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Monitoring evapotranspiration in arid and semi-arid environments plays a key role in water irrigation
scheduling for water use efficiency. This work presents an operational method for evapotranspiration
retrievals based on disaggregated Land Surface Temperature (LST). The retrieved LSTs from Landsat-8
and MODIS data were merged in order to provide an 8-day composite LST product at 100 � 100 m reso-
lution. The method was tested in the arid region of Copiapó, Chile using data from years 2013–2014 and
validated using data from years 2015–2016. In-situ measurements from agrometeorological stations such
as air temperature and potential evapotranspiration (ET0) estimated at the location were used in the ET
estimation method. The disaggregation method was developed by taking into account (1) the spatial rela-
tionship between Landsat-8 and MODIS LST, (2) the spatial relationship between LST and the Normalized
Difference Vegetation Index (NDVI) at high spatial resolution (Landsat-8), and (3) the temporal variations
along the year of both relationships aforementioned. The comparison between disaggregated LST at
100 m resolution and in situ LST measurements presents a coefficient of determination (r2), in average,
equal to 0.70 and a RMSE equal to 3.6 K. The disaggregated LST was used in an operational model to esti-
mate the actual evapotranspiration (ETa). The ETa shows good results in terms of seasonal variations and
in comparison to the evapotranspiration estimated by using crop coefficients (kc). The comparison
between remotely sensed and in situ ETa presents an overall r2 close to 0.67 and a RMSE equal to
0.6 mm day�1 for both crops. These results are important for further improvements in water use sustain-
ability in the Copiapó valley, which is currently affected by high water demand.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Evapotranspiration (ET) is one of the most important parame-
ters of the hydrological cycle affecting water availability on the
Earth’s surface. During the last decades, several works have been
documented the critical importance of ET for agricultural irrigation
scheduling (Porter et al., 2012; Senay et al., 2013), water resource
availability (Oki and Kanae, 2006), hydrologic and meteorological
forecasts (Findell et al., 2011) and climate change scenarios related
to drought indexes (Gao et al., 2011). ET estimations are also cru-
cial for management of water resource in areas of water scarcity
since the actual rate of water use by vegetation can deviate signif-
icantly from potential ET rates (as regulated by atmospheric
demand for water vapor) (Anderson et al., 2012). Thus, detailed
spatial and temporal maps of ET provide power tools for decision
makers and enable managers to more judiciously allocate available
water for agricultural, urban, and environmental uses.

To estimate and quantify ET, it is necessary to account for
diverse meteorological observations and land surface parameters
such as the land surface temperature (LST). LST modulates the sur-
face energy fluxes and it is key to estimating ET for monitoring
crop water demand (Kalma et al., 2008; Li et al., 2009; Zhan
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et al., 2013; Cammalleri et al., 2014). In agricultural and heteroge-
neous natural systems, high variability of ET and LST can occur at
scales of hundreds of meters or less. Thus, moderate-resolution
satellite Thermal Infra Red (TIR) imagery is therefore required
and essential to identify and fully understand water use and water
availability at the field scale associated with specific crop types
(Anderson et al., 2012; Senay et al., 2016).

The combination of LST and vegetation indexes at several time
and spatial scales has been proven as a potential technique to dis-
aggregate LST (DLST) to determine crop ET. Several DLST methods
have been proposed in recent decades using various information
sources available at low, medium or high spatial resolution, which
are widely detailed in Zhan et al. (2013). Nevertheless, the Normal-
ized Difference Vegetation Index (NDVI) based methods are still
the most used operational approaches due to the availability of
data at high spatio-temporal resolution. For instance, ALEXI, DisA-
LEXI, DisTrad, TsHarp, among other algorithms (Kustas et al., 2003;
Anderson et al., 2004; Agam et al., 2007; Bindhu et al., 2013;
Cammalleri et al., 2014; Mukherjee et al., 2014).

Some variations of the NDVI based methods including phenol-
ogy such as the robust disaggregation procedure proposed by
Merlin et al. (2010, 2012) which account for the senescent vegeta-
tion fraction and soil moisture in addition to NDVI. These methods
require additional parameters such as soil moisture, albedo, soil
and vegetation temperatures, among others, which might be diffi-
cult to implement in an operational structure. There are other sim-
ple methods based on a subtraction approach that merge the
spatial detail of higher-resolution imagery with the temporal
change observed in coarser or moderate-resolution imagery
(Hong et al., 2011; Kim and Hogue, 2012). The methods mentioned
above can be applied to ET or soil moisture retrievals in order to
estimate the surface energy balance (SEB) at better spatial resolu-
tions, as well as to crop water management (Sobrino et al., 2012;
Mattar et al., 2014). However, DLST method must be adapted over
arid zones where high seasonal phenology in addition to thermal
amplitude is evidenced in large areas.

Remote Sensing monitoring of semi-arid or arid regions target
cultivated areas surrounded by barren conditions (e.g. deserts)
which can impact on DLST and therefore in ET quantification. The
proportion of bare soil observed in a given pixel during a year
can affect the crop vegetated fraction increasing the LST and affect-
ing ET and water requirements. Hence, DLST approaches concern-
ing the spatial resolution over arid or semi-arid regions by using
operational methods should be capable to monitor crop water con-
sumption and usage accounting the seasonal variations. Despite
the fact that there are some works on complex heterogeneous
and semi-arid regions (Zhu et al., 2010; Weng et al., 2014), these
methods are not simple in their application and present shortcom-
ings in the operational mode such as the use of search windows to
select similar pixels and to perform a sensitivity analysis before
modeling (Weng et al., 2014).

