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Sequence representations supporting not only direct access to their symbols, but also 
rank/select operations, are a fundamental building block in many compressed data 
structures. Several recent applications need to represent highly repetitive sequences, 
and classical statistical compression proves ineffective. We introduce, instead, grammar-
based representations for repetitive sequences, which use up to 6% of the space needed 
by statistically compressed representations, and support direct access and rank/select 
operations within tens of microseconds. We demonstrate the impact of our structures 
in text indexing applications.
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1. Introduction

Given a sequence S[1, n] over an alphabet � = [1, σ ], an intensively studied problem in recent years has been how to 
represent S space-efficiently while supporting these three operations:

• access(S, i), which returns S[i], with 1 ≤ i ≤ n.
• rankb(S, i), which returns number of occurrences of b ∈ � in S[1, i], with 0 ≤ i ≤ n.
• selectb(S, i), which returns the position of the i-th occurrence of b ∈ � in S , with 0 ≤ i ≤ rankb(S, n) and 
selectb(S, 0) = 0.

The data structures supporting these three operations will be called rsa structures (for rank, select, access). Their 
popularity owes to the wide number of applications in which they are particularly useful. For instance, we can simulate 
and improve the functionalities of inverted indices [6,54] by concatenating the posting lists and representing the resulting 
sequence with an rsa structure [10,4,3]. We can also build full-text self-indices like the FM-Index [23,24] on an rsa-capable 
representation of the Burrows–Wheeler Transform [16] of the text. Several other applications of rsa structures have been 
studied, for example document listing in sequence collections [42], XML/XPath systems [2], positional inverted indices [5], 
graphs [20], binary relations [8], tries and labeled trees [22].

In many applications, keeping the data in main memory is essential for high performance. Therefore, one aims at using 
little space for an rsa structure. The best known such sequence representations [28,21,9,29,7,13] use statistical compression, 
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which exploits the frequencies of the symbols in S . The smallest ones achieve nHk(S) + o(n logσ) bits for any k = o(logσ n). 
The measure Hk(S) is the minimum bit-per-symbol rate achieved by a statistical compressor based on the frequencies of 
each symbol conditioned to the k symbols preceding it. Statistically-compressed representations can, on a RAM machine 
with word size w , answer access in O (1) time and select in any time in ω(1), or vice versa, and rank in time 
O (log logw σ). These times match lower bounds [13].

Although statistical compression is appropriate in many contexts, it is unsuitable in various other domains. This is the 
case of an increasing number of applications that deal with highly repetitive sequences: software repositories, versioned 
document collections, genome datasets of individuals of the same species, and so on, which contain many near-copies of 
the same source code, document, or genome [41]. In this scenario, statistical compression does not take proper advantage 
of the repetitiveness [33]: for k = 0, the entropy does not change if we concatenate many copies of the same sequence, and 
for k > 0 the situation is similar, as in most cases the near-copies are much farther apart than k = o(logσ n) positions.

Instead, grammar [32,17] and Lempel–Ziv [35,55] compressors are very efficient to represent repetitive sequences, and 
thus could be excellent candidates for applications that require rsa functionality on them. However, even supporting 
access is difficult on those formats. The fastest schemes take O (logn) time, using either O (g log n) bits of space on a 
grammar of size g [14], or more than O (z log n) bits on a Lempel–Ziv parsing of z phrases [25]. This time is essentially opti-
mal [52]. Therefore, supporting access is intrinsically harder than with statistically compressed sequence representations.

The support for rank and select is even more rare on repetitive sequences. Only for bitmaps (i.e., bit sequences) 
compressed with balanced grammars (whose grammar tree is of height O (log n)), the O (g log n) bits and O (log n) time 
obtained for access on grammar-compressed strings is extended to all rsa queries [47]. However, for larger σ , the space 
becomes O (gσ logn) bits and the time raises to O (log σ log n).

In this paper we propose two new solutions for rsa queries over grammar compressed sequences, and compare them 
with various alternatives on a number of real-life repetitive sequences. Our first structure, tailored to sequences over small 
alphabets, extends and improves the current representation of bitmaps [47]. On a balanced grammar of size g , it obtains 
O (log n) time for all the rsa operations with O (gσ log n) bits of space, using in practice similar space while being much 
faster than previous work [47]. We dub this solution GCC (Grammar Compression with Counters). It can be used, for 
example, on sequences of XML tags or DNA.

Our second structure combines GCC with alphabet partitioning [7] and is aimed at sequences with larger alphabets. 
Alphabet partitioning splits the sequence S into subsequences over smaller alphabets. If these alphabets are small enough, 
we apply GCC on them. On the subsequences with larger alphabets, we use representations similar to previous work [47]. 
The resulting time/space guarantees are as in previous work [47], but the scheme is much faster in practice while using 
about the same space. Recent work [11] (see next section) shows that time complexities of GCC are essentially optimal.

While up to an order of magnitude faster than the alternative grammar-compressed representation, our solutions are still 
an order of magnitude slower than statistically compressed representations, but they are also an order of magnitude smaller 
on repetitive sequences. We also evaluate our data structures on two applications: full-text self-indices and XML collections.

This paper is organized as follows: Section 2 describes the basic concepts and previous work; Section 3 explains our rsa
data structures for small alphabets; Section 4 presents our solution for rsa on large alphabets; Section 5 experimentally 
evaluates our proposals; Section 6 explores their performance in several applications; and finally Section 7 gives conclusions 
and future research lines.

2. Basic concepts and related work

2.1. Statistical compression measures

Given a sequence S[1, n] over � = [1, σ ], let 0 ≤ pi ≤ 1 be the relative frequency of symbol i in S . The zero-order 
empirical entropy of S is defined as1

H0(S) =
σ∑

i=1

pi lg
1

pi
,

and it is a lower bound of the bit-per-symbol rate achievable by a compressor that encodes i only considering its fre-
quency pi . A richer model considers the frequency of each symbol within the context of k symbols preceding it. This leads 
to the k-order empirical entropy measure,

Hk(S) =
∑

C∈�k

|SC |
n

H0(SC ),

where SC is the string formed by collecting the symbols that follow each occurrence of the context C in S . It holds Hk(S) ≤
Hk−1(S) ≤ H0(S) ≤ lgσ for any k ≥ 1.

1 We use lg to denote the logarithm in base 2.
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Fig. 1. The data structures (R, C) are the result of executing the RePair algorithm on the input sequence S with σ = 2.

2.2. Grammar compression

Grammar-compressing a sequence S means finding a context-free grammar that generates (only) S . Finding the smallest 
such grammar is NP-complete [17], but heuristics like RePair [34] run in linear time and find very good grammars.

RePair finds the most frequent pair of symbols ab in S , adds a rule X → ab to a dictionary R , and replaces each occur-
rence of ab in S by X .2 This process is repeated (X can be involved in future pairs) until the most frequent pair appears 
only once. The result is a pair (R, C), where the dictionary R contains r = |R| rules and C , of length c = |C |, is the final 
result of S after all the replacements are done. Note that C is drawn from the alphabet of terminals and nonterminals. For 
simplicity we assume that the first σ rules generate the σ terminal symbols, so that r counts terminals plus nonterminals. 
Thus, the total output size of (R, C) is (2(r −σ) +c) lg r bits. Fig. 1 shows an example of applying RePair on a binary input S .

