Tabla de Contenido

Li	Lista de Tablas			
\mathbf{Li}	sta d	le Figuras	ix	
1	Intr 1.1 1.2	roducción Presentación del tema Objetivos 1.2.1 Objetivo General 1.2.2 Objetivos específicos Motivación Alcapaca	1 1 2 2 3 3 4	
~	1.4		4	
2	Ma	rco Teórico	5	
	2.1	Procesamiento de minerales de Cobre	5	
		2.1.1 Commución	6	
		2.1.2 Concentracion	(
		2.1.3 Recuperación de agua	8	
	0.0	2.1.4 Depositación de relaves	8	
	2.2	2.2.1 Modelegión de fluieg en tuberíog	9	
	• • •	2.2.1 Modelacion de nujos en tubenas	10	
	2.0	2.3.1 Euerzas hidrodinámicas y coloidalos	12	
		2.3.1 Fuerza gravitacional y boyancia	11	
		2.3.1.1 Fuerza de arrestro	14	
		2.3.1.2 Fuerza de levante (<i>Lift</i>)	15	
		2.3.1.4 Fuerza turbulentas difusivas	16	
		2.3.2 Fuerza Browniana	16	
		2.3.3 Fuerzas Coloidales	17	
		2.3.3.1 Fuerzas de repulsión	17	
		2.3.3.2 Fuerzas de Van der Waals	18	
		2.3.3.3 Fuerzas de hidratación	19	
	2.4	Mineralogía de arcillas	19	
		2.4.1 Caolinita	23	
		2.4.2 Montmorillonita	25	
		$2.4.2.1 \text{Bentonita} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	26	
	2.5	Carga superficial de las arcillas	27	
	2.6	Comportamiento de hinchamiento y selectividad de las arcillas en el intercambio		
		iónico	29	
	2.7	Intercambio catiónico en suelos arcillosos	31	
	2.8	Efecto de minerales de arcillas en las plantas de procesamiento	32	
	2.9	Composición de Agua de proceso, agua de mar y su relevancia	35	
		2.9.1 Agua Fresca	36	

		2.9.2	Agua de Mar	36					
		2.9.3	El uso de agua de mar como agua de proceso	37					
		2.9.4	Efecto de agua de mar en los procesos	39					
3	Sim	Simulación Númerica 4							
	3.1	OpenH	FOAM	42					
		3.1.1	Solver TwoPhaseEulerFOAM	43					
		3.1.2	Esquemas númericos	43					
			3.1.2.1 Estructuras de las ecuaciones	44					
			3.1.2.2 Cálculo del término laplaciano ∇^2	44					
			3.1.2.3 Cálculo del término convectivo $\nabla \cdot (\mathbf{u}, \phi)$	45					
			3.1.2.4 Cálculo de la primera derivada temporal d/dt	46					
	3.2	Model	lo de dos Fases	46					
	3.3	Ecuac	ión de Momentum	47					
		3.3.1	Presión de sólido	48					
			3.3.1.1 Modelo exponencial	48					
			3.3.1.2 Modelo de la cinética del flujo granular	49					
		3.3.2	Tensor de cizalle y viscosidad efectiva	51					
		3.3.3	Fuerzas interfaciales	53					
			3.3.3.1 Modelo de arrastre	53					
			3.3.3.2 Fuerza de levante $(lift)$	54					
			3.3.3.3 Fuerza de lubricación de pared y dispersión turbulenta	55					
		Transferencia de masa de partículas	55						
	3.4	iones de turbulencia	56						
		3.4.1	Modelo $k - \varepsilon$	57					
		3.4.2	Modelo $k - \varepsilon$ disperso $\ldots \ldots \ldots$	57					
		Modelo $k - \varepsilon$ de dos fases	58						
	3.5	Transf	ferencia de masa de iones	58					
		3.5.1	Modelo de adsorción	59					
			3.5.1.1 Modelo site-binding	59					
			3.5.1.2 Modelos cinéticos de adsorción	60					
			3.5.1.3 Intercambio iónico	63					
		3.5.2	Coeficientes de Actividad	66					
			3.5.2.1 Modelo Debye-Huckel	67					
			3.5.2.2 Modelo de Davies	68					
		<u> </u>	3.5.2.3 Modelo B-dot	69					
	3.6	Casos	de Estudio y condiciones de borde	71					
	3.7	Result	tados	75					
		3.7.1		75					
		3.7.2	Heterogeneidad y convergencia en tuberia	76					
		3.7.3 2.7.4	Relacion entre el contenido de particula y el perfil de velocidad	80					
		3.1.4 2.7.5	Intercampio ionico en el sistema	82					
		3.7.5	Annidad del sodio en la arcilla	80					
		১.1.0 ১.7.7	Frate de la distribución inicial del CEC de la casilla	89 01					
		३.१.१ २ ७ ०	Electo de la distribución inicial del CEC de la arcilla	91 91					
		0.1.0 270	Moiores al modele para futures trabais	90					
		J.1.9		90					