In Chile, a persistent rainfall deficit has prevailed in the central
zone since 2010 leading with a decline in water reservoirs generat-
ing a megadrought without precedents (Boisier et al., 2016). In the
arid region of Chile, such as the Copiapó valley, the water resources
availability has declined in addition to the water demand owing to
agricultural and mining activities. The arid region of Copiapó is one
of the most important agricultural areas of Chile and demands
large amounts of water (4856 L/s equal to 59% of the total demand
in the Copiapó; Bravo, 2013). Thus, it is of crucial importance that
the water demand be determined and monitored and the water use
efficiency be improved in this zone. Therefore, the main objective
of this work is to present an operational DLST approach for estimat-
ing the actual evapotranspiration (ETa) over an arid or semi-arid
region in Chile. This manuscript is structured as follows: Section 2
presents the study area and data. Section 3 describes the method
proposed in this work. Section 4 presents the results and analysis
and finally, Sections 5 and 6 provide the discussion and conclu-
sions, respectively.
2. Study area and data sets

2.1. Study area

The study area belongs to the Copiapó Valley located in the arid
region of Atacama, Chile. The whole valley has an area of about
18538 km2 divided in longitudinal sectors from the Los Andes
Highlands (sector 1) to the coast (sector 6) (Fig. 1). The study area
has a surface of about 1670 km2, and is located in the flat lands of
sectors 5 and 6. It is an agricultural area mainly covered by olives,
vineyards, pomegranates and natural vegetation (Fig. 1). The cli-
mate is semi-arid to arid with low mean annual precipitation
(28 mm) and hot and dry summers (December, January and Febru-
ary), which coincide with the vineyard’s growing season, and cold
and dry winters (June, July and August). Despite the Copiapó Val-
ley’s proximity to the Atacama Desert, the zone located in sector
5 and 6 is highly covered with clouds for several days per year,
which might affect the ETa measurements and the availability of
optical remote sensing imagery. In terms of water resources, the
Copiapó Valley is characterized by acute water scarcity mainly
attributed to the low annual precipitation and the systematic
stress put onto the aquifer by water consumers, mainly agriculture
and mining (Oyarzún and Oyarzún, 2011; Valdés-Pineda et al.,
2014; Suarez et al., 2014). This situation has brought about the
Copiapó Valley’s current critical situation, resulting from the
extraction of water in recent decades, which has risen to rates
greater than the natural replenishing of the aquifer (demand equal
to 8222 L/s over a replenishing equal to 6347 L/s; Bravo, 2013),
thus increasing the pressure for water resources and generating a
new regional scenario for water use efficiency.
2.2. In situ data

In this work, in situ data derived from meteorological stations
generated by the ‘‘Grupo de Estudios del Agua (GEA)” (www.agro-
clima.cl), in addition to LAB-network (here in-after LAB-net)
(Mattar et al., 2016) data sets, were used. The GEA meteorological
data sets were provided by 12 meteorological stations in the
Copiapó Valley, four of which are located in the study area of this
work. These stations were located in vineyards and olives orchards,
and they provide basic meteorological parameters. The reference
evapotranspiration (ET0) from ASCE standardized of a short crop
and air temperature (Ta) between January 2013 and December
2014 were processed from the GEA network and used in this work.

In addition, in order to complement the GEA meteorological sta-
tions, data from two meteorological and radiative flux stations
from LAB-net were also used. To this end, ET0, Ta, infrared thermal,
global and net radiation (Rg, Rn) provided at olive orchards and
vineyards crops were processed between July 2014 to December
2014, totaling 6 stations in the study area. These stations were
used to generate the calibration and the partial evaluation of the
ETa retrieval approach. On the other hand, LAB-net data from years
of 2015 and 2016 was used to validate the DLST and ETa. The LAB-
net station over olives orchards is located in a plot of land measur-
ing about 17 hectares with a fraction vegetation cover of 25% dis-
tributed uniformly. Whereas the LAB-net station over vineyards
is located in an area of 28 hectares with a homogeneous fraction
vegetation cover.

http://www.agroclima.cl
http://www.agroclima.cl


Fig. 1. Copiapó Valley divided in 6 sectors (red line) over which the study area (blue line) and the meteorological station over olive and vineyard crops (square and circle,
respectively) are located in the sectors 5 and 6. In the figure the land cover of the main crops are shown: olives, vineyards and pomegranates. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.3. Remote sensing data

To generate an operational approach, Landsat-8 and MODIS
data products were used. In the case of Landsat-8, 25 clear sky
images for Path 1 and Row 79 acquired for years 2013 (11 images)
and 2014 (14 images) were used to develop and calibrate the pro-
posed methodology. In addition, 21 clear sky images for years 2015
(9) and 2016 (12) for validation of Landsat-8 LST and for compar-
ison of the DLST estimates. For the case of MODIS, water vapor con-
tent from the MOD05 and MOD07 product V5.0 was used in the
estimation of the LST from Landsat-8. Moreover, the MODIS/Terra
composite 8-day LST product (MOD11A2 V5.0) at 1 km spatial res-
olution and the MODIS/Terra composite 16-day normalized differ-
ence vegetation index NDVI (MOD13Q1 V5.0) at 250 m spatial
resolution were also used in the DLST approach for the calibration
(2013–2014) and validation (2015–2016) of DLST and ETa
estimates.