By using the technique of Tabei et al. [51], it is possible to represent the dictionary in r lg r + O (r) bits, reducing the 
total space to (r + c) lg r + O (r) bits. However, our experiments in the conference version [46] show that the resulting access 
method is much slower, so in this paper we use a plain representation of the rules.

Finally, it is possible to force the grammar to be balanced, that is, with the grammar tree being of height O (log n) [50]. 
We use instead a simple heuristic that modifies RePair so that the newly created pairs are added at the end of the list of 
the pairs with the same frequency. This is sufficient to make the grammars balanced in all the cases we tested.

2.3. Variable-length encoding of integers

In several cases one must encode a sequence of numbers, most of which are small. A variable-length integer encoding 
aims to use fewer bits when encoding a smaller number. For example, γ -codes [54] encode a number x > 0 using 2 lg x bits, 
by writing its length |x| in unary followed by x itself in binary (devoided of its highest 1). For larger numbers, δ-codes [54]
encode |x| using γ -codes instead of unary codes, and thus require lg x + O (lg lg x) bits to encode x.

For even larger numbers, the so-called Variable Byte [53] (VByte) representation is interesting, as it offers fast decoding 
by accessing byte-aligned data. The idea is to split each integer into 7-bit chunks and encode each chunk in a byte. The 
highest bit of the byte is used to indicate whether the number continues in the next byte or not. Then encoding x requires 
at most (8/7) lg x + 7 bits.

2.4. Statistically compressed bitmaps

Several classical solutions represent a binary sequence B[1, n] with rsa support. Clark and Munro [18,40] (CM) use o(n)

bits on top of B and answer the rsa queries in O (1) time.
Raman et al. [48] (RRR) also support the operations in O (1) time, but they compress B statistically, to nH0(B) + o(n)

bits. This solution is well suited for scenarios where the distribution of 0/1 is skewed. However, it is not adequate to exploit 
repetitiveness in the bitmaps.

If the bitmaps are very sparse, the o(n)-bits term of the previous solution may be dominant. In this case, it is better to 
encode the differences between consecutive positions of the 1s with an encoding that favors small numbers, like δ-codes, 
and add absolute pointers to regularly sampled positions. This encoding uses nH0(B) + o(nH0(B)) bits and handles rsa
operations in O (log n) time. This folklore idea, which we call DELTA, has been used repeatedly; see e.g. [33].

2.5. Grammar-compressed bitmaps

The only bitmap representation we are aware of that exploits repetitiveness in the bitmaps is due to Navarro et al. [47]
(RPB). They RePair-compress B with a balanced grammar and enhance the output (R, C) with extra information to answer 
rsa queries. For each rule X ∈ R , let exp(X) be the string of terminals X expands to. Then they store two numbers per 
nonterminal X :

2 Note that, if a = b, we can only replace every other occurrence of aa in a sequence of as.
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• �(X) = |exp(X)|,
• z(X) = rank0(exp(X), �(X)) (the number of 0s contained in exp(X)).

Note that these values can be recursively computed: If X → Y Z , then exp(X) = exp(Y )exp(Z); �(X) = �(Y ) + �(Z), with 
�(0) = �(1) = 1; and z(X) = z(Y ) + z(Z), with z(0) = 1 and z(1) = 0.

To save space, they store �(·) and z(·) only for a subset of nonterminals, and compute the others recursively by partially 
expanding the nonterminal. Given a parameter δ, they guarantee that, to compute any �(X) or z(X), we have to expand at 
most 2δ rules. The sampled rules are marked in a bitmap Bd[1, r] and the sampled values are stored in two vectors, S� and 
Sz , of length rank1(Bd, r). To obtain �(X) we check whether Bd[X] = 1. If so, then �(X) = S�[rank1(Bd, X)]. Otherwise 
�(X) is obtained recursively as �(Y ) + �(Z). The process for z(X) is analogous.

Finally, every sth position of B is sampled, for a parameter s. Note that B = exp(C[1]) exp(C[2]) . . . exp(C[c]), where 
the position where each exp(C[p]) starts in B is L(p) = 1 + ∑p−1

k=1 �(C[k]). Then, the sampling array Sn[0, n/s] stores a 
tuple (p, o, rnk) at Sn[k], where exp(C[p]) contains B[k · s], that is, p = max{ j, L( j) ≤ k · s}. The other components are 
o = k · s − L(p), that is, the offset of B[k · s] within exp(C[p]); and rnk = rank0(B, L(p) − 1) is the number of 0s before 
exp(C[p]) starts. We also set Sn[0] = (0, 0, 0).

To answer rank0(B, i), let Sn[�i/s�] = (p, o, rnk) and set l = s · �i/s� − o. Then we move forward from C[p], updating 
l = l + �(C[p]), rnk = rnk + z(C[p]), and p = p + 1, as long as l + �(C[p]) ≤ i. When l ≤ i < l + �(C[p]), we have reached the 
rule C[p] = X → Y Z whose expansion contains B[i]. Then, we recursively traverse X as follows. If l +�(Y ) > i, we recursively 
traverse Y . Otherwise we update l = l + �(Y ) and rnk = rnk + z(Y ), and recursively traverse Z . This is repeated until l = i
and we reach a terminal symbol in the grammar. Then we return rnk. Obviously, we can also compute rank1(B, i) =
i −rank0(B, i). Supporting access(B, i) is completely equivalent, but instead of maintaining rnk we just return the terminal 
symbol we reach when l = i.

To answer select0(B, j), we binary search Sn to find Sn[i] = (p, o, rnk) and Sn[i + 1] = (p′, o′, rnk′) such that rnk <
j ≤ rnk′ . Then we proceed as for rank0, but updating l and rnk as long as rnk + z(C[p]) ≤ j, and then traversing by going 
left (to Y ) when rnk + z(Y ) > j, and going right (to Z ) otherwise. At the end, we return l. The process for select1(B, j) is 
analogous (note that X contains �(X) − z(X) 1s).

On a balanced grammar, a rule is traversed in O (log n) time. The time to iterate over C between samples is O (s). 
Therefore, if we set s = �(log n), the total time for rsa queries is O (s + log n) = O (log n) and the total space is O (r logn +
(n/s) log n) + c lg r = O ((r + c) log n + n) bits.3 The time is multiplied by δ if we use sampling to avoid storing all the 
information for all the rules.

2.6. Wavelet trees

The wavelet tree [28,43] (WT) is a complete balanced binary tree that represents a sequence S[1, n] over alphabet � =
[1, σ ]. Assume we assign a plain encoding of 
lg σ � bits to the symbols. Let us call S[i]〈 j〉 the jth most significant bit of 
the code associated with S[i]. The WT construction proceeds as follows: At the root node it splits the alphabet � into two 
halves, �1 and �2. A symbol belongs to �1 iff S[i]〈1〉 = 0, and to �2 otherwise. We store that information in a bitmap 
B[1, n] associated with the node, being B[i] = 0 iff S[i] ∈ �1 and 1 otherwise. The left child of the root will then represent 
the subsequence of S containing symbols in �1, while the right node will do the same with �2. The process is then 
recursively repeated in both children until the alphabet of the current node is unary. The height the WT is 
lgσ �.

The only information we need to store from a WT are the bitmaps stored in the internal tree nodes and the tree pointers. 
The total space for the sequences is n
lg σ � bits, while for tree pointers we use O (σ log n) bits. Thus, the total space 
becomes n lgσ + O (n + σ logn) bits.

