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EXTRAGRADIENT METHOD WITH VARIANCE REDUCTION
FOR STOCHASTIC VARIATIONAL INEQUALITIES∗
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Abstract. We propose an extragradient method with stepsizes bounded away from zero for
stochastic variational inequalities requiring only pseudomonotonicity. We provide convergence and
complexity analysis, allowing for an unbounded feasible set, unbounded operator, and nonuniform
variance of the oracle, and, also, we do not require any regularization. Alongside the stochastic ap-
proximation procedure, we iteratively reduce the variance of the stochastic error. Our method attains
the optimal oracle complexity O(1/ε2) (up to a logarithmic term) and a faster rate O(1/K) in terms
of the mean (quadratic) natural residual and the D-gap function, where K is the number of iterations
required for a given tolerance ε > 0. Such convergence rate represents an acceleration with respect
to the stochastic error. The generated sequence also enjoys a new feature: the sequence is bounded
in Lp if the stochastic error has finite p-moment. Explicit estimates for the convergence rate, the
oracle complexity, and the p-moments are given depending on problem parameters and distance of
the initial iterate to the solution set. Moreover, sharper constants are possible if the variance is uni-
form over the solution set or the feasible set. Our results provide new classes of stochastic variational
inequalities for which a convergence rate of O(1/K) holds in terms of the mean-squared distance
to the solution set. Our analysis includes the distributed solution of pseudomonotone Cartesian
variational inequalities under partial coordination of parameters between users of a network.
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1. Introduction. The standard (deterministic) variational inequality problem,
which we will denote as VI(T,X) or simply VI, is defined as follows: given a closed
and convex set X ⊂ Rn and a single-valued operator T : Rn → Rn, find x∗ ∈ X such
that for all x ∈ X,

(1) 〈T (x∗), x− x∗〉 ≥ 0.

We shall denote by X∗ the solution set of VI(T,X). The variational inequality prob-
lem includes many interesting special classes of variational problems with applications
in economics, game theory, and engineering. The basic prototype is smooth convex
optimization, when T is the gradient of a smooth function. Other problems which
can be formulated as variational inequalities, include complementarity problems (when
X = Rn+), systems of equations (when X = Rn), saddle-point problems, and many
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‡Centro de Modelamiento Matemático (CMM & DIM), Santiago, Chile (ajofre@dim.uchile.cl).

686

D
ow

nl
oa

de
d 

04
/0

6/
18

 to
 2

00
.8

9.
68

.7
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/siopt/27-2/M103195.html
mailto:iusp@impa.br
mailto:rimfo@impa.br
mailto:philip@impa.br
mailto:ajofre@dim.uchile.cl


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXTRAGRADIENT METHOD WITH VARIANCE REDUCTION 687

equilibrium problems. We refer the reader to Chapter 1 of [11] and [12] for an ex-
tensive review of applications of the VI problem in engineering and economics. The
complementarity problem and system of equations are important classes of problems
where the feasible set is unbounded.

In the stochastic case, we start with a measurable space (Ξ,G), a measurable
(random) operator F : Ξ × Rn → Rn, and a random variable ξ : Ω → Ξ defined on
a probability space (Ω,F ,P) which induces an expectation E and a distribution Pξ
of ξ. When no confusion arises, we sometimes use ξ to also denote a random sample
ξ ∈ Ξ. We assume that for every x ∈ Rn, F (ξ, x) : Ω → Rn is an integrable random
vector. The solution criterion analyzed in this paper consists of solving VI(T,X) as
defined by (1), where T : Rn → Rn is the expected value of F (ξ, ·), i.e.,

(2) T (x) = E[F (ξ, x)] =

∫
Ω

F (ξ(ω), x) dP(ω) ∀x ∈ Rn.

For clarity, we state such formulation of the stochastic variational inequality (SVI)
problem in the following definition.

Definition 1.1 (SVI). Assuming that T : Rn → Rn is given by T (x) = E[F (ξ, x)]
for all x ∈ Rn, the SVI problem consists of finding x∗ ∈ X such that 〈T (x∗), x−x∗〉 ≥
0 for all x ∈ X.

Such formulation of SVI is often called the expected value formulation. The in-
troduction of this formulation goes back to [23, 14], as a natural generalization of
stochastic optimization problems (SP). We remark here that different formulations for
the SVI problem exist in which the randomness is treated differently. For instance,
in the so-called expected residual minimization (ERM) formulation, one defines a
suitable nonnegative function x 7→ h(ξ, x) whose zeros are solutions of VI(F (ξ, ·), X).
The ERM formulation is then defined as the problem minx∈X E[h(ξ, x)]. Variants of
the ERM formulation can include random constraints as well. Both expected value
and ERM formulations have relevance in modeling stochastic equilibrium problems in
different settings. See, e.g., [34, 6].

Methods for the deterministic VI(T,X) have been extensively studied (see [11]).
If T is fully available, then SVI can be solved by these methods. As in the case of SP,
the SVI in Definition 1.1 becomes very different from the deterministic setting when
T is not available. This is often the case in practice due to expensive computation of
the expectation in (2), unavailability of Pξ, or no closed form for F (ξ, ·). This requires
sampling the random variable ξ and the use of values of F (η, x) given a sample η of
ξ and a current point x ∈ Rn (a procedure often called a “stochastic oracle” call). In
this context, there are two current methodologies for solving the SVI problem: sample
average approximation (SAA) and stochastic approximation (SA). In this paper we
focus on the SA approach. For analysis of the SAA methodology for SP, see e.g., [37]
and references therein. For the analysis of the SAA methodology for solving SVIs see
e.g. [14, 40, 41, 42].

We make some remarks regarding the solution of the SVI problem in Definition
1.1 when using SA. The SA methodology for SP or SVI can be seen as a projection-
type method where the exact mean operator T is replaced along the iterations by
a random sample of F . This approach induces a stochastic error F (ξ, x) − T (x) for
x ∈ X in the trajectory of the method. In this solution method the generated sequence
{xk} is unavoidably a stochastic process which evolves recursively according to the
chosen projection algorithm and the sampling information used in every iteration. As
a consequence, asymptotic convergence of the SA method guarantees a solution of
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688 A. IUSEM, A. JOFRÉ, R. OLIVEIRA, AND P. THOMPSON

Definition 1.1 with total probability. Precisely, limit points of the sequence {xk} are
typically a random variable x∗ such that, with total probability, x∗ ∈ X∗.

The first analysis of SA methodology for SVI was carried out recently in [18].
When X = Rn, Definition 1.1 becomes the stochastic equation (SE) problem, that is
to say, under (2), almost surely (a.s.) finds x∗ ∈ Rn such that T (x∗) = 0. The SA
methodology was first proposed by Robbins and Monro in [35] for the SE problem
in the case in which T is the gradient of a strongly convex function under specific
conditions. Since this fundamental work, SA approaches for SP and, more recently,
for SVI have been carried out [18, 19, 43, 26, 39, 17, 7, 44, 21, 22, 45]. See also [27, 1]
for other problems where the SA procedure is relevant (such as machine learning,
online optimization, repeated games, queueing theory, signal processing, and control
theory).

1.1. Related work on SA and contributions. The first SA method for SVI
was analyzed in [18]. Their method is

xk+1 = Π[xk − αkF (ξk, xk)],(3)

where Π is the Euclidean projection onto X, {ξk} is a sample of ξ and {αk} is a
sequence of positive steps. In [18], the almost sure convergence is proved assuming
L-Lipschitz continuity of T , strong monotonicity or strict monotonicity of T , stepsizes
satisfying

∑
k αk = ∞,

∑
k α

2
k < ∞ (with 0 < αk < 2ρ/L2, assuming that T is ρ-

strongly monotone), and an unbiased oracle with uniform variance, i.e., there exists
σ > 0 such that for all x ∈ X,

(4) E
[
‖F (ξ, x)− T (x)‖2

]
≤ σ2.

After the above mentioned work, recent research on SA methods for SVI have
been developed in [19, 43, 26, 39, 17, 7, 44, 21, 22, 45]. Two of the main concerns
in these papers were the extension of the SA approach to the general monotone case
and the obtention of (optimal) convergence rate and complexity results with respect
to known metrics associated to the VI problem. In order to analyze the monotone
case, SA methodologies based on the extragradient method of Korpelevich [25] and
the mirror-prox algorithm of Nemiroviski [31] were used in [19, 7, 44, 21, 22], and
iterative Tykhonov and proximal regularization procedures (see [20, 24]) were used in
[43, 26, 17, 45]. Other objectives in some of these papers were the use of incremental
constraint projections in the case of difficulties accessing the feasible set [39, 17], the
convergence analysis in the absence of the Lipschitz constant [43, 44, 45], and the
distributed solution of Cartesian variational inequalities [43, 26, 17, 20].

In Cartesian variational inequalities, a network of m agents is associated to a
coupled variational inequality with constraint set X = X1 × · · · ×Xm and operator
F = (F1, . . . , Fm), where the ith agent is associated to a constraint set Xi ⊂ Rni and
a map Fi : Ξ×Rn → Rni such that n =

∑m
i=1 ni. Two important problems which can

be formulated as stochastic Cartesian variational inequalities are the stochastic Nash
equilibria and the stochastic multiuser optimization problem. See [26] for a precise
definition. In these problems, the ith agent has only access to constraint set Xi and
Fi (which depends on other agents’ decision sets) so that a distributed solution of the
SVI is required. As an example, the distributed variant of method (3) studied in [43]
takes the following form: for all i = 1, . . . ,m,

xk+1
i = Πi

[
xki − αk,iFi(ξki , xk)

]
,
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EXTRAGRADIENT METHOD WITH VARIANCE REDUCTION 689

where Πi is the Euclidean projection onto Xi. Thus, the ith agent updates its decision
evaluating his operator Fi and projecting onto its decision set Xi.

In this paper we propose the following extragradient method: given xk, define

zk = Π

[
xk − αk

Nk

Nk∑
j=1

F (ξkj , x
k)

]
,(5)

xk+1 = Π

[
xk − αk

Nk

Nk∑
j=1

F (ηkj , z
k)

]
,(6)

where {Nk} ⊂ N is a nondecreasing sequence and {ξkj , ηkj : k ∈ N, j = 1, . . . , Nk} are
independent identically distributed (i.i.d.) samples of ξ. We call {Nk} the sample
rate sequence.

Next we make some observations regarding merit functions and complexity esti-
mates. A merit function for VI(T,X) is a nonnegative function f over X such that
X∗ = X ∩ f−1(0). An unrestricted merit function f for VI(T,X) is a merit function
such that X∗ = f−1(0). For any α > 0 we consider the natural residual function rα,
defined, for any x ∈ Rn, by rα(x) := ‖x−Π(x−αT (x))‖. It is well known that rα is an
unrestricted merit function for VI(T,X). Given ε > 0, we consider an iteration index
K = Kε (whose existence will be proved in section 3.4), such that E[rα(xK)2] < ε,
and we look at E[rα(xK)2] as a nonasymptotic convergence rate. In particular, we
will have an O(1/K) convergence rate if E[rα(xK)2] ≤ Q/K for some constant Q > 0
(depending on the initial iterate and the parameters of the problem and the method).
The (stochastic) oracle complexity will be defined as the total number of oracle calls

needed for E[rα(xK)2] < ε to hold, i.e.,
∑K
k=1 2Nk.

Beside the natural residual, other merit functions were considered in prior work
on SVI. Given a compact feasible set X, the dual gap function of VI(T,X) is defined
as G(x) := supy∈X〈T (y), x−y〉 for x ∈ X. In [19, 7, 44, 45], rates of convergence were
given in terms of the expected value ofG whenX is compact or, whenX is unbounded,
in terms of the relaxed dual gap function G̃(x, v) := supy∈X〈T (y)−v, x−y〉, introduced
by Monteiro and Svaiter [29, 30], based on the enlargement of monotone operators
introduced in [3]. When X is compact, the dual gap function is a modification of
the primal gap function, defined as g(x) := supy∈X〈T (x), x − y〉 for x ∈ X. Both
the primal and dual gap functions are continuous only if X is compact. A variation
suitable for unbounded feasible sets is the regularized gap function, defined, for fixed
a > 0, as ga(x) := supy∈X{〈T (x), x − y〉 − a

2‖x − y‖
2}, for x ∈ Rn. The regularized

gap function is continuous over Rn. Another variation is the so-called D-gap function.
It is defined, for fixed b > a > 0, as ga,b(x) := ga(x) − gb(x), for x ∈ Rn. It is well
known that ga,b : Rn → R+ is a continuous unrestricted merit function for VI(T,X).
Moreover, the quadratic natural residual and the D-gap function are equivalent merit
functions in the sense that, given b > a > 0, there are constants c1, c2 > 0 such that
for all x ∈ Rn, c1rb−1(x)2 ≤ ga,b(x) ≤ c2ra−1(x)2 (see [11, Theorems 10.2.3, 10.3.3,
Proposition 10.3.7]). These properties hold independently of the compactness of X.

Next we resume the contributions of the algorithm presented in this paper.
(i) Asymptotic convergence. Assuming pseudomonotonicity of F , and using an extra-
gradient scheme, without regularization, we prove that, a.s., the generated sequence
is bounded, its distance to the solution set converges to zero, and its natural residual
value converges to zero a.s. and in L2. Note that monotonicity implies pseudomono-
tonicity. See [22] for examples where the more general setting of pseudomonotonicity is
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690 A. IUSEM, A. JOFRÉ, R. OLIVEIRA, AND P. THOMPSON

relevant (stochastic fractional programming, stochastic optional pricing, and stochas-
tic economic equilibria). The sequence generated by our method also possesses a
new stability feature: for p = 2 or any p ≥ 4, if the random operator has finite
p-moment, then the sequence is bounded in Lp, and we are able to provide explicit
upper bounds in terms of the problem parameters. Previous work required a bounded
monotone operator, specific forms of pseudomonotonicity (monotonicity with acute
angle, pseudomonotonicity-plus, strict pseudomonotonicity, symmetric pseudomono-
tonicity, or strong pseudomonotonicity as in [21, 22]) or regularization procedures.
The disadvantage of regularization procedures in the absence of strong monotonicity
is the need to introduce additional coordination between the stepsize sequence and the
regularization parameters. Also, the regularization induces a suboptimal performance
in terms of rate and complexity (see [45]).

(ii) Faster convergence rate with oracle complexity efficiency . To the best of our
knowledge, our work is the first SA method for SVI with stepsizes bounded away
from zero. Such a feature allows our method to achieve a faster convergence rate
O(1/K) in terms of the mean-squared natural residual under plain pseudomonotonic-
ity (with no regularization requirements). As a consequence, our method achieves a
convergence rate of O(1/K) in terms of the mean D-gap function value of the gen-
erated sequence. In previous works, methods with diminishing stepsizes satisfying∑
k αk =∞,

∑
k α

2
k <∞ were used, achieving a O(1/K) rate in terms of the mean-

squared distance to X∗, with more demanding monotonicity assumptions (namely,
bounded strongly pseudomonotone operators and bounded monotone weak-sharp VI)
and a rate O(1/

√
K) in terms of mean gap function values of the ergodic average

of the generated sequence in the case of bounded monotone operators. Importantly,
our method preserves the optimal oracle complexity O(ε−2) up to a first order log-
arithmic term. By accelerating the rate, we reduce the computational complexity
(in terms of projection computations), preserving a near-optimal oracle complexity.
It should be noted that such acceleration represents the closing of the gap from the
stochastic to the deterministic and it is distinct in nature from the acceleration of
differentiable convex optimization problems using Nesterov-type gradient methods.
We provide explicit upper bounds for the rate and complexity in terms of the prob-
lem parameters. As a corollary of our result we provide new classes of SVIs for
which a convergence rate of O(1/K) holds in terms of the mean-squared distance to
the solution set (see section 4). We remark that for compact X, it is possible to
show that the proposed extragradient method achieves a rate O( lnK

K ) in terms of
the mean dual gap function value of the ergodic average of the generated sequence
with an optimal oracle complexity (up to a logarithmic factor). If a different set of
weights is used in the ergodic average (such as window-based averaging, Nesterov-
like extrapolation, and other schemes), then our method achieves a rate O( 1

K ) with
an optimal oracle complexity. See, e.g., [32, 44, 7]. In the context of large dimen-
sion data (n � 1), our algorithm complexity is independent of the dimension n (see
Proposition 3.23).