3. Methodology

3.1. Disaggregation LST (DLST)

First of all, the LST from Landsat-8 was estimated by using the
band 10 through the Single-channel (SC) algorithm described in
Jiménez-Muñoz et al. (2014) and based on the work proposed by
Sobrino et al. (1996) and is represented as follows:

LST ¼ c
1
e
ðu1 � Lsen þu2Þ þu3

� �
þ d ð1Þ
where e is the surface emissivity, (u, d) are two parameters
which depend of the at-sensor brightness temperature and the
thermal band, and u1, u2 and u3 are approximation of the atmo-
spheric functions versus the atmospheric water vapor content W
from a second-order polynomial fit, whose coefficients are
obtained from radiative transfer simulation using the GAPRI data-
base (Mattar et al., 2015) and the W was derived from the daily
MOD05 product. The emissivity e was estimated according to the
simplified NDVI thresholds method proposed by Sobrino et al.
(2008), which requires NDVI and knowledge of the soil-emissivity
spectrum corresponding to the soils of the study area. The soil
emissivity was calculated by using the soil types from the ASTER
spectral library (Baldridge et al., 2009), which belong to aridisol
and entisol and were convoluted by using the relative spectral
response for the Landsat-8 thermal band 10 using the RSR calcula-
tor (Durán-Alarcón et al., 2014). Finally, the NDVI threshold was
0.15 and 0.80 for the minimum and maximum, respectively. Both
MODIS and Landsat-8 LST data were filtered by cloud mask using
the Quality Control (QC) of both MODIS and Landsat-8. Both
Landsat-8 and MODIS were spatially matched in order to extract
the study area from both images and for the study period between
2013 and 2014.

The disaggregation method was developed by taking into
account (1) the spatial relationship between LST and the Normal-
ized Difference Vegetation Index (NDVI) at high spatial resolution
(Landsat-8), (2) the spatial relationship between Landsat-8 and
MODIS LST, and (3) the temporal variations along the year of both
relationships aforementioned. The following sections describe
these relationships and the methodology to merge them to obtain
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the disaggregation LST product at Landsat spatial resolution and at
higher temporal frequency of MODIS.
3.2. Relationship between LST and NDVI

The temporal variability of LST shows a strong seasonality
(Weng et al., 2008) which its seasonal change can be modeled
using the annual temperature cycle approximated by a sinusoidal
function (Bechtel, 2012). In a similar way, the vegetation indices
as NDVI present a strong seasonality which have been widely used
to describe the phenological cycles of different ecosystems at dif-
ferent spatial resolution (Cheema and Bastiaanssen, 2010;
Duchemin et al., 1999; Li et al., 2010; Liu et al., 2017). The annual
variability of both NDVI and LST can be evidenced at both field and
watershed scale and can be monitored at the high spatial resolu-
tion of Landsat. Based on the strong seasonality of LST and NDVI,
the variability of the relationship between LST and NDVI through-
out the year was considered by using the seasonal behavior of
the linear regression parameters derived from Landsat 8 imagery.
The intercept and the slope of the LST–NDVI relationship are con-
trolled by a wide range of factors, such as the fractional vegetation
cover, surface soil moisture variability and meteorological factors
(Nemani et al., 1993). The regression parameters could be fitted
to a sinusoidal function due mainly to the annual temperature
cycle and the seasonal changes of differences of temperature
between soil and vegetation. The cloud-free images available to
two years (2013–2014) were used in order to provide information
of a complete annual cycle and taking into account the low tempo-
ral frequency of sensors as Landsat-8. The Landsat-8 NDVI was
resampled to the same spatial resolution of Landast-8 LST.

Because an ordinary least square regression algorithm lacks
robustness and is sensitive to outliers (Rousseeuw, 1984), some
authors have proposed overcoming this problem by using sub-
pixel variability based sampling (co-efficient of variation <25%)
(Agam et al., 2007; Kustas et al., 2003) or using least median square
(LMS) regression and Projection Adjustment by Contribution Esti-
mation (PACE) regression for more heterogeneous landscapes
because these methods are less sensitive to outliers (Mukherjee
et al., 2014). In this work, we propose a new method to describe
the linear regression between LST and NDVI. This was carried out
using the mean LST values derived from NDVI classes separated
by 0.01 step forward. This technique was used to overcome the
sensitive to extreme value or outliers in a robust and efficient
way and in order to obtain a seasonal behavior of regression
parameter, which would be not possible observe by using all the
scatter data in the feature space plot. The latter is due to the influ-
ence of different factors (mentioned above) that often results in a
wide range of LST for a given value of NDVI, thus leading to an
imprecise quantification of the slope of the NDVI–LST relationship
(Bindhu et al., 2013).

