϕ( ) = ( ) − [ ]( )αt I w t0 2 is a solution of Eq. (8)
and ϕ ϕ< ( ) < ( )t0 0 (Property 9 in [14]), it follows that

ϕ ϕ ϕ[ ]( ) < ( ) ( ) < ( )α αI w t I w t0 1/2 02 2 , whereby
ϕ ϕ( ) ≥ ( )( − ( ))αt I w t0 1 .2

Therefore ϕ ϕ( ) ≥ ( )t 1/2 0 , and since w does not converge to zero,
e does not converge to zero either. The same arguments go
through for the case when it is assumed that ϕ( ) <0 0.

For the vector case, it is enough take = ( … )w f , 0, 0, , 0T since
in that case ϕ( ) = ( ) ( )e t t f t1 and the analysis for ϕ1 is therefore the
same as the scalar case.

For α < 1 and for every ϵ > 0, ( ) > ϵe t2 only occurs at time in-
tervals of finite length, from the uniform continuity of e2. Such
intervals necessarily occur with an increasing separation of time,

otherwise αI e2 diverges, since there would exist a finite time T
large enough where always occurs one of those intervals in the
intervals [ ( + ) ]iT i T, 1 for any ∈i whereby, using Example 5 of

[14], αI e2 diverges. That the RMS value of e converges to zero,
follows (by continuity of the root function) from the fact that

∫ τ τ( ) = [ ] ≤ → ( )
α α α− − − − −t e d t I I e Ct t 0 12

t
1

0

2 1 1 2 1 1

when → ∞t , where C is the bound of αI e2.

Considering Proposition 1 there are two ways of solving the op-
timization problem; to make ϕ asymptotically orthogonal to w or to
constraint the set of functionsw to those that converge to zero. In the
following, we study the first alternative by making ϕ to tend to zero.
To simplify the notation, we will introduce the following definitions.

Definition 3. Let In be the ×n n identity matrix and + the set of all
real numbers greater or equal to zero. Define in the space of bounded,
continuously differentiable functions the following subset:

{
} ( )

α( ) ≔ [ ∞) → |( ∃ [ ∞) → [ ∞)) ( )

= ∞ ∧ ( ∀ > ) ( ) ( ) ≥ ( )

α

→∞

13

SE n w f st. I f t

t w t w t f t I

, : 0, : 0, 0, lim

0 ,

n
w

t
w

T
w n

{
}∫ ( )τ τ τ

( ) ≔ [ ∞) → |( ∃ ϵ > )

(∀ > ) ( ) ( ) ≥ ϵ
+

14

PE n w T

st. t w w d I

, 1 : 0, , 0

0 .

n

t

t T
T

n

0

0

We will say that α∈ ( )w SE n, is sufficiently exciting and
∈ ( )w PE n, 1 is persistently exciting.

Remark 1. (i) There is a qualitative difference between both de-
finitions. The condition for ( )PE n, 1 is established for any finite
interval, whereas the one for α( )SE n, involves the limit of whole
real positive line. Essentially, this corresponds to the local char-
acter of the integer order Eq. (8) which allows integrating locally
to get an evaluation from t to +t T0 and therefore, a local condi-
tion. On the other hand, being fractional derivative a non-local
operator, one gets instead an evaluation between t¼0 and t.

(ii) Note that it is required for w and fw to be bounded and
continuously differentiable functions.

We prove the following general theorem based on the definition of
these sets.

Theorem 2. Let us consider system of Eqs. (7) and (8). If ∈ ( )w PE n, 1
and α = 1, then ϕ( )e, converges uniformly to zero. If α∈ ( )w SE n, and

α< ≤0 1 then ϕ( )e, converges asymptotically to zero.

Proof. When α = 1 the equation for ϕ is just ϕ ϕ( ) = − ( ) ( ) ( )D t w t w t tT

and if ∈ ( )w PE n, 1 then ϕ converges uniformly to zero [17]. Since
w is bounded, from (7) e converges uniformly to zero.

Now consider α∈ ( )w SE n, and α< ≤0 1. The equation for ϕ

has the form ϕ ϕ ϕ( ) = − ( ) ( ) ( ) = ( ) ( )αD t w t w t t A t tT . The condition of

Theorem 1 takes in this case the form ( ) ( ) ≥ ( )w t w t f t IT
w n,
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guaranteeing the convergence of ϕ to zero, provided that fw is
absolutely continuous, which holds because α∈ ( )w SE n, and

therefore fw is continuously differentiable. Hence, ϕ converges to
zero and from (7) e converges to zero.

Remark 2. If α∈ ( )w SE n, , for any constant not null vector ∈u n

we have ( ( ) ) ≥ ( )w t u f t uT 2 . For example, if = ( )w 1 1T and

= ( − )u 1 1T the condition does not hold since ( ) =w u 0T and
( ) =f t 0, which does not have a divergent fractional integral. By

Cauchy-Schwarz inequality, ( ) ≥ ( ( ) ) ≥ ( )w t u w t u f t uT2 2 2 .

Therefore, a necessary condition for α∈ ( )w SE n, is ( ) ≥ ( )w t f t2 .

For instance, if ∥ ∥w 2 has bounded fractional integral, then
α∉ ( )w SE n, .

Remark 3. In [17] it is proved that any signal in ( )PE n, 1 guaran-
tees uniform asymptotic stability of the equilibrium point ϕ ≡ 0 for
Eq. (8) when α = 1 (the uniformity can be inferred from the in-
variance under initial time translations of its definition). The set

( )PE n, 1 can be equivalently characterized as

 

⎫⎬⎭

{
∫

η

τ τ τ η

( ) = [ ∞) → |( ∀ ≠ ∈ )( ∃ (ϵ ))( ∀ > )

× ( ) ( ) ≥ ϵ( − ) +

PE n w x t

x w w xd t t

, 1 : 0, 0 , 0

.

n n

t

t
T T

0
0

Therefore, as a natural generalization to the fractional case it
would be possible to define

  

}
{

( )

α η

η

( ) ≔ → |( ∀ ≠ ∈ )( ∃ (ϵ ))( ∀ > )

× [ ]( ) ≥ ϵ( − ) +α α

+

15

PE n w x t

I x ww x t t t

, : 0 , 0n n

T T
0

However, the concept of uniformity (relative to the initial con-
dition) becomes ill-defined for fractional systems since the fractional
derivative, as it has been used up to now, has a fixed initial time t0
and hence, fractional equations has a fixed time for initial condition.
Thus, the uniformity concept cannot unambiguously be applied, and
therefore, α( )PE n, has no special meaning in this sense. A way to
preserve this property could be changing together with the initial
time for the initial conditions, the initial time of the integral defining
the fractional derivative (indeed, this is equivalent to consider the
uniformity of the associated integral equation).