(iii) Unbounded setting . The results in items (i)–(ii) are valid for an unbounded
feasible set and an unbounded operator. Important examples of such a setting include
complementarity problems and systems of equations. Asymptotic convergence for an
unbounded feasible set is analyzed in [43, 39, 22, 45] with more demanding mono-
tonicity hypotheses and in [26, 17] for the monotone case, but with an additional
regularization procedure. To the best of our knowledge, convergence rates in the case
of an unbounded feasible set were treated only in [39, 7]. In [39], a convergence rate
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is given only for strongly monotone operators. In [7], assuming uniform variance
over X (in the sense of (4)), a convergence rate of O(1/

√
K) for the ergodic average

of the iterates is achieved in terms of the mean value of a relaxed gap function re-
cently introduced by Monteiro and Svaiter [29, 30]. It should be noted, however, that,
even when assuming uniform variance, the sequence of the iterates generated by their
method may diverge to ∞ (see Example 3.10). Our convergence analysis in items
(i)–(ii) does not depend upon boundedness assumptions, and we prove the faster rate
of O(1/K) in terms of the mean (quadratic) natural residual and the mean D-gap
function, which are new results. The natural residual and the D-gap function are
better behaved than the (standard) gap function: the former are finite valued and
Lipschitz continuous over Rn, while the later is finite valued and continuous only for a
compact X.

(iv) Nonuniform variance. According to what we know, all previous works re-
quire that the variance of the oracle error be uniform over X (in the sense of (4)),
except in [39] for the strongly monotone case, and in [17] for the case of a weak-sharp
monotone operator, and also for the monotone case with an iterative Tykhonov regu-
larization (with no convergence rate results). Such uniform variance assumption holds
for bounded operators, but not for unbounded ones, on an unbounded feasible set.
Typical situations where this assumption fails to hold include affine complementarity
problems and systems of equations. In such cases, the variance of the oracle error
tends (quadratically) to ∞ in the horizon (see Example 3.9). The performance of
our method, in terms of the oracle complexity, depends on the point x∗ ∈ X∗ with
minimal trade-off between variance and distance to initial iterates “ignoring” points
with high variance (see comments after Theorem 3.22 and section 3.4.1). This result
also improves over the case in which (4) does holds but σ(x∗)2 � σ2 or over the case
in which X is compact but ‖x0 − x∗‖ � diam(X). In conclusion, the performance
of method (5)–(6) depends on solution points x∗ with minimal variance, compared to
the conservative upper bound σ2, and minimal distance to initial iterates. In the case
of uniform variance over X∗ or X, we obtain sharper estimates of rate and complexity
in item (ii).

(v) Distributed solution of multiagent system. The analysis in items (i)–(iv) also
holds true for the distributed solution of stochastic Cartesian variational inequalities,
in the spirit of [43, 26, 17, 20]. In our framework (see Algorithm 2, (11)–(12)), agents
update synchronous stepsizes bounded away from zero over a range (0,O(1)L−1).
An advantage of the extragradient approach in the distributed case is that we do
not require iterative regularization procedures as in [26, 17, 20] for coping with the
merely monotone case. This implies that the faster convergent rate of O(1/K) is
achievable with a near-optimal oracle complexity under weaker conditions (such as
an unbounded set and nonuniform variance). As discussed later on, our algorithm
requires the choice of a sampling rate for dealing with the setting of items (i)–(iv).
Hence, in the distributed solution case, agents should have the choice of sharing their
oracle calls or not, and we allow both options. In the later case of fully distributed
sampling, the oracle complexity has higher order dependence in terms of the network
dimension m, which may be demanding in the context of large networks (m� 1). For
this case, if an estimate of m is available and a decreasing sequence of (deterministic)
parameters {bi}mi=1 is shared (in any order) among agents, then our algorithm has
oracle complexity of order m(a−1ε−1)2+a for arbitrary a > 0 (up to a scaling factor
in the sample rate). See Proposition 3.28. Further dimension reduction possibilities
will be the subject of future work.
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For achieving the results of items (i)–(v), we employ an iterative variance re-
duction procedure. This means that instead of calling the oracle once per iteration
(as in previous SA methods for SVI studied so far), our method calls the oracle Nk
times at iteration k and uses the associated empirical average of the values of the
random operator F at the current iterates xk and zk (see (5)–(6)). Since the presence
of the stochastic error destroys the strict Fejér property (satisfied by the generated
sequence in the deterministic setting), the mentioned variance reduction procedure is
the mechanism that allows our extragradient method to converge in an unbounded
setting with stepsizes bounded away from zero and to achieve an accelerated rate
in terms of the natural residual. Such variance reduction scheme is efficient since
we maintain a near-optimal oracle complexity when compared to the classical SA
method. Precisely, given a prescribed tolerance ε > 0, the classical SA method re-
quires O(ε−2) iterations, O(ε−2) samples and a final ergodic average of size O(ε−2).
As will be seen in Proposition 3.23, our method requires K := O(ε−1) iterations and
O(ε−2) samples and, for k ≤ K, the kth iteration computes an empirical average of
size k (up to a first order logarithmic factor). Hence the total cost in averaging is
also O(ε−2) (again, up to a first order logarithmic factor). In conclusion, our method
uses the same amount of total samples and same effort in averaging as in the classical
SA method but with empirical averages with smaller sizes distributed along iterations
instead of one ergodic average at the final iteration. This is the reason for improv-
ing the required number of iterations from O(ε−2) to O(ε−1) and thus reducing the
number of projections by one order.1 The use of empirical averages along iterations
is also the reason we can include unbounded operators and oracles with nonuniform
variance and give estimates which depend on the variance at points of the trajectory
of the method and at points of X∗ (but not on the whole X). Such results are not
shared by the SAA method and SA with constant Nk. In order to obtain these results,
we use martingale moment inequalities and a supermartingale convergence theorem
(see section 2.2). Our sampling procedure also possesses a robust property: a scaling
factor on the sampling rate maintains the progress of the algorithm with proportional
scaling in the convergence rate and oracle complexity (see Propositions 3.23, 3.26,
and 3.28 and [32] for robust methods). In Examples 3.9 and 3.10 we show typical
situations where such variance reduction procedure is relevant or even necessary.

To the best of our knowledge the variance reduction procedure mentioned above
is new for SA solution of SVI. Moreover, it seems that the derivation of the faster
rate of O(1/K) with a near-optimal stochastic oracle complexity, an unbounded fea-
sible set, and an oracle with nonuniform variance is also new for convex stochastic
programming. During the preparation of this paper we became aware of references
[9, 5, 13, 16, 8, 38], where variable sample-size methods are studied for stochastic
optimization. We treat the general case of pseudomonotone variational inequalities
with weaker assumptions. Also, our analysis differs somewhat from these works rely-
ing on martingale and optimal stopping techniques. In [9, 5, 13, 38] the SA approach
is studied for convex SP. In [5, 38], the focus is on gradient descent methods ap-
plied to strongly convex optimization problems. In [13] the strong convexity property
is slightly weakened by assuming a special error bound on the solution set (which
is satisfied by strongly convex optimization problems in particular). In [5, 13] the

1The possibility of distributing the empirical averages along iterations is possible due to the
on-line nature of the SA method. This is not shared by the SAA methodology, which is an off-line
procedure.
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EXTRAGRADIENT METHOD WITH VARIANCE REDUCTION 693

optimization problem is unconstrained, while in [38] the problem has a compact fea-
sible set. In [5], second order information is assumed and an adaptive sample size
selection is used. In [13] uniform boundedness assumptions are required. In [9], a
variant of the dual averaging method of Nesterov [33] is applied for solving nons-
mooth stochastic convex optimization, assuming a compact feasible set and uniform
variance. A constant oracle call per iteration Nk ≡ N > 1 is used, obtaining a conver-
gence rate of O(1/

√
KN) for the ergodic average of the sequence, while we typically

use Nk = O(k(ln k)1+b) with b > 0 obtaining a rate of O(1/K) for the generated
sequence. In [16, 8], the SAA approach for stochastic optimization is studied. This is
an implicit method, unlike the SA methodology. Also, uniform boundedness assump-
tions are required. In [8] the focus is on unconstrained optimization, with second
order information, using Bayesian analysis for an adaptive choice of Nk. See also [15].

The paper is organized as follows. In section 2 we present notation and prelimi-
naries, including the required probabilistic tools. In section 3 we present the algorithm
and its convergence analysis. In subsection 3.1 the algorithm is formally presented,
while in subsection 3.2 the assumptions required for its analysis are discussed. Subsec-
tion 3.3 presents the convergence analysis, while subsection 3.4 focuses on convergence
rates and complexity results.

2. Preliminaries.

2.1. Projection operator and notation. For x, y ∈ Rn, we denote 〈x, y〉 the
standard inner product and ‖x‖ =

√
〈x, x〉 the correspondent Euclidean norm. Given

C ⊂ Rn and x ∈ Rn, we use the notation d(x,C) := inf{‖x − y‖ : y ∈ C}. For a
closed and convex set C ⊂ Rn, we use the notation ΠC(x) := argminy∈C‖y − x‖2
for x ∈ Rn. Given H : Rn → Rn, S(H,C) denotes the solution set of VI(H,C).
For a matrix B ∈ Rn×n, we use the notation ‖B‖ := supx 6=0 ‖Bx‖/‖x‖. We use
the notation [m] := {1, . . . ,m} for m ∈ N and (αi)

m
i=1 := (α1, . . . , αm) for αi ∈ R

and i ∈ [m]. We also use the notation N0 := N ∪ {0}. We use the abbreviation
“RHS” for “right-hand side.” Given sequences {xk} and {yk}, we use the notation
xk = O(yk) or ‖xk‖ . ‖yk‖ to mean that there exists a constant C > 0 such that
‖xk‖ ≤ C‖yk‖ for all k. The notation ‖xk‖ ∼ ‖yk‖ means that ‖xk‖ . ‖yk‖ and
‖yk‖ . ‖xk‖. Given a σ-algebra F and a random variable ξ, we denote by E[ξ],
E[ξ|F ], and V[ξ], the expectation, conditional expectation, and variance, respectively.
We denote by cov[B] the covariance of a random vector B. Also, we write ξ ∈ F
for “ξ is F-measurable.” We denote by σ(ξ1, . . . , ξk) the σ-algebra generated by the
random variables ξ1, . . . , ξk. Given the random variable ξ and p ≥ 1, |ξ|p is the Lp-

norm of ξ and |ξ |F|p := p
√
E [|ξ|p |F ] is the Lp-norm of ξ conditional to the σ-algebra

F . N(µ, σ2) denotes the normal distribution with mean µ and variance σ2. Given
x ∈ R, we denote by x+ := max{0, x} its positive part and by dxe the smallest integer
greater than or equal to x.

The following properties of the projection operator are well known; see Chapter
1 of [11].

Lemma 2.1. Take a nonempty closed and convex set C ⊂ Rn. Then
(i) given x ∈ Rn, ΠC(x) is the unique point of C satisfying the following property:
〈x−ΠC(x), y −ΠC(x)〉 ≤ 0, for all y ∈ C;

(ii) for all x ∈ Rn, y ∈ C; ‖ΠC(x)− y‖2 + ‖ΠC(x)− x‖2 ≤ ‖x− y‖2;
(iii) for all x, y ∈ Rn ‖ΠC(x)−ΠC(y)‖ ≤ ‖x− y‖;
(iv) given α > 0 and H : Rn → Rn, S(H,C) = {x ∈ Rn : x = ΠC [x− αH(x)]}.
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694 A. IUSEM, A. JOFRÉ, R. OLIVEIRA, AND P. THOMPSON

2.2. Probabilistic tools. As in other SA methods, a fundamental tool to be
used is the following convergence theorem of Robbins and Siegmund (see [36]).

Theorem 2.2. Let {yk}, {uk}, {ak}, {bk} be sequences of nonnegative integrable
random variables, adapted to the filtration {Fk}, such that a.s. for all k ∈ N,
E
[
yk+1

∣∣Fk] ≤ (1 + ak)yk − uk + bk,
∑
ak < ∞, and

∑
bk < ∞. Then, a.s. {yk}

converges and
∑
uk <∞.

If a.s. for all k ∈ N, E[yk+1|Fk] = yk, then {yk,Fk} is called a martingale. We
shall also need the following moment inequality; see [4, 28].

Theorem 2.3 (the inequality of Burkholder, Davis, -and Gundy). We denote
as ‖ · ‖ the Euclidean norm in Rn. For all q ≥ 1, there exists Cq > 0 such that for
any vector-valued martingale (yi,Fi)Ni=0 taking values in Rn with y0 = 0, it holds that

(7) |‖yN‖|q ≤
∣∣∣∣sup
i≤N
‖yi‖

∣∣∣∣
q

≤ Cq

∣∣∣∣∣∣
√√√√ N∑
k=1

‖yi − yi−1‖2

∣∣∣∣∣∣
q

.

For q ≥ 2, we will use the rightmost inequality in (7) in the following simpler
form, which follows from applying Minkowski’s inequality (q/2 ≥ 1):

(8) |‖yN‖|q ≤
∣∣∣∣sup
i≤N
‖yi‖

∣∣∣∣
q

≤ Cq

√√√√ N∑
k=1

|‖yi − yi−1‖|2q.

3. An extragradient method with stepsizes bounded away from zero.

3.1. Statement of the algorithm. Our extragradient method takes the fol-
lowing form.

Algorithm 1 (stochastic extragradient method).
1. Initialization. Choose the initial iterate x0 ∈ Rn, a positive stepsize sequence
{αk}, the sample rate {Nk}, and initial samples {ξ0

j }
N0
j=1 and {η0

j }
N0
j=1 of the

random variable ξ.
2. Iterative step. Given iterate xk, generate samples {ξkj }

Nk
j=1 and {ηkj }

Nk
j=1 of ξ

and define

zk = Π

[
xk − αk

Nk

Nk∑
j=1

F (ξkj , x
k)

]
,(9)

xk+1 = Π

[
xk − αk

Nk

Nk∑
j=1

F (ηkj , z
k)

]
.(10)

In (9) and (10), Π is the Euclidean projection operator onto X. Method (9)–(10)
is designed so that at iteration k the random variable ξ is sampled 2Nk times and the
empirical average of F at x is used as the approximation of T (x) at each projection
step.

In order to incorporate the distributed case mentioned in section 1.1, item (v),
we will also analyze the case in which the SVI has a Cartesian structure. We consider
the decomposition Rn =

∏m
i=1 Rni , with n =

∑m
i=1 ni, and furnish this space with

the direct inner product 〈x, y〉 :=
∑m
i=1〈xi, yi〉 for x = (xi)

m
i=1 i and y = (yi)

m
i=1. We

suppose that the feasible set has the form X =
∏m
i=1X

i, where Xi ⊂ Rni is a closed
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and convex set for i ∈ [m]. The random operator F : Ξ × Rn → Rn has the form
F = (F1, . . . , Fm), where Fi : Ξ× Rn → Rni for i ∈ [m]. Given i ∈ [m], we denote by
Πi : Rni → Rni the orthogonal projection onto Xi. We emphasize that the orthogonal
projection under a Cartesian structure has a simple form: for x = (xi)

m
i=1 ∈ Rn, we

have ΠX(x) = (ΠX1(x1), . . . ,ΠXm(xm)).
In such a setting, the method takes the following form.