The intercept and the slope (a, b respectively) obtained for the
calibration period (2013–2014) were adjusted by using a sinu-
soidal function to estimate a and b every 8 days (a8day and b8day,
respectively) throughout the year. An invariant spatial scale
between 100 m and 250 m was assumed for modeling the linear
coefficients in order to obtain a disaggregated LST every 8 days at
250 m from the composite 16-day MODIS NDVI product, account-
ing for the seasonal vegetation behavior described as follows:

LST250m 8day ¼ a8day þ b8day � NDVIMOD250m 16day
þ error100m 8day ð2Þ

where the subscripts 250 m and 8 day denotes the spatial and tem-
poral resolution, respectively; a8day and b8day are the coefficients of
the linear regression interpolated each 8 days for the whole image.
NDVI 16-day composite was used for two corresponding 8-day per-
iod. To estimate LST using the LST – NDVI relationship the error
pixel-by-pixel between the LST observed by Landsat 8 and the LST
modeled were linear fitted. This error was obtained for each Landsat
8 image and then a second order polynomial fit was applied on a
pixel-by-pixel basis to estimate an error each 8 days (error100m_8day).

3.3. Relationship between MODIS and Landsat-8 LST

On the other hand, the MODIS LST was resampled from 1 km to
100 m resolution by using nearest neighbors in order to estimate a
seasonal factor which considers the relationship pixel by pixel
between MODIS resampled image and Landsat-8 (4). This factor
has a seasonal pattern and can be used as a partial disaggregation
between Landsat-8 and MODIS following the size of the most rep-
resentative crops in the study area.

x8day 100mðx; y; tÞ ¼ LSTL8 100mðx; y; tÞ
LSTMOD 8day 1kmðx; y; tÞ ð3Þ

The seasonal factor x8day 100mðx; y; tÞ varies according to differ-
ences of annual temperature cycle at coarse and fine scale, which
is modulated by the specific LST temporal profiles at both scales.
These differences can be mainly due to the different land cover
at Landsat spatial-resolution (�100 m) and a coarser spatial-
resolution (�1 km). For instance, homogeneous land covers, such
as bare soil, will show low temporal differences at MODIS or
Landsat-8 spatial resolution since the land cover is the same during
the whole year, and the seasonal pattern will show a slow tempo-
ral variation. However, for heterogeneous land cover such as crops,
several phenology stages will be evidenced and therefore, a high
impact on the proportion of vegetation cover can be observed in
MODIS or Landsat-8 pixel. In this case, x8day 100mðx; y; tÞ demon-
strates a crop seasonal behavior which modulates the LST between
Landsat-8 and MODIS. The x8day 100mðx; y; tÞ was calculated assum-
ing a constant proportion of the land cover types contained in a
given pixel. Once the factor x8day 100mðx; y; tÞ was estimated for
the whole calibration period, it was interpolated every 8 days for
the whole year in order to process the LST fromMODIS at 1 km res-
olution to Landsat-8 for 8 days (4).

LST8day 100m ¼ x8day 100m � LSTMOD 8day 1km ð4Þ
Once the relationship between LST – NDVI and Landsat-8 –

MODIS was determined to estimate a product of LST at 250 m
and 100 m each 8 days (LST8day_100m and LST8day_250m respectively),
a combination of them were applied to generate a final and robust
disaggregated LST at 100 m and 8 days ðDLST8day 100mÞ as follow:

DLST8day 100m ¼ LST8day 100m þ hLST250m 8day

� hLST8day 100mi250mi100m ð5Þ

with hLST8day 100mi250m being the average of LST8day_100m within each
250 m pixel resolution and h i100m being the resampling from 250 m
to 100 m resolution by using nearest neighbors in order to correct
the product LST8day_100m by the difference between LST8day_250m
and hLST8day 100mi250m. The final DLST8day 100m retrieval can be per-
formed operationally that can be very useful as application to sur-
face energy budget. In this work, the DLST8day 100m was used in an
operational surface energy balance method to estimate the ETa,
which is described below.

3.4. Estimation of actual evapotranspiration

The ETa was estimated by using the Operational Simplified Sur-
face Energy Balance (SSEBop) developed by Senay et al. (2013) and
evaluated in this study area by Olivera-Guerra et al. (2014). The
SSEBop approach estimates the pixel-by-pixel evaporative fraction
(EF) by using ‘‘hot/dry” and ‘‘cold/wet” reference values. To
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estimate ETa routinely, the only data needed for this method are
LST, daily maximum air temperature (Ta), and ET0.

This model relies on the simplification of the surface energy bal-
ance process which is mainly driven by the available net radiation
(Rn). Since thermal remote sensing is conducted under clear-sky
conditions, the SSEBop method assumes a location- and date-
specific constant temperature difference (dT) between the hot/
dry and cold/wet boundary reference points. ETa can be estimated
using Eq. (6) as a fraction of the ET0 as follows:

ETa ¼ EF � k � ET0 ð6Þ
where ET0 is the green grass reference for the location; k is a
coefficient that scales the ET0 into the level of a maximum ET
experienced by an aerodynamically rougher crop and EF is the
evaporative fraction. Although a value of k between 1.0 – 1.25
is recommended (Allen et al., 2011; Senay et al., 2013; Senay
et al., 2016), a value equal to 0.65 was used in this study, which
was determined by Olivera-Guerra et al. (2014) to this domain
area. This value is due to cover type mainly corresponding to
vineyards and olive orchards, which often have a low fractional
cover vegetation and whose maximum values of crop coefficient
(kc) are equal to 0.70 and 0.65, respectively (Allen et al., 1998).
The EF was estimated pixel-by-pixel according to the following
equation:

EF ¼ TH � Ts

TH � TC
¼ TH � Ts

dT
ð7Þ

where Ts is the LST downscaled at 100 m spatial resolution every
8 days. TH is the estimated Ts at the idealized reference hot/dry con-
dition of the pixel for the same time period, Tc is the estimated Ts at
the idealized cold/wet reference point and the dT is the difference
between Th and Tc. The cold boundary condition is derived as a cor-
rection of the Ta, whose correction coefficient was determined as a
seasonal average between Ts and Ta on all pixels where NDVI is
greater or equal to 0.75. A correction factor of 0.993 was established
by using all Landsat imagery.

The predefined dT is solved from the Rn equation for a bare, dry
soil where ETa is assumed 0 and sensible heat is assumed maxi-
mum (Bastiaanssen et al., 1998). It is calculated by using Eq. (8)
and the assumptions of Senay et al., (2013).

dT ¼ Rnrah
qaCp

ð8Þ

where Rn is clear-sky net radiation (Wm�2); rah is the aerodynamic
resistance to heat from a hypothetical bare and dry surface (sm�1);
qa is the density of air (kg m�3), estimated as a function of air pres-
sure and temperature (Allen et al., 1998); Cp is the specific heat of
air at constant pressure (1.013 kJ kg�1K�1). The rah was theoretically
estimated through an iterative computation by implementing an
energy budget for bare soil for the whole year according to
Bastiaanssen (1995). According to this procedure, the average rah
was equal to 113 sm�1, which is very close to the value of
110 sm�1 determined by Senay et al. (2013).

3.5. Validation of LST and ETa

The validation of remotely sensed LST was carried out by com-
paring the DLST every 8 days and the LST measured in situ at LAB-
net stations. In order to compare the in-situ and the DLST at the
100 m scale, the thermal infrared sensor (Apogee SI-111�) was
located at a height of 5 m and inclined to measure an area with
the same fraction vegetation cover as the plot of land where the
station is localized. To estimate the in situ LST, the radiometric
temperature measured, by a step of 5 min, was converted to LST
by using the following equation:
BðLSTÞ ¼ Lrad� ð1� eÞLdown
e

ð9Þ

where Lrad is the land leaving radiance (Wm�2) measured by a
thermal radiometer, e is the land surface emissivity, Ldown is the
long-wave downwelling irradiance (Wm�2) and B(LST) is Planck’s
law for the LST (Wm�2sr�1mm�1). The Ldown was estimated using
the methodology proposed by Jiménez-Muñoz et al. (2010), by pro-
cessing a MOD07 profile into MODTRAN radiative transfer code and
convoluting the downwelling irradiance spectra by using the Apo-
gee SI-111� relative spectral response. The surface emissivity was
acquired from the ASTER Global Emissivity Data Base (Hulley and
Hook 2013) and the emissivity was converted from narrow band
to a broad band by using the method proposed by Ogawa et al.
(2003). Finally, the LST (K) was estimated by inverting Planck’s law.

For the validation of ETa, the in situ ET0 measured at the station
located over the olive orchard and vineyard by a step of one hour
were used. These ET0 values were estimated at daily level and
weighted by the kc estimated by the Direccion General de Aguas
(2007) and Martínez and Tapia (2002) based on the FAO crop coef-
ficient. The values of kc were estimated for the arid region of Ata-
cama, changing during the seasons of the year. The mean kc values
are presented in Table 1 for olives and vineyards and are crop site
dependent which cannot be directly assimilated for the same crops
in other regions of Chile. Finally, for the case of olives, the kc was
weighted for fraction vegetation cover, which is equivalent to
25% during the whole year and the kc values were estimated to a
vegetation cover equal to 50%.

To estimate the accuracy of the proposed DLST method and its
application to ETa retrieval, the bias, standard deviation, RMSE
and determination coefficient (r2) were calculated for each station
(olive and vineyards) between January 2015 and December 2016.
This period was defined following the overflooding that occurred
on 27th March 2015, which caused some damage to the irrigation
system of the vineyards, as can be consequently seen in the crop
growth after September 2015.
4. Results

4.1. Statistical relationship for LST – NDVI and Landsat-8 – MODIS

The NDVI and LST relationship was estimated to the 24 scenes
available to the calibration period between 2013 and 2014. Fig. 2
represents the variability of scatterplot during a Landsat scene dur-
ing winter and summer of 2013. In terms of seasonal variation,
during winter the amplitude of LST is between 285 and 305 K,
whereas in summer it varies between 290 K and 330 K. Meanwhile,
the NDVI values mainly fall between 0.1–0.6 and 0.1–0.8 during
winter and summer respectively. In summer, steeper slopes can
be observed due to the greater temperature differences between
soil and vegetation surface, as it is showed in Figs. 3 and 4.