Even if ϕ and w do not converge to zero, e can converge to zero
as it is shown in the following example.

Example 1. If w is a not null constant vector, by Remark 3, ϕ does
not necessarily converge to zero. But, multiplying (8) by wT we have

ϕ ϕ[ ]( ) = − ( ) ( )αD w t w w w tT T T i.e. ( ) = − ( ) ( )αD e t w w e tT , whereby e
converges to zero. If w can be written as ξ= ( )w 0T T T where
ξ α∈ ( )SE s, with <s n, then ϕ has its first s components converging
to zero, and the rest −n s components are constants, whereby

ϕ=e wT converges to zero.

3.2. Characterization of α( )SE n,

The set ( )PE n, 1 has been characterized in the literature [1,18].
For example, quasi periodic functions belong to this set. The fol-
lowing Lemma connects this known set with α( )SE n, .

Lemma 3. Let ∈w n be a uniformly continuous function. If
∈ ( )w PE n, 1 then α∈ ( )w SE n, for every α< <0 1.

Proof. By hypothesis, for all >t 0 there exists ϵ T, 0 such that

∫ε τ τ τ≤ ( ) ( )
+

I w w dn t

t T T0 , which is equivalent to ∫ε τ τ≤ ( ( ) )
+

u w u d
t

t T T 20 ,

where  { }∈ −u 0n is any constant vector. Applying mean value
Theorem and since w is a continuous function, it follows that ( ξ∃ )
with ξ< < +t t T0 such that ε ξ≤ ( ( ) )u T w uT

0
2. Also, by continuity,

there exists a finite interval  ⊆ ( + )t t T, 0 where τ∀ ∈ it is sa-

tisfied ε τ( ) ≤ ( ( ) )−T u w u2 T
0

1 2 or equivalently

ε τ τ( ) ≤ ( ) ( )−T I w w2 .n
T

0
1

Since this is valid for any >t 0 and the continuity is uniform, there
exists a divergent sequence ( ) ∈ti i where = ++t t Ti i1 0, which de-
fines intervals i of length independent of i, and a 1 function f(t)
null everywhere except at intervals i where it takes values smaller
than ε( )−T2 1 . Therefore, ( ) ≤ ( )f t I ww tn

T . By Example 5 in [14], f has
divergent fractional integral for every α< ≤0 1, and therefore

α∈ ( )w SE n, .

In the following, further properties of the set α( )SE n, are
established.

Property 4. If α β< ≤0 then α β( ) ⊆ ( )SE n SE n, , .

Proof. Let us consider α∈ ( )w SE n, , then we have ( ) ( )≥w t w tT ( )f t In ,
where → ∞αI f . Thereby, there exists >T 0C such that ( ) ≥αI f t C for

any >t TC . Since =β β α α−I f I I f , we note that the integrand has di-
vergent integral, since for <t TC the integral is bounded. Consequently

→ ∞βI f , and therefore β∈ ( )w SE n, .

By Lemma 3, the sets α( )SE n, are not empty, and
α β ϕ⋂ ( ) = ( ) ≠α β∈[ ] SE n SE n, ,,1 for any β > 0.

The next property shows that the sets are not equal.

Property 5. If α< <0 1 then α( ) ⊂ ( )SE SE1, 1, 1 .

Proof. By Property 4, it is enough to consider the pulse train function
pwith fixed pulse width defined such that the separation between its
not null values, ′s1 tends to infinity (as times goes to infinity). The
associated solution forϕ of (8) with α = 1 and using ( ) = ( )w t p t , tends
to zero since the pulse has a divergent integer integral, whereby it
belongs to ( )SE 1, 1 but does not belong to α( )SE 1, .

The following property shows that the sets α( )SE n, are in-
variant under linear transformations.

Property 6. Let ∈ ×M n n be a real constant matrix of full rank. If
α∈ ( )w SE n, then α∈ ( )Mw SE n, .

Proof. Since α∈ ( )w SE n, , ≥Mww M fMMT T T . Since >MM 0T be-
cause M is a full rank matrix, and since is a constant matrix, there
exists ϵ > 0 (in fact, the smallest eigenvalue of MMT) such that

> ϵMM IT
n, whereby ≥ ϵMww M f IT T

n.

From Property 6 spaces α( )SE n, and α( )SE m, can be related
when <m n, through a matrix M of rank m. Next property is a
simple but illustrative case.

Property 7. Let ∈u n be a constant non zero vector. If α∈ ( )w SE n,
then uTw is in α( )SE 1, . In particular, if α∈ ( )w SE n, then each com-
ponent is in α( )SE 1, , though the converse is not necessarily true (for
instance, consider w a constant vector).

Proof. Since α∈ ( )w SE n, this implies that ( ( )) ≥ ( ) ≔^( )u w t f t u u f tT T

and the first part follows. For the second part we take =u ei with

( )ei i for = …i n1, 2, the canonical basis of n.

As shown in the following property, if α∈ ( )w SE n, then w is a
vector repeatedly moving along every direction in n.

Property 8. If w belongs to a proper subset of n then α∉ ( )w SE n, .

Proof. Since w is in a proper subset, there exists a constant not

null vector u orthogonal to that subspace, such that ( ) =w t u 0T for
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all ≥t 0, thereby ( ) ( ) =u w t w t u 0T T for all ≥t 0.

The following property gives conditions for the invariance of
α( )SE n, under α

1 (the set of functions such that its modulus has
fractional α integral bounded) translations.