Algorithm 2 (stochastic extragradient method: distributed case).
1. Initialization. Choose the initial iterate x0 ∈ Rn, the stepsize sequence αk >

0, the sample rates Nk = (Nk,i)
m
i=1 ∈ Nm, and, for each i ∈ [m], generate the

initial samples {ξ0
j,i}

N0,i

j=1 and {η0
j,i}

N0,i

j=1 of the random variable ξ.

2. Iterative step. Given xk = (xki )mi=1, for each i ∈ [m], generate samples

{ξkj,i}
Nk,i
j=1 and {ηkj,i}

Nk,i
j=1 of ξ and define

zki = Πi

[
xki −

αk
Nk,i

Nk,i∑
j=1

Fi(ξ
k
j,i, x

k)

]
,(11)

xk+1
i = Πi

[
xki −

αk
Nk,i

Nk,i∑
j=1

Fi(η
k
j,i, z

k)

]
.(12)

Method (9)–(10) is a particular case of method (11)–(12) with m = 1. The only
additional requirement when m > 1 is the sampling coordination between agents
(Assumption 3.6). We define next the stochastic errors: for each i ∈ [m],

εk1,i :=
1

Nk,i

Nk,i∑
j=1

Fi(ξ
k
j,i, x

k)− Ti(xk),(13)

εk2,i :=
1

Nk,i

Nk,i∑
j=1

Fi(η
k
j,i, z

k)− Ti(zk),(14)

in which case method (11)–(12) is expressible in a compact form as

zk = Π[xk − αk(T (xk) + εk1)],(15)

xk+1 = Π[xk − αk(T (zk) + εk2)],(16)

where Π : Rn → Rn is the projection operator onto X and εkl := (εkl,i)
m
i=1 for l ∈ {1, 2}.

3.2. Discussion of the assumptions. For simplicity of notation, we aggregate
the samples as

ξki := {ξkj,i : j ∈ [Nk,i]}, ξk := {ξki : i ∈ [m]},
ηki := {ηkj,i : j ∈ [Nk,i]}, ηk := {ηki : i ∈ [m]}.

In the method (15)–(16), the sample {ξk} is used in the first projection while {ηk}
is used in the second projection. In the case of a Cartesian SVI, {ξki } and {ηki } are
the samples used in the first and second projections in (11)–(12) by the ith agent,
respectively.

We shall study the stochastic process {xk} with respect to the filtrations

Fk = σ(x0, ξ0, . . . , ξk−1, η0, . . . , ηk−1), F̂k = σ(x0, ξ0, . . . , ξk, η0, . . . , ηk−1).
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696 A. IUSEM, A. JOFRÉ, R. OLIVEIRA, AND P. THOMPSON

We observe that by induction, xk ∈ Fk and zk ∈ F̂k but zk /∈ Fk. The filtration Fk
corresponds to the information carried until iteration k, to be used on the computation
of iteration k + 1. The filtration F̂k corresponds to the information carried until
iteration k plus the information produced at the first projection step of iteration k+1,
namely, F̂k = σ(Fk ∪ σ(ξk)). The way information evolves according to filtrations

{Fk, F̂k} is natural in applications. Also, the use of two filtrations will be important

since even though zk /∈ Fk we have zk ∈ F̂k, so that, given i ∈ [m],

E[εk2,i|F̂k] = E

[
1

Nk,i

Nk,i∑
j=1

Fi(η
k
j,i, z

k)− Ti(zk)

∣∣∣∣∣F̂k
]

=
1

Nk,i

Nk,i∑
j=1

E
[
Fi(η

k
j,i, z

k)
∣∣F̂k]− Ti(zk)

=
1

Nk,i

Nk,i∑
j=1

Ti(z
k)− Ti(zk) = 0(17)

if for every i ∈ [m], {ηkj,i : j ∈ [Nk,i]} is independent of F̂k and identically distributed
as ξ. We exploit (17) for avoiding first order moments of the stochastic errors, which
drastically diminishes the complexity by an order of one, and for using martingale
techniques.2 We remark that, with some minor extra effort, the same samples can
be used in both projections in method (11)–(12). Next we describe the assumptions
required in our convergence analysis.

Assumption 3.1 (consistency). The solution set X∗ := S(T,X) is nonempty.

Assumption 3.2 (stochastic model). X ⊂ Rn is closed and convex, (Ξ,G) is a
measurable space such that F : Ξ ×X → Rn is a Carathéodory map,3 ξ : Ω → Ξ is
a random variable defined on a probability space (Ω,F ,P), and E[‖F (ξ, x)‖] <∞ for
all x ∈ X.

Assumption 3.3 (Lipschitz continuity). The mean operator T : X → Rn defined
by (2) is Lipschitz continuous with modulus L > 0.

Assumption 3.4 (pseudomonotonicity). The mean operator T : Rn → Rn is
pseudomonotone,4 i.e., 〈T (x), z − x〉 ≥ 0 =⇒ 〈T (z), z − x〉 ≥ 0 for all z, x ∈ Rn.

Assumption 3.5 (sampling rate). Given {Nk} as in Algorithm 2, define Nk,min :=
mini∈[m]Nk,i and 1

Nk :=
∑m
i=1

1
Nk,i

. Then one of the conditions is satisfied:

(i)
∑∞
k=0

1
Nk <∞,

(ii)
∑∞
k=0

1
Nk,min

<∞.

Typically a sufficient choice is, for i ∈ [m],

Nk,i = Θi · (k + µi)
1+ai ·

(
ln
(
k + µi

))1+bi

2If also {ξkj,i : j ∈ [Nk,i]} is independent of Fk and identically distributed as ξ, then, for i ∈ [m],

V[εk1,i] = N−1
k,i V[Fi(ξ, x

k)] and V[εk2,i] = N−1
k,i V[Fi(ξ, z

k)], so that our method iteratively reduces the

variance of the oracle error as long as {Nk,i}k∈N increases.
3That is, F (ξ, ·) : X → Rn is continuous for a.e. ξ ∈ Ξ and F (·, x) : Ξ→ Rn is measurable.
4Pseudomonotonicity is a weaker assumption than monotonicity, i.e., 〈T (z) − T (x), z − x〉 ≥ 0

for all x, z ∈ Rn.
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for any Θi > 0, µi > 0 with ai > 0, bi ≥ −1 or ai = 0, bi > 0 (the latter is the
minimum requirement). It is essential to specify choices of the above parameters that
induce a practical complexity of method (11)–(12), i.e., practical upper bounds on the

total oracle complexity
∑K
k=1

∑m
i=1 2Nk,i, where K is an estimate of the total number

of iterations needed for achieving a given specified tolerance ε > 0. A convergence
rate in terms of K is also desirable. As commented after Theorem 3.22, our algorithm
achieves an optimal accelerated rate O(1/K) and an optimal complexity O(ε−2) up
to a first order logarithmic term ln(ε−1).5

We offer two options of sampling coordination among the agents.

Assumption 3.6 (sampling coordination). For each i ∈ [m] and k ∈ N0, {ξki } and
{ηki } are i.i.d. samples of ξ such that {ξki } and {ηki } are independent of each other.
Also, one of the two next coordination conditions is satisfied:

(i) (Centralized sampling) For all i ∈ [m], Nk,i ≡ Nk, ξki ≡ ξk , and ηki ≡ ηk.
(ii) (Distributed sampling) {ξk, ηk : k ∈ N} is an i.i.d. sample of ξ.

We remark that, with some extra effort, it is possible to use the same samples in
each projection step of the method (11)–(12), that is, ξki ≡ ηki for k ∈ N0 and i ∈ [m].
We ask for independence in Assumption 3.6 in order to simplify the analysis. Both
conditions (i) and (ii) in Assumption 3.6 are the same for m = 1.6 Assumption 3.6

implies in particular that {ξk} is independent of Fk, {ηk} is independent of F̂k, and
both are identically distributed as ξ. In particular, for any x ∈ Rn, k ∈ N, i ∈ [m],
j ∈ [Nk,i],

E
[
Fi(ξ

k
j,i, x)

∣∣∣Fk] = E
[
Fi(η

k
j,i, x)

∣∣∣F̂k] = Ti(x).

Assumption 3.7 (stepsize bounded away from zero). The stepsize sequence {αk}
in Algorithm 2 satisfies

0 < inf
k∈N

αk ≤ α̂ := sup
k∈N

αk <
1√
6L
.

The following two sets of assumptions ensure that the variance of the error
F (ξ, x) − T (x) is controlled, so that (together with Assumption 3.5 on the sampling
rate) boundedness is guaranteed, even in the case of an unbounded operator.

Assumption 3.8 (variance control). There exists p ≥ 2 such that one of the
following three conditions holds:

(i) There exist x∗ ∈ X∗ and σ(x∗) > 0 such that for all x ∈ X,

|‖F (ξ, x)− T (x)‖|p ≤ σ(x∗) (1 + ‖x− x∗‖).

(ii) There exists a locally bounded and measurable function σ : X∗ → R+ such
that for all x∗ ∈ X∗, x ∈ X, the inequality in (i) is satisfied.

5In large-scale problems such as in machine learning, the dependence of the rate and complexity
estimates on the dimension is relevant in the case of large constraint dimension (ni � 1) or large
networks (m� 1). We show that our method has a rate of O(σ4) which is independent of dimension,
where σ2 is the variance, even in the case of an unbounded feasible set and a nonuniform variance.
Sharper constants are available in the case of uniform variance (see Proposition 3.26).

6When m > 1, item (i) corresponds to the case where one stochastic oracle is centralized. In
this case, fewer samples are required but the sampling process needs total coordination. Item (ii)
corresponds to the other extreme case, where the agents have completely distributed oracles so that
the sampling process of each agent is conducted independently. We do not explore the intermediate
possibilities between (i) and (ii).
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(iii) There exists a positive sequence {σl,i : i ∈ [m], l ∈ [ni]} such that for all
i ∈ [m], l ∈ [ni], x ∈ X, |F`,i(ξ, x)− T`,i(x)|p ≤ σ`,i, where F`,i and T`,i are
the components of Fi and Ti respectively.

In item (iii) we define σ2 :=
∑m
i=1

∑ni
`=1 σ

2
`,i. Note that when p = 2, σ(x∗)2 (1 +

‖x − x∗‖)2 in the case of (i)–(ii) and σ2 in the case of item (iii), are, respectively,
upper bounds on the variance of the components of F (ξ, x). Items (i) and (ii) are
essentially the same, excepting that (i) only requires the condition to hold at just one
point x∗ ∈ X∗ rather than on the entire solution set. Item (i) is sufficient for the
analysis, but (ii) allows for sharper estimates in the case of unbounded feasible set
and operator. Item (iii) allows for even sharper ones. In what follows we shall denote
q := p/2.

For the important case in which the random operator F is Lipschitz, both items
(i)–(ii) are satisfied with a continuous σ : X∗ → R+. Namely, if for any x, y ∈ Rn,

(18) ‖F (ξ, x)− F (ξ, y)‖ ≤ L(ξ)‖x− y‖,

for some measurable L : Ξ → R+ with finite Lp-norm for some p ≥ 2, then Assump-
tions 3.2–3.3 and 3.8 hold with L := E[L(ξ)] and

(19) σ(x∗) := max{|‖F (ξ, x∗)− T (x∗)‖|p, |L(ξ)|p + L},

for x∗ ∈ X∗. Indeed, Assumption 3.3 with L := E[L(ξ)] follows from Jensen’s inequal-
ity and (18). For establishing (19), note that by Minkowski’s inequality

|‖F (ξ, x)− T (x)‖|p ≤ |‖F (ξ, x)− F (ξ, x∗)‖|p + |‖F (ξ, x∗)− T (x∗)‖|p
+ ‖T (x)− T (x∗)‖
≤ (|L(ξ)|p + L)‖x− x∗‖+ |‖F (ξ, x∗)− T (x∗)‖|p
≤ σ(x∗)(‖x− x∗‖+ 1),

using (18) and the fact that T is L-Lipschitz continuous in the second inequality and
(19) in the third inequality. Thus, Assumption 3.8(i)–(ii) is merely a finite variance
assumption even for the case of an unbounded feasible set. Assumption 3.8(iii) means
that the variance is uniformly bounded over the feasible set X. It has been assumed in
most of the past literature [19, 26, 43, 7, 44, 21, 22, 45] on SA algorithms for SVI and
stochastic programming.7 Assumptions 3.8(i)–(ii) are much weaker than Assumption
3.8(iii) and, to the best of our knowledge, seem to be new for monotone operators or
convex functions without regularization.

The next examples provide instances where Assumption 3.8(i)–(ii) and the it-
erative variance reduction in method (11)–(12) are relevant or even necessary for
the asymptotic convergence of the generated sequence, in the case of an unbounded
feasible set (e.g., stochastic equations and stochastic complementarity problems).

Example 3.9 (linear SVI with unbounded feasible set). The following example
is a typical situation of a nonuniform variance over a unbounded feasible set. It
includes the cases of stochastic linear equations and complementarity problem. Let
the random operator be

F (ξ, x) = A(ξ)x,

7Assumption 3.8(iii) has been weakened in previous works only in situations in which the operator
satisfies more demanding monotonicity conditions (strongly monotone operator in [39] and weak-
sharp monotone operator in [17]) or when the operator is merely monotone, but with additional
Tykhonov regularization (as in [17], without convergence rate results).
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EXTRAGRADIENT METHOD WITH VARIANCE REDUCTION 699

for all x ∈ Rn, where A(ξ) is a random matrix whose entries have finite mean and
variance, such that Ā := E[A(ξ)] is nonnull and positive semidefinite. In this case,
T (x) = Āx (x ∈ Rn) is monotone and linear. For all x ∈ Rn, V[F (ξ, x)] = xtBx,
where B :=

∑m
i=1 cov [Ai(ξ)] is positive semidefinite and A1(ξ), . . . , Am(ξ) are the

rows of A(ξ). We denote by N(B) the kernel of B and by N(B)⊥ its orthogonal
complement. Given x ∈ Rn, let xB be the orthogonal projection of x onto N(B)⊥.
Then for all x ∈ Rn we have

V[F (ξ, x)] ≥ λ+(B)‖xB‖2,

where λ+(B) is the smallest nonnull eigenvalue of B. In particular, if B is positive
definite, then for all x ∈ Rn, V[F (ξ, x)] ≥ λmin(B)‖x‖2, where λmin(B) is the smallest
eigenvalue of B. This shows that Assumption 3.8(iii) does not hold if X is unbounded
(in fact, the variance grows quadratically in the infinite horizon).

Example 3.10 (equation problem for zero mean random constant operator). The
following example presents a simple situation where, in the case of an unbounded
feasible set and an oracle with uniform variance, the method in [7] may possess an
undesirable property: for the null operator T ≡ 0, the method generates a sequence
whose final ergodic average converges but the sequence itself a.s. diverges to ∞.

The method in [7] says that given a prescribed number of iterations K, for k ∈ [K]
compute

zk = Π
[
xk − αKk F (ξKk , x

k)
]
,

xk+1 = Π
[
xk − αKk F (ηKk , z

k)
]

and give as final output the ergodic average z̄K =
∑K
k=1 p

K
k z

k, where {pKk } is a
positive sequence of weights such that

∑
k=1 p

K
k = 1 and {αKk } is a sequence of positive

stepsizes. For an unbounded X, assuming uniformly bounded variance (Assumption
3.8(iii)) and a single oracle call per iteration, it is shown that there exists {vK} ⊂ Rn
such that E[G̃(z̄K , vK)] . 1/

√
K and E[‖vK‖] .