Although we will focus on the binary case, we can generalize the concept of WT to the multi-ary case: Instead of 
recursively dividing the alphabet into two halves, we can split it into 2b disjoint sets. This is known as Multi-ary WT
or MWT. Now the internal MWT nodes store sequences drawn over alphabet [1, 2b] instead of bitmaps, and the height is 
reduced to 
(logσ)/b�.

Algorithm 1 shows how rsa queries on S are built on rsa queries on the bitmaps or sequences of the MWT of S . A key 
aspect in WT’s performance is how we represent those bitmaps or sequences. In the binary case (Section 2.4), if we use 
CM for bitmaps, the total space is n lgσ + o(n logσ) + O (σ log n) bits and rsa times are O (logσ). By using RRR, the time 
complexity is retained (although its times are higher in practice) but the space shrinks to nH0(S) + o(n logσ) + O (σ log n)

bits. Zero-order compression is also obtained by using a Huffman [31] encoding for the symbols and giving the WT the shape 
of the Huffman tree: using CM for the bitmaps results in n(H0(S) + 1)(1 + o(1)) + O (σ log n) bits, whereas using RRR for 
the bitmaps the space becomes nH0(S)(1 + o(1)) + O (σ log n) bits [10]. This solution is called Huffman-shaped WT (WTH). 
The main advantage of using a WTH is that, if queries follow the same statistical distribution of symbols, then the average 
query time for any rsa query becomes O (1 + H0(S)) instead of O (logσ) [10]. A Huffman-shaped multi-ary wavelet tree 
will be called MWTH. For any 2b = o(log n/ log log n), the MWTH retains the same space complexities of a WTH, whereas the 
worst-case and average query time are divided by b [10].

3 We can obtain O ((r + c) logn) bits and the same time by sampling C instead of B , as we show later.
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Algorithm 1 Standard MWT algorithms on a sequence S . The sequence associated with node v is S v and its ith child is vi . 
For access(S, i) we return acc(root, i, 0), where root is the MWT root; ranka(S, i) returns rnk(root, a, i, 
(logσ)/b�); and 
selecta(S, j) returns sel(root, a, j, 
(logσ)/b�). Function leaf (v) returns whether node v is a leaf, and chunk(a, b, �) =
(a � (� − 1)b) & ((1 � b) − 1) takes the �th chunk of b most significant bits from a.

acc(v, i, c)
if leaf (v) then

return c
c ← (c � b) | S v [i]
i ← rankS v [i](S v , i)
return acc(v S v [i], i, c)

rnk(v, a, i, �)
if leaf (v) then

return i
c ← chunk(a, b, �)
i ← rankc(S v , i)
return rnk(vc, a, i, � − 1)

sel(v, a, j, �)
if leaf (v) then

return j
c ← chunk(a, b, �)
j ← sel(vc, a, j, � − 1)

return selectc(S v , j)

Fig. 2. Wavelet tree representations of sequence S = 5876432132528. On the top a WT, on the bottom left WTH, and on the bottom right a MWT with 2b = 4
(the first level can only have arity 2).

Fig. 2 exemplifies all these wavelet tree variants.

2.7. Wavelet matrix

If σ is close to n, the O (σ log n) bits to store the tree pointers in a WT will become dominant. To skip this term, the 
levelwise WT [37] concatenates all the bitmaps at the same depth and simulates the tree pointers with rsa operations. This 
variant obtains the same space of the WT or MWT but without the O (σ log n) term. The time performance is asymptotically 
the same, but it is slower in practice because pointers are simulated. More recently, the wavelet matrix (WM) [21] was 
proposed, which speeds up the levelwise WT by reshuffling the bits at each level in a different way so that the tree pointers 
can be simulated with fewer rsa operations. Assume we start with Sl = S at level l = 1; then the wavelet matrix is built 
as follows:

1. Build a single bitmap Bl[1, n] where Bl[i] = Sl[i]〈l〉;
2. Compute zl = rank0(Bl, n);
3. Build sequence Sl+1 such that, for k ≤ zl , Sl+1[k] = Sl[select0(Bl, k)], and for k > zl , Sl+1[k] = Sl[select1(Bl, k − zl)];
4. Repeat the process until l = 
logσ �.
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Fig. 3. Wavelet tree/matrix representations of sequence S = 5876432132528. On the left a levelwise WT, and on the right a WM.

Algorithm 2 Standard WM algorithms on a sequence S . The bitmap at level l is denoted by Bl and zl = rank0(Bl, n). For 
access(S, i) we return acc(1, i, 0); ranka(S, i) returns rnk(1, a, i, 0); and selecta(S, j) returns sel(1, a, j, 0).

acc(l, i, c)
if l = 
lgσ � then

return c
c ← (c � 1) | Bl[i]
i ←rankBl[i](Bl,i)+zl·Bl[i]
return acc(l + 1, i, c)

rnk(l, a, i, p)

if l = 
lgσ � then
return i − p

i ←ranka〈l〉(Bl,i)+zl·a 〈l〉
p ←ranka〈l〉(Bl,p)+zl·a〈l〉
return rnk(l + 1, a, i, p)

sel(l, a, j, p)

if l = 
lgσ � then
return p + j

p ←ranka〈l〉(Bl,p)+zl·a〈l〉
j ← sel(l + 1, a, j, p)

return selecta〈l〉(Bl, j−zl·a〈l〉)

Algorithm 3 Alphabet partition algorithms for access, rank, and select.

access(S, i)
j ← K [i]
v ← S j[rank j(K , i)]
return select j(M, v)

ranka(S, i)
j ← M[a]
v ← rank j(M, a)

r ← rank j(K , i)
return rankv (S j, r)

selecta(S, i)
j ← M[a]
v ← rank j(M, a)

s ← selectv (S j, i)
return select j(K , s)

This reshuffling of the bits of S[i]〈 j〉, akin to radix sorting the symbols of S , uses n
lg σ � bits in total (plus lg n lgσ for 
the values zl). Therefore, the total space of the WM is n lgσ + o(n logσ). Fig. 3 exemplifies the levelwise WT and the WM. As 
in the case of the WT, this space can be further reduced to nH0(S) + o(n logσ) if we use RRR (Section 2.4) to compress the 
bitmaps, or to n(H0(S) + 1)(1 + o(1)) + O (σ log n) by using plain bitmaps (CM) and giving Huffman shape to the WM [21]
(Section 2.6). The latter is called a WMH. We can also convert a MWT into a multi-ary WM (MWM) by increasing the number of 
counters zl at each level: if 2b is the arity, we need 2b − 1 counters zl per level.

Algorithm 2 shows how the algorithms are implemented on a WM. Although better than the levelwise WT, it still requires 
more operations on the bitmaps than the WT.