Property 9. Let w1, w2 be two bounded functions such that

( − ) ∈ αw w1 2
1 . Suppose further that there exists ( ) >f t 0i such that

>ww f Ii i
T

i , for i¼1,2. Then α∈ ( )w SE n,1 if and only if α∈ ( )w SE n,2 .

Proof. We demonstrate first that if α∈ ( )w SE n,1 then
α∈ ( )w SE n,2 . Let C be defined as = { ( ) ( )}C w t w tsup ,t 1 2 . Let x be a

constant vector. Then = − ( − ) ( + )x w w x x w w x x w w x w wT T T T T T
2 2 1 1 1 2 1 2 .

By Cauchy-Schwarz inequality, ≥ − ∥( − )∥x w w x x w w x Cx x w w2T T T T T
2 2 1 1 1 2 .

Therefore = ≥ − ∥( − )∥x w w x f x x x w w x Cx x w w2T T T T T T
2 2 2 1 1 1 2 . By α-

integrating, ≥ ( ) − ∥( − )∥α α αI f x x I x w w x Cx xI w w2T T T T
2 1 1 1 2 . Since

α∈ ( )w SE n,1 there exists f1 such that ≥ − ∥( − )∥α α αI f x x I f x x Cx xI w w2T T T
2 1 1 2

and using that ( − ) ∈ αw w1 2
1 , we conclude that [ ]αI f x xT

2

≥[ ] − ^ → ∞αI f x x CT
1 as t goes to infinity, whereby α∈ ( )w SE n,2 .

Since ( − ) ∈ αw w1 2
1 if and only if ( − ) ∈ αw w2 1

1 , by inter-
changing the roles of w1 and w2, the reverse implication follows.

In [19] it is established a relationship among the functions w of
the set ( )PE n, 1 , their auto-correlation functions Rw and their as-
sociated spectral densities Sw, which allows to formalize the idea
of a 'sufficiently rich’ signal containing enough frequencies for
identification purposes. The next proposition extends the re-
lationship for the set α( )SE n, . We recall first the definition of the
auto correlation function Rw for a stationary function w and its
spectral measure Sw (Chapter 1 of [2]).

∫τ τ( ) ≔ ( ) ( + ) ( )→+∞
R

T
w t w t dtlim

1
. 16w

T

T
T

0

∫ν τ τ( ) ≔ ( ) ( )
ντ

−∞

∞
−S d e R d . 17w

i
w

Property 10. If w is a uniformly continuous function such that
( ) >R 0 0w then α∈ ( )w SE n, for all α< ≤0 1. Conversely, if

α∈ ( )w SE n, with its associated fw such that ∫ >→+∞
+

f dtlim 0T T s

s T

w
1

then ( ) >R 0 0w .

Proof. The first implication follows from the fact that ( ) >R 0 0w

implies that ∈ ( )w PE n, 1 . By uniform continuity and Lemma 2, one
concludes that α∈ ( )w SE n, . The second implication is straight-
forward from the definition of α( )SE n, .

The invariance analysis of set ( )PE n, 1 under dynamical trans-
formations can be obtained with the following property, which

extends the result of [19] to fractional filters ( ) =
∑

∑

β

α
=

=
H s

b s

a s
i
m

i i

i
n

i i
1

1
with

α α< … < n1 and β β< … < m1 numbers in  . The relative degree of
H is α β−n m.

Property 11. Let  ⟶+u: be a stationary function and  ⟶+y: n

related to u through a vector filter H of relative degree >0 and BIBO
stable in each component, written in Laplace domain as

( ) = ( ) ( )y s H s u s . Suppose that for all … ∈w w, , n1 , ( ) … ( )H jw H jw, , n1

are linearly independent on n. Then, ∈ ( )y PE n, 1 if and only if the
spectral measure of u is not concentrated on <k n points.

Proof. Since H is of relative degree >0 in each component, its
impulse response is L1 by Theorem 2 in [20]. Hence, by using the
same arguments of the proof Proposition 1.6.2 in [2], y is sta-
tionary. The claim follows by using the same arguments of the
proof Theorem 2.7.2 in [2].

Remark 4. There is a similar analysis for the spectral line at fre-
quency ν of the signal u defined in [21] as

∫ν ν^( ) ≔ ( ) ( − )
→+∞

+
u

T
u t j t dtlim

1
exp .

T s

s T

In fact, if ( ) ∈y t n is related with ( ) ∈u t m by a (fractional or
integer) linear time invariant filter H(s) and u has spectral line at
frequency ν, then y has spectral line at frequency ν too. Indeed, by
convolution properties, ν ν ν^( ) = ( )^( )y H j u .
4. Alternative schemes

We will now study extensions of the results presented in Sec-
tion 3. Our intention is first to examine alternative schemes of
fractional adjustment of parameters of Type I, determining in each
case if the set of information signals w that assures convergence of
the error e is enlarged or not. Note that in the fractional case, to
assure convergence of the error, we require parametric con-
vergence which is not necessary in the integer case as is showed
by Proposition 1. These include schemes using different types of
objective functional to be minimized as well as filtering of signals.
Secondly, multiple error models and dynamic errors models are
proposed. We will show that the newly introduced concept of
sufficiently exciting signals plays a part to obtain sufficient con-
ditions for convergence of the error even if the structure of frac-
tional equations differs from which it was developed.

We will assume in what follows that the input signal w is
bounded, uniformly continuous and continuously differentiable.

4.1. Non unity adaptive gains

In the previous analyses we assumed γ = In. It easy to see that
the choice of γ(·) does not enlarge the set of functions w producing
convergence of ϕ to zero. For instance, in the scalar case let us
assume for practical reasons that γ > 0 is bounded (say by C). Then

γ| [ ]| ≤ | [ ]|α αI w C I w2 2 . If w does not make ϕ converge to zero, then
[ ]αI w2 is necessarily bounded. Then γ[ ]αI w2 is bounded and there-

fore ϕ does not converges to zero (Theorem 3 in [13]).
However γ( )t allows to handle the convergence rate. Take for

instance the scalar case. Suppose that we want ϕ to converge as
fast as it does with an input w1, then we must choose γ( )t such that
γ( ) ( ) ≥ ( )t w t w t2

1
2 (Proposition 3 in [14]).

