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Fischer and Heun [SICOMP 2011] proposed the first Range Minimum Query (RMQ) data 
structure on an array A[1, n] that uses 2n + o(n) bits and answers queries in O (1) time 
without accessing A. Their scheme converts the Cartesian tree of A into a general tree, 
which is represented using DFUDS. We show that, by using instead the BP representation, 
the formula becomes simpler since border conditions are eliminated. We also improve the 
current implementation of the BP representation for this purpose. This leads to the fastest 
and most compact practical implementation to date.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Range Minimum Query (RMQ) problem is, given an array A[1, n] with elements from a totally ordered set, build a 
data structure that receives any pair of positions 1 ≤ i ≤ j ≤ n and returns

rmqA(i, j) = argmini≤k≤ j A[k],
that is, the position of a minimum value in A[i, j]. In many cases one prefers the leftmost position when there are ties.

The RMQ problem is a fundamental one and has a long history, intimately related to another key problem: the LCA 
(lowest common ancestor) problem on general ordinal trees is, given nodes u and v , return lca(u, v), the lowest node that 
is an ancestor of both u and v . Gabow et al. [10] showed that RMQs can be reduced to computing LCAs on a particular 
tree, called the Cartesian tree [22] of A[1, n]. Later, Berkman and Vishkin [4] showed that the LCA problem on any tree can 
be reduced to an RMQ problem, on an array derived from the tree. In this array, consecutive entries differ by ±1. Bender 
and Farach [2] then gave a solution for this so-called ±1-RMQ problem in constant time and linear space (i.e., O (n) words). 
Sadakane [20] improved the space of that solution, showing that LCAs on a tree of n nodes can be handled in constant time 
using 2n + o(n) bits (including the tree representation [17]). Finally, Fischer and Heun [8] showed that the Cartesian tree 
can be represented using 2n + o(n) bits so that RMQs on A can be transformed into LCA queries on the succinct tree, and 
this leads to an RMQ solution that also uses 2n + o(n) bits and does not need to access A at query time.

Fischer and Heun’s solution has become a fundamental building block for many succinct data structures, for example for 
ordinal trees [20,15,19], suffix trees [20,9], document retrieval [21,16], two-dimensional grids [18], Lempel–Ziv parsing [5], 
etc.

Their RMQ computation [8] uses three kinds of operations: several rank/selects on bitvectors [14,6], one ±1-RMQ [2], 
and one open on parentheses [17]. Although all can be implemented in constant time, in practice the last two operations 
are significantly slower than rank/select [1]. In particular, open is needed just to cover a border case where one node is an 

✩ Funded with basal funds FB0001, CONICYT, Chile. An early version of this article appeared in Proc. Data Compression Conference 2016.

* Corresponding author.
E-mail addresses: hferrada@dcc.uchile.cl (H. Ferrada), gnavarro@dcc.uchile.cl (G. Navarro).
http://dx.doi.org/10.1016/j.jda.2016.09.002
1570-8667/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jda.2016.09.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jda
mailto:hferrada@dcc.uchile.cl
mailto:gnavarro@dcc.uchile.cl
http://dx.doi.org/10.1016/j.jda.2016.09.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jda.2016.09.002&domain=pdf


H. Ferrada, G. Navarro / Journal of Discrete Algorithms 43 (2017) 72–80 73
Fig. 1. An example array A[1, 12] (top right) and its Cartesian tree (left). We choose preorder numbers as node identifiers (in bold under the nodes), and 
also write inorder values on top of the nodes, in slanted font. The left rectangle on the bottom shows how query rmqA(2, 10) translates into query lca(4, 6)

on the Cartesian tree. We also show how this query, in turn, maps into rmqD (4, 10), on the array D of depths of the tree. Array E tells if consecutive entries 
of D increase or decrease, and is the same as a BP representation of the tree. The right rectangle on the bottom shows how query lca(4, 10) is solved using 
rmqD (4, 10) and parent on the parentheses. This rmqD query is a simpler ±1-RMQ problem. Now the nodes 4, 10, and 1 do not refer to preorders but to 
positions in BP, obtained from preorders with prenode. The corresponding preorder values are written below the BP array.

ancestor of the other in the Cartesian tree. Grossi and Ottaviano [13] replaced open by further rank/selects in this case, thus 
improving the time significantly.