2.8. Alphabet partitioning

An alternative solution for rsa queries over large alphabets is Alphabet Partitioning (AP) [7], which obtains nH0(S) +
o(n(H0(S) + 1)) bits and supports rsa operations in O (log logσ) time. The main idea is to partition � into several subal-
phabets � j , and S into the corresponding subsequences S j , each defined over � j (see Fig. 4). The practical variant sorts the 
σ symbols by decreasing frequency and then splits that sequence into disjoint subsets, or subalphabets, of increasingly ex-
ponential size, so that � j contains the 2 j−1th to the (2 j − 1)th most frequent symbols. The information on the partitioning 
is kept in a sequence M , where M[i] = j iff i ∈ � j . A new string K [1, n] indicates the subalphabet each symbol of S belongs 
to: K [i] = M[S[i]]. Analogously to wavelet trees, the sequences S j are defined as S j[i] = rank j(M, S[select j(K , i)]). Note 
that the number of subalphabets is at most �lg σ � + 1, and this is the alphabet size of M and K . Therefore, a binary WT
representation of M and K handles rsa operations in time O (log logσ). Further, the symbols in each � j are of roughly 
the same frequency, thus a fast compact (but not compressed) representation of S j (GMR [26]) yields O (log logσ) time and 
retains the statistical compression of S [7].

Algorithm 3 shows how the rsa operations on S translate into rsa operations on M , K , and on some subsequence S j , 
thus obtaining O (log logσ) times. In practice, the sequences S j with the smallest alphabets are better integrated directly 
into the WT of K .

There are other representations that improve upon this solution in theory, but are unlikely to do better in practice. For 
example, it is possible to retain similar time complexities while reducing the space to nHk(S) + o(n logσ) bits, for any 
k = o(logσ n) [9,29]. It is also possible, within zero-order entropy space, to support access and select in O (1) and any 
ω(1) time, or vice versa, and rank in time O (log logw σ), on a RAM machine with word size w , which matches lower 
bounds [13].
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Fig. 4. Alphabet partitioning example.

2.9. RePair compressed WT

As far as we know, what we will call WTRP [47] is the only solution to support rsa on grammar-compressed sequences. 
The structure is a levelwise WT where each bitmap Bl is compressed with RPB (Section 2.5). The rationale is that the 
repetitiveness of S is reflected in the bitmaps of the WT.

However, since the WT construction splits the alphabet at each level, those repetitions are cut into shorter ones at 
each new level, and become blurred after some depth. Therefore, the bitmaps of the first few WT levels are likely to be 
compressible with RePair, while the remaining ones are not. The authors [47] use at each level l the technique to represent 
Bl that yields the least space, RPB, RRR, or CM (Sections 2.4 and 2.5). In case of a highly compressible sequence, the space 
can be drastically reduced, but the search performance degrades by one or more orders of magnitude compared to using 
CM or RRR: If all the levels use RPB, the rsa time becomes O (logσ log n).

On the other hand, as repetitiveness is destroyed at deeper levels, the total space is far from that of a plain RePair 
compression of S . A worst-case analysis, albeit pessimistic, can be made as follows: Each node stores a subsequence of S , 
whose alphabet is mapped onto a binary one (or of size r in an r-ary wavelet tree). We could then take the same grammar 
that compresses S for each node, remove all the terminal symbols not represented in that node, and map the others onto 
{0, 1} or [1, r]. This is not the best grammar for that node, but it is correct and at most of the same size g of the original 
one. Therefore, each node can be grammar-compressed to at most O (g log n) bits, and summed over all the wavelet tree 
nodes, this yields O (gσ log n). Therefore, the size grows at most linearly with σ .

2.10. Other grammar-compressed rsa solutions

Let a grammar compressor produce a grammar of size g with r nonterminals for S[1, n]. Thus S can be represented in 
g lg(r +σ) bits. Bille et al. [14] show how to represent S using O (g log n) bits so that access(S, i) is answered in O (log n)

time. This time is essentially optimal [52]: any structure using g O (1) log n bits requires 	(log1−ε n/ log g) time for access, 
for any ε > 0. If S is not very compressible and g = 	(nα) for some constant α, then the time is 	(log n/ log log n) for any 
structure using O (n polylog n) bits.

As said, we are not aware of any previous rsa structure building on grammar compression apart from WTRP [47], which 
handles queries in O (logσ log n) time and uses O (gσ log n) bits. Our simplest variant, GCC, obtains O (log n) time for the 
three rsa operations within O (gσ log n) bits. For larger alphabets, we can increase the time to O (logσ log n) and keep the 
worst-case space in O (gσ log n) bits (yet in practice the solution takes less space and time than WTRP, and less space than 
GCC). Alternatively, we can retain the O (log n) time but lose the space guarantee.

After the publication of the conference version of our article [46], Belazzougui et al. [11] gave more theoretical support 
to our results. They obtained our same O (logn) time for rsa operations with O (gσ log n) bits on arbitrary grammars of 
size g (not only balanced ones). They also show how to obtain O (log n/ log log n) time using O (gσ log(n/g) log1+ε n) bits, 
for any constant ε > 0. Most importantly, they prove that it is unlikely that these times for rank and select can be 
significantly improved, since long-standing reachability problems on graphs would then be improved as well. This shows 
that the time complexity of their (and our) solutions are essentially the best one can expect.

Lempel–Ziv [35,55] compression is able to outperform grammar compression [32,17], because the number of phrases it 
generates is never larger than the size g of the best possible grammar. However, its support for rsa queries is even more 
difficult. Let z be the number of phrases into which a Lempel–Ziv parser factors S . Then a Lempel–Ziv compressor can 
represent S in z(lg n + lgσ) bits. We are not aware of any scheme supporting O (log n) time access within O (z logn) bits. 
Gagie et al. [25] do achieve this time, but they use O (z log n log(n/z)) bits, which is superlinear in the compressed size of S . 
A more recent work [12] supports access and rank in time O (log(n/z)) and select in time O (log(n/z) log log n). The 
lower bound [52] also holds for this compression, replacing g by z.
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Fig. 5. Example of a DAC for the sequence X = 4,1,9,17,1,2,5,11 and b = 2.

2.11. Directly Addressable Codes

A Directly Addressable Code [15] (DAC) is a variable-length encoding for integers that supports direct access operations 
(access) efficiently, but not rank and select. Assume we have to encode a sequence X = x1 . . . xn of integers and are 
given a chunk size b. Then we divide each xi = X[i] into j = 
(�lg xi� + 1)/b� chunks, from least to most significant. At the 
most significant position of each chunk we will prepend a bit 0 if that chunk is the last one, and a 1 otherwise. Therefore, 
the number xi is encoded as

b1,ia1,ib2,ia2,i . . .bk,iak,i,

where b j,i is the bit prepended to the chunk a j,i = xi〈 jb, ( j − 1)b + 1〉. Note the similarity with the VByte codes of Sec-
tion 2.3.

Instead of concatenating the encoding of xi+1 after that of xi , however, we build a multi-layer data structure. At each 
layer l ≥ 1, we concatenate the lth chunks of all the numbers that have one, and do the same with the bits prepended to 
each chunk. For instance, for layer l = 1 we obtain a binary sequence B1 and a sequence A1 as follows:

B1 = b1,1b1,2 . . .b1,n,

A1 = a1,1a1,2 . . .a1,n.

The next layer is then built by concatenating the second chunk of each number that has one, and the process is repeated 
for M layers, where M = 
(�lg(max xi)� + 1)/b�. Fig. 5 shows an example DAC over a sequence X using b = 2.

To provide efficient direct access, we preprocess each sequence of prepended bits (Bi ) to support rank and access
queries in O (1) time. Thus, we access X[i] as follows. We start by setting i1 = i, and reading A1[i1] = a1,i1 . We set res =
A1[i1] and if B1[i1] = 0 we are done because this chunk is the last of xi . If, instead, B1[i1] = 1, xi continues in the next layer. 
To compute the position of the next chunk in the next layer we set i2 = rank1(B1, i). In the second layer we concatenate 
A2[i2] with the current result: res = A2[i2]A1[i1] and then check B2[i2], repeating the process until we get a Bk[ik] = 0. 
Then the time to extract an element of X when represented with a DAC is worst-case O (M).