		3.7.9.1	Agregar reacciones Ca-Mg y/o de todos los iones presentes .	98
		3.7.9.2	Agregar un modelo de zona negativas (función pH)	99
		3.7.9.3	Modelo potencial zeta	99
	3.7.10	Resultad	los experimentales preliminares	100
3.8	Resum	en y cono	clusiones	101
Bibliog	grafía			105

Lista de Tablas

$2.1 \\ 2.2$	Estabilidad suspensión a distinto potencial zeta (Shook & Roco, 2015) Comparación CEC para distinto mineral de arcilla, con P_h el potencial de	18
	hinchamiento y S_p el área superficial de partículas. (White, 2013)	22
2.3	relación μ_m/μ_l para distintos sistemas partículados (Bulatovic <i>et al.</i> , 1999).	23
2.4	Composición típica del agua de mat basada en el ASTM estándar (D1141-98).	37
3.1	relación μ_m/μ_l para distintos sistemas partículados	52
3.2	parámetros B-dot Model para distintos cationes (Truesdell & Jones, 1974)	70
3.3	valores A y B para el modelo a distintas temperaturas (Truesdell & Jones, 1974).	70
3.4	Modelos utilizados en las simulaciónde númericas en OpenFOAM	72
3.5	Salidas (Output) de las simulaciones realizadas en OpenFOAM. Aquí i es Na,	
	Ca, Mg y Cl	73
3.6	Rango de valores de las variables principales estudiadas en las simulaciónes	
	númericas para el análisis de sensibilidad.	73
3.7	Fracción de cationes en la partícula ($\mathrm{meq}/100\mathrm{grarcilla})$ para distintos CEC y	
	distinta concentración de finos; con $u_m = 2 \text{m s}^{-1}$ y $\phi_s = 20 \%$	84
3.8	Composición de cationes de intercambio en la partícula y fracción intercambiada	
	en el líquido en función del tipo de arcilla; Proporción es la fracción del ion i	
	que equivale al CEC.	85
3.9	Efecto del diámetro de las partículas gruesas d $_s$ en la fracción media intercambiada	
	de calcio θ_{Ca}	85
3.10	Efecto de K_{Mg} en la composición de iones de intercambio en una arcilla saturada	
	en sodio con CEC 70 meq/100 grarcilla. \ldots \ldots \ldots \ldots \ldots \ldots \ldots	90
3.11	Efecto de la concentración de iones en el líquido en la composición de iones	
	intercambiables para distintas esmectitas, resumen investigación (Shainberg	
	$et\ al.,\ 1987).$ M1 y M2 corresponden a dos muestras de la misma esmectita	
	sumergida en un líquido con distintas proporciones de K y Ca	90
3.12	Composición de los cationes de intercambio para distinto k_2/c_0 desde una	
	cinética rápida $(5 \cdot 10^{-02})$ a una cinética lenta $(1 \cdot 10^{-04})$.	95
3.13	variables con efecto que contrarrestan el intercambio iónico, (\uparrow) significa que	
	necesita aumentar para contrarrestar el efecto de la variable, (\downarrow) significa que	
	debe disminuir, (\Downarrow y \uparrow) se necesita disminuir y aumentar manteniendo ϕ_T	
	(tonelaje fijo) y $*$ se refiere a que no afecta la fracción media intercambiada. 1	101
3.14	Efecto del tipo de arcilla y composición inicial de arcilla en la composición final	
	de la arcilla y del líquido, para $K \leq 1$ y $K_{Mg} = 1$	02