Their formula [8,13] represents the Cartesian tree using DFUDS [3]. In this paper we show that, if we use in-
stead the BP representation for the tree [17], the RMQ formula can be considerably simplified because the border case 
does not need special treatment. In addition, we improve the current implementations of the BP representation, tai-
loring them to solve RMQs. The result is the fastest and most compact RMQ implementation so far: our structure 
uses 2.1n bits of space and answers RMQs in 1–3 microseconds. Current implementations in Simon Gog’s SDSL [12]
(https://github.com/simongog/sdsl-lite) and Giuseppe Ottaviano’s Succinct [13] (https://github.com/
ot/succinct) use from 2.6n to 2.8n bits. Our implementation is also 3–6 times faster than that in SDSL and twice 
as fast as the implementation in Succinct. It is also 2–4 times faster than our own implementation of Fischer and Heun’s 
RMQ, while using less space.

2. State of the art

Gabow et al. [10] showed that RMQs can be reduced to computing LCAs on a particular tree, called the Cartesian tree [22]
of A[1, n]. This is a binary tree whose root is the position p of a minimum in A[1, n] (the leftmost/rightmost one if we want 
that RMQs return the leftmost/rightmost minimum). Then its left and right children are the Cartesian trees of A[1, p − 1]
and A[p + 1, n], respectively. Any cell A[p] is thus represented by the Cartesian tree node with inorder position p, and it 
holds

rmqA(i, j) = inorder(lca(innode(i), innode( j))), (1)

where inorder and innode map from nodes to their inorder values and vice versa. Fig. 1 shows an example array A and its 
Cartesian tree, and the translation of a query (ignore the other elements for now).

Later, Berkman and Vishkin [4] showed that the LCA problem on any tree can be reduced to an RMQ problem, on 
an array D[1, 2n] containing the depths of the nodes traversed along an Eulerian tour on the tree: the LCA corresponds 
to the minimum in D between a cell of u and a cell of v in the array. Note that consecutive cells in D differ by ±1. 
Bender and Farach [2] represented those entries as a bitvector E[1, 2n]: E[i] = 1 if D[i] − D[i − 1] = +1 and E[i] = 0 if 
D[i] − D[i − 1] = −1, with E[1] = 1. On top of E , they gave a simple O (1)-time solution to this restricted ±1-RMQ problem 
using O (n) words of space. Fig. 1 also shows this arrangement.

Therefore, one can convert an RMQ problem on A into an LCA problem on the Cartesian tree of A, then convert this 
problem into a ±1-RMQ problem on the depths of the Eulerian tour of the Cartesian tree, and finally solve this restricted 
±1-RMQ problem in constant time. This solution requires O (n) words of space.

Interestingly, the bitvector E[1, 2n] used to answer LCA queries on a tree of n nodes defines the topology of the tree. If 
we traverse the tree in DFS order and write an opening parenthesis when we first arrive at a node and a closing one when 
we leave it, the resulting sequence of parentheses, P [1, 2n], is exactly E[1, 2n] if we interpret the opening parenthesis as a 
1 and the closing one as a 0. In particular, consider the following two operations on bitvectors: rankb(E, i) is the number 
of bits equal to b in E[1, i], and selectb(E, j) is the position of the jth bit b in E . Both operations can be implemented in 
O (1) time using just o(n) additional bits on top of E [14,6]. Then, if we identify a node x with the position of its opening 
parenthesis in P (which is a 1 in E), then the preorder position of x is preorder(x) = rank1(E, x), the node with preorder i is 
prenode(i) = select1(E, i), x is a leaf iff E[x +1] = 0, and the depth of x is D[x] = rank1(E, x) − rank0(E, x) = 2 · rank1(E, x) − x.

https://github.com/simongog/sdsl-lite
https://github.com/ot/succinct
https://github.com/ot/succinct
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Fig. 2. The same arrangement of Fig. 1, now on the DFUDS representation of the Cartesian tree. The query rmqA(2, 10) becomes lca(4, 6), which we translate 
into lca(10, 14) when the node identifiers become positions in DFUDS instead of preorders (the translation is shown on the bottom of the sequence PDFUDS).