√
K (see [7, Corollary 3.4]). In

these statements, for z, v ∈ Rn, G̃(z, v) = supy∈X〈T (y) − v, z − y〉, as mentioned in

subsection 1.1. The following example shows that lim supK→∞ ‖zK‖ =∞ with total
probability. We shall consider n = 1, but one can easily generalize the argument for
any n > 1. Consider X = R and the random operator given by

F (ξ, x) = ξ,

for all x ∈ R, where ξ is a random variable with zero mean, finite variance σ2, and
finite third moment (one could generalize the argument assuming finite q-moment for
any q > 2). In this case, trivially T ≡ 0, X∗ = R and Assumption 3.8(iii) holds. It is
easy to check that the mirror-prox method in [7] gives, after K iterations, for k ∈ [K]:

(20) zk = x1 −
k∑
i=1

αKi ξ
K
i , z̄K =

K∑
k=1

pKk z
k,

where pKk = c0ΓKα
K
k , γk(Γkα

K
k )−1 ≡ c0 is a constant, γk := 2(1 + k)−1, {Γk} is

defined recursively as Γ1 := 1, Γk := (1− γk)Γk−1, and the stepsize is

αKk :=
k

3LK + σK
√
K − 1

,
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(see [7, Corollary 3.4]). Using the expression of {pKk } and
∑K
k=1 p

K
k = 1, we get

(21) z̄K = x1 −
K∑
k=1

θKk · ξKk ,

where θKk := c0ΓKα
K
k

∑K
i=k α

K
i . Note that Γk = 2

k(k+1) and

θKk =
c0ΓKk(

3LK + σK
√
K − 1

)2 K∑
i=k

i =
c0k(K − k + 1)(K + k)

K(K + 1)
(
3LK + σK

√
K − 1

)2 .
We have the following estimates:

s̄2
K :=

K∑
k=1

(
θKk
)2 ∼ K−3, s2

K :=

K∑
k=1

(
αKk
)2 ∼ 1,

K∑
k=1

(
αKk
)3 ∼ K− 1

2 (as K →∞).

We will now invoke Lyapounov’s criteria [2, Theorem 7.3] with δ = 1 for the sum∑K
k=1 α

K
k · ξKk of independent random variables, obtaining

lim
K→∞

E
[
|ξ|3
]

s3
K

K∑
k=1

(
αKk
)3

= lim
K→∞

E
[
|ξ|3
]
K−

1
2 = 0.

Hence (σsK)
−1∑K

k=1 α
K
k ξ

K
k converges in distribution to N(0, 1). Therefore, there

exists some constant C > 0 such that for any R > 0,

P
(

lim sup
K→∞

zK ≥ R
)

= P

(
lim sup
K→∞

K∑
k=1

αKk
σsK

· ξKk ≥ CR

)

≥ lim sup
K→∞

P

(
K∑
k=1

αKk
σsK

· ξKk ≥ CR

)
> 0,(22)

using (20) and sK ∼ 1 in the equality and Portmanteau’s theorem [10, Theorem
3.2.5] in the inequality. For every R > 0, the event AR := [lim supK→∞ zK ≥ R]
is a tail event with positive probability and, hence, has total probability, invoking
Kolmogorov’s zero-one law [10, Theorem 2.5.1]. We conclude from (22) that

P
(

lim sup
K→∞

zK =∞
)

= lim
R→∞

P (AR) = 1.

This shows that {zK} diverges with total probability. From the 1-series theorem [10,
Theorem 2.5.3],

∑∞
K=1 s̄

2
K <∞, and (21), we have that a.s. {z̄K} converges.

3.3. Convergence analysis. For any x = (xi)
m
i=1 ∈ Rn and α > 0, we denote

the (quadratic) natural residual function by

rα(x)2 := ‖x−Π [x− αT (x)]‖2 =

m∑
i=1

‖xi −Πi [xi − αTi(x)]‖2 .

We start with two key lemmas whose proofs are given in the appendix. Define

(23) ρk := 1− 6L2α2
k,
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for any k ∈ N0. We define recursively, for k ∈ N0, A0 := 0,

(24) Ak+1 := Ak + (8 + ρk)α2
k‖εk1‖2 + 8α2

k‖εk2‖2,

and, for x∗ ∈ X∗, M0(x∗) := 0,

(25) Mk+1(x∗) := Mk(x∗) + 2〈x∗ − zk, αkεk2〉.

Lemma 3.11 (recursive relation). Suppose that Assumptions 3.1, 3.3, and 3.7
hold. Then, a.s. for all k ∈ N and x∗ ∈ X∗,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ρk
2
rαk(xk)2 +Mk+1(x∗)−Mk(x∗) +Ak+1 −Ak.

Lemma 3.12 (error decay). Consider Assumptions 3.2–3.8. For each i ∈ [m]
and Ni ∈ N, let ξi := {ξj,i : j ∈ [Ni]} be an i.i.d. sample of ξ with 1/N :=

∑m
i=1 1/Ni

and Nmin := mini∈[m]Ni. For any x ∈ X set

εi(x) :=

Ni∑
j=1

Fi(ξj,i, x)− Ti(x)

Ni
, ε(x) := (ε1(x), . . . , εm(x)).

If Assumption 3.8(i) hold for some x∗ ∈ X∗, then for all x ∈ X, v ∈ Rn,

|‖ε(x)‖|p ≤
√

A

N
Cpf(x, x∗), |〈v, ε(x)〉|p ≤ ‖v‖

√
B

N
Cpf(x, x∗),

where f(x, x∗) := σ(x∗)(1 + ‖x− x∗‖) and
1. A = 1 if m = 1 and A = 2 if m > 1,
2. B = 2 if m > 1 and {ξj,i : 1 ≤ i ≤ m, 1 ≤ j ≤ Ni} is i.i.d.,
3. B = 1 if m = 1 or if m > 1 with Ni ≡ N , ξj,i ≡ ξj for all i ∈ [m].

Moreover, if Assumption 3.8(iii) holds, then for all x ∈ X, v ∈ Rn,

|‖ε(x)‖|p ≤
Cpσ√
Nmin

, |〈v, ε(x)〉|p ≤ ‖v‖
Cpσ√
Nmin

.

In the remainder of the paper, we take A and B as given in Lemma 3.12 with
{Nk}, {Nk,min}, σ(·), and σ as given in Assumptions 3.5, 3.6, and 3.8.

The following two results will establish upper bounds onAk+1−Ak andMk+1(x∗)−
Mk(x∗) in terms of ‖xk − x∗‖2 for any x∗ ∈ X∗. Under the Assumptions 3.8(i)–(ii)
of nonuniform variance, we need first a bound of ‖x∗ − zk‖2 in terms of ‖xk − x∗‖2.
We define

Gk,p(x
∗) := αkCpσ(x∗),(26)

Hk,p(x
∗) := Gk,p(x

∗)

√
A

Nk
,(27)

Proposition 3.13. Consider Assumptions 3.1–3.8. If Assumption 3.8(i) holds
for some x∗ ∈ X∗, then∣∣‖zk − x∗‖∣∣Fk∣∣p ≤ [1 + Lαk + Hk,p(x

∗)] ‖xk − x∗‖+ Hk,p(x
∗).

Moreover, if Assumption 3.8(iii) holds, then∣∣‖zk − x∗‖∣∣Fk∣∣p ≤ (1 + Lαk) ‖xk − x∗‖+ αk

(
M+

Cpσ√
Nk,min

)
,

with L = L and M = 0 or, alternatively, if supx∈X ‖T (x)‖ ≤M <∞ with L = 0 and
M = 2M .
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Proof. Recall that zk = Π[xk − αk(T (xk) + εk1)]. By Lemma 2.1(iv), we have
x∗ = Π[x∗ − αkT (x∗)].

Consider first Assumption 3.8(i). By Lemma 2.1(iii),

‖x∗ − zk‖ ≤ ‖x∗ − xk − αk(T (x∗)− T (xk)) + αkε
k
1‖

≤ ‖x∗ − xk‖+ αk‖T (xk)− T (x∗)‖+ αk
∥∥εk1∥∥

≤ (1 + Lαk) ‖x∗ − xk‖+ αk
∥∥εk1∥∥ ,(28)

using the Lipschitz continuity of T in the last inequality. Using xk ∈ Fk and taking
|·|Fk|p in (28) we get from Minkowski’s inequality,

(29)
∣∣‖zk − x∗‖∣∣Fk∣∣p ≤ (1 + Lαk) ‖x∗ − xk‖+ αk

∣∣∣∥∥εk1∥∥ ∣∣∣Fk∣∣∣
p
.

We now recall the definition of εk1 in (13). We have

(30)
∣∣∣∥∥εk1∥∥ ∣∣∣Fk∣∣∣

p
≤
(

A

Nk

) 1
2

Cpσ(x∗) (1 + ‖xk − x∗‖),

using Lemma 3.12, xk ∈ Fk, and the independence of ξk with Fk. Relations (29)–(30)
prove the required claim.

We now consider Assumption 3.8(iii). In this case, (28) may be replaced by

(31) ‖x∗ − zk‖ ≤ (1 + Lαk) ‖x∗ − xk‖+ αk
(
M+

∥∥εk1∥∥) ,
with L andM as stated in the proposition. Using xk ∈ Fk and taking |·|Fk|p in (31)
we get from Minkowski’s inequality

(32)
∣∣‖zk − x∗‖∣∣Fk∣∣p ≤ (1 + Lαk) ‖x∗ − xk‖+ αk

(
M+

∣∣∣∥∥εk1∥∥ ∣∣∣Fk∣∣∣
p

)
.

By Lemma 3.12, relation (30) is replaced by
∣∣‖εk1‖|Fk∣∣p ≤ Cpσ√

Nk,min

. The claim results

from the previous inequality and (32).

The following proposition gives bounds on the increments of {Ak} and {Mk(x∗)}
in terms of ‖xk − x∗‖2. Recall definitions (23)–(25) and (26)–(27).

Proposition 3.14 (bounds on increments). Consider Assumptions 3.1–3.8. If
Assumption 3.8(i) holds for some x∗ ∈ X∗, then, for all k ∈ N0,

|Ak+1 −Ak|Fk|q ≤
[
32 (1 + Lαk + Hk,p(x

∗))
2

+ 2(8 + ρk)
]
Hk,p(x

∗)2‖xk − x∗‖2

+
[
32Hk,p(x

∗)2 + 16 + 2(8 + ρk)
]
Hk,p(x

∗)2,

|Mk+1(x∗)−Mk(x∗)|Fk|q ≤
√

B

A
Hk,p(x

∗) [1 + Lαk + Hk,p(x
∗)]

2 ‖xk − x∗‖2

+

√
B

A
Hk,p(x

∗)
[
1 + Lαk + (3 + 2Lαk)Hk,p(x

∗) + 2Hk,p(x
∗)2
]
‖xk − x∗‖

+

√
B

A
Hk,p(x

∗)
[
Hk,p(x

∗) + Hk,p(x
∗)2
]
.
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Moreover, if Assumption 3.8(iii) holds, then, for all k ∈ N0,

|Ak+1 −Ak|Fk|q ≤ (16 + ρk)α2
k

C2
pσ

2

Nk,min
,

|Mk+1(x∗)−Mk(x∗)|Fk|q ≤ (1 + Lαk)αk
Cpσ√
Nk,min

‖xk − x∗‖

+

(
M+

Cpσ√
Nk,min

)
α2
k

Cpσ√
Nk,min

.

Proof. Assume first that Assumption 3.8(i) holds. We start with the bound on
Ak+1−Ak. Definition (13), Lemma 3.12, xk ∈ Fk, the independence of {ξk} and Fk,
and the fact that (a+ b)2 ≤ 2a2 + 2b2 imply

(33)
∣∣∣∥∥εk1∥∥2

∣∣∣Fk∣∣∣
q

=
∣∣∣∥∥εk1∥∥ ∣∣∣Fk∣∣∣2

p
≤ 2

A

Nk
C2
pσ(x∗)2 (1 + ‖xk − x∗‖2).

We proceed similarly for a bound of εk2 as defined in (14), but with the use of the

filtration F̂k. Lemma 3.12, zk ∈ F̂k, and the independence of {ηk} and F̂k imply

(34)
∣∣∣∥∥εk2∥∥ ∣∣∣F̂k∣∣∣

p
≤
(

A

Nk

) 1
2

Cpσ(x∗) (1 + ‖zk − x∗‖).

We condition (34) with ||·|F̂k|p|Fk|p = |·|Fk|p and then take squares, getting

(35)
∣∣∣∥∥εk2∥∥2

∣∣∣Fk∣∣∣
q

=
∣∣∣∥∥εk2∥∥ ∣∣∣Fk∣∣∣2

p
≤ 2

A

Nk
C2
pσ(x∗)2

(
1 +

∣∣∣‖zk − x∗‖∣∣∣Fk∣∣∣2
p

)
.

Finally we use (33), (35), (24), Proposition 3.13, and relation (a + b)2 ≤ 2a2 + 2b2,
obtaining the required bounds on Ak+1 −Ak.

Now we deal with Mk+1(x∗) −Mk(x∗). Definition (14), Lemma 3.12, zk ∈ F̂k,

and the independence of {ηk} and F̂k imply

(36)
∣∣∣〈x∗ − zk, αkεk2〉∣∣∣F̂k∣∣∣

p
≤ ‖zk − x∗‖αk

√
B

Nk
Cpσ(x∗)(1 + ‖zk − x∗‖).

In (36), we first use |·|F̂k|q ≤ |·|F̂k|p and then take |·|Fk|q, obtaining∣∣∣〈x∗ − zk, αkεk2〉∣∣∣Fk∣∣∣
q
≤ αk

√
B

Nk
Cpσ(x∗)

(∣∣∣‖x∗ − zk‖∣∣∣Fk∣∣∣
q

+
∣∣∣‖x∗ − zk‖2∣∣∣Fk∣∣∣

q

)
≤ αk

√
B

Nk
Cpσ(x∗)

(∣∣∣‖x∗ − zk‖∣∣∣Fk∣∣∣
p

+
∣∣∣‖x∗ − zk‖∣∣∣Fk∣∣∣2

p

)
,(37)

using the fact that || · |F̂k|q|Fk|q = | · |Fk|q in the first inequality and the fact that
|·|Fk|q ≤ |·|Fk|p in the second inequality. Definition (25), (37), Proposition 3.13, and

the fact that (a+ b)2 ≤ 2a2 + 2b2 entail the required bound on Mk+1(x∗)−Mk(x∗).
Suppose now that Assumption 3.8(iii) holds. First we prove the bound on {Ak+1−

Ak}. The proof is similar to the previous case, but (33) and (35) are replaced respec-
tively by

(38)
∣∣∣∥∥εk1∥∥2

∣∣∣Fk∣∣∣
q
≤

C2
pσ

2

Nk,min
,
∣∣∣∥∥εk2∥∥2

∣∣∣Fk∣∣∣
q
≤

C2
pσ

2

Nk,min
,
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using Lemma 3.12. From (24) and (38) we obtain the required bound on Ak+1 −Ak.
We deal now with {Mk+1(x∗) −Mk(x∗)}. The proof is similar to the previous case,
but instead of (36) now we have

(39)
∣∣∣〈x∗ − zk, αkεk2〉∣∣∣F̂k∣∣∣

p
≤ ‖zk − x∗‖αk

Cpσ√
Nk,min

,

using Lemma 3.12. In (39), we use |·|F̂k|p ≤ |·|F̂k|p and then take |·|Fk|q, getting

(40)
∣∣∣〈x∗ − zk, αkεk2〉∣∣∣Fk∣∣∣

q
≤ αk

Cpσ√
Nk,min

∣∣∣‖zk − x∗‖∣∣∣Fk∣∣∣
q
,

using the fact that ||·|F̂k|q|Fk|q = |·|Fk|q. The definition (25), Proposition 3.13

with || · |F̂k|q|Fk|q = | · |Fk|q, and (40) imply the required bound on Mk+1(x∗)
−Mk(x∗).