The slope and intercept parameters were statistically adjusted
for a sinusoidal shape (r2 equal to 0.904 and 0.931, RMSE equal
to 1.39 K and 2.63 K for slope and intercept, respectively). The esti-
mated linear regression by the observed Landsat 8 and the simu-
lated regression by the sinusoidal fit of slope and intercept
match in terms of each statistical coefficient for each scene. This
sinusoidal shape can be interpolated in order to obtain the param-
eters regression for the sinusoidal function to represent the whole
year of NDVI and LST relationship for a Landsat scene. Indeed, Fig. 3
shows the scatter plots for the linear correlation between NDVI and
LST.

In terms of the Landsat-8 and MODIS LST relationship, the frac-
tionx between both sensors can be fitted by a sinusoidal equation
(Fig. 2), thus this parameter can be modeled for each day of the



Table 1
Vineyards and olives kc values.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Vineyards 0.70 0.65 0.60 0.50 0.40 0.40 0.40 0.40 0.40 0.60 0.65 0.70
Olives 0.65 0.65 0.65 0.65 0.6 0.5 0.5 0.5 0.6 0.6 0.65 0.65

Fig. 2. Linear relationship between LST and NDVI by Landsat-8 image acquisition to winter (a) and summer (b). The equations are included for the linear regression from the
observed Landsat-8 data (LST: solid line) and for the linear regression from the slope and intercept fitted to a sinusoidal function (LSTsin: dashed line).

Fig. 3. Slope and intercept of the linear relationship between LST and NDVI from all Landsat image acquisition dates between 2013 and 2014 and its sinusoidal functions
according to the day of year (dashed line).
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year and the x values for any obtained DLST. The x can be
obtained for each pixel according to the land cover type and the
fraction of vegetation cover given in the Landsat-8 pixel at 100 m
and in MODIS at 1 km spatial resolution. The difference of the frac-
tion of vegetation cover between Landsat-8 and MODIS affects the
annual amplitude of the x, generating low amplitude for similar
vegetation cover and high amplitude for a high difference of the
vegetation cover between both Landsat-8 and MODIS pixels as pre-
sented in the case of olives and vineyards, respectively. This annual
effect on x can be also related to the land cover types variability
within a MODIS pixel and its different phenological stages since
the relationship between a fine and coarse resolution was revealed
in terms of LST through the factor x. The x values can be closer to
1 in the case of olives and lower than 1 for vineyards because of
during summer, during the maximum crop growth rate, the vege-
tation cover presents the highest values at Landsat-8 spatial
resolution.
4.2. Disaggregation of LST (DLST)

Fig. 5 shows the disaggregated LST retrievals for a day on Jan-
uary (summer) and July (winter) used to obtain the ETa by using



Fig. 4. LST from Landsat-8 overpass (blue circle), 8-day composite MODIS LST (red circle) and the ratio between Landsat-8 and MODIS LST (x: triangle) for all Landsat image
dates between 2013 and 2014. The sinusoidal functions of the ratio according to the day of the year (x8day_100m: dashed line). The graphs are shown for the pixel
corresponding to the station located in olives (a) and vineyards (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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MODIS and Landsat-8. The coarse (1 km) resolution MODIS LST can
be used for a general characterization of the study area, where the
most common feature is the bare soil surrounding the naturally
vegetated and agricultural areas. For the case of LST retrieved at
250 m, the main vegetation orchards such as olives and vineyards
can be distinguished in terms of low magnitudes of LST. Addition-
ally, for January, the LST highlights the impact of the bare soil
located on the boundary of the study area. However, when using
the direct 1 km resolution DLST based on both MODIS and
Landsat-8, the border reveals a high LST difference in comparison
to the crops and orchards (±20 K and ±10 K for summer and winter,
respectively). This can be also noticed for winter, where the vege-
tation of olive orchards located in the middle of the study area
showed a LST noticeably lower than on the boundary. The use of
both disaggregated LST from NDVI and by using the x factor,
resulted in a good characterization of olives orchards, vineyards
and crops as they can be distinguished as the lower values. It is
important to note that the riverbed of the Copiapó River can be also
distinguished during winter since it gives the lowest LST values.
Furthermore, the boundary’s maximum LST values shown in the
NDVI–LST relationship or by using the x factor are smoothed in
terms of the combination of both methodologies marking out the
crop areas along the study area.

4.3. Evapotranspiration retrievals

The ETa estimated at 1 km and 100 m resolution for January and
July is presented in Fig. 6. Over vineyards, a difference of about
10 mm 8 day�1 between the coarse and the fine pixel can be
obtained during summer when using the DLST proposed method
in comparison to MODIS. Other differences, though somewhat
lower, are also obtained for Olives (±5 mm 8 day�1) that are
located in the central and western part of the study area. On the
other hand, during July, the minimum threshold of ETa is evi-
denced over the riverbed, representing the lowest values of ETa
in the whole study area (i.e. <2 mm 8 day�1). The maximum values
of ETa correspond to the vegetation orchards with partial vegeta-
tion cover such as olives or pomegranates. Vineyards did not show
the maximum ETa, which seems to be consistent with the pheno-
logical stage of this crop. The ETa retrieved by MODIS is partially
homogeneous during summer and winter, although the ETa
retrieved by the DLST targeted the maximum values in summer
and the minimum in winter, generating a heterogeneous ETa
map which can be used to characterize the areas which need to
be irrigated and useful for water requirements. However, for vine-
yards, there are significant differences when comparing seasonal
periods such as summer and winter. For instance, during summer,
a big difference in ETa can be seen by the influences of spatial res-
olution. These differences are close to 10 mm 8 day�1 when using
MODIS or ETa from the DLST algorithm, although these differences
are non-significative during winter.