Another use of γ( )t allows to modify the convergence properties
of standard gradient method with fractional derivatives or in-
tegrals. Let us take Eq. (7), the adaptive law (8) with α = 1 and

⎜ ⎟
⎛
⎝

⎞
⎠γ =

+ ( )αexp
I e

1

1 2 , to obtain

⎛
⎝⎜

⎞
⎠⎟ϕ ϕ( ) = − ( ) ( ) ( )

+ [ ]( ) ( )αD t w t w t t
I e t

exp
1

1
.

18
T

2

By defining ϕ ϕ=V2 T , it follows that ( ) = −DV t

⎜ ⎟⎛
⎝

⎞
⎠( ) ≤

ϕ+ [ ]( )αe t exp 0
I w t

2 1

1 2 2 . Whereby ⎜ ⎟⎛
⎝

⎞
⎠ϕ+ [ ]( )αe exp

I w t

2 1

1 2 2 is in 1

andϕ is bounded. Then ϕD is bounded andϕ is uniformly continuous,
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whereby e is also uniformly continuous. Since ⎜ ⎟⎛
⎝

⎞
⎠<

ϕ+ [ ]( )α1 exp
I w t

1

1 2 2

it follows that ∈e2 1. By applying Lemma 1, the error converges to
zero.

Since ⎜ ⎟
⎛
⎝

⎞
⎠<

+ ( )α1 exp
I e

1

1 2 it follows that ≤ −DV e2. By using the

Comparison Principle and the fact that = −DV e2 is exponentially
asymptotically stable if ∈ ( )w PE n, 1 [22], we have the same set of
convergence as for α = 1.

One can also use in (18) any bounded function r other than the
exponential provided that ( ) ≥ >r t c 0 for all t.

4.2. Commuted scheme

A simple scheme that combines both integer method, with its
known convergence properties, and the fractional adjustment is
given by Eq. (7) together with the adaptive law

⎪

⎧⎨
⎩ϕ α α α

α
( ) = − ( ) ( ) = < > ≠

= ( )
αD t e t w t e e, with 1 if and 1

1 else 19
0

2
0

where α< <0 10 is a fixed number and >e 00 is an arbitrarily
chosen design parameter.

This adjustment assures asymptotic convergence of the error to
zero for w bounded and uniformly continuous. Indeed, note that
the condition α> ≠e e and 12

0 implies that once α = 1 it remains in
α = 1. Hence, if ( ) <e e0 2

0 then α = 1 for all t and we apply Pro-
position 1. Else, by Proposition 2 there exists an instant of time T
where ( ) =e T e2

0 and with the integer law ( α = 1) it is assured
convergence of e considering as initial condition the instant of
time T (to preserve continuity). Similarly, it follows that if

∈ ( )w PE n, 1 then ϕ converges to zero.

4.3. Error functional

Two type of objective functions can be considered in the gra-
dient approach; algebraic and dynamic functional.

i) Algebraic functional
Le us consider system (7) together with an objective function of

the type = ( )J F e2 instead of =J e2 as previously, where ( ) >F x 0
for all >x 0. Then, the adaptive law based on the gradient ap-
proach (6) takes the form

ϕ ϕ( ) = − ( ) ( ) ( ) ′( ( )) ( )αD t w t w t t F e t , 20T 2

where ′ =F dF dx/ . If ′( ) >F x 0 for all >x 0 then Eq. (20) has
bounded solutions. Furthermore, if α = 1 and ′F is continuous then
e and F converge to zero. Indeed, by defining ϕ ϕ=V2 T , we have

≤ − ′( ) ≤αD V e F e 02 2 , whereby the first claim follows. For α = 1,
′( )e F e2 2 is in 1. Since e2 is bounded and ′(·)F is continuous, ′( )F e2

turns out to be bounded and uniformly continuous. By applying
Lemma 1, and since e2 is uniformly continuous (because ϕ has
bounded derivative), it follows that e2 converge to zero and
therefore F tends to its minimum ( )F 0 . Then, for α < 1,

= ( )→∞F Flim inf 0t , by the continuity of F since it is differentiable.
Examples of objective functions satisfying the above conditions

are: (·)tanh , class K functions, (·)exp , ( ) =F e e n2 with ∈n , among
others.

ii) Dynamic functional
Let us consider the system defined by Eqs. (9), (10) and (7).

Let L be any linear operator. Define the functional
θ θ= [ ] = [( ^ − ) ]J L e L w wT T2 2 . Then, the following adaptive law based

on the gradient approach (6) can be postulated with γ > 0

θ γ θ^ = − [ ] ^ + [ ] ( )αD L w w L w y . 21T
Using ϕ θ θ= ^ − , the previous equation can be expressed as

ϕ γ ϕ( ) = − [ ( ) ( )] ( ) ( )αD t L w t w t t . 22T

Example 2. Let us consider the linear operator [·] = [·]βL I with
β > 0, Eq. (22) takes the form ϕ ϕ( ) = − [ ]( ) ( )α βD t I w w t tT for γ = 1.

Note that for x a constant vector, ( [ ])βx I w w xT T

= [ ] = [( ) ] ≥β βI x w w x I x w 0T T T 2 . Hence, [ ]αI w wT is positive semi-
definite and therefore the trajectories ϕ given by (22) are boun-
ded. The reason is that by calling ( ) = [ ]( )βA t I w w tT , we have

ϕ ϕ( ) = − ( )αD t A t and then, by Property 3, ϕ ϕ[ ]( )αD tT

ϕ ϕ ϕ ϕ≤ ( ) = − ( ) ≤αD t A t2 2 0T T and hence ϕ ϕ∥ ( )∥ ≤ ∥ ( )∥t 0 for all
>t 0.
For asymptotic convergence, the condition is now imposed on

[ ]βI w wT instead w wT . Therefore the set of possible signals
guaranteeing convergence of ϕ is enlarged as compared with

β( )SE n, , because if ≥w w fIT then [ ] ≥ [ ]β βI w w I f IT , and since f

diverges then [ ]βI f also diverges. Indeed, using Lemma 9 in [13], if

β > 2 and ≥ww fIT for f non negative, then βI f diverges.