Now, we combine Lemma 3.11 and Proposition 3.14 in the following recursive
relation. Recall definitions (26)–(27).

Proposition 3.15 (stochastic quasi-Fejér property). Consider Assumptions 3.1–
3.8. Then for all k ∈ N0 and for x∗ ∈ X∗ as described in Assumption 3.8, it holds
that

(41) E
[
‖xk+1 − x∗‖2|Fk

]
≤ ‖xk − x∗‖2 − ρk

2
rαk(xk) + Ck(x∗)

I‖xk − x∗‖2 + 1

N ′k
,

where, under Assumption 3.8(i)–(ii), I = 1, N ′k = Nk, and

(42) Ck(x∗) := AGk,2(x∗)2
[
32 (1 + Lαk + Hk,2(x∗))

2
+ 18

]
,

while, under Assumption 3.8(iii), I = 0, N ′k = Nk,min, and

(43) Ck(x∗) := Ck = (16 + ρk)α2
kC

2
2σ

2.

Proof. We first note that from definition (25), for any x∗ ∈ X∗, {Mk+1(x∗) −
Mk(x∗),Fk} defines a martingale difference sequence, that is, E[Mk+1(x∗)−Mk(x∗)|Fk]

= 0 for all k ∈ N0. Indeed, zk ∈ F̂k and the independence between ηk and F̂k imply
that E[εk2 |F̂k] = 0. This equality and the fact that zk ∈ F̂k imply further that

E
[
Mk+1(x∗)−Mk(x∗)

∣∣∣F̂k] = 2
〈
x∗ − zk, αkE

[
εk2

∣∣∣F̂k]〉 = 0.

We take E[·|Fk] above and use the hereditary property E[E[·|F̂k]|Fk] = E[·|Fk] in
order to get E[Mk+1(x∗)−Mk(x∗)|Fk] = 0 as claimed.

We now take the conditional expectation with respect to Fk in Lemma 3.11,
obtaining

(44) E[‖xk+1 − x∗‖2|Fk] ≤ ‖xk − x∗‖2 − ρk
2
rαk(xk)2 + E[Ak+1 −Ak|Fk],

using the facts that xk ∈ F̂k and that {Mk+1(x∗) − Mk(x∗),Fk} is a martingale
difference sequence. We have that

32 (1 + Lαk + Hk,2(x∗))
2

+ 2(8 + ρk) > 32Hk,2(x∗)2 + 16 + 2(8 + ρk).
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Hence, under Assumption 3.8(i)–(ii), the bound of {Ak+1 −Ak} given in Proposition
3.14 implies that

(45) |Ak+1 −Ak|Fk|q ≤ Ck(x∗)
I‖xk − x∗‖2 + 1

N ′k
,

for all k ≥ 0, with I = 1, N ′k = Nk, and the definition of Ck(x∗).
Under Assumption 3.8(iii), Proposition 3.14 implies (45), with I = 1 and N ′k =

Nk,min and the definition of Ck. The claimed relation follows from (44) and (45) for
q = 1.

Remark 3.16. Under Assumption 3.8(i), the inequality of Proposition 3.15 holds
for a given x∗ ∈ X∗, as described in Assumption 3.8(i). Under Assumption 3.8(ii) or
(iii), the inequality of Proposition 3.15 holds for every x∗ ∈ X∗.

Remark 3.17 (bounds of Ak+1 − Ak). Recall the definition of Ck(x∗) in the
previous proposition. Under Assumption 3.8(i)–(ii), the upper bound on

(46) C(x∗) := sup
k

Ck(x∗),

depends only on p, L, the sampling rate Nk, σ(x∗)2, and α̂ as defined in Assumption
3.7. From (26) and (42), under Assumption 3.8(i)–(ii) there exists a constant c > 1
such that

(47)
Ck(x∗)

Nk
≤ cHk,2(x∗)2

(
1 + Hk,2(x∗)2

)
≤ cα̂2C2

2

Aσ(x∗)2

Nk

(
1 + α̂2C2

2

Aσ(x∗)2

Nk

)
,

that is, C(x∗) . σ(x∗)4. But since at least Nk ≥ Nk,minl ≈ Θk1+a(ln k)1+b, for some
Θ > 0, a > 0, b ≥ −1 or a = 0, b > 0, the following nonasymptotic bound holds:

(48) Ck(x∗) . σ(x∗)2

(
1 +

σ(x∗)2

Θk1+a(ln k)1+b

)
,

which is ≈ σ(x∗)2 for an iteration index k large enough as compared to σ(x∗)2.8

Under Assumption 3.8(iii), the following uniform bound holds on X∗: Ck . σ2.

We finish this section with the asymptotic convergence result.

Theorem 3.18 (asymptotic convergence). Under Assumptions 3.1–3.8, a.s. the
sequence {xk} generated by (11)–(12) is bounded, limk→∞ d(xk, X∗) = 0, and rαk(xk)
converges to 0 and in L2. In particular, a.s. every cluster point of {xk} belongs to
X∗.

Proof. The result in Proposition 3.15 may be rewritten as

(49) E
[
‖xk+1 − x∗‖2|Fk

]
≤
(

1 +
IC(x∗)

N ′k

)
‖xk − x∗‖2 − ρk

2
rαk(xk)2 +

C(x∗)

N ′k
,

for all k ≥ 0 and for some x∗ ∈ X∗, as ensured by Assumption 3.8. Taking into
account Assumption 3.5, i.e.,

∑
kN

−1
k < ∞, (49), and the fact that xk ∈ Fk, we

apply Theorem 2.2 with yk := ‖xk − x∗‖2, ak = I · C(x∗)/N ′k, bk = C(x∗)/N ′k,
and uk := ρkrαk(xk)2/2, in order to conclude that a.s. {‖xk − x∗‖2} converges

8In terms of numerical constants, a sharper bound can be obtained by exploiting the first order

term Hk,2(x∗) ∼ σ(x∗)N−1/2
k in the definition of Ck(x∗). We do not carry out this procedure here.
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and
∑
k ρkrαk(xk)2 < ∞. In particular, {xk} is bounded, and ρ̂

∑
k rαk(xk)2 ≤∑

k ρkrαk(xk)2 <∞, where ρ̂ := 1− 6α̂2L2 > 0 and α̂ := supk αk by Assumption 3.7.
Hence, a.s.,

(50) 0 = lim
k→∞

rαk(xk)2 = lim
k→∞

∥∥xk −Π
[
xk − αkT (xk)

]∥∥2
.

The boundedness of the stepsize sequence, (50), and the continuity of T (Assumption
3.3) and Π (Lemma 2.1(iii)) imply that a.s. every cluster point x̄ of {xk} satisfies

0 = x̄−Π [x̄− ᾱT (x̄)] ,

for some ᾱ > 0, in view of Assumption 3.7, i.e., the fact that the stepsizes are
bounded away from zero; from Lemma 2.1(iv) we have that x̄ ∈ X∗. Almost surely,
the boundedness of {xk} and the fact that every cluster point of {xk} belongs to X∗

imply that limk→∞ d(xk, X∗) = 0 as claimed.
We now prove convergence of rαk(xk) to 0 in L2. We take total expectation in

(49) and obtain for all k ≥ 0

(51) E
[
‖xk+1 − x∗‖2

]
≤
(

1 +
IC(x∗)

N ′k

)
E
[
‖xk − x∗‖2

]
− ρk

2
E
[
rαk(xk)2

]
+

C(x∗)

N ′k
.

Taking into account Assumption 3.5, i.e.,
∑
kN

−1
k < ∞, (51), we apply Theorem

2.2 with yk := E[‖xk − x∗‖2], ak = I · C(x∗)/N ′k, bk = C(x∗)/N ′k, and uk :=
ρkE[rαk(xk)2]/2, in order to conclude that

∑
k ρkE[rαk(xk)2] < ∞. In particular,

ρ̂
∑
k E[rαk(xk)2] ≤

∑
k ρkE[rαk(xk)2] <∞, which implies that limk→∞ E[rαk(xk)2] =

0 as claimed.

3.4. Convergence rate and complexity analysis. We now study the con-
vergence rate and the oracle complexity of our algorithm. Besides the relation in
Proposition 3.15 for p = 2, we can also obtain a recursive relation for higher or-
der moments, assuming that p ≥ 4. This recursion, derived as a consequence of
Propositions 3.14 and 3.19(i), will give an explicit upper bound on the p-norm of the
generated sequence (see Proposition 3.20). The explicit bound of the 2-norm of the
sequence will be used for giving explicit estimates on the convergence rate and com-
plexity under Assumption 3.8(i)–(ii), i.e., when X and T are unbounded, in Theorem
3.22. In this setting, we will also obtain sharper estimates of the constants assuming
uniform variance over the solution set (see Propositions 3.19(ii), Proposition 3.20(ii),
and Theorem 3.25). Important cases satisfying these assumptions include the cases in
which X∗ is a singleton or a compact set (which can occur even when the feasible set
X is unbounded).9 Under the stronger Assumption 3.8(iii), that is, uniform variance
over the feasible set, even sharper bounds on the estimates will be presented (see
Propositions 3.19(iii) and 3.20(iii) and Theorem 3.25).

Proposition 3.19 (improved stochastic quasi-Fejér properties).
(i) If Assumption 3.8(i) holds for p ≥ 4 and some x∗ ∈ X∗, then for all k0, k

such that 0 ≤ k0 < k, it holds that

9This occurs when the solution set is a singleton in the case of a strictly or strongly pseudomono-
tone operator. See Theorems 2.3.5 and 2.3.16 in [11] for general conditions of compactness of the
solution set of a pseudomonotone VI. An example is the so-called strictly feasible complementarity
problem over a cone.
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q
≤
∣∣‖xk0 − x∗‖2∣∣

q

+ Cq

√√√√ k∑
i=k0+1

|Mi(x∗)−Mi−1(x∗)|2q +

k∑
i=k0+1

|Ai −Ai−1|q.

(ii) If Assumption 3.8(ii) holds for p ≥ 2, then C := supk Ck : X∗ → R+, as
defined in (42) and (46), is a locally bounded measurable function, and for
all k ≥ 0,

E
[
d(xk+1, X∗)2|Fk

]
≤d(xk, X∗)2−ρk

2
rαk(xk)2+Ck

(
ΠX∗(x

k)
) d(xk, X∗)2+1

Nk
.

(iii) If Assumption 3.8(iii) holds, then for all k ≥ 0,

(52) E
[
d(xk+1, X∗)2|Fk

]
≤ d(xk, X∗)2 − ρk

2
rαk(xk)2 +

17C2
2 α̂

2σ2

Nk,min
.

Proof.
(i) Define for simplicity dk := ‖xk − x∗‖2. Summing the relation in Lemma 3.11

from k0 to k − 1 we obtain 0 ≤ dk ≤ dk0 + Mk(x∗) −Mk0(x∗) + Ak − Ak0 .
This relation implies

(53) 0 ≤ dk ≤ dk0 + [Mk(x∗)−Mk0(x∗) +Ak −Ak0 ]+,

since a ≤ b ⇒ [a]+ ≤ [b]+ for any a, b ∈ R. We take the q-norm in (53),
getting

|dk|q ≤ |dk0 |q + |[Mk(x∗)−Mk0(x∗) +Ak −Ak0 ]+|q
≤ |dk0 |q + |Mk(x∗)−Mk0(x∗) +Ak −Ak0 |q

≤ |dk0 |q + |Mk(x∗)−Mk0(x∗)|q +

k∑
i=k0+1

|Ai −Ai−1|q,(54)

using Minkowski’s inequality in the first and last inequalities and the fact
that |U+|q ≤ |U |q for any random variable U in the second inequality.
Since q ≥ 2 (p ≥ 4), the norm of the martingale term above may be esti-
mated via the Burkholder–Davis–Gundy (BDG) inequality (8) applied to the
martingale M̃i := Mk0+i(x

∗)−Mk0(x∗). This gives

(55) |Mk(x∗)−Mk0(x∗)|q ≤ Cq

√√√√ k∑
i=k0+1

|Mi(x∗)−Mi−1(x∗)|2q.

Plugging (55) into (54) completes the proof of item (i).
(ii) Under Assumption 3.8(ii), we define x̄k := ΠX∗(x

k), recalling Assumption
3.1, and obtain from Proposition 3.15

E
[

d(xk+1, X∗)2|Fk
]
≤ E

[
‖xk+1 − x̄k‖2

∣∣Fk]
≤ ‖xk − x̄k‖2 − ρk

2
rαk(xk)2 + Ck(x̄k)

‖xk − x̄k‖2 + 1

Nk

= d(xk, X∗)2 − ρk
2
rαk(xk)2 + Ck

(
ΠX∗(x

k)
) d(xk, X∗)2 + 1

Nk
,
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using the fact that x̄k ∈ X∗ in the first inequality, the facts that Ck(x̄k) ∈ Fk
(which holds because xk ∈ Fk, ΠX∗ is continuous and Ck is measurable), and
x̄k ∈ X∗ (cf. Proposition 3.15) in the second inequality, and the fact that
d(xk, X∗) = ‖xk − x̄k‖ in the equality. Note that the function C : X∗ → R+

is measurable and locally bounded by Assumption 3.8(ii) and the definition
of Ck(x∗).

(iii) We use a proof line analogous to the one in item (ii), with Assumption 3.8(iii)
and Proposition 3.15.

The following result gives explicit bounds on the p-norm of the sequence in the
unbounded setting. In order to make the presentation easier, we introduce some
definitions. Recall the constant c defined in Remark 3.17. We set

Dp(x
∗) := 2cα̂2C2

pσ(x∗)2,(56)

with D(x∗) := D2(x∗). Define also B2(x∗) := 0 and for p ≥ 4, set G̃p(x
∗) := Cpα̂σ(x∗)

and

(57) Bp(x
∗) :=

√
3BCqG̃p(x

∗)
[
(1 + Lα̂)2 + (3 + 2Lα̂)

√
AG̃p(x

∗) + 2AG̃p(x
∗)2
]
.

Proposition 3.20 (uniform boundedness in Lp).
(i) Let Assumptions 3.1–3.8(i) hold for some x∗ ∈ X∗ and p ∈ {2} ∪ [4,∞).

Choose k0 := k0(x∗) ∈ N and γ := γ(x∗) > 0 such that

(58) β(x∗) := Bp(x
∗)
√
γ + Dp(x

∗)γ + Dp(x
∗)2γ2 < 1,

∑
k≥k0

1

Nk
< γ.

Then
sup
k≥k0

∣∣‖xk − x∗‖∣∣2
p
≤ cp(x

∗)
[
1 +

∣∣‖xk0 − x∗‖∣∣2
p

]
,

with c2(x∗) = [1− β(x∗)]−1 and cp(x
∗) = 4[1− β(x∗)]−2 for p ≥ 4.

(ii) Let Assumptions 3.1–3.8(ii) hold and suppose there exists σ > 0 such that

σ(x∗) ≤ σ for all x∗ ∈ X∗. Let φ ∈ (0,
√

5−1
2 ). Choose k0 ∈ N such that∑

k≥k0
1
Nk ≤

φ
2cα̂2C2

2σ
2 . Then

sup
k≥k0

E
[
d(xk, X∗)2

]
≤

1 + E
[
d(xk0 , X∗)2

]
1− φ− φ2

.