This parentheses representation (called BP, for Balanced Parentheses) was indeed known, and it was even possible to 
navigate it in constant time by using just 2n + o(n) bits [17,11]. This navigation was built on top of three primitives on 
parentheses: open(x)/close(x) gave the position of the opening/closing parenthesis matching the closing/opening one at 
P [x], and enclose(x) gave the opening parenthesis position y so that [y, close(y)] contained P [x] most tightly. Many tree 
traversal operations are built on top of those primitives, for example the parent of x is parent(x) = enclose(x), its next sibling 
is close(x) + 1 (if it exists), its first child is x + 1 (if it exists), its subtree size is (close(x) − x + 1)/2, x is an ancestor of y iff 
x ≤ y ≤ close(x), etc.

Now, since E coincides with P , one could add the powerful lca operation to the BP representation! Bender and Farach’s 
solution [2] applied on the bitvector E[1, 2n] actually implements RMQs on the virtual array D . However, their ±1-RMQ 
solution used O (n) words. Sadakane [20] improved their solution to use O (n(log log n)2/ log n) = o(n) bits, and thus obtained 
a constant-time algorithm for lca(x, y) on the BP representation (let x < y):

if y ≤ close(x) then return x

else return parent(rmqD(x, y) + 1)

where the first line addresses the special case where x is an ancestor of y, and rmqD refers to the ±1-RMQ solution using 
E[1, 2n]. The rationale of the second line is that, since x and y descend from two distinct children of z = lca(x, y), then 
D[x, y] is minimized at the closing parenthesis that terminates each child of z, from the one that contains x to the one 
preceding that containing y. Adding 1 we get to the next sibling of that child, then we return its parent z. See Fig. 1 once 
again.

Benoit et al. [3] presented an alternative format to represent a general tree using 2n parentheses, called DFUDS. We 
traverse the tree in DFS order, but this time, upon arriving for the first time to a node with d children, we write d opening 
parentheses and a closing one (in particular, a leaf is represented with a closing parenthesis). Nodes are identified with 
that closing parenthesis.1 It can be shown that the resulting sequence is also balanced if we append an artificial opening 
parenthesis at the beginning, and many traversal operations can be carried out with the primitives open, close, and enclose. 
In particular, we can directly arrive at the ith child of x with next0((close(x − i) + 1), where next0(t) = select0(rank0(t −
1) + 1) finds the first 0 from t . The number of children of x can be computed as d = x − prev0(x) + 1, where prev0(t) =
select0(rank0(t − 1)) finds the last 0 before t . In DFUDS, nodes are also listed in preorder, and there is a closing parenthesis 
terminating each, thus preorder(x) = rank0(E, x).

Jansson et al. [15] showed that lca(x, y) can also be computed on the DFUDS representation, as follows (let x < y):

return parent(next0(rmqD(x, y − 1) + 1)),

where no check for ancestorship is needed.2 The rationale is similar as before: since in DFUDS D decreases by 1 along 
each subtree area, rmqD(x, y − 1) finds the final closing parenthesis of the child of z = lca(x, y) that precedes the one 
containing y. Adding 1 and finding the parent gives z. The formula for parent(w) in DFUDS is next0(open(prev0(w))). Fig. 2
shows our example, now on DFUDS. The formula with DFUDS turns out to be simpler than with BP.

Now we could represent a tree of n nodes in 2n + o(n) bits and compute lca on it in constant time, and Eq. (1) allowed 
us to convert rmqA into an lca operation on its Cartesian tree. It seems that the road to constant-time rmqA using just 
the 2n + o(n) bits of its Cartesian tree, and without accessing A, was paved! However, there was still a problem: how to 
support the operations inorder and innode on the Cartesian tree. Sadakane [20] had solved the problem on suffix trees, but 

1 In some cases, the first opening parenthesis is used, but the closing one is more convenient here.
2 The check is present in their paper, but it is unnecessary (K. Sadakane, personal communication).
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Fig. 3. The general tree derived from the example Cartesian tree. Note how inorder numbers of the binary Cartesian tree became preorder numbers in the 
general tree (we start preorders from 0 to help see the mapping). On the right, the formulas used by Fischer and Heun based on DFUDS (on the top) and 
the one proposed in this paper, based on BP (on the bottom). To reuse the same isomorphism of Fischer and Heun, we illustrate the variant of our formula 
that sets the nodes in the leftmost path of the tree as the children of the root.

in his case the tree had exactly one leaf per entry in A, so he only needed to find the ith leaf, and this could be done by 
extending rank/select operations to find 10s (BP) or 00s (DFUDS) in E . In the general case, one could add artificial leaves to 
every node, but this would increase the space to 4n + o(n) bits.