Example 3. Let us consider the linear operator ( ) =
+βL s

s p

1 (writ-
ten in the Laplace domain). By defining Γ and δ as

Γ Γ= − +β( ) p w w ,T

δ δ= − +β( ) p w y,

with Γ( ) =0 0 and δ( ) =0 0, the adaptive law (21) can be written as

θ γΓθ δ^ = − ^ + ( )αD y, 23

or equivalently, using (22),

ϕ γΓ ϕ( ) = − ( ) ( ) ( )αD t t t . 24

When α β= = 1, this case corresponds to the design proposed
by Kreisselmeier in [23], where the set ( )PE n, 1 guarantees con-
vergence of ϕ to zero. The advantage of this approach over
schemes with simpler adaptive laws is that arbitrary speed rates
can be achieved, by choosing γ such that Γ has an arbitrary
spectrum. The counterpart is that a more intensive use of com-
putational resources is needed in the implementation.

For β ≤ 1 and γ = 1, if x is a constant vector then

Γ Γ= − +β( )x x px x x w w x.T T T T

By defining Γ≔z x xT and ( )≔ ( ) ( ) ≥f t x w t w t x 0T T , with ( ) =z 0 0,
it follows that

( ) = − ( ) + ( ) ( )β( )z t pz t f t . 25

By using the analytic solution of Eq. (25) as given in [9], it
follows that = *β βz E f, and thus ( ) ≥z t 0 for all ≥t 0. Hence, Γ is

positive semi-definite and, if there exists an instant of time such

that ≠x w w x 0T T , then it is positive definite for >t 0. If
∈ ( )w PE n, 1 or β∈ ( )w SE n, such instant of time always exists by

definition.
It follows from Eq. (24) that ϕ is bounded and the eigenvalue of

Γ can be suitably modified through the adaptive gain γ, improving
the convergence rate. For asymptotic convergence of Eq. (24) a
sufficient condition is Γ( ) ≥ ϵt I or that Γ( ) ≥ ( )t f t I with → ∞αI f . For
the former, by choosing >p 0, we have ( ) > >β βE t E 0, 0 for any >t T

and some >T 0, then ∫ τ* ( ) >β βE x w w x t E x w w xdT T
T

t T T
, 0 and thus

* > ϵβ βE ww E IT
, 0 for any >t T provided that ∈ ( )w PE n, 1 .

Remark 5. The Kreisselmeier law ( α β= = 1) shares the same
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philosophy as the adjustment with fractional derivative, in the
sense that both make use of a memory effect, where all past in-
formation is (not uniformly) considered in the current updating.
For the fractional case, this comes from the definition of fractional
derivative. It can be shown [1,23] that the Kreisselmeier law op-
timizes the following functional

∫ τ τ τ( ) ≔ ( − ( − )) ( ) ( )J t p t e t dexp , , 26
t

0

2

where

τ θ τ τ θ τ θ τ ϕ τ( ) ≔ ^ ( ) ( ) − ( ) = ^ ( ) ( ) − ( ) = ( ) ( ) ( )e t t w y t w w t w, . 27
T T T T

Whereby, the adaptive law is given by (γ = 1)

∫ϕ τ τ τ( ) = − ( ) ( ) ( )
d
dt

t e t w d, , 28
t

0

which makes evident the use of the past data.
A simple fractional generalization of the last equation is

ϕ τ τ( ) = − [ ( ) ( )] ( )
αd

dt
t I e t w, , 29

where the Kernel is now ( ) α−t instead of ( − )texp . It must be noted
that since τ( )e t, is defined in (27), this law is in principle realizable
and the error defined by (27), is evaluated in the past but using the
current estimate of θ at t and not the past estimates. It follows that
using (27), the adaptive law (29) can be expressed as

ϕ( ) = − [ ]( ) ( )ϕ αt I w t td
dt

2 . Thereby the equation is stable and the
condition for convergence of ϕ to zero (and therefore, convergence
of ϕw) is → ∞αI w2 . In the vector case, the condition turns out to
be [ ] ∈ ( )αI ww PE n, 1T .

We next give a robustness result for this law.

Proposition 2. Consider the following equation

ϕ Γ ϕ ν( ) = − ( ) ( ) + ( ) ( )αD t t t t 30

where Γ ≥ ϵI is a continuously differentiable matrix function and ν is
a bounded vector function converging to zero such that ναI is boun-
ded. Then ϕ converges to zero.

Proof. By Corollary 4 in [14], ϕ is a bounded vector function.
Hence ϕ ν( ) = ( )t f tT is bounded and converges to zero.

By noting that ϕ ϕ ϕ Γ ϕ( ) ( ) = − ( ) ( ) ( ) + ( )αt D t t t t f tT T and since
ϕ ϕ ϕ ϕ[ ]( ) ≤ ( ) ( )α αD t t D t2T T by Property 3, it follows that
ϕ ϕ ϕ ϕ[ ]( ) ≤ − ϵ ( ) ( ) + ( )αD t t t f t2T T . By Theorem 5 in [14], it follows

for equation ϕ ϕ ϕ ϕ[ ]( ) = − ϵ[ ( ) ( )] + ( )αD t t t f t2T T that ϕ ϕ[ ]T converges
to zero. The claims follows by Comparison Principle.