Lista de Figuras

2.2.1	Efecto tamaño de partícula y velocidad (Jacobs, 2003)	10
2.2.2	Tipos de nujo en una tuberia (Jacobs, 2003). $\dots \dots \dots$	11
2.3.1	Diagrama de luerzas en una particula (Abumaga, 2002)	15
2.3.2	Fuerza de levante para una particula (Snook & Roco, 2015)	10
2.4.1	Diagrama de los minerales filosificatados (Farroknpay & Bradsnaw, 2012).	20
2.4.2	Revil, 2004).	21
2.4.3	Estructura de la caolinita (Larsen, 2009).	24
2.4.4	Estructura de la bentonita (Larsen, 2009)	26
2.4.5	Comparación arcillas con distinto CEC.	27
2.5.1	Distribución de iones y cargas de una partícula, donde Q_0, Q_β, Q_S son las cargas superficiales en la superficie de la partícula, en la capa de Stern y en la capa difusa, respectivamente, $\Phi_0, \Phi_\beta, \Phi_S$ es el potencial electrostático en la superficie de la partícula, en la capa de Stern y en la capa difusa, respectivamente. A^- y M^+ son aniones y estienes en solución (Lerey & Bevil 2004)	28
	M son anomes y cationes en solucion (Leroy & Revii, 2004)	20
3.1.1	Estructura de la celda y tiempo (Open, 2011a).	42
3.1.2	Estructura OpenFoam (Open, 2011b)	43
3.1.3	Celdas en una malla OpenFOAM (Open, 2011a)	44
3.2.1	Representación de ϕ para un modelo Euler de dos fases, los valores en la celda corresponden a los valores de la concentración en volumen (ϕ) (Busche, 2003).	46
3.5.1	Actividad iones en solución.	66
3.5.2	Coeficiente de actividad para los iones Ca. Na v Mg.	68
3.5.3	Coeficiente de actividad Ca. Na v Mg.	69
3.5.4	Coeficiente de actividad Ca. Na y Mg	70
3.6.1	Sección de la tubería donde se aprecia el perfil de velocidad en la dirección x	71
3.6.2	Distribución de la celda en la tubería	72
3.6.3	Concentración de Ca en el agua a lo largo de la tubería con respecto a la concentración inicial.	75
3.7.1	Perfil de velocidad en una tubería mediante una simulación númerica en el	
	software OpenFoam con (a) $u_m = 3 \mathrm{m s^{-1}}$ v $\phi_s = 19\%$ v (b) $u_m = 5.4 \mathrm{m s^{-1}}$ v	
	$\phi_s = 20\%$. Tesis corresponde al presente trabajo. Exp. corresponde a los datos	
	experimentales utilizados en Ekambara <i>et al.</i> (2009) y Ekambara <i>et al.</i> (2009)	
	corresponde a la simulación 3D realizada por Ekambara.	76
3.7.2	Perfil de concentración volumétrica de partículas mediante una simulación	
0	númerica en OpenFoam con (a) $u_m = 5.4 \text{ m s}^{-1} \text{ v} \phi_s = 30 \% \text{ v}$ (b) $u_m = 5.4 \text{ m s}^{-1}$	
	$v \phi_{c} = 40\%$. El perfil corresponde a los promedios horizontales de los primeros	
	10 m de la tubería. Tesis corresponde al presente trabajo. Exp. corresponde a	
	los datos experimentales utilizados en Ekambara <i>et al.</i> (2009) v Ekambara <i>et</i>	
	al. (2009) corresponde a la simulación 3D realizada por Ekambara.	77