Fischer and Heun [8] found a solution that used just 2n + o(n) bits, which also turned out to be asymptotically optimal. 
The idea is to use a known isomorphism (see, e.g., [17]) between binary trees of n nodes and general ordinal trees of n + 1
nodes: We create an extra root for the general tree, and its children are the nodes in the leftmost path of the binary tree. 
Recursively, the right subtree of each node x in the leftmost path is converted into a general tree, using x as its extra root. 
A key property of this transformation is that inorders in the binary tree become preorders (plus 1) in the general tree. As 
seen, we can easily map between nodes and their preorders in general trees. Fig. 3 continues our example.

However, the lca in the Cartesian tree (which is what we want) is not the same lca in the resulting general tree; some 
adjustments are necessary. Fischer and Heun chose to use DFUDS for their rmqA(i, j) solution, where it turns out that 
the adjustments to use a general tree actually remove the need to compute parent, but add back the need to check for 
ancestorship:

w ← rmqD(select0(i + 1), select0( j))

if rank0(open(w)) = i then return i (2)

else return rank0(w)

The select0 operations find the nodes with preorder i and j − 1 (recall there is an extra root with preorder 1), then w is 
the position of the closing parenthesis of the result. The next line verifies that x is not an ancestor of y, and the last line 
returns the corresponding preorder value. For this formula to be correct, it is necessary that rmqD returns the position of 
the leftmost minimum. Fig. 3 (top left) shows a query.

Grossi and Ottaviano [13] replaced the ancestorship test by one that does not use the costly open operation:

w ← rmqD(select0(i + 1), select0( j))

if D[select0(i) + 1] ≤ D[w − 1] then return i (3)

else return rank0(w)

where as explained we can compute D[k] = 2 · rank1(E, k) − k.

3. A simplified implementation

The current implementations of rmqA build on the DFUDS representation of the general tree derived from the Cartesian 
tree, and follow either the formula of Fischer and Heun [8] (Eq. (2), in SDSL), or that of Grossi and Ottaviano [13] (Eq. (3), 
in Succinct). We show that, if we use the BP representation instead of DFUDS, we obtain a simpler formula. Let us assume, 
as before, that rmqD returns the leftmost minimum. Then, our conversion from the binary Cartesian tree into a general tree 
must go in the opposite direction: the children of the extra root are the nodes in the rightmost path of the binary tree, and 
so on recursively. With this representation, it turns out that a correct formula is
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rmqA(i, j) = rank0(rmqD(select0(i), select0( j))) (4)

where no checks for ancestorship are necessary. Now we prove this formula is correct.

Lemma 1. On a rightmost-path general tree built from the Cartesian tree of A, Eq. (4) holds.

Proof. On the rightmost-path representation, the binary tree node with inorder i becomes the general tree node with 
postorder i, which is easily seen by induction. The closing parentheses of nodes x and y, which have postorders i and j, are 
thus found with p = select0(i) and q = select0( j). Now let z = lca(x, y). Then, in the Cartesian tree, x descends from the left 
child of z, zl , and y descends from the right child, zr . In the general tree, zl is the first child of z, whereas zr is its next 
sibling. Therefore the closing parenthesis of z, at position r, is between p and q. Further, y descends from some sibling z′
to the right of z. Between p and q, the minima in D occur at the closing parentheses of z and of its siblings to the right, up 
to (but not including) z′ . Thus the leftmost of those positions is precisely r, where z closes. Finally, rank0(r) is the postorder 
position of z, and the inorder position of the cell in A.