As a partial evaluation with in situ measurements, Fig. 7 shows
the times series for the ETa derived from DLST and 8-day composite
MODIS LST over vineyards and olive orchards pixel at 100 m and
1 km resolution, respectively, and the ET0 obtained from in situ
measurements in the whole study area. It is important to note that
maximum values are explained by the ET0, which seems to be
lower when applying a kc in order to obtain ETa. For Olives, the
vegetation cover fraction in addition to the proportions of land
cover type at both 100 m pixel of DLST and 1 km pixel of MODIS
are very close, thus the bare soil proportion is constant during all
years and the vegetation fraction in both 100 m and 1 km pixel
are very close. So, in the case of olives, when comparing the
1 km or 100 m resolution ETa with in situ measurements, there is
no statistically significant differences (p < 0.05). The ETa from DLST
and Landsat-8 overpass were compared show a good agreement in
both olives and vineyards (r2 equal to 0.67 in average for both
crops), where the DLST is slightly underestimated in relation to
Landsat-8 (bias equal to �0.05 mm day�1 and RMSE of
0.3 mm day�1 in average for both crops). It is important to note
that ETa from DLST represent the average over 8 days whereas
ETa from Landsat-8 overpass represent a clear-sky day, at least at
the Landsat overpass. Therefore, this underestimation can be
expected due to ETa from DLST can be represent the average over
cloudy and clear-sky days.

4.4. Evaluation of LST and ETa

LST and ETa at 100 m and 8-days spatio-temporal resolution
were simulated to the time series of 2015 and 2016 from the



Fig. 5. Comparison between the composite 8-day MODIS LST (LST _1 km), the first product of disaggregated LST at 250 m from MODIS NDVI (LST_250m), the second product
of LST at 100 m from MODIS LST (LST_100m) and the final disaggregated LST at 100 m (DLST_100m).
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Eqs. (2), (3) and (5) by using the NDVI and LST MODIS composited
product at 250 m and 1 km resolution, respectively. Note that
Landsat imagery were used in the calibration period (2013–2014)
and the evaluation period for 2015–2016. The time series of LST
and ETa simulated from the operational approach and the in situ
retrievals are presented in Fig. 8. The RMSE for ETa was estimated
in 0.5 and 0.7 mm day�1 for olives and vineyards, respectively
(Table 2). Meanwhile, the RMSE for LST was estimated lower than
3.6 K for both vineyards and olives. The LST during summer is over-
estimated closed to 4 and 6 K in olives and vineyards, respectively.
The overestimation of LST could be attributed to the fraction veg-
etation cover which could generate rapidly changes in space as
well as in time (Prata et al., 1995; Vauclin et al., 1982). This effect
is related to the high complexity of surface temperature over the
study area where more dense measurements are required with
detailed spatial sampling (Li et al., 2013). On the other hand, high
differences in LST over vineyards were observed during the sum-
mer 2015–2016 (December and January) corresponding to the
maximum plant development to the vineyards. This was mainly
attributed to the impact of irrigation on the crop since the drip sys-
tem was damaged by the floods and it decreased the amount of
water for the same period in the last years (2013 and 2014), which
also explains the significant increase of LST in the plant develop-
ment stage (September–November). The effect of the change in
the irrigation can be evidenced by observing the NDVI that reached
a value of 0.5 in summer 2015–2016 meanwhile the last years it
was greater 0.7 for the same period. The differences in temperature
retrieved during the summer season over vineyards might be
attributed to misleading in surface emissivity values that can pro-
voke errors of up to 4 K over arid and sparsely vegetated areas as
described in Guillevic et al. (2014). Over olive orchards the fraction
of vegetation cover is almost the same during the whole year,
impacting on the amplitude of the LST between summer and win-
ter and also in the comparison between in situ and DLST. Mean-
while in summer LST is overestimated, in winter is
underestimated.

In spite of the differences observed between DLST and ground-
based LST, a consistent agreement with Landsat-8 LST is observed,
being also overestimated in summer season. Moreover, the statis-
tics errors from DLST and Landsat-8 are very close for both olives
and vineyards.



Fig. 6. Comparison between the composite 8-day ETa at 1 km and the disaggregated product at 100 m from MODIS LST at 1 km and the disaggregated LST product at 100 m,
respectively.