It is possible to define a different b value for each level, and to choose them so as to optimize the total space used, even 
with a restriction on M [15].

3. Efficient rsa for sequences on small alphabets

Our first proposal, dubbed GCC (Grammar Compression with Counters) is aimed at handling rsa queries on grammar-
compressed sequences with small alphabets. We first generalize the existing solution for bitmaps (RPB, Section 2.4), to 
sequences with σ > 2. We also introduce several enhancements regarding how we store the additional information to han-
dle rsa queries. Finally, we propose two different sampling approaches that yield different space–time tradeoffs, both in 
theory and in practice.

Let (R, C) be the result of a balanced RePair grammar compression of S . We store S�[X] = �(X) for each grammar rule 
X ∈ R . In addition, we store an array of counters Sa[X] for each symbol a ∈ �: Sa[X] = ranka(exp(X), �(X)) is the number 
of occurrences of a in exp(X).

The input sequence S is also sampled according to the new scenario: each element (p, o, rnk) of Sn[1, n/s] is now 
replaced by (p, o, lrnk[1, σ ]), where lrnk[a] = ranka(S, L(p) − 1) for all a ∈ �, s being the sampling period.

The extra space incurred by σ can be reduced by using the same δ-sampling of RPB, which increases the time by a 
factor δ. In this case we also use the bitmap Bd[1, r] that marks which rules store counters. We further reduce the space by 
noting that many rules are short, and therefore the values in S� and Sa are usually small. We represent them using direct 
access codes (DACs, recall Section 2.11), which store variable-length numbers while retaining direct access to them. The o
components of Sn are also represented with DACs for the same reason.

On the other hand, the p and lrnk[1, σ ] values are not small but are increasing. We reduce their space using a two-layer 
strategy: we sample Sn at regular intervals of length s′ . We store S Sn[ j] = Sn[ j · s′], and then represent the values of Sn[i] =
(p, o, lrnk[1, σ ]) in differential form, in array S ′

n[i] = (p′, o, lrnk′[1, σ ]), where p′ = p − p∗ and lrnk′[a] = lrnk[a] − lrnk∗[a], 
with S Sn[�i/s′�] = (p∗, o∗, lrnk∗[1, σ ]).
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The total space for the p and lrnk[1, σ ] components is O (σ ((n/s) log(s · s′) + (n/(s · s′)) log n)) bits, whereas the o
components use O ((n/s) log n) bits in the worst case. For example, if we use s′ = lgn and s = logO (1) n (a larger value 
would imply an excessively high query time), the space becomes O (rσ log n + (n/ logO (1) n)(σ log log n + log n)) + c lg(σ + r)
bits.

A further improvement is aimed to reduce the space on extremely repetitive sequences. In this scenario, many elements 
of Sn may contain the same values: if a rule covers a wide range of S , we store the same Sn values for many samples 
of S . Thus, we sample the vector C instead of sampling the whole sequence S . Instead of (p, o, lrnk[1, σ ]) we store a 
tuple (i, lrnk[1, σ ]), where i is the position where the sampled cell of C starts in S , and lrnk is computed up to i − 1. 
On the other hand, the two-layer scheme cannot be applied, because now the samples may cover arbitrarily long ranges 
of S .

The total space with this sampling then becomes O (rσ log n + σ(c/s) log n) + c lg(σ + r) = O ((r + c)σ log n) bits. This 
removes any linear dependency on n from the space formula. The size of the RePair grammar is g = O (r + c), thus the 
space can be written as O (gσ log n) bits.

The rsa algorithms stay practically the same as for RPB; now we use the symbol counter of a for ranka and selecta . 
The resulting data structure performs rsa operations in time O (s + log n). In case C is sampled instead of S , there is an 
additional O (log c) time to binary search for the right sample. This is still within O (s + log n). If we choose s = O (log n), 
then the time is O (log n). The space is still O (gσ log n) if we sample C .

When σ is small and the sequence is repetitive, this data structure is very space- and time-efficient. It outperforms 
WTRP [47] (Section 2.9) in time: WTRP takes O (logσ log n) time and our GCC uses O (log n). In terms of space, both use 
O (gσ log n) bits and perform similarly in practice. In the next section we develop a variant for large alphabets that uses 
much less space in practice, even if the worst-case guarantee it offers is still as bad as O (gσ log n) bits.

4. Efficient rsa for sequences on large alphabets

Our main idea for large alphabets is to use wavelet trees/matrices or alphabet partitioning (Sections 2.6 to 2.8) as a 
mechanism to cut � into smaller alphabets, which can then be handled with GCC. This is in the same line of WTRP
(Section 2.9), which also partitions the alphabet. Our techniques deal better with the problem of loss of repetitiveness when 
the alphabet is partitioned.

The most immediate approach is to generalize WTRP to use a MWT, since now we can use GCC on small alphabets 
[1, r] to represent the sequences S v stored at the internal nodes of the MWT. Compared to a binary WT, a MWT takes 
more advantage of repetitiveness before splitting the alphabet, and reduces the time complexity from O (logσ log n) to 
O (logr σ log n). The worst-case space is still O (gσ log n) bits. The use of a WM requires only logr σ grammars, one per level, 
but still the guarantee on their total size is the same.

A less obvious way to use GCC is to combine it with AP (Section 2.8). Note that the string K is a projection of S , and 
therefore it retains all its repetitiveness. Further, it contains a small alphabet, of size lgσ , and therefore we can use GCC on 
it. The resulting representation takes at most O (g logσ log n) bits.

The other important sequences are the S j , which have alphabets of size 2 j−1. For the smallest j, this is small enough to 
use GCC as well. For larger j, however, we must resort to other representations, like WTRP, GMR, or WT/WM, depending on 
how compressible they are.

An interesting fact of AP is that it groups symbols of approximately the same frequency. The symbols participating 
in the most repetitive parts of S have a good chance of having similar frequencies and thus of belonging to the same 
subalphabet S j , where their repetitiveness will be preserved. On the other hand, the larger alphabets, where GCC cannot be 
applied, are likely to contain less frequent symbols, whose representation using faster structures like GMR or WT/WM do not 
miss very important opportunities to exploit repetitiveness.

Note that, if we do not use WTRP for the larger subalphabets, then the time performance for rsa queries stays within 
O (log n), independently of the alphabet size. In exchange, we cannot bound the size of the representation in terms of the 
size of the grammar that represents S . Instead, if we use WTRP, our worst-case guarantees are the same as for WTRP itself, 
but in practice our structure will prove to be much better, especially in time.

4.1. AP with GCC in practice

We introduce two new parameters for the combination of AP and GCC. The first parameter, cut, tells that the 2cut

most frequent symbols will be directly represented in K . This parameter must be set carefully to avoid increasing too much 
the alphabet of K , since K is represented with GCC.

Our second parameter is cuto , which tells how many of the first S j classes are to be represented with GCC. For the 
remaining sequences S j we consider two options: (a) if S j is not grammar-compressible, we use GMR [26], which does not 
compress but is very fast, or (b) if S j is still grammar-compressible, we use WTRP, which is the grammar-based variant that 
performed best.
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Table 1
Statistics of the datasets. The length is measured in millions of symbols and rounded.