(iii) If Assumptions 3.1–3.8(iii) hold, then

sup
k≥0

E
[
d(xk, X∗)2

]
≤ d(x0, X∗)2 +

∞∑
k=0

17C2
2 α̂

2σ2

Nk,min
.

Proof.
(i) Denote dk := ‖xk − x∗‖. We first unify the Fejér-type relations obtained so

far under Assumption 3.8(i)–(ii) as, for all k > k0,

|dk|2p ≤ |dk0 |
2
p + Bp(x

∗)

√√√√k−1∑
i=k0

1 + |di|2p + |di|4p
Ni

+Dp(x
∗)

k−1∑
i=k0

1 + |di|2p
Ni

+ Dp(x
∗)2

k−1∑
i=k0

1 + |di|2p
N 2
i

.(59)
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Indeed, for p = 2, we have B2(x∗) = 0 so that (59) results by summing
the relation in Proposition 3.15 from k0 to k − 1 and using the estimate in
(47), the fact that A ≤ 2, c > 1, and the definition of D2(x∗) as stated
before the proposition. For p ≥ 4, we recall the bounds of increments of
{Mk(x∗)} in Proposition 3.14. The common factor is bounded by

√
B/A ·

Hk,p(x
∗) ≤

√
BG̃p(x

∗)/
√
Nk. Using the definition of Hk,p(x

∗) in (27), α̂ in

Assumption 3.7, G̃p(x
∗), and Nk ≥ 1, it is easy to see that, in the bound

of Mk+1(x∗) − Mk(x∗) in Proposition 3.14, the sum of terms multiplying√
B/A · Hk,p(x∗) is at most (1 + Lα̂)2 + (3 + 2Lα̂)

√
AG̃p + 2AG̃2

p. We use

these bounds, the facts that (|di|2p + |di|p + 1)2 ≤ 3(|di|4p + |di|2p + 1), and the
definition (57) in order to obtain, for all i ∈ N0,

(60) |Mi+1(x∗)−Mi(x
∗)|2q ≤ Bp(x

∗)2
1 + |di|2p + |di|4p

Ni
.

The proof of (59) for p ≥ 4 follows from (45), (47) with A ≤ 2, c > 1 and the
definition of Dp(x

∗) as well as (60) and Proposition 3.19(i).
By Assumption 3.5, we can choose k0 ∈ N0 and γ > 0 as in (58). In

particular,
∑
i≥k0 N

−2
i < γ2. Given an arbitrary a > |dk0 |p, define τa :=

inf{k > k0 : |dk|p ≥ a}. Suppose first that τa <∞ for all a > |dk0 |p. By (58),
(59), and the definition of τa, we have

a2 ≤ |dτa |
2
p ≤ |dk0 |

2
p + Bp(x

∗)

√√√√τa−1∑
i=k0

1 + a2 + a4

Ni
(61)

+ Dp(x
∗)

τa−1∑
i=k0

a2 + 1

Ni
+ Dp(x

∗)2
τa−1∑
i=k0

a2 + 1

N 2
i

≤ |dk0 |
2
p + Bp(x

∗)
√
γ
(
1 + a+ a2

)
+ Dp(x

∗)γ
(
1 + a2

)
+ Dp(x

∗)2γ2
(
1 + a2

)
.

For p = 2, B2(x∗) = 0. By (61), taking β := β(x∗) ∈ (0, 1) in (58), we get

(62) a2 ≤
|dk0 |

2
p + 1

1− β
.

For p ≥ 4, by (61), taking β := β(x∗) in (58), we obtain λa2 ≤ |dk0 |
2
p + a+ 1

with λ := 1− β. It follows that(
a− 1

2λ

)2

≤
4λ|dk0 |

2
p + 4λ+ 1

4λ2
=⇒ a ≤

2|dk0 |p +
√

5 + 1

2λ
≤
|dk0 |p + 2

λ
,

and finally

(63) a2 ≤ 4
|dk0 |

2
p + 1

(1− β)2
.

Since (62)–(63) hold for an arbitrary a > |dk0 |p and β ∈ (0, 1), it follows

that supk≥k0 |dk|
2
p ≤ cp(x

∗)[1 + |dk0 |
2
p], with cp(x

∗) as in the statement of the
proposition. This contradicts the initial assumption that τa <∞ for all a >
|dk0 |p. Hence there exists ā > |dk0 |p such that â := supk≥k0 |dk|p ≤ ā < ∞
by the definition of τā. For any k > k0, we use the fact that |di|p ≤ â for
k0 ≤ i < k in (59), obtaining
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|dk|2p ≤ |dk0 |
2
p + Bp(x

∗)
√
γ
(
1 + â+ â2

)
+ Dp(x

∗)γ
(
1 + â2

)
+ Dp(x

∗)2γ2
(
1 + â2

)
.(64)

The inequality (64) holds trivially for k := k0. Thus, after taking the supre-
mum over k ≥ k0 in (64), we proceed as we did immediately after inequality
(61), obtaining (62) and (63), respectively, for p = 2 and p ≥ 4, but with â
substituting for a. Using the definition of cp(x

∗), the claim follows.
(ii) The proof line is the same as for the case p = 2 in item (i), but summing (41)

with the estimate (47), which gives the following uniform estimate: for all
k ≥ 0, Ck

(
Π
(
x̄k
))
N−1
k ≤ 2cα̂2C2

2σ
2N−1

k

(
1 + 2α̂2C2

2σ
2N−1

k

)
. We remark

that we may replace β(x∗) in (58) and (62) by β := 2cα̂2C2
2σ

2 + 4cα̂4C4
2σ

4.
In this case, the definition of φ and k0 imply that 0 < 1− φ− φ2 ≤ 1− β.

(iii) Given k ∈ N, we take total expectation in (52) and sum from 0 to k, obtaining

E
[
d(xk+1, X∗)2

]
≤ d(x0, X∗)2+

k∑
i=0

17C2
2 α̂

2σ2

Ni,min
≤ d(x0, X∗)2+

∞∑
i=0

17C2
2 α̂

2σ2

Ni,min
,

and the claim follows.

Remark 3.21. In the statement of Proposition 3.20(i), for p ≥ 2, it is sufficient

to set φ ∈ (0,
√

5−1
2 ) and k0 ∈ N0 such that

∑
k≥k0 N

−1
k ≤ φD(x∗)−1 to obtain

supk≥k0 E[‖xk − x∗‖2] ≤ 1+E[‖xk0−x∗‖2]
1−φ−φ2 .

We now give explicit estimates on the convergence rate and oracle complexity.
In what follows we assume that the stepsize sequence is constant. Proposition 10.3.6
in [11] states that {ra : a > 0} is a family of equivalent merit functions of VI(T,X).
Hence, the convergence rate analysis can be deduced for varying stepsizes satisfying
Assumption 3.7, and constant stepsizes are assumed just for simplicity. Recall the
definition of D(x∗) in (56). Define, for k, ` ∈ N0 ∪ {∞}, φ ∈ R, x∗ ∈ X∗, and
α ∈

(
0, 1/
√

6L
)
,

ρ := 1− 6α2L2, ak0 :=

k∑
i=0

1

Ni
, bk0 :=

k∑
i=0

1

N 2
i

,(65)

J(x∗, k, φ) :=
1 + max0≤i≤k E[‖xi − x∗‖2]

1− φ− φ2
,(66)

Qk(x∗, `, φ) :=
2

ρ

{
‖x0 − x∗‖2 + [1 + J(x∗, `, φ)]

[
D(x∗)ak0 + D(x∗)2bk0

]}
.(67)

Theorem 3.22 (convergence rate: nonuniform variance). Consider Assumptions

3.1–3.8(i) for some x∗ ∈ X∗ and take αk ≡ α ∈ (0, 1/
√

6L). Choose φ ∈ (0,
√

5−1
2 )

and k0 := k0(x∗) ∈ N such that

(68)
∑
k≥k0

1

Nk
≤ φ

D(x∗)
,

where D(x∗) is defined in (56). Then for all ε > 0 there exists Kε ∈ N such that

E[rα(xKε)2] ≤ ε ≤ Q∞(x∗, k0(x∗), φ)

Kε
.

Additionally, if Assumption 3.8(ii) holds, then Kε is independent of x∗ ∈ X∗.
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EXTRAGRADIENT METHOD WITH VARIANCE REDUCTION 711

Proof. First note that finiteness of a∞0 , b
∞
0 as defined before the statement of the

theorem follows from Assumption 3.5, which also ensures existence of k0(x∗) satisfying
(68), because

∑
i≥kN

−1
i → 0 as k →∞. Set φ and k0 := k0(x∗) such that (68) holds.

Proposition 3.20(i) for p = 2 and Remark 3.21 imply

sup
k≥k0

E[‖xk − x∗‖2] ≤ 1 + E[‖xk0 − x∗‖2]

1− φ− φ2

≤ 1 + max0≤k≤k0 E[‖xk − x∗‖2]

1− φ− φ2
= J(x∗, k0, φ).

From the above inequality and the fact that 1− φ− φ2 ∈ (0, 1) we get the following
uniform bound:

(69) sup
k≥0

E[‖xk − x∗‖2] ≤ J(x∗, k0(x∗), φ).

We now invoke Proposition 3.15. Given 0 ≤ i ≤ k, we take total expectation in
(41), with the estimate (47) using A ≤ 2, c > 1 defined in Remark 3.17, the definition
of α̂ in Assumption 3.7, and the definition of D(x∗) in (56). We then sum iteratively
with i running from 0 to k, obtaining

(70)

ρ

2

k∑
i=0

E[rα(xi)2]

≤ ‖x0 − x∗‖2 + D(x∗)

k∑
i=0

1 + E
[
‖xi − x∗‖2

]
Ni

+ D(x∗)2
k∑
i=0

1 + E
[
‖xi − x∗‖2

]
N 2
i

≤ ‖x0 − x∗‖2 +

(
1 + sup

0≤i≤k
E[‖xi − x∗‖2]

)(
D(x∗)

k∑
i=0

1

Ni
+ D(x∗)2

k∑
i=0

1

N 2
i

)
≤ ‖x0 − x∗‖2 + [1 + J(x∗, k0(x∗), φ)]

[
D(x∗)ak0 + D(x∗)2bk0

]
=
ρ

2
Qk(x∗, k0(x∗), φ),

using (69) in the last inequality.
Given ε > 0, define K = Kε := inf{k ∈ N0 : E[rα(xk)2] ≤ ε}. For every k < K

we have

(71)
ρ

2
ε(k + 1) <

ρ

2

k∑
i=0

E[rα(xi)2],

using the fact that E[rα(xi)2] > ε for all 0 ≤ i ≤ k, which follows from the definition
of K.

We claim that K is finite. Indeed, if K = ∞, then (70) and (71) hold for all
k ∈ N. Hence, we arrive at a contradiction by letting k → ∞ and using the facts
that a∞0 < ∞ and b∞0 < ∞, which hold by Assumption 3.5. Since K is finite,
we have E[rα(xK)2] ≤ ε by definition. Setting k := M − 1 in (70)–(71), we get

K ≤ QK−1(x∗,k0,φ)
ε ≤ Q∞(x∗,k0,φ)

ε , using the definition of Qk(x∗, k0, φ). We have thus
proved the claim. Under Assumption 3.8(ii), the proof is valid for any x∗ ∈ X∗ and,
hence, K is independent of x∗ ∈ X∗.
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712 A. IUSEM, A. JOFRÉ, R. OLIVEIRA, AND P. THOMPSON

In the previous theorem, given x∗ ∈ X∗, the constant Q∞(x∗, k0(x∗), φ) in the
convergence rate depends on the variance σ(x∗)2 and on the distance of the k0(x∗)
initial iterates to x∗, where k0(x∗) and φ are chosen such that (68) is satisfied. Under
Assumption 3.8(ii), since Kε does not depend on x∗ ∈ X∗, we get indeed the uniform
estimate

(72) sup
ε>0

εKε ≤ inf
x∗∈X∗

Q∞(x∗, k0(x∗), φ).

In view of (72), the performance of method (11)–(12) under nonuniform variance
depends on the x∗ ∈ X∗ such that Q∞(x∗, k0(x∗), φ) is minimal.

Proposition 3.23 (rate and oracle complexity for m = 1: nonuniform variance).
Consider Assumptions 3.1–3.8(i) for some x∗ ∈ X∗ and take αk ≡ α ∈ (0, 1/

√
6L).

Define Nk as

(73) Nk =
⌈
θ(k + µ)(ln(k + µ))1+b

⌉
,

for any θ > 0, b > 0, ε > 0, and 2 < µ ≤ ε−1. Choose φ ∈ (0,
√

5−1
2 ) and let k0(x∗) be

the minimum natural number satisfying

(74) k0(x∗) ≥ exp

[(
2cC2

2 α̂
2σ(x∗)2

φbθ

)1/b
]
− µ+ 1.

Then Theorem 3.18 holds and there are nonnegative constants Q(x∗), P(x∗), and
I(x∗) depending on x∗, k0(x∗), and φ such that for all ε > 0, there exists K := Kε ∈ N
such that

E[rα(xK)2] ≤ ε ≤ max{1, θ−2}Q(x∗)

K
,(75)

K∑
k=1

2Nk ≤
max{1, θ−4}max{1, θ}I(x∗)

{[
ln
(
P(x∗)ε−1

)]1+b
+ 1

µ

}
ε2

.(76)

Proof. For φ ∈ (0,
√

5−1
2 ), we want k0 := k0(x∗) to satisfy (68) of Theorem 3.22.

We have ∑
k≥k0

1

Nk
≤ θ−1

∑
k≥k0

1

(k + µ)(ln(k + µ))1+b

≤ θ−1

∫ ∞
k0−1

dt

(t+ µ)(ln(t+ µ))1+b

=
θ−1

b(ln(k0 − 1 + µ))b
.(77)

From (77) and (68), it is enough to choose k0 as the minimum natural number such
that the RHS of (77) is less than φ/D(x∗). Using the definition of D(x∗) in (56), it is
enough to choose k0 as in (74).

We now give an estimate of Q∞(x∗, k0, φ) as defined in (67). Set λ := 2cα̂2C2
2

with c as defined in Remark 3.17. From the definitions (56) and (65), we have the
bound

D(x∗)a∞0 + D(x∗)2b∞0 ≤
∫ ∞
−1

λθ−1σ(x∗)2dt

(t+ µ)(ln(t+ µ))1+b
(78)

+

∫ ∞
−1

λ2θ−2σ(x∗)4dt

(t+ µ)2(ln(t+ µ))2+2b
≤ λθ−1σ(x∗)2

b(ln(µ− 1))b
+

λ2θ−2σ(x∗)4

(µ− 1)(1 + 2b)[ln(µ− 1)]1+2b
.
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Using Theorem 3.22, (78), and the definition of Q∞(x∗, k0, φ) as defined by (65)–(67),
we prove (75), noting that Q(x∗) is specified as in Remark 3.24.

We now prove (76). Denoting Q∞(x∗) := Q∞(x∗, k0, φ) and using K := Kε ≤
Q∞(x∗)/ε, µε ≤ 1, and Nk ≤ θ(k + µ)(ln(k + µ))1+b + 1, we have

K∑
k=1

2Nk ≤ max{θ, 1}
K∑
k=1

2
[
(k + µ)(ln(k + µ))1+b + 1

]
≤ max{θ, 1}K(K + 2µ)

[
(ln(K + µ))1+b +

2

K + 2µ

]

≤ max{θ, 1}

{[
ln
(
Q∞(x∗)ε−1 + ε−1

)]1+b
+ µ−1

}
Q∞(x∗) (Q∞(x∗) + 2)

ε2
.(79)

We now use (79) with Q∞(x∗)(Q∞(x∗) + 2) ≤ (Q∞(x∗) + 2)2, the definition of
Q∞(x∗, k0, φ) as in (65)–(67), the bound (78), and the fact that (a+b+c)2 ≤ 3(a2+b2+
c2) in order to prove (76), where I(x∗) and P(x∗) are given in
Remark 3.24.