The formula also works if y descends from x in the Cartesian tree. Since i < j, the inorder of x is smaller than the 
inorder of y, and thus y can only descend from the right child of x. Then the first minima in [p, q] is precisely p, the 
closing parenthesis of x, and thus z = x. �

If we want to use the leftmost-path mapping, we need that rmqD returns the rightmost minimum position in the range. 
In this case, it holds

rmqA(i, j) = rank1(rmqD(select1(i + 1) − 1, select1( j + 1))).

In this case, we must subtract 1 from p (which is now the position where node x opens) to ensure that the rightmost 
minimum in D[p − 1, q] is actually p − 1 when y descends from x. Fig. 3 (bottom right) shows a query.

3.1. Construction

This representation is easily built in a way similar to the DFUDS-based one [8]. Consider the version using the rightmost-
path mapping (the other is similar). We will write the parentheses of E[1, 2n] right-to-left, starting with a 0 (i.e., a closing 
parenthesis) at its end. We start with an empty stack S , and traverse A[n] to A[1]. At the point where we are to process 
A[i], the stack S maintains left-to-right minima in A[i + 1, n]. To process A[i], we pop from S all the elements ≥ A[i], 
prepending a 1 (i.e., an opening parenthesis) to E each time an element is popped, until S becomes empty or its top is 
< A[i]. Now we push A[i] in S and prepend a 0 to E . This is continued until A[1] is processed. Finally, we prepend as many 
1s to E as necessary to complete 2n bits.

This process requires O (n) time and its extra space for S is proportional to the height of the Cartesian tree of A. While 
this is usually negligible, the space can become O (n) words in the worst case. Fischer and Heun [8, Sec. 5.2.2] reduce it to 
n bits in a way that we can use verbatim in our case.

4. Implementing Balanced Parentheses

The most successful implementation of Balanced Parentheses uses Range Min–Max Trees (rmM-trees) [19,1]. The BP 
sequence E[1, 2n] is cut into blocks of length b. Each block then becomes a leaf of the rmM-tree, which stores several 
variables. To describe them, let us introduce the notion of excess, which is the number of 1s minus the number of 0s in a 
bit string up to certain position:

excess(S, i) = rank1(S, i) − rank0(S, i) = 2 · rank1(S, i) − i,

where we note that, if D[1, 2n] is the sequence of depths we have been using and E[1, 2n] is the associated bit sequence, 
then D[i] = excess(E, i).

Then the relevant variables associated with each rmM-tree leaf representing bits L[1, b] are e = excess(L, b) (the local 
excess produced by the leaf), and m = min1≤i≤b excess(L, i) (the minimum left-to-right excess along the leaf). The rmM-tree 
is a perfect binary tree on those leaves, where the internal nodes store the same fields e and m with respect to the area they 
cover. That is, let v have left and right children vl and vr , respectively, then v.e = vl.e + vr .e and v.m = min(vl.m, vl.e +
vr .m).

We can then compute any operation rmqD(p, q) as follows. First, we determine the maximal block-aligned range [p′, q′]
inside [p, q]. Then we scan the range [p, p′ − 1] sequentially, obtaining the minimum excess min and its excess exc =
excess(p, p′ − 1). Then, if [p′, q′] is not empty, we start at the rmM-tree leaf v started by position p′ . We set min ←
(min, exc + v.m) and update exc ← exc + v.e. Now we start climbing up the path from v . If v is a right child of its parent, 
we just move to its parent. Otherwise, we see if its right sibling v ′ is contained in [p′, q′]. If it is, we process it (setting 
min ← min(min, exc + v ′.m) and exc ← exc + v ′.e) and then go to the parent of v . If, instead, v ′ is not contained in [p′, q′], 
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Fig. 4. Query space and time on random arrays, for ranges of size 10,000, comparing the standard with our new implementations. Space is measured in 
bits per element (bpe).

we switch to v ← v ′ and start the descent: Let vl and vr be the left and right children of v , respectively. Then, if vl is
contained in [p′, q′] we process vl as before and descend to vr , otherwise we descend to vl . At the end, we reach the leaf 
of position q′ + 1, which is traversed sequentially up to position q to complete the process.