4.4. Multiple errors

We study here the case when the error is a vector function
rather than scalar function.

i) Vector case
Let us consider again relationships (9) and (10). By filtering the

input ∈w n and the output ∈y by n linearly independent
filters Hi (possibly fractional ones), we get θ=Y WT , where

= [ … ] ∈Y y y y, , , m
T m

1 2 and = [ | |…| ] ∈ ×W w w wm
n m

1 2 , with
=y H yi i and =w H I wi i n , where In denotes the identity matrix

of order n. Therefore, an error vector defined as
( ) = [ ( ) ( ) … ( )] = [^ ( ) − ( ) ^ ( ) − ( ) … ^ ( ) − ( )] ∈E t e t e t e t y t y t y t y t y t y t, , , , , ,m

T
m m

T m
1 2 1 1 2 2

related to matrix W and parameter error ϕ( ) ∈t n as follows

ϕ( ) = ( ) ( ) ( )E t W t t . 31T

Applying gradient approach to the objective function =J E ET ,
the following adaptive law is proposed

ϕ γ γ ϕ( ) = − ( ) ( ) = − ( ) ( ) ( ) ( )αD t W t E t W t W t t . 32T

Since the filters are linearly independents, the rows of W turns
out to be linearly independent functions for any not null input,
whereby ( ) >WW t 0T for all >t 0. Hence, by choosing γ( )t properly,
arbitrarily fast convergence rates can be achieved (theoretically,
one can choose for instance γ λ( ) = ϵt / m where λm is the minimum
eigenvalue of WWT , getting ≥ ϵWW IT ). By setting γ = 1, a con-
vergence condition of error E could be > ϵWW IT .

Example 4. Let F1, F2 be scalar linear transfer functions with nu-
merators of different orders n1 and n2 respectively and the same
denominator. Consider u a non null scalar function. If y1, y2 are the
respective scalar outputs for null initial conditions, then y1, y2 are
linearly independent and therefore F1, F2 are linearly in-
dependents. In fact, if + ≡ay by 01 2 , we have in Laplace domain

+ ≡aF bF 01 2 . Since F1, F2 are rational functions of different orders
and a b, are non zero real numbers, +aF bF1 2 has as numerator a
polynomial of degree = +n n n1 2. Hence, the only way to achieve

+ ≡ay by 01 2 is by setting = =a b 0. Recursively, it can be proved
for m linear filters ( ) =Fi i

m
1 of pairwise different orders. Furthermore,

by similar arguments, one can allow non zero initial conditions by
using asymptotically stable linear filters.

ii) Matrix case
Let us consider now the case when the parameter is a matrix
Θ ∈ ×n n, the output system is a vector ∈Y n and the information

signal is a vector ∈w n. They are linearly related through

Θ( ) = ( ) ( )Y t w t , 33

where Y(t) and w(t) are known signals. The estimated output of

the system at instant of time t is denoted as 
^( ) ∈Y t n and will be

given by

Θ^( ) = ^( ) ( ) ( )Y t t w t , 34

where Θ̂( ) ∈ ×t n n is the estimated of Θ at time t. Subtracting Eq.
(33) from (34), the relationship between the output estimation

error ( ) = ^( ) − ( ) ∈E t Y t Y t n and the parameter estimation error

Φ Θ Θ( ) = ^( ) − ∈ ×t t n n is given through

Φ( ) = ( ) ( ) ( )E t t w t . 35

By applying the gradient approach and considering the objec-
tive function =J E ET , we end up with the following adjustment
law

Φ( ) = − ( ) ( )αD t E t w t ,T

or equivalently

Φ Φ= − ( ) ( ) ( ) ( )αD t w t w t . 36T

By applying [24], Lemma 5 and choosing Φ Φ= ( )V trace T , it follows
that

Φ Φ Φ Φ( ) ≤ − ( )( ) = − ( ) ( ) ( ) ( )

= − ( ) ( ) ≤ ( )

αD V t trace ww t w t t t w t

E t E t

2 2

2 0. 37

T T T T

T

Hence, the system has bounded trajectories and lim
( ) ( ) =E t E einf 0t

T . A sufficient condition for convergence of the error
to zero is that for any positive semi-definite constant matrix A,
there exists a scalar differentiable bounded function f, in-
dependent of A, whose fractional α-integral diverges such that

( ) ( ) ≥ ( ) ( )w t Aw t f t trace AT .
Also, in this context we can analyze the case when ϕ( ) ∈t . Let
∈e n be a vector whose components are given by ϕ=e wi i for

= …i n1, , . Using the gradient approach with the objective
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function = ∥ ∥J e 2, it is suggested the following adjustment

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ϕ ϕ( ) = − ( ) ( ) = − ( ) ( )

( )
α

=

D t e t w t t w t .
38

T

i

n

i
1

2

Since ϕ ϕ( ) ( ) ≤αt D t 0 for all ≥t 0, the trajectories are bounded.
Let us consider for example α = 1 and n¼2. The analytic solution is

∫ϕ ϕ τ τ τ( ) = ( ) ( − ( ( ) + ( )) )t w w d0 exp
t

0 1 2
2 , showing that ϕ always

converges. If ∥ ∥w has bounded integral and it is uniformly con-
tinuous, then the error converges to zero. But it is not enough that

∈ ( )w PE 1, 1i to make ϕ converge to zero (for instance, if = −w w1 2
then neither ϕ nor e will converge to zero). The condition for
convergence of error e when α ≤ 1 is that the fractional α-integral
of ( ∑ )wi i

2 be divergent.

4.5. Differential error model

In this section instead of having an algebraic error equation like
(7) we will analyze the case when there is a differential equation
relating the output error ∈e n with the parameter error ϕ ∈ n

and the information vector ∈ ×W n n. Let us consider the following
fractional order equation

ϕ( ) = ( ) + ( ) ( ) ( )βD e t Ae t W t t 39T

where ∈ ×A n n is a constant matrix such that when W¼0, e
converges to zero. From (39) we have ϕ∂ ∂ ( ) = − ( )−e t A W t/ 1 . If A is
negative definite, the gradient approach for = ∥ ∥J e 2 suggests the
following form for adaptive law

ϕ γ( ) = − ( ) ( ) ( )αD t W t e t . 40

For the case of α β= = 1 and e scalar (A scalar and ϕ W, vector
functions) it can be shown that e is uniformly continuous and that
converges to zero. Therefore de dt/ also converges to zero by Bar-
balat Lemma (see Lemma 2) and thus, in the scalar case, ϕ wT

converges to zero and ϕ becomes orthogonal tow, giving the same
geometric motivation that in the Error Model I.