Dataset n/106 σ H0 RP LZ r/n

DNA.1 99 5 2.00 0.819 0.172 0.094
DNA.01 99 5 2.00 0.178 0.042 0.016
DNA.001 99 5 2.00 0.075 0.024 0.007
DNA.0001 99 5 2.00 0.063 0.021 0.006
para 429 5 2.12 0.376 0.191 0.036
influenza 154 15 1.97 0.280 0.132 0.019
escherichia 112 15 2.00 1.048 0.524 0.133
fiwikitags 48 24 3.37 0.110 0.219 0.031
einstein 92 117 5.04 0.019 0.009 0.001
software 210 134 4.69 0.139 0.214 0.009
einstein.words 17 8,046 9.92 0.076 0.003 0.001
fiwiki 86 102,423 11.06 0.235 0.034 0.008
indochina 100 2,576,118 15.39 1.906 0.159 0.076

5. Experimental results

5.1. Setup and datasets

We used an Intel® Xeon® E5620 at 2.40 GHz with 96 GB of RAM memory, running GNU/Linux, Ubuntu 10.04, with kernel 
2.6.32-33-server.x86_64. All our implementations use a single thread and are coded in C++. The compiler is g++ version 
4.7, with -O9 optimization. We implemented our solutions on top of Libcds (github.com/fclaude/libcds) and use 
Navarro’s implementation of RePair (www.dcc.uchile.cl/gnavarro/software/repair.tgz).

Table 1 shows statistics of interest about the datasets used and their compressibility: length (n), alphabet size (σ ), 
zero-order entropy (H0), bits per symbol (bps) obtained by RePair (RP, assuming (2(r − σ) + c)
lg r� bits, see Section 2.2), 
bps obtained by p7zip (LZ, www.7-zip.org), a Lempel–Ziv compressor, and finally r/n is the number of runs of the BWT [16]
of each dataset divided by n (see Section 6.1).

We use various DNA collections from the Repetitive Corpus of Pizza&Chili.4 On one hand, to study precisely the effect of 
repetitiveness in the performance of our rsa proposals, we generate four synthetic collections of about 100 MB: DNA 1%,
DNA 0.1%, DNA 0.01%, and DNA 0.001%. Each DNA p% text is generated starting from 1 MB of real DNA text, which is 
copied 100 times, and each copied base is changed to some other value with probability p/100. This simulates a genome 
database with different variability between the genomes. As real genomes, we used collections para, influenza, and
escherichia, also obtained from Pizza&Chili. From the statistics of Table 1, we see that para and influenza are 
actually very repetitive, while escherichia is not that much. Collection einstein corresponds to Wikipedia versions 
of articles about Albert Einstein in German (also available at Pizza&Chili) and is the most repetitive dataset we have. Text
einstein.words is the same collection but regarded as a sequence of words, instead of characters. Sequence fiwiki is a 
prefix of a Wikipedia repository in Finnish5 tokenized as a sequence of words instead of characters. Sequence fiwikitags
corresponds to the XML tags extracted from a prefix from the same Finnish Wikipedia repository. Finally, indochina is a 
subgraph of the Web graph Indochina2004 available at the WebGraph project6 containing 2,531,039 nodes and 97,468,933
edges. Each node has an adjacency list of nodes, which is stored as a sequence of integers. Each list is separated from the 
next with a special separator symbol.

5.2. Parameterizing the data structures

We compare our data structures with several others. The list of structures compared, along with the parameters used, is 
listed next. These parameter ranges are chosen because they have been proved adequate in previous work, or because we 
have obtained the best space/time tradeoffs with them.

• GCC.N is our structure for small alphabets where we sample S at regular intervals. We set the sampling rate to s =
{210, 211, 212, 213, 214}, the rule sampling to δ = {0, 1, 2, 4}, and the superblock sampling to s′ = {5, 8}.

• GCC.C is our structure for small alphabets where we sample C at regular intervals. We set the sampling rate to s =
{26, 27, 28, 29, 210} and the rule sampling to δ = {0, 1, 2, 4}.

• {WT|WM|WTH|WMH}.{CM|RRR} is a wavelet tree, a wavelet matrix, a Huffman-shaped wavelet tree or a Huffman-shaped 
Wavelet Matrix with bitmaps represented either with CM or RRR. For CM we use the implementation [27] with one 
level of counters over the plain bitmap, while RRR corresponds to the implementation [19] of the compressed bitmaps 
of Raman et al. [48]. In both cases, the sampling rate for the counters was set to {32, 64, 128}.

4 http :/ /pizzachili .dcc .uchile .cl /repcorpus.
5 http :/ /www.cs .helsinki .fi /group /suds /rlcsa.
6 http :/ /law.dsi .unimi .it.

http://www.dcc.uchile.cl/gnavarro/software/repair.tgz
http://www.7-zip.org
http://pizzachili.dcc.uchile.cl/repcorpus
http://www.cs.helsinki.fi/group/suds/rlcsa
http://law.dsi.unimi.it
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• {WT|WM|WTH|WMH}.RP are the WT, WM, WTH or WMH, with the bitmaps compressed with RePair. Therefore, WM.RP is 
equivalent to WTRP [47], but with our improved implementation using a wavelet matrix and GCC for the bitmaps. 
As in WTRP, we use several bitmap representations depending on the compressibility of the bitmap: GCC varying the 
parameters as described above, RRR or CM with sampling set to 32. We choose the one using the least space among 
these.

• AP is a plain alphabet partitioning implementation [7]. We used parameter values cut = {23, 24, 25, 26} and cuto =
{1, 3, 5}. The sequence K is represented with WT.RRR with sampling set to 32. The sequences S j are represented with 
GMR using the default configuration provided in the libcds tutorial.7

• AP.RP.{WMRP|GMR} is our AP-based variant for large alphabets. We use the same values cut and cuto as for AP. The 
sequence K and the first cuto sequences S j are represented with GCC. The remaining sequences S j are represented 
either with WM.RP or with GMR, using their already described configurations.

• MWTH.RP is a MWTH using RePair-compressed sequences in the nodes. As for AP.RP, we use two different representa-
tions for the node sequences. The first cut = {2, 3, 4} levels are represented with GCC, and the rest with a WT.RRR
with fixed sampling 32. We tested arities in {4, 8, 16}. We did not try combining with the WM because it is slower 
(requires more operations) and the overhead of σ/2b nodes is not as large as for σ nodes of the binary case. Also, the 
Huffman-shaped variants are shown to be always superior.

Among all the data points resulting from the combination of all the parameters, in the experiments we only show those 
points which are space/time dominant.

Regarding queries, those for access are positions at random in S[1, n]. For rank, we used a random position p in 
S[1, n] and the symbol is S[p]. Finally, for select, we took a random position p in S[1, n], using S[p] and a random rank 
in [1, rankS[p](S, n)]. We generated 10, 000 queries of each type, reporting the average time for each operation.

In Section 3 we proposed two sampling approaches for GCC: GCC.N is regular in S and GCC.C is regular in C . We 
anticipated that GCC.C should use less space on more repetitive sequences, but it could be slower. Now we compare both 
sampling methods on the repetitive sequences with smaller alphabets described in Table 1. Fig. 6 shows the results for 
rank and select (access is equivalent to rank in our algorithms).