Fig. 7. ETa estimated over olive and vineyard station from different LST products. Subscript MODIS is for ETa from 8-day composite MODIS LST at 1 km, subscript DLST is for
ETa from DLST proposed at 8-day and 100 m and L8 is for ETa from Landsat-8 LST overpass at 100 m. ETa from DLST and MODIS are represented as the daily average over
8 days.
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In terms of ETa, an important overestimation is evidenced dur-
ing summer for vineyards showing the highest differences of the
validation period reaching up to 1.4 mm day�1. This difference
could be attributed to the use of a kc for in situ ETa estimates under
crop optimal conditions instead of the current crop which show
some problems of water management (system irrigation) impact-
ing the growing season and therefore lower NDVI values than the
previous years. Therefore, it is possible that the kc-based ETa can
be overestimated in vineyards for the summer periods after
2015. Another important result is the comparison between ET0
and ETa, there is a high difference when comparing to ET in the arid
zone, which shows an average difference greater than 1 mm day�1

during summer season accumulating 10 mm after 8 days. This is a
key factor because in the study area, water irrigation scheduling
programs are based on the ET0, which might overestimate the
amount of water and therefore cause inefficiency in water usage.
5. Discussion

The sinusoidal annual relationship for DLST presented in this
work performs well in terms of operational modes and applications



Fig. 8. Comparison between DLST and the in situ LST from LAB-net stations (top). LST from Landsat-8 overpass is shown for comparison for olives (OliveL8) and vineyards
(VineyardL8). Comparison between ETa from SSEBop and DLST and Kc-based ET (in situ) for olives orchards and vineyards (bottom).

Table 2
Coefficient of determination (r2), mean bias error (Bias), standard deviation (Sigma) and root mean square error (RMSE) for DLST proposed and ETa from DLST and SSEBop method
over olives orchards and vineyards. The values correspond to mean every 8 days at 100 m for the period 2015 to 2016. The same statistical parameters of LST and ETa from
Landsat-8 are shown for comparison in the same period.

Bias Sigma RMSE r2

DLST [K] Olives �0.30 3.56 3.57 0.87
Vineyards 1.46 3.24 3.55 0.62
Overall 0.59 3.50 3.55 0.72

LST Landsat-8 K Olives �0.37 3.29 3.31 0.95
Vineyards 1.66 2.61 3.09 0.90
Overall 0.72 3.08 3.16 0.87

ETa (DLST) [mm/day] Olives 0.41 0.29 0.50 0.63
Vineyards �0.37 0.60 0.70 0.80
Overall 0.02 0.61 0.61 0.67

ETa (Landsat-8) [mm/day] Olives 0.27 0.41 0.49 0.44
Vineyards �0.52 0.77 0.93 0.63
Overall �0.15 0.74 0.75 0.49
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to surface energy balance. These results are related to previous
works which also demonstrate that the sinusoidal model can be
used to obtain daily LST maps at medium spatial resolution
(Weng et al., 2014). Moreover, based on the linear relationship
derived from the interpolated sinusoidal regression coefficients,
the LST can be obtained based on the NDVI, thus resulting in good
seasonal performance over the arid area used here.

The ETamethod for arid regions seems to be consistent with the
results in terms of the operational algorithm and its retrievals. The
SSEBopmethod is based on the differences between the dry and hot
surface and air temperatures and in this context, the DLST method
proposed here will be an excellent approach in terms of a good
characterization of the LST over arid regions. This good characteri-
zation based on the combined x fraction and NDVI–LST relation-
ship represents the maximum and minimum of temperature
used in the dT equation, a parameter which highly affects ETa
retrievals during summer.

The ETa retrieved by the DLST obtained from the proposed
method is consistent with the results when showing lower ETa
than ET0 values and is also influenced by the vegetation cover.
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The phenology is a key parameter for a reliable DLST method and
therefore the operation in terms of ETa maps. The validation was
partially applied since the flooding that occurred in this area
deserved more analysis to validate the DLST and ETa approach after
September 2015, when the vineyards started the growing season.
Nevertheless, the partial validation presented in this work demon-
strates solid performance of the operational method in terms of LST
and ETa.

Finally, several agricultural practices consider the ET0 in this
region in order to develop accurate water irrigation scheduling,
which has overestimated the crop water requirements. Further
efforts need to be applied to improve water use efficiency in the
Copiapó Valley and should be accompanied by better knowledge
of the crop spatial heterogeneity and a suitable strategy for an
in situ monitoring network.

6. Conclusions

This work presents an operational method for disaggregating
LST over an arid to semi-arid region that take into account (1)
the spatial relationship between Landsat-8 and MODIS LST, (2)
the spatial relationship between LST and the Normalized Difference
Vegetation Index (NDVI) at high resolution (Landsat-8), and (3) the
combination of both relationships. The disaggregated LST is inte-
grated into an operational surface energy balance method (SSEBop)
in order to estimate ETa at high temporal and spatial resolution.
Results show that the developed approach gives an RMSE in LST,
in average, lower than 3.6 K and an mean 8-day ETa lower than
0.7 mm/day. This approach is useful for generating better knowl-
edge of water requirements in arid region which could be espe-
cially important in Chile where irrigation scheduling needs to be
improved based on the current water usage and scarcity scenarios.
Moreover, the proposed method modulates the contribution of
vegetation by using two disaggregation methods based on temper-
ature and NDVI. The simple use of NDVI and meteorologically-
based equation could provide biased results since the values of
NDVI need to be adapted to the high surface temperature derived
from the soil/vegetation proportion. So, the use of integrated and
operational method to extract surface information of surface and
air temperature in addition to vegetation index could improve
the surface energy balance in the arid region of Copiapó. Finally,
this work contributes to determine and optimize the water
demand in arid regions affected by the current drought in Chile,
providing reliable ETa maps for irrigation scheduling and water
use efficiency.
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