Considering now the vector case with γ = 1, A asymptotically
stable matrix in the integer sense and α β= ≤ 1. Defining

ϕ ϕ= +V e e2 T T , it follows that ( ) ≤ ( ) ( ) ≤αD V t e t Ae t 0T , whereby
trajectories ϕ( ( ) ( ))e t t, have uniformly bounded norms. Moreover,
by using Proposition 15 in [13] together with the fact that A is
constant and negative definite, we have λ λ( ) ≤ ≤ ( )A e e e Ae A e em

T T
M

T ,
where λm M, are the minimal and maximal eigenvalues, respec-
tively, we have that ∥ ( )∥ =→∞ e tlim inf 0t .

There are some simple results derived from the previous ana-
lysis; (a) if W vanish for >t T then ϕ converges to ϕ( )0 (Property 4
[13]), whereby ( ) = ( ) + ( )αD e t Ae t f t with ∈f 2, then e converges
to zero (Theorem 5 of [14]). More general, if →αI W 0 then ϕ
converges to ϕ( )0 . (b) If W is scalar and constant, e converges to
zero since ϕ converges to zero.

By considering γ variable with time, the following is the im-
plicit condition on W for convergence of ϕ to zero,

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥γ

− − ( )
( ) ( )

≥ ( )
( )

A W t

t W t
f t I

0
,

41

T

where f is a differentiable bounded function whose fractional α-
integral diverges.

To get an explicit condition on the information vector w that
assures convergence to zero of the error, an auxiliary error signal
ε( ) ≔ ( ) − ( )βt D e t Ae t is defined whereby ε ϕ( ) = ( ) ( )t t w tT and one can
adjust with the adaptive law ϕ ε( ) = − ( ) ( )αD t t w t for α< <0 1.
Therefore, by applying Theorem 2, if β∈ ( )w SE n, then ϕ ε →, 0.
Since w is bounded by assumption, ϕ →w 0T . By applying Theorem
5 of [14] to ε= +βD e Ae , we conclude that →e 0. If α = 1 it is
enough for (·)w to be a uniformly continuous function to prove
that →e 0.
5. Fractional adaptive indirect control

We give now a relevant application in indirect adaptive control
of integer systems of the fractional adjustment of parameters. This
application is numerically exemplified for the pole placement
problem.

Consider an unknown SISO integer order linear time-invariant
system with input u and output y, defined by the proper transfer
function

=
( )
( )

=
∑

∑ ( )
=
−

=

y
n s

d s
u

b s

a s
u
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where np,dp are coprime polynomials. Without loss of generality,
we assume an¼1. The problem of adaptive control, namely to
design u such that y has a desired behavior, can be solved by
making an estimation of plant parameters and building a rational
transfer function compensator C(s) of orderm given by the transfer
function

=
∑ ¯

∑ ( )
=

=

C
c s

c s
,
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with input −r y and output u, based on these estimations, where r
is a reference signal. Provided that the estimation converges
asymptotically to the true values, the desired behavior is achieved
(Lemma 2.1 in [25]).

The estimation can be done using fractional adaptive adjust-
ment in the following way. To have initial condition terms de-
caying to zero and as a filter of noise, the new filtered variables

λ¯≔y y/ , λ¯≔u u/ with a Hurwitz polynomial λ of degree at least n are
defined. Then,

¯ =
∑

∑
¯=

−

=

y
b s

a s
u.i

n
i

i

i
n

i
i

0
1

0

This system can be realized in the time domain as ([25])

∑ ∑¯ ( ) = ¯( )
= =

−

a D y t b D u t
i

n

i
i

i

n

i
i

0 0

1

where Di stand for integer derivative for i a natural number.
Putting ≔( ¯ ¯ … ¯ ¯ ¯ … ¯)− −w y Dy D y u Du D u, , , , , , ,n n T1 1 and θ≔

(− − … − … )− −a a a b b, , , , , ,n n
T

0 1 1 0 1 , the last equation can be written
as

θ¯ = ( )D y w. 44n T

By defining the identification error as θ≔ ^ − ¯e w D y
T

n and the

parametric error as ϕ θ θ≔ ^ − , we have (up to exponentially de-
caying terms associated to initial conditions of λ1/ filter)

ϕ( ) = ( ) ( ) ( )e t t w t 45T

where e w, are known functions.
If the support of the spectrum of u has no less than n2 points,

the following adjustment assures the convergence of ϕ θ θ= ^ − to
zero,



Fig. 1. Speed of parameter convergence: θ̂ vs time for the stable plant.

Fig. 2. Identification error function: stable plant.
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ϕ θ( ) = ^( ) = − ( ) ( ) ( )α αD t D t e t w t 46

where α< ≤0 1. The reason is that for such u, we have
∈ ( )w EP n2 , 1 and then Theorem 2 can be applied. By using that

( ) = ( )( ( ) − ( ))u s C s r s y s , the above condition for u holds, if the sup-
port of the spectrum of r has no less than +n m3 points, since w is
related to r by a filter =w Hr which has order at most +n m3 (see
the proof of [25], Lemma 2.2 for the specific form of H).

The above general procedure is illustrated in how to choose
=C n d/c c for the pole placement problem. Consider *d the char-

acteristic polynomial of the desired poles of order −n2 1. Suppose
first that np,dp are known. The transfer function relating y with r is
given

+
PC

PC1
where =P n d/p p. By equating the denominator of the

closed loop transfer function with *d we obtain

+ = * ( )n n d d d . 47c p c p

Since np and dp are coprimes, there exist nc and dc satisfying
(47). For implementation, ( ) ( )n t d t,c c must be modified whenever
the estimates of np and dp will be coprimes, otherwise it remain in
its constant value.

Remark 6. We make the following comments to the above
procedure:

(i) Filter
λ
1 can be chosen stable in the fractional sense.

(ii) The error function e is related to the model error ≔^ −e y yi

in Laplace domain by λ= ( )e s y/n .
(iii) Since Theorem 2 requires w to be bounded, when unstable

systems are considered w can be normalized by employing the
factor γ( )≔ + ( ) ( )t w t w t1/ 1 T .

(iv) Provided that the decaying to zero initial condition term
associated to λ1/ filter has bounded fractional α-integral, one can
show rigorously that the convergence conditions are not affected
(see for instance Proposition 2).

Let us now consider a numerical example of this application.