While, as said, GCC.C might use less space than GCC.N when the sequence is more repetitive, this occurs in practice only 
slightly on DNA0001, and spaces become closer as repetitiveness decreases on synthetic datasets (DNA001 to DNA1). Still, 
the differences are very slight, and instead GCC.N is much faster than GCC.C for the same space usage. The same occurs in 
the real sequences, where GCC.C uses less space than GCC.N only in fiwikitags. For the remaining experiments, we will 
use only GCC.N.

5.3. Performance on small alphabets

We compare our GCC.N with WT.RP, WTH.RP, and WM.RP. We also include in the comparison two statistically compressed 
representations that are the best for small and moderate alphabets: WTH.CM and WTH.RRR.

Fig. 7 shows the results for rank and select on the real collections that have small and moderate alphabets (again, 
the results for access are very similar to those for rank). It can be seen that WTH.RP generally performs better than 
WT.RP in space and time, as expected. The variant WM.RP performs slightly better than WT.RP in space, as it represents 
only one grammar per level and not per node (the difference would be higher on larger alphabets). In exchange, WM.RP
is slightly slower than WT.RP because it performs more rank/select operations on the bitmaps represented with GCC. 
Finally, WMH.RP uses less space than WM.RP only in some cases, but it generally outperforms it for the same space. It 
performs particularly well on escherichia, the least repetitive of the datasets.

Recall that WM.RP is our improved version of previous work, WTRP [47], and it is now superseded by GCC.N. The space 
of WM.RP is in most cases similar to that of GCC.N, which means that WM.RP is actually close to the worst-case space 
estimation, O (gσ log n). In some cases, GCC is significantly smaller. More importantly, GCC.N is 2–15 times faster than 
WM.RP, and also 2–7 times faster than WTH.RP, the faster of the competitors in this family, which also uses more space than 
GCC.N. GCC.N handles queries in a few microseconds.

On the other hand, the representations that compress statistically, WTH.CM and WTH.RRR, are about an order of magni-
tude faster than GCC.N, but also take 5–15 times more space (except on escherichia, which is not repetitive).

5.4. Performance on large alphabets

Now we use the collections einstein (again), software, einstein.words, fiwiki, and indochina from Ta-
ble 1, to compare the performance on moderate and large alphabets. We compare the two versions of our AP.RP, our 
MWTH.RP, and all the statistically compressed or compact schemes for large alphabets: WM/WMH with CM/RRR and AP (we 
only exclude WM.CM, which always loses to others). In the first two collections, whose alphabet size is moderate, we also 
include GCC.N, to allow comparing its performance with our variants for large alphabets in these intermediate cases.

7 https://github.com/fclaude/libcds/blob/master/tutorial/tutorial.pdf.
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Fig. 6. Comparison of rank and select performance of GCC.N and GCC.C.

Fig. 8 shows the results for rank and select queries (once again, access is omitted for being very similar to the 
results of rank).

Recall that WM.RP is our improvement over the previous work, WTRP [47]. The Huffman-shaped variant, WMH.RP, out-
performs it only slightly in time. Our multi-ary version, MWTH.RP, is clearly faster, but not smaller as one could expect. 
Indeed, it is larger when σ grows, probably due to the use of pointers. What is most interesting, however, is that all those 
variants are clearly superseded by our AP.RP.WMRP, which dominates them all in time (only reached by MWTH.RP while 
using much more space) and in space (only reached by WM.RP while using much more time). Compared with previous work 
[47], AP.RP.WMRP is then 2–4 times faster than WTRP, while using the same space or less. AP.RP.WMRP handles queries in 
a few tens of microseconds.

Note the particularly bad performance of the Huffman-based versions on Indochina. This is because this collection 
contains inverted lists, which form long increasing sequences that become runs in the wavelet tree; the Huffman rearrange-
ment breaks those runs.

Our second variant, AP.RP.GMR, is not so interesting for repetitive collections. On einstein and software it performs 
similarly to AP.RP.WMRP. On the others, it is 2–5 times faster, but it uses much more space than AP.RP.WMRP, not so far 
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Fig. 7. Space–time tradeoffs for rank and select queries over small alphabets (time in logscale).
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Fig. 8. Space–time tradeoffs for rank and select queries over moderate and large alphabets (time in logscale).
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from that used by statistical representations. Those are, as before, about an order of magnitude faster than AP.RP.WMRP, but 
also use 3–5 times more space. Also, we can see that GCC.N is competitive on einstein, which is very repetitive, but not 
so much on software. Both of our new AP.RP versions designed for large alphabets outperform it in space, while they 
are not slower in time (in some cases they are even faster).

6. Applications

We explore now a couple of text indexing applications, where our new rsa-capable representations can improve the 
space for repetitive text collections.

6.1. Self-indices

Given a string S[1, n] over alphabet � = [1, σ ], a self-index is a data structure that represents S and handles operations 
count(p), which returns the number of occurrences of a string pattern p in S; locate(p), which reports the positions of 
the occurrences of p in S; and extract(i, j), which retrieves S[i, j].

A well-known family of self-indices are the FM-Indices [23]. Modern FM-Indices [24] build all their functionality on 
access and rank queries on the BWT (Burrows Wheeler Transform) [16] of S , Sbwt . Then, operation count on p[1, m]
takes time O (m · α), α being the time to answer access and rank queries on Sbwt . The time to answer locate and 
extract is also proportional to α. Therefore, the time of rsa queries on Sbwt directly impacts on the FM-Index perfor-
mance.

The string Sbwt is a reordering of the symbols of S , therefore H0(Sbwt) = H0(S). Thus, zero-order-compressed repre-
sentations of S also obtain zero-order compression of Sbwt . However, some kinds of zero-order compressors, in particular 
WT.RRR and WM.RRR, applied on Sbwt obtain nHk(S) bits of space for any k < logσ n [38]. Further, Sbwt is typically formed 
by a few long runs of equal symbols: the number of runs is at most nHk(S) + σ k for any k [36], and the number is much 
lower on repetitive sequences [39]. Thus, in a highly repetitive scenario, the runs of Sbwt are much longer than logσ n (see 
Table 1), and typical k-order statistical compression of Sbwt fails to capture its most important regularities.

Run-Length FM-Indices [36,39] aim to capture these regularities. A Run-Length FM-Index stores in S ′
bwt the first symbol 

of each run, marking their positions in a bitmap R[1, n] (they also store a bitmap R ′[1, n] with a reordering of the bits in R). 
Compressed Suffix Arrays (CSAs) [30,49] (another family of self-indices) have also been adapted to exploit these runs, in a 
structure called Run-Length CSA [39]. In general, FM-Indices are preferred over CSAs for sequences over small alphabets, 
because the cost of rsa operations increases with σ , while the equivalent operations on the CSAs do not depend on it.

An alternative to Run-Length FM-Indices is to grammar-compress Sbwt with GCC, our rsa structure for repetitive 
sequences on small alphabets. To evaluate if grammar compression of Sbwt captures more regularities than run-length 
compression, we compare the following FM-Index implementations:

• FMI-GCC, using the variant GCC.N to represent Sbwt .
• FMI-AP.RP.WTRP, using the variant AP.RP.WTRP to represent Sbwt .
• FMI-WTH.RRR, which uses WTH.RRR to represent Sbwt .
• FMI-WT.RRR, which uses WT.RRR to represent Sbwt .
• RLFMI-WTH+DELTA, a Run-Length FM-Index [39] where bitmaps R and R ′ are compressed with DELTA, while S ′

bwt
is represented with WTH.RRR.