3.7.3	Efecto de la velocidad en el perfil de concentración volumétrica de partículas	
	para (a) $u_m = 1 \text{ m s}^{-1} \text{ y}$ (b) $u_m = 3 \text{ m s}^{-1}$, con $\phi_s = 20\% \text{ y} \text{ d}_s = 200 \text{ µm}$	77
3.7.4	Efecto del tamaño de partícula en el perfil de concentración volumétrica de	
	partículas (ϕ_s) para (a) $d_s = 10 \mu\text{m}$, (b) $d_s = 50 \mu\text{m}$, (c) $d_s = 100 \mu\text{m}$ y (d)	-
0 7 5	$d_s = 200 \mu\text{m}, \text{con } \phi_s = 20 \% \text{y} u_m = 2 \text{m s}^{-1} \dots \dots \dots \dots \dots \dots \dots$	78
3.7.5	Effecto de la concentración media de particulas en el perfil de concentración $100 - 100 - 100$	
	volumetrica de particulas para (a) $\phi_s = 20 \%$ y (b) $\phi_s = 40 \%$, con d _s = 100 m s ⁻¹	70
27c	$y u_m = 2 \text{ m s}^{-1}$	79
3.7.0	En (a) la variación media (vertical) de la concentración de particulas p a distintos distancia dentre de la tubería u (b) estudia convergencia del perfi	
	distintos distancia dentro de la tubería para distintos valores de II: En (b) Z1: Fuerte	
	$(\rho_{14} - \rho_6)$ a los o in de la tuberia para distintos valores de 11, Eli (b) 21. Fuerte ostratificación 72: zona do transición 73: Alta suspensión do partículas	$\overline{70}$
377	En (a) el perfil de velocidad a diferentes velocidades media de la pulpa. En (b)	19
0.1.1	el perfil de concentración de partículas gruesas a distinta velocidades media	
	Ambos con $\phi_{\rm c} = 20\%$ d = 100 µm $\phi_{\rm f} = 6\%$ v CEC = 70 meg/100 gr-arcilla	80
3.7.8	En (a) el perfil de concentración de partículas gruesas a diferente concentración	00
00	media de gruesos, con d _e = 100 um v en (b) este perfil de concentración para	
	diferentes tamaños de partícula; $u_m = 2 \mathrm{m s^{-1}}$ y $\phi_f = 6 \%$.	81
3.7.9	Perfil de concentración para partículas finas a (a) diferentes velocidades media	
	con $\phi_s = 20\%$ y (b) diferente concentración de particula gruesa, en ambos	
	casos $u_m = 2 \mathrm{m s^{-1}} . \phi_f = 60 \%$.	82
3.7.10	Fracción intercambiada en el agua para (a) calcio y (b) magnesio; En ambos	
	casos $\phi_s = 20 \%, u_m = 2 \text{ m s}^{-1}, \text{ CEC} = 70 \text{ meq}/100 \text{gr-clay}.$	83
3.7.11	Fracción de Ca intercambiada para (a) distintas fracciones de arcillas ($d_{s1} =$	
	100 μ m, d _{s2} = 200 μ m), (b) en función del CEC para distintas fracciones	
	de finos;Para ambos casos $\phi_s = 20\%$ and $u_m = 2 \text{ ms}^{-1}$ y para (a) CEC =	
0 - 10	70 meq/100 gr-clay	84
3.7.12	En (a) el valor de ϕ_s es fijo al 20% y en (b) ϕ_T y u_m están fijos en 40%	
	y 2 m s ⁻¹ respectivamente. $I = Ca$ o Mg y CEC = $70 \text{ meq}/100 \text{ gr}$ -arcilla. Los	00
9719	valores corresponden a promedio verticales a los 14 m de la tuberia	80
0.7.10	para (a) calci (b) cadio y (c) magnesio: $CEC = 70 \text{ mog}/100 \text{ gr}$ clay $\phi = 20\%$	
	$\phi_s = 6\%$ $\mu_s = 2 \text{ ms}^{-1} \text{ d} = 200 \text{ um}$	87
3714	$\varphi_f = 0.70, u_m = 2.00 \text{ mm}$	01
0.1.11	para distintos valores de K (afinidad con sodio) $i = Ca$ Mg ó Na $:CEC = 70$	
	$meg/100 \text{ gr}-clay, \phi_c = 20\%, \phi_f = 6\%, \mu_m = 2 \text{ m s}^{-1}, d_c = 100 \text{ µm}, \dots, \dots$	88
3.7.15	Efecto de la selectividad por Mg (K_{Ma}) para la fracción intercambiada en el	
	agua de (a) calcio y (b) magnesio a distintos K .	89
3.7.16	Efecto en la distribuciones de los cationes de intercambio en la intercapa de	
	la arcillas cuando el $\%$ de calcio correspondiente al CEC es igual al (a) 25%	
	y (b) 75 % a distintos valores de K. ;CEC = 70 meq/100 gr-clay, $\phi_s = 20$ %,	
	$\phi_f = 6 \%, u_m = 2 \text{ m s}^{-1}, d_s = 100 \text{ µm.} \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	91
3.7.17	Efecto a la fracción media intercambiada la fracción de Mg a distintas fracciones $% f(x)$	
	de Ca en la partícula variando K. ; CEC = 70 meq/100 gr-clay, $\phi_s = 20\%$,	
	$\phi_f = 6\%, u_m = 2 \mathrm{m s^{-1}}, d_s = 100 \mathrm{\mu m}$	92

3.7.18	Fracción intercambiada de sodio en el agua en función de R . Menor a 10^3	
	aumenta la concentración en el líquido y a valores mayores disminuye la cantidad	
	de sodio en el líquido.	94
3.7.19	Fracción media intercambiada a lo largo del tubo para (a) arcilla saturada	
	en sodio y (b) arcilla con 50% de sus cationes de intercambio como Ca para	
	distintas constantes cinéticas k_2	96
3.7.20	Fracción intercambiada de Ca para (a) arcilla saturada en sodio y (b) con 50 $\%$	
	de sus cationes de intercambio correspondiente a calcio, para distintos valores	
	de <i>K</i>	97
3.7.21	Fracción media intercambiada de Mg para distintos potenciales zeta ζ inicial,	
	en (a) en función de K y (b) a lo largo de la tubería	98
3.7.22	(a) Efecto de la concentración de sales CaCl ₂ y NaCl y (b) tiempo de relajación	
	del potencial zeta al agregar un pulso de 0.005M.	101