Example 5. Consider n¼1 and let * = +d s 2 be the desired
denominator. Applying Eq. (47), the compensator is given by
= ( − )C a b2 /0 0. The parameters are estimated using Eq. (46). Then,

considering an instant =t ti, if
^ ( ) ≠b t 0i0 , ( ) = ( − ^ ( )) ^ ( )C t a t b t2 /i i i0 0 ,

otherwise the last modification is kept ( ) = ( − ^ ( )) ^ ( )− −C t a t b t2 /i i i0 1 0 1 .
For the first experiment an stable plant with =a 10 and =b 10 is

controlled. As reference function, it is used = +r sint10 10 –so that
r has ≥ + =n m3 3 3 spectral frequencies– and fixed initial con-

ditions ( ( ) =y 0 0.1, θ̂ ( ) = ( )0 0, 0.1 T ). Recall that θ θ− = =a b,0 1 0 2.
Fig. 1 shows that the speed of parameter's convergence is related
to the order of derivation, in such a way that no advantage of
fractional adjustment is observed in comparison with the integer
case. This is not a crucial point since one has the γ parameter to
handle the speed of convergence (see Section 4.1). Similar ex-
periments indicate that the amplitude (which can be subsumed in
the γ factor) and the number of spectral frequencies of r is also
related to the speed of convergence. However, Fig. 2 shows that, in
absolute value, the error's maximum amplitude increases with the
order of derivation (worst for α = 1) and Fig. 3 shows that the scale
of the maximum amplitude in absolute value of the input is 1015 in
the integer case whereas in both fractional controllers are of order
lesser that 1011. Fig. 4 shows the controlled output; note that, since
the filter gain of the closed loop transfer function is 1/2, to tracking
the reference one must include a proportional factor depending on
the reference frequency.

In the second experiment, an unstable plant with = −a 0.10 ,
=b 10 and the same reference as before was employed. Recall that

θ θ− = =a b,0 1 0 2. Fig. 5 shows again the order of derivation de-
pendence of the convergence speed, but there is no clear ad-
vantage of the integer case in comparison with the fractional ad-
justment of α = 0.8. Fig. 6 shows the error function where again
the maximum amplitude is larger in the integer case. Fig. 7 shows
no significant difference in fractional or integer adjustment re-
garding to the input amplitude. Fig. 8 shows the controlled output;
note that although for tracking reference one must add an



Fig. 5. Speed of parameter convergence: θ̂ vs time for the unstable plant.

Fig. 6. Identification error function: unstable plant.

Fig. 3. Control input: stable plant.

Fig. 4. Controlled output: stable plant (blue line is the reference signal). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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amplification factor depending on the reference frequency, the
gain of the closed loop transfer function is now 2.1/2 and a nearly
perfect tracking occurs for the unstable plant.

In the third experiment additive band-limited withe noise was
introduced in the measured output y. By employing the RMS value
of the error function e as the optimization function, for a simula-
tion time of 70, Table 1 shows that minimal values do not occurs at
α = 1 but at α = 0.8 for the stable plant. In Table 2, for the unstable
plant, the minimum depends on the noise power and can be
fractional.



Fig. 8. Controlled output: unstable plant (blue line is the reference signal). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 7. Control input: unstable plant.
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Finally, in Fig. 9 shows the output for an unstable system = −a 0.10

with r as a step function of amplitude 1 (without enough spectral
frequency). Additive band-limited withe noise of power 0.001 was
Table 2
RMS error: unstable plant.

Power α = 1 α = 0.8 α = 0.5

0.001 0.001155 0.0008 0.011
0.01 0.009659 0.0016 0.014
0.1 0.02596 0.0044 0.023

Fig. 9. Controlled output: das

Table 1
RMS error: stable plant.

Power α = 1 α = 0.8 α = 0.5

0.001 0.00286 0.00202 0.0098
0.01 0.0055 0.00637 0.012
0.1 0.0032 0.0202 0.026
added in the measured output contributing with the necessaries
spectral frequencies. This experiment suggests that under noise con-
ditions, reference input tracking can be undertaken even if r has not
enough spectral frequencies. Since we are estimating simultaneously
the parameters of the plant, the zero frequency gain can be adjusted,
to have perfect matching. Note, however, that a nearly perfect tracking
occur for the unstable plant when α = 0.5 (Fig. 8(c)).

The experiments show that a fractional optimal order can be at-
tained when the objective function considers for instance minimal
control amplitude and/or minimal RMS error of the plant output
around the reference. In order to find the optimal order for the con-
trollers, the standard methodology to tune parameters used in adap-
tive control system applications can be followed. First, an objective
function J should be selected. This function J will depend on the tune
parameters – in particular, on the derivation order coming from the
adaptive adjustment of parameters of the controller. If a rough plant
model and operation conditions are available the optimization pro-
cedure can be initially solved off-line by a computationally efficient
method such as particle swarm optimization or genetic algorithms. In
this way, an optimal order to adjust control parameters is obtained. If a
hed line is the reference.
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rough plant model is not available, an on-line approach can be fol-
lowed. To that extent, measures of the available signals can be col-
lected during certain period of time. Based on these collected samples,
a rough model of the plant is estimated and the optimization proceeds
as before. In both cases, the tuning process can be repeated many
times until a satisfactory fine tuning of parameters is achieved. The
following reference can be consulted for further details on this stan-
dard methodology [26].
6. Conclusions

The bounded and convergence of some fractional adaptive
systems (including the Fractional Error Model of Type I) employing
fractional adaptive laws based on the gradient approach has been
presented and analyzed in this paper. It has been demonstrated
that convergence for the output error and the parameter error is
achieved provided certain conditions related to the newly in-
troduced concept of sufficiently exciting signals are satisfied.

The results obtained indicate that fractional order parameter
adjustment is an alternative to the standard integer order adaptive
laws to be used in adaptive systems. Simulations performed on
adaptive systems reveal that the fractional order of the adaptive
laws is a relevant variable of optimization, in particular in tran-
sient and robust behavior aspects.

It has yet to be analytically proved that fractional order adaptive
laws present advantages over classic integer order adaptive laws.
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