• RLCSA, a Run-Length Compressed Suffix Array [39] setting the sampling rate of its function � to {32, 64, 128}.

We used the real DNA datasets and fiwikitags, as well as einstein and software to show the case of larger 
alphabets. We averaged 10,000 queries for patterns picked at random from each dataset. We evaluate the performance of 
the operation count in the indices, for various pattern lengths. Fig. 9 shows the results for m = 8, since all the lengths 
gave similar results.

As it can be seen, the FMI-GCC obtains the least space on the smaller alphabets. The space of the RLCSA is close, 
but still larger than that of the FMI-GCC, in collections fiwikitags and influenza. For para and escherichia
the differences are larger, our structure using 60%–80% of the RLCSA space. Interestingly, grammar compression of Sbwt is 
stronger than the RLCSA compression especially when the sequence is not so repetitive. In exchange, the RLCSA is about 
an order of magnitude faster.

Our index also uses half the space, or less, than the RLFMI-WTH+DELTA, which also adapts to repetitiveness but not as 
well as grammar compression, and performs badly as soon as repetitiveness starts to decrease. Finally, compared with the 
best statistical approach, the FMI-WTH.RRR, the differences are even larger: our solution needs only 20%–40% of the space 
in the most repetitive collections, only getting closer in escherichia, which is not so repetitive.

In terms of time performance, the FMI-GCC is in the same order of magnitude of RLFMI-WTH+DELTA, yet it is slower. 
Compared with FMI-WTH.RRR, our index is about an order of magnitude slower.

On the larger alphabets, instead, the FMI-AP.RP.WTRP outperforms the FMI-GCC and uses about the same space as the
RLFMI-WTH+DELTA, while being faster or equally fast. It is only 2–4 times slower than the statistical approaches, while 
using 10%–20% of their space. However, as expected, the RLCSA outperforms every FM-index on larger alphabets.
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Fig. 9. Space–time tradeoffs for operation count with m = 8.

In the sequel we call GFMI to FMI-GCC or FMI-AP.RP.WTRP, whichever is better.

6.2. XML and XPath

Now we show the impact of our new representations in the indexing of repetitive XML collections. SXSI [2] is a 
recent system that represents XML datasets in compact form and supports XPath queries on them. Its query processing 
strategy uses a tree automaton that traverses the XML data, using several queries on the content and structure to speed up 
navigation towards the points of interest. SXSI represents the XML data using three separate components: (1) a text index 
that represents and carries out pattern searches over the text nodes (any compressed full-text index [44] can be used); (2) a 
balanced parentheses representation of the XML topology that supports navigation using 2 + o(1) bits per node (various 
alternatives exist [1]); and (3) an rsa-capable representation of the sequence of the XML opening and closing tags.

When the XML collection is repetitive (e.g., versioned collections like Wikipedia, versioned software repositories, etc.), 
one can use the RLCSA [39] as the text index for (1), but now we also consider using our new GFMI. Components (2) 
and (3), which are usually less relevant in terms of space, may become dominant if they are represented without exploiting 
repetitiveness. For (2), we consider GCT, a tree representation aimed at repetitive topologies [45], and a classical representa-
tion (FF [1]). For (3), we will use our new repetition-aware sequence representations, comparing them with the alternative 
proposed in SXSI (MATRIX, using one compressed bitmap per tag) and a WTH representation.

We use a repetitive data-centric XML collection of 200 MB from a real software repository. Its sequence of XML tags, 
called software, is described in Table 1. As a proof of concept, we run two XPath queries that make intensive use of the 
sequence of tags and the tree topology: XQ1=//class[//methods], and XQ2=//class[methods].

Table 2 shows the space in bpe (bits per element) of components (2) and (3). An element is an opening or a closing tag, 
so there are two elements per XML tree node. The space of the RLCSA without sampling is always 0.18 bits per character 
of the XML document, whereas our new GFMI uses 0.15 if combined with AP.RP.WMRP. The table also shows the impact of 
each component in the total size of the index, considering this last space. On the rightmost columns, it shows the time to 
answer both queries.
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Table 2
Results on XML. Columns tags and tree are in bpe. Columns XQ1 and XQ2 show query time in microseconds.

Dataset tags tree %tags %tree %text XQ1 XQ2

MATRIX+FF 12.40 1.27 88.89 9.12 1.99 16 35
WTH+FF 2.88 1.27 65.00 28.68 6.32 92 113
GCC+FF 0.37 1.27 19.29 66.17 14.54 184 226
GCC+GCT 0.37 0.19 44.13 22.65 39.74 774 3,066

The original SXSI (MATRIX+FF) is very fast but needs almost 14 bpe, which amounts to 98% of the index space in 
this repetitive scenario (in non-repetitive text-centric XML, this space is negligible). By replacing the MATRIX by a WTH, the 
space drops significantly, to slightly over 4 bpe, yet times degrade by a factor of 3–6. By using our GCC for the tags, a new 
significant space reduction is obtained, to 2.65 bpe, and the times increase by a factor of 2, becoming 6–12 times slower 
than the original SXSI. Finally, changing FF by GCT [45], we can reach as low as 0.56 bpe, 24 times less than the original
SXSI, and using around 60% of the total space. Once again, the price is the time, which becomes 50–90 times slower than 
the basic SXSI. The price of using the slower GCT is more noticeable on XQ2, which uses more operations on the tree.

While the time penalty is 1–2 orders of magnitude, we note that the gain in space can make the difference between 
running the index in memory or on disk; in the latter case we can expect it to be up to 6 orders of magnitude slower.

7. Conclusions

We have introduced new sequence representations that take advantage of the repetitiveness of the sequence, by enhanc-
ing the output of a grammar compressor with extra information to support efficient direct access, as well as rank and 
select operation on the sequence. The only previous grammar-compressed representation [47] is 2–15 times slower and 
uses the same or more space than our new representations. Our structures answer queries in a few tens of microseconds, 
which is about an order of magnitude slower than the times of statistically compressed representations. However, on repet-
itive collections, our structures use 2–15 times less space. We have also explored two applications where repetitiveness is 
a sharp source of compressibility, and have shown how our structures allow one to further exploit that repetitiveness to 
obtain significantly less space.

An aspect where our structures could possibly be improved is in the clustering of the alphabet symbols used when 
partitioning the alphabet, both in the simple case of alphabet partitioning and in the hierarchical case of wavelet trees and 
matrices. In the first case, we obtained a significant space improvement by sorting the symbols by frequency, whereas in 
the second case none of our attempts performed noticeably better than the original alphabet ordering. While unsuccessful 
for now, we believe that some clever clustering scheme that avoids separating symbols that appear together in repetitive 
parts of the sequence could considerably improve the space on large alphabets.

Another future goal is to find ways to improve the time of these grammar compressed representations. We believe this 
is possible, even if known lower bounds suggest that there must be a price of at least an order of magnitude compared 
with statistically compressed representations. A more far-fetched goal is to build on Lempel–Ziv compressed representations. 
Lempel–Ziv is more powerful than grammar compression, but supporting the desired operations on it is thought to be more 
difficult.
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