Remark 3.24 (constants). We make use of the following definitions for the sake
of clarity:

Aµ,b :=
2cα̂2C2

2

b[ln(µ− 1)]b
, Bµ,b :=

(2cα̂2C2
2 )2

(µ− 1)(1 + 2b)[ln(µ− 1)]1+2b
,(80)

Q(d,A, J) := 2ρ−1d2 + 2ρ−1A (1 + J) ,(81)

I(d,A, J) := 12ρ−2d4 + 12ρ−2A2 (1 + J)
2

+ 1,(82)

using the definition of c in Remark 3.17 and (65). Using the definitions (56), (65)–(67),
and (80)–(82), the constants in the statement of Proposition 3.23 are given by

Q(x∗) := Q(‖x0 − x∗‖, σ(x∗)2Aµ,b + σ(x∗)4Bµ,b, J(x∗, k0(x∗), φ)),

P(x∗) := Q∞(x∗, k0(x∗), φ) + 1,

I(x∗) := I(‖x0 − x∗‖, σ(x∗)2Aµ,b + σ(x∗)4Bµ,b, J(x∗, k0(x∗), φ)).

Given ε > 0, we may use the definitions of Q(x∗), I(x∗), and P(x∗) and optimize the
estimates given in (75)–(76) over (α̂, θ), obtaining optimal constants in terms of L
and σ(x∗)2. For simplicity we do not carry this procedure here.

We give the next sharper estimates in the case the variance is uniform over X∗ or
X. We state them without proofs since they follow the same proof line of Theorem 3.22
and Proposition 3.23, but using Propositions 3.19(ii) and 3.20(ii) when the variance
is uniform over X∗ and Proposition 3.19(iii) when the variance is uniform over X.
Define

Dσ := 2cα̂2C2
2σ

2,(83)

J(`, φ) :=
1 + max0≤k≤` E[d(xk, X∗)2]

1− φ− φ2
,(84)

Qk(σ, `, φ) := 2ρ−1
{

d(x0, X∗)2 + (1 + J(`, φ))
(
Dσa

k
0 + D2

σb
k
0

)}
,(85)

Q̃k(σ) := 2ρ−1

{
d(x0, X∗)2 + 17C2

2 α̂
2σ2

k∑
i=0

1

Ni,min

}
,(86)

using c as defined in Remark 3.17 and the definitions in (65).
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714 A. IUSEM, A. JOFRÉ, R. OLIVEIRA, AND P. THOMPSON

Theorem 3.25 (convergence rate: uniform variance). Consider Assumptions
3.1–3.8 and take αk ≡ α ∈ (0, 1/

√
6L).

Suppose first that Assumption 3.8(ii) holds and supx∗∈X∗ σ(x∗) ≤ σ for some

σ > 0. Take φ ∈ (0,
√

5−1
2 ) and k0 := k0(σ) ∈ N such that

∑
k≥k0

1

Nk
≤ φ

Dσ
.

Then, for all ε > 0, there exists Kε ∈ N, satisfying

E[rα
(
xKε

)2
] ≤ ε ≤ Q∞(σ, k0(σ), φ)

Kε
.

Suppose now that Assumption 3.8(iii) holds for some σ > 0. Then, for all ε > 0,
there exists Kε ∈ N, satisfying

E[rα
(
xKε

)2
] ≤ ε ≤ Q̃∞(σ)

Kε
.

Proposition 3.26 (rate and oracle complexity for m = 1: uniform variance).
Consider Assumptions 3.1–3.8, take αk ≡ α ∈ (0, 1/

√
6L), and suppose supx∗∈X∗ σ(x∗)

≤ σ for some σ > 0. Define Nk as

Nk =
⌈
θ(k + µ)(ln(k + µ))1+b

⌉
,

for any θ > 0, b > 0, ε > 0, and 2 < µ ≤ ε−1. Then the following holds:

(i) Suppose Assumption 3.8(ii) holds. Choose φ ∈ (0,
√

5−1
2 ) and k0 := k0(σ) ∈ N

such that

k0 ≥ exp

[(
2cC2

2 α̂
2σ2

φbθ

)1/b
]
− µ+ 1.

Then Theorem 3.18 holds and there exist nonnegative constants Q(σ), P(σ),
and I(σ) depending on σ, k0(σ), and φ such that for all ε > 0, there exists
K := Kε ∈ N such that

E[rα(xK)2] ≤ ε ≤ max{1, θ−2}Q(σ)

K
,

K∑
k=1

2Nk ≤
max{1, θ−4}max{1, θ}I(σ)

{[
ln
(
P(σ)ε−1

)]1+b
+ 1

µ

}
ε2

.

(ii) Suppose that Assumption 3.8(iii) holds. Then Theorem 3.18 holds and there

exist nonnegative constants Q̃(σ), P̃(σ), and Ĩ(σ) depending on σ such that
for all ε > 0, there exists K := Kε ∈ N such that

E[rα(xK)2] ≤ ε ≤ max{1, θ−1}Q̃(σ)

Kε
,

K∑
k=1

2Nk ≤
max{1, θ−2}max{1, θ}̃I(σ)

{[
ln
(
P̃(σ)ε−1

)]1+b

+ 1
µ

}
ε2

.
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Remark 3.27 (constants). We recall the definitions (65), (80)–(82), and (83)–
(86). The constants in the statement of Proposition 3.26(i) are given by Q(σ) :=
Q(d(x0, X∗), σ2Aµ,b + σ4Bµ,b, J(k0(σ), φ)), P(σ) := Q∞(σ, k0(σ), φ) + 1, and I(σ) :=
I(d(x0, X∗), σ2Aµ,b + σ4Bµ,b, J(k0(σ), φ)). For item (ii) they are given by

Q̃(σ) := 2ρ−1 d(x0, X∗)2 + 2ρ−1 17C2
2 α̂

2σ2

b(ln(µ− 1))b
,

Ĩ(σ) := 12ρ−2 d(x0, X∗)4 + 12ρ−2 172C4
2 α̂

4σ4

b2(ln(µ− 1))2b
+ 1,

and P̃(σ) := Q̃∞(σ) + 1.

We now turn our attention to the distributed solution of a Cartesian SVI for a
large network (m� 1). If a decentralized sampling is used, then higher order factors
of m appear in rate and complexity. The next result shows that if, in addition,
a deterministic and decreasing sequence of exponents {bi}mi=1 and an approximate
estimate of the network dimension m is coordinated, then the oracle complexity is
proportional to m (up to a scaling in the sampling rate).

Proposition 3.28 (rate and oracle complexity for a network). Consider As-
sumptions 3.1–3.8(i) for some x∗ ∈ X∗ and take αk ≡ α ∈ (0, 1/

√
6L). Under

Assumptions 3.1–3.8(i) with Assumption 3.6(i) (centralized sampling), the results of
Proposition 3.23 hold.

Consider now Assumption 3.6(ii) (decentralized sampling). Let {bi}mi=1 be a posi-
tive sequence such that

Nk,i =
⌈
θi(k + µi)

1+a(ln(k + µi))
1+bi

⌉
,(87)

b1 ≥ bi + 2 ln(i+ 1)− lnS,(88)

for any θi > 0, a > 0, S ≥ 1, ε > 0, 2 < µi ≤ ε−1. Choose φ ∈ (0,
√

5−1
2 ) and let

k0(x∗) be the minimum natural number greater than e− µmin + 1 such that

(89) k0(x∗) ≥
[

2cC2
2 α̂

2σ(x∗)2

φθminbmin

]1/a

− µmin + 1.

Then Theorem 3.18 holds and there exist nonnegative constants Q̂(x∗), P̂(x∗), and

Î(x∗) depending on x∗, k0(x∗), and φ such that for all ε > 0, there exists K := Kε ∈ N
such that

E[rα(xK)2] ≤ ε ≤ Q̂(x∗)

K
,(90)

K∑
k=1

m∑
i=1

2Nk,i ≤
Smax{θmax, 1}

{
ln
(
P̂(x∗)ε−1

)}1+b1
Î(x∗)

ε2+a
.(91)

(Above, the subscripts “min” and “max” refer, respectively, to the minimal and max-
imal terms of the corresponding sequences.)

Proof. In what follows we will use the following estimate. For any k ∈ N0, a > 0,
0 < b < 1, µ > 1,
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(92)

∫ ∞
k

dt

(t+ µ)1+a(ln(t+ µ))1+b
≤ max

{
1

a(k + µ)a
,

1

(k + µ)ab[ln(k + µ)]b

}
.

For φ ∈ (0,
√

5−1
2 ) we want k0 := k0(x∗) to satisfy (68) of Theorem 3.22. Since Nk

is the harmonic average of {Nk,i}mi=1 and Nk,i ≥ θmin(k+µmin)1+a[ln(k+µmin)]1+bmin

for all i ∈ [m], we get from (92)

∑
k≥k0

1

Nk
≤ θ−1

min

∑
k≥k0

1

(k + µmin)1+a[ln(k + µmin)]1+bmin

≤ θ−1
min

(k0 − 1 + µmin)abmin[ln(k0 − 1 + µmin)bmin ]
≤ θ−1

min

(k0 − 1 + µmin)abmin
,(93)

if k0 ≥ e − µmin + 1. From (93) and (68), it is enough to choose k0 as the minimum
natural number greater than e − µmin + 1 such that the RHS of (93) is less than
φ/D(x∗). Using the definition of D(x∗) in (56), it is enough to choose k0 as in (89).

Next we estimate the value of Q∞(x∗, k0, φ) as defined in (67). Recall 1
Nk =∑m

i=1
1

Nk,i
and set λ := 2cα̂2C2

2 with c as defined in Remark 3.17. Definitions (56)

and (65) imply

D(x∗)a∞0 + D(x∗)2b∞0 ≤ σ(x∗)2
∑
k≥0

m∑
i=1

λθ−1
i

(k + µi)1+a(ln(k + µi))1+bi

+ σ(x∗)4
∑
k≥0

[
m∑
i=1

λθ−1
i

(k + µi)1+a(ln(k + µi))1+bi

]2

.(94)

The first summation in (94) is bounded by

(95)

m∑
i=1

∑
k≥0

λθ−1
i

(k + µi)1+a
≤

m∑
i=1

∫ ∞
−1

λθ−1
i dt

(t+ µi)1+a
≤

m∑
i=1

λ

θia(µi − 1)a
=: Am.

Using estimate (92), the second summation in (94) is bounded by

m∑
i=1

m∑
j=1

∑
k≥0

λ2θ−1
i θ−1

j

(k + µmin)2+2a[ln(k + µmin)]2+bi+bj

≤ 1

ϑ

{
m∑
i=1

λ

θi[ln(µmin − 1)]bi

}2

=: Bm,(96)

where ϑ := (1+2bmin)(µmin−1)1+2a ln(µmin−1). From Theorem 3.22, (94)–(96), and
the definition of Q∞(x∗, k0, φ) as specified in (65)–(67), we prove (90), noting that

Q̂(x∗) is specified as in Remark 3.29.
We now prove the bound on the oracle complexity. Let Q∞(x∗) := Q∞(x∗, k0, φ).

Using the facts that K ≤ Q∞(x∗)/ε, µi ≤ ε−1 and the definition of Nk,i, we have

D
ow

nl
oa

de
d 

04
/0

6/
18

 to
 2

00
.8

9.
68

.7
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXTRAGRADIENT METHOD WITH VARIANCE REDUCTION 717

K∑
k=1

m∑
i=1

2Nk,i ≤
K∑
k=1

m∑
i=1

2
[
θi(k + µi)

1+a(ln(k + µi))
1+bi + 1

]
≤ 2 max{θmax, 1}K

m∑
i=1

[
(K + µi)

1+a (ln (K + µi))
1+bi + 1

]
≤ 4 max{θmax, 1}K

m∑
i=1

[
(K + µi)

1+a (ln (K + µi))
1+bi

]
≤ 4Φ

(Q∞(x∗) + 1)
2+a

ε2+a

m∑
i=1

(
ln
(
Q∞(x∗)ε−1 + ε−1

))1+bi
,(97)

using the fact that 1 ≤ (K+µi)
1+a (ln (K + µi))

1+bi for i ∈ [m] in the third inequality,
and defining Φ := max{θmax, 1} in the last inequality.

Set h := ln
(
Q∞(x∗)ε−1 + ε−1

)
with h ≥ e for sufficiently small ε > 0. By

definition of {bi}mi=1 we have, for i ∈ [m],

(98) b1 ≥ bi + 2 ln(i+ 1)− lnS ≥ bi +
2 ln(i+ 1)− lnS

lnh
⇒ hbi ≤ Shb1

(i+ 1)2
.

From (98) we obtain that

(99)

m∑
i=1

hbi ≤ Shb1
m∑
i=1

1

(i+ 1)2
≤ Shb1 .

From the bounds (94)–(99), the definitions of h and Q∞(x∗, k0, φ), as specified in
(65)–(67), and the fact that (x + y + z)2+a ≤ 31+a(x2+a + y2+a + z2+a), we obtain

the required bound on
∑K
k=1

∑m
i=1 2Nk,i, noting that Î(x∗) and P̂(x∗) are specified as

in Remark 3.29.

Remark 3.29 (constants). Define

Î(d,A, J, ν) := 4 · 3ν−1
{

(2ρ−1)νd2ν + (2ρ−1)νAν [1 + J ]
ν

+ 1
}
,(100)

using (65). In view of (56), (65)–(67), (81), (100) and (95)–(96), the constants in the
statement of Proposition 3.28 are given by

Q̂(x∗) := Q(‖x0 − x∗‖, σ(x∗)2Am + σ(x∗)4Bm, J(x∗, k0(x∗), φ)),

P̂(x∗) := Q∞(x∗, k0(x∗), φ) + 1,

Î(x∗) := Î(‖x0 − x∗‖, σ(x∗)2Am + σ(x∗)4Bm, J(x∗, k0(x∗), φ), 2 + a).

Remark 3.30 (oracle complexity of O(m)). For the choice of parameters (87)–

(88), if we have θi ∼ θm for some θ > 0, then Am . θ−1

a(µmin−1)a and Bm . θ−2

(µmin−1)1+2a ,

where Am and Bm are defined in (95)–(96). Also, bmin ≤ b1 + lnS − 2 ln(m + 1) so
that it is enough to choose b1 > 2 ln(m + 1) − lnS, which is reasonably small in
terms of m. Finally, the bound on the oracle complexity in Proposition 3.28 is of
order max{1, θ−2(2+a)}θmax . max{θ, θ−(3+2a)}m. Moreover, the sampling is robust
in the sense that the convergence rate is proportional to max{1, θ−2} and the oracle
complexity is proportional to max{θ, θ−(3+2a)}. We remark that improvements can
be achieved if a coordination µmin ∼ ε−1 is possible (given a prescribed tolerance
ε > 0). For simplicity we do not present the analogous results of Proposition 3.26
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718 A. IUSEM, A. JOFRÉ, R. OLIVEIRA, AND P. THOMPSON

for the case m � 1 under Assumption 3.8(iii). In that case, the estimates depend
on d(x0, X∗), the rate is proportional to max{1, θ−1}, and the oracle complexity is
proportional to max{θ, θ−(2+a)}m.