Once the minimum value is clear, we must find its leftmost occurrence in D[p, q]. If it occurred in [p, p′ −1], or occurred 
only in [q′ + 1, q], then we already know its position. Otherwise, its leftmost occurrence is in some rmM-tree node v we 
know. We then move down from v to find its position: if vl.m ≤ vl.e + vr .m, we descend to vl , otherwise to vr . We finally 
reach a leaf and scan it to find the position of the leftmost minimum.

By setting b = �(log2 n) and using precomputed tables to process the leaves by chunks of (log n)/2 bits, the total time 
is O (log n) and the extra space of the rmM-tree and precomputed tables is O (n/ log n) = o(n).

Operations rank and select can be solved similarly, the former by computing exc = excess(E, i) and then using rank1(i) =
(exc + i)/2 or rank0(i) = (i − exc)/2. For select1( j) we move down from the rmM-tree root looking for the position i where 
excess(E, i) = 2 · j − i, and for select0( j) we aim to excess(E, i) = i − 2 · j.

Our implementation carries out the following optimizations:

1. Instead of the fields e in all the nodes, we store an array exc[1, 2n/b] with exc[i] = excess(E, b · i), using as many bits 
as necessary (in many cases, the maximum excess is not large). Further, when b is even, those sampled excesses are 
also even, so we save one further bit. To solve rank, we use the table exc to find the rank up to the previous sampled 
position, and process the last block sequentially.

2. To solve select( j), we store a table giving the blocks where the answer to every bth value of j falls, using as many 
bits as necessary. We then compute rank up to that block and sequentially scan from its beginning until reaching the 
desired rank j. In the conference version [7] we just used binary search on table exc, which saved little space but was 
considerably slower.

3. To solve rmqD , we avoid scanning the last area [q′ + 1, q] if its block minimum is not smaller than our current mini-
mum value min. Note that its block minimum may be smaller than the minimum in [q′ + 1, q], but not larger. In the 
conference version we stored the position of the minimum to avoid the descent, but this turns out to take too much 
extra space for a small saving in time.

4. The precomputed tables process bytes of the leaf, so they are very small and usually fit in cache, and we read aligned 
data.

5. Experimental results

5.1. Tuning and older versions

Our first experiment compares our improved implementation with the standard one, which was used in our conference 
version [7] with block size b = 256. We show various block sizes for our new version, so as to choose a good representative. 
The data are arrays A of sizes from n = 104 to n = 1010, with randomly chosen ranges [i, j] of fixed length 10,000. Fig. 4
shows the results, where “rmq-Old” stands for the standard implementation and “rmq-b” for the new ones. The space shown 
is in addition to the 2n bits used by the parentheses.

It can be seen that our new implementation is far more efficient, in space and especially in time. For the rest of the 
experiments, we will choose b = 512 as a compromise value between space and time.

We compare our implementation with those in SDSL and Succinct, which are based on DFUDS (Eqs. (2) and (3), respec-
tively). As a control, we also implement ourselves the DFUDS-based solution of Eq. (2) using rmM-trees and our rank/select
components; this is called DFUDS in our charts.
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Fig. 5. Query space and time on random arrays, for ranges of size 10,000.

Fig. 6. Query time on random arrays, for ranges of increasing size and two values of n.

5.2. Arrays with random values

We first compare the four implementations on the same randomly generated arrays A of the previous experiment. Fig. 5
shows the results (Succinct did not build on the largest arrays). Our implementation uses always below 2.1 bits per element 
(bpe), that is, 0.1 on top of the 2 bpe needed by the BP (or DFUDS) representation. Our DFUDS implementation, instead, 
increases the space because the average excess grows with n in this format, and thus the rmM-tree counters need more 
bits. The implementations in SDSL and Succinct use at least 2.6–2.8 bpe.

Our solution is also the fastest, taking 1–3 microseconds (μs) per query as n grows. It is followed by Succinct and, far 
away, by SDSL. Our DFUDS implementation is fast for short arrays, but it becomes slower when n grows. This is probably 
because operation open matches a farther parenthesis as n grows; the same effect can be seen in SDSL. In Succinct, instead, 
operation open is avoided, and thus the growth is much milder. In our BP-based implementation, the growth with n is also 
mild, owing only to traversing a higher rmM-tree.