3.4.1. Comparison of complexity estimates. Next, we briefly compare our
complexity results in terms of the quadratic natural residual, given in this section,
with related results presented in previous work in terms of other merit functions for
the SVI. As commented in subsection 1.1, the quadratic natural residual and the D-
gap function are equivalent merit functions. An immediate result is that the previous
complexity analysis, given in Theorems 3.22–3.25 and Propositions 3.23–3.28 in terms
of the quadratic natural residual, are also valid in terms of the D-gap function. In this
sense, our rate of convergence of O(1/K) in terms of the D-gap function improves the
rate O(1/

√
K) in terms of the dual gap-functions analyzed in [19, 7, 44, 45].

By Proposition 3.23 and Remark 3.24, if Assumption 3.8(ii) holds, then the algo-
rithm performance, in terms of the convergence rate and oracle complexity, depends
on some x∗ ∈ X∗ such that σ(x∗)4 ·max0≤k≤k0(x∗) E[‖xk − x∗‖2] is minimal, that is
to say, we have a trade-off between variance of the oracle error and distance to initial
iterates. We also remark that the sampling rate Nk possesses a robust property : a
scaling in the sampling rate by a factor θ keeps the algorithm running with a propor-
tional scaling of max{1, θ−2} in the rate and max{θ, θ−3} in the oracle complexity
(see [32] for discussion on robust algorithms). By Proposition 3.26, when the variance
is bounded by σ2 over X∗, the estimates depend on σ4 max0≤k≤k0(σ) E[d(xk, X∗)2]
and k0(σ) is independent of any x∗ ∈ X∗. When the variance is uniform over X,
the estimates depend only on d(x0, X∗) and a scaling factor θ in the sampling rate
implies a factor of max{1, θ−1} in the rate and of max{θ, θ−1} in the oracle com-
plexity. In the estimates of Propositions 3.23–3.26, we may obtain optimal constants
in terms of L, the variance and distance to initial iterates by optimizing over (α̂, θ).
Interestingly, in the case of a compact feasible set, the estimates do not depend on
diam(X), as in [19, 7], but rather on the distance of the initial iterates to X∗, which
is a sharper result. In the case of networks the same conclusions hold, except that
the dependence in the dimension is higher if a decentralized sampling is used. From
Proposition 3.28, if a distributed sampling is used and a coordination of a rapid
decreasing sequence of positive numbers is offered (in any order), then the oracle
complexity depends linearly on the size of the network (up to a scaling factor in the
sampling rate).

We briefly compare our convergence rate and complexity bounds presented in
Propositions 3.23 and 3.26 with those in [7, Corollaries 3.2 and 3.4]. In [7], for a
compact X with uniform variance over X, the convergence rate obtained in terms
of the dual gap function is of order Ldiam(X)2K−1 + σ diam(X)K−1/2, and the
oracle complexity is of order Ldiam(X)2ε−1 +σ2 diam(X)2ε−2. For an unbounded X
with uniform variance over X, the convergence rate in terms of the relaxed dual gap
function G̃(x, v) described in subsection 1.1 is of order L‖x0 − x∗‖2K−1 + σ‖x0 −
x∗‖2K−1/2, while the oracle complexity is of order L‖x0−x∗‖2ε−1 +σ2‖x0−x∗‖4ε−2.
Note that the optimal constants in terms of L and σ in these bounds require tuning the
stepsize to L and σ. In the estimates given in Propositions 3.23–3.26, the “coercivity”
modulus ρ−1 introduced by the extragradient step behaves qualitatively as L. We
improve on the rate of convergence to O(1/K) with respect to the stochastic term
O(σ/

√
K) by reducing iteratively the variance. Differently from [7], our analysis is the

same for a compact or unbounded X, in the sense that the same merit function is used.
For the case of a compact X, our bounds depend on d(x0, X∗) rather than diam(X)
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as in [7], which is a sharper result. When the variance is uniform over an unbounded
X, our bounds depend on d(x0, X∗) instead of ‖x0−x∗‖ for a given x∗ ∈ X∗ as in [7],
which is also a sharper bound. We analyze the new case of nonuniform variance, which
has a similar performance, except that the estimates depend on a point x∗ ∈ X∗ with a
minimum trade-off between variance and distances to a few initial iterates. Moreover,
we include asymptotic convergence, which it is not reported in [7].

4. Concluding remarks. In this work we propose an extragradient method
for pseudomonotone stochastic variational inequalities that combines the SA method-
ology alongside an iterative variance reduction procedure. We obtain asymptotic
convergence, nonasymptotic convergence rates, and oracle complexity estimates and
prove that the generated sequence is uniformly bounded in Lp. In order to achieve
these properties, we require the operator to be just pseudomonotone and Lipschitz
continuous. Our results give an accelerated rate with near optimal oracle complexity,
coping with unbounded feasible sets and an oracle with nonuniform variance. The
method admits a robust sampling rate. We also include the analysis for the distributed
solution of Cartesian SVIs.

A potential direction of future research is to obtain sharp complexity estimates
for exponential convergence of method (11)–(12). In previous works [19, 7, 13], expo-
nential convergence is proved, assuming a uniform tail bound for the oracle error, that

is, that there exists σ > 0 such that E[exp{‖F (ξ,x)−T (x)‖2
σ2 }] ≤ exp{1} for all x ∈ X.

This assumption is not satisfied in general for unbounded feasible sets and, even for
compact ones, σ2 may be a conservative upper bound of the oracle variance at points
of the trajectory of the method. Moreover, based on Section 3.4.1, in the case of a
compact feasible set or uniform tail bound, we wish to study sharp complexity esti-
mates with respect to the distance of the initial iterate to the solution set. We intend
to make this analysis in a second paper assuming a nonuniform tail bound in the spirit
of Assumption 3.8(i)–(ii). Motivated by this work, another interesting line of research
we intend to pursue is to verify if (extra)gradient methods with robust stepsizes can
achieve accelerated convergence rates with respect to the stochastic error.

Finally, we discuss error bounds on the solution set. It is well known that impor-
tant classes of variational inequalities admit the natural residual as an error bound
for the solution set, i.e., for all α > 0, there exists δ > 0 such that d(x,X∗) . rα(x)
for all x ∈ Rn with rα(x) ≤ δ. This property holds, for example, for (i) semistable
VIs, (ii) composite strongly monotone VIs such that X is a polyhedron, (iii) VIs such
that T is linear and X is a cone (see [11]). Item (ii) includes affine VIs and strongly
monotone VIs. Item (iii) includes linear homogeneous complementarity problems and
a linear system of equations. When such a property holds, the results of Theorems
3.22–3.25 and Propositions 3.23–3.28 provide other classes of SVIs for which conver-
gence of O(1/K) holds in terms of the mean-squared distance to the solution set. In
the previous literature, such a property was shown only for strongly pseudomonotone
or weak-sharp SVIs on a compact set. In an upcoming paper, we intend to refine the
complexity analysis for the case in which this error bound on the solution set is valid.

Appendix. Proof of lemmas.

Proof of Lemma 3.11. Let x∗ ∈ X∗. In order to simplify the notation, in what
follows we say F̂ (εk2 , z

k) := T (zk) + εk2 and yk := xk − αkF̂ (εk2 , z
k), so that, xk+1 =

Π(yk). For every x ∈ X, we have
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‖xk+1 − x‖2 = ‖Π(yk)− x‖2

≤ ‖yk − x‖2 − ‖yk −Π(yk)‖2

= ‖(xk − x)− αkF̂ (εk2 , z
k)‖2 − ‖(xk − xk+1)− αkF̂ (εk2 , z

k)‖2

= ‖xk − x‖2 − ‖xk − xk+1‖2 + 2〈x− xk+1, αkF̂ (εk2 , z
k)〉

= ‖xk − x‖2 − ‖xk − xk+1‖2 + 2〈x− zk, αkF̂ (εk2 , z
k)〉

+ 2〈zk − xk+1, αkF̂ (εk2 , z
k)〉(101)

= ‖xk − x‖2 − ‖(xk − zk) + (zk − xk+1)‖2

+ 2〈zk − xk+1, αkF̂ (εk2 , z
k)〉+ 2〈x− zk, αkF̂ (εk2 , z

k)〉
= ‖xk − x‖2 − ‖xk − zk‖2 − ‖zk − xk+1‖2

− 2〈xk − zk, zk − xk+1〉+ 2〈zk − xk+1, αkF̂ (εk2 , z
k)〉

+ 2〈x− zk, αkF̂ (εk2 , z
k)〉

= ‖xk − x‖2 − ‖xk − zk‖2 − ‖zk − xk+1‖2

+ 2〈xk+1 − zk, xk − αkF̂ (εk2 , z
k)− zk〉+ 2〈x− zk, αkF̂ (εk2 , z

k)〉,

using Lemma 2.1(ii) in the inequality and simple algebra in the equalities.

Looking at the fourth term I := 2〈xk+1 − zk, xk − αkF̂ (εk2 , z
k) − zk〉 in the RHS

of the last equality of (101), we take into account (15) and the fact that F̂ (εk2 , z
k) =

T (zk) + εk2 , and apply Lemma 2.1(i) with C = X, x = xk − αk(T (xk) + εk1) and
y = xk+1 ∈ X, obtaining

I = 2〈xk+1 − zk, xk − αk(T (xk) + εk1)− zk〉
+ 2〈xk+1 − zk, αk

[
(T (xk) + εk1)− (T (zk) + εk2)

]
〉(102)

≤ 2αk‖xk+1 − zk‖‖(T (zk) + εk2)− (T (xk) + εk1)‖,

using the Cauchy–Schwarz inequality. Next we apply Lemma 2.1(iii) to (15)–(16),
obtaining

‖xk+1 − zk‖ = ‖Π[xk − αk(T (zk) + εk2)]−Π[xk − αk(T (xk) + εk1)]‖
≤ αk‖(T (zk) + εk2)− (T (xk) + εk1)‖.(103)

Combining (102) and (103) we get

I ≤ 2α2
k‖(T (zk) + εk2)− (T (xk) + εk1)‖2

≤ 2α2
k

(
‖T (zk)− T (xk)‖+ ‖εk1‖+ ‖εk2‖

)2
≤ 2α2

k

(
L‖zk − xk‖+ ‖εk1‖+ ‖εk2‖

)2
(104)

≤ 6L2α2
k‖zk − xk‖2 + 6α2

k‖εk1‖2 + 6α2
k‖εk2‖2,

using the triangle inequality in the second inequality, Lipschitz continuity of T in the
third inequality, and the fact that (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2 in the last inequality.
We set x := x∗ in (101). Looking now at the last term in the last equality in (101),
we get

2〈x∗ − zk, αkF̂ (εk2 , z
k)〉 = 2〈x∗ − zk, αk(T (zk) + εk2)〉

= 2〈x∗ − zk, αkT (zk)〉+ 2〈x∗ − zk, αkεk2〉(105)

≤ 2〈x∗ − zk, αkεk2〉 =: Jk
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using, in the last inequality, the fact that 〈x∗ − zk, αkT (zk)〉 ≤ 0, which follows from
Assumption 3.4, the fact that αk > 0, x∗ ∈ X∗, and zk ∈ X. Combining (101), (104),
and (105), we get

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖zk − xk‖2 − ‖zk − xk+1‖2

+ 6L2α2
k‖zk − xk‖2 + 6α2

k

(
‖εk1‖2 + ‖εk2‖2

)
+ Jk

≤ ‖xk − x∗‖2 − ρk‖zk − xk‖2 + 6α2
k(‖εk2‖2 + ‖εk1‖2) + Jk,(106)

using the fact that ρk = 1− 6L2α2
k.

Recalling that zk = Π[xk − αk(T (xk) + εk1)], we note that

rαk(xk)2 = ‖xk −Π[xk − αkT (xk)]‖2

≤ 2‖xk − zk‖2 + 2‖Π[xk − αk(T (xk) + εk1)]−Π[xk − αkT (xk)]‖2

≤ 2‖xk − zk‖2 + 2α2
k‖εk1‖2,(107)

using Lemma 2.1(iii) in the second inequality. From (106), (107), and the definitions
(24)–(25) and Jk = Mk+1(x∗)−Mk(x∗), we get the claimed relation.

We now give the proof of Lemma 3.12.

Proof of Lemma 3.12. We first prove the result under Assumption 3.8(i)–(ii).
Consider item 1. Assume first that m > 1 and take i ∈ [m]. For 1 ≤ t ≤ Ni,
define U ti ∈ Rni by

U ti :=

t∑
j=1

Fi(ξj,i, x)− Ti(x)

Ni
.

Defining U0
i = 0, G0 := σ(U0

i ) and the natural filtration Gt := σ(ξ1,i, . . . , ξt,i) for

1 ≤ t ≤ Ni, {U ti ,Gt}
Ni
t=0 defines a vector-valued martingale (since it is a sum of Ni

independent mean-zero vector random variables) whose increments satisfy

∣∣‖U ti − U t−1
i ‖

∣∣
p

=

∣∣∣∣‖Fi(ξ, x)− Ti(x)‖
Ni

∣∣∣∣
p

≤
|‖F (ξ, x)− T (x)‖|p

Ni
≤ σ(x∗) (1 + ‖x− x∗‖)

Ni
,

by Assumption 3.8, using the same notation ‖ · ‖ for the Euclidean norm in Rni and
in Rn. Hence,

(108)
∣∣∣‖UNii ‖∣∣∣

p
≤ Cp σ(x∗) (1 + ‖x− x∗‖)√

Ni
,

which follows from the BDG inequality (8). For each i ∈ [m], εi(x) = UNii . Hence,
since q ≥ 1, from Minkowski’s inequality and (108) we get

(109) |‖ε(x)‖|2p =
∣∣‖ε(x)‖2

∣∣
q
≤

m∑
i=1

∣∣∣‖UNii ‖2∣∣∣
q
≤ C2

p

(
m∑
i=1

2

Ni

)
σ(x∗)2 (1+‖x−x∗‖2),

using (a+b)2 ≤ 2a2+2b2. The first claim follows from (109) with A = 2. If m = 1, the
same proof line holds with A = 1, since relation (a+ b)2 ≤ 2a2 + 2b2 is not required.

We now prove item 2. Suppose that m > 1 and that {ξj,i : 1 ≤ i ≤ m, 1 ≤ j ≤ Ni}
is i.i.d. We have
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(110) |〈v, ε(x)〉|p ≤ ‖v‖|‖ε(x)‖|p,

by the Cauchy–Schwarz inequality. The claim follows from (109) and (110) with
B = 2.

Finally, we prove item 3. Suppose that m = 1, or m > 1 with Ni ≡ N , ξj,i ≡ ξj
for all i ∈ [m]. Define U0 := 0 and U t := (U t1, . . . , U

t
m) for t ≥ 1 and Wt := 〈v, ·U t〉.

Observe that {(Wt,Gt)}Nk=0 defines a real valued martingale with the filtration given
by G0 := σ(U0) and Gt := σ(ξ1, . . . , ξt) for t ≥ 1, since it is a sum of N i.i.d. random
variables. Its increments |Wt −Wt−1|p are equal to∣∣∣∣〈v, F (ξt, x)− T (x)

N

〉∣∣∣∣
p

≤
‖v‖ |‖F (ξ, x)− T (x)‖|p

N

≤ ‖v‖σ(x∗)(1 + ‖x− x∗‖)
N

,(111)

using the Cauchy–Schwarz inequality in the first inequality and Assumption 3.8 in
the last one. Hence, from (111) and the BDG inequality (8), we get the claim with
B = 1 (in this case N = N).

The proof of the bounds under the stronger Assumption 3.8(iii) is essentially the
same with sharper bounds on the increments, and so we omit it.
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[43] F. Yousefian, A. Nedić, and U. V. Shanbhag, Self-tuned stochastic approximation schemes
for non-Lipschitzian stochastic multi-user optimization and Nash games, IEEE Trans.
Automat. Control, 61 (2016), pp. 1753–1766.
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