Fig. 6 shows how the times are affected by the size of the query range. As it can be seen, our implementation and 
Succinct show a very slow increase, whereas times grow much faster in SDSL and DFUDS. This may be due to the open
operation, whose time grows in practice with the distance to its parent. Larger intervals return nodes closer to the root, 
whose former siblings are larger, and so is the distance to the parent in DFUDS.

5.3. Arrays with broadly increasing or decreasing values

Our final experiment measures the effect of the order in A on the space and time of the structures. Given a parameter �, 
our entry A[i] is chosen at random in [i − �, i + �], or in [n − i − �, n − i + �], thus the smaller �, the more sorted is A
in increasing/decreasing order. Fig. 7 shows the results.

Our implementation maps the leftmost path of the Cartesian tree to the children of the general tree. As a result, the 
structure takes slightly more space and time when the array is more sharply increasing, because the general tree is deeper 
and the rmM-tree stores larger values. Instead, it does not change much when A is decreasing (one could use one mapping 
or the other as desired, since we know A at construction time, thus never using more than 2.1 bpe). DFUDS shows the 
opposite effect, because the DFUDS excesses are smaller when the tree is deeper. The effect is more pronounced than in our 
structure, and it also affects the time performance. It is not clear how can one use the rightmost-path mapping in the case 
of DFUDS, however, as it is not symmetric (we can reverse the array if we do not mind returning the rightmost position 
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Fig. 7. Query time on pseudo-sorted arrays, n = 106 and ranges of size 10,000.

Fig. 8. Construction time and space on random and pseudo-sorted arrays, n = 109.

of the minimum). The space of SDSL and Succinct is not affected at all by the lack of randomness, but SDSL turns out to 
be faster on less random arrays, regardless of whether they are increasing or decreasing. Succinct performs better when the 
values tend to be decreasing and worse when they are increasing. Our times are, just like the space, negatively affected by 
increasing values, but still they are much better than the others and, as said, we can choose to map the rightmost path in 
this case.

5.4. Construction times

Fig. 8 shows the space and time for construction with the different implementations, for the same range of values of 
� as above. The array A uses 64-bit integers, so the minimum space usage is 8 bytes per element. The constructions use 
a simple stack, except SDSL, which uses O (n) bits. When the elements are random, the size of the stack is insignificant 
(below 4 bits per element), and thus the higher time (110–130 versus 60–70 nanoseconds per element) required to build 
using O (n) bits does not pay off. Instead, when the values are mostly increasing (or decreasing, depending on whether one 
uses the leftmost or the rightmost path), the construction space grows significantly. Our BP and DFUDS construction use 
similar time and space, except for the leftmost/rightmost difference. Succinct is the slowest at construction (around 230 
nanoseconds), but it uses less space than our stack-based constructions when the array values are skewed.
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Note, again, that our implementation performs better on random and decreasing arrays than on increasing ones in all 
aspects: construction space, final space, and query times. DFUDS is the opposite. The difference is that, while our formula 
can be reversed and thus we can switch to using rightmost instead of leftmost paths to handle increasing arrays, the formula 
of DFUDS appears to be fixed and thus it must perform worse on decreasing arrays.

6. Conclusions

We have presented an alternative design to Fischer and Heun’s RMQ solution that uses 2n + o(n) bits and constant 
time [8]. Our implementation uses 2.1n bits and takes 1–3 microseconds per query. This is noticeably smaller and faster 
than the current implementations in libraries SDSL and Succinct, which follow Fischer and Heun’s design. By using BP 
instead of DFUDS succinct tree representation, our RMQ formula simplifies considerably, and besides we performed some 
optimizations to the BP implementation. We have left our implementation publicly available at https://github.com/
hferrada/rmq.git, and our DFUDS-based one at https://github.com/hferrada/rmqFischerDFUDS.git.

Any ±1-RMQ implementation can be used together with our new formula. Our current implementation of ±1-RMQs is 
not formally constant time, as it builds on rmM-trees [19,1]. Although truly constant-time solutions are not promising in 
practice [20,19], and we have shown that the time of rmM-trees grows very slowly with n, it would be interesting to devise 
a practical and constant-time